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Abstract. In the face of escalating instances of inland and flash flooding spurred by intense rainfall and hurricanes, the accu-

rate prediction of rapid streamflow variations has become imperative. Traditional data assimilation methods face challenges

during extreme rainfall events due to numerous sources of error, including model deficiencies, forcing biases and observational

uncertainties. This study introduces a cutting-edge hybrid ensemble and optimal interpolation data assimilation scheme tai-

lored to precisely and efficiently estimate streamflow during such critical events. Our hybrid scheme uses an ensemble-based5

framework, integrating the flow-dependent background streamflow covariance with a climatological error covariance derived

from historical model simulations. The dynamic interplay (weight) between the static background covariance and the evolving

ensemble is adaptively computed both spatially and temporally. By coupling the National Water Model (NWM) configuration

of the WRF-Hydro modeling system with the Data Assimilation Research Testbed (DART), we evaluate the performance of

our hybrid prediction system using two impactful case studies: 1. West Virginia’s flash flooding event in June 2016, and 2.10

Florida’s inland flooding during Hurricane Ian in September 2022. Our findings reveal that the hybrid scheme substantially

outperforms its ensemble counterpart, delivering enhanced streamflow estimates for both low and high flow scenarios, with an

improvement of up to 50%. This heightened accuracy is attributed to the climatological background covariance, mitigating bias

and augmenting ensemble variability. The adaptive nature of the hybrid algorithm ensures reliability even with a very small

time-varying ensemble. Moreover, this innovative hybrid data assimilation system propels streamflow forecasts up to 18 hours15

in advance of flood peaks, marking a substantial advancement in flood prediction capabilities.

1 Introduction

Flooding can stem from various causes, including prolonged rainfall events like tropical storms or hurricanes, as well as intense

rainfall over short periods or complications such as debris and ice jams. When examining events causing at least a billion dollars

in damage, river and urban flooding alone account for 7.4% of US natural disasters from 1980 to 2023. Tropical cyclones top20

the list, contributing to 52% of the damage (Smith, 2020).

Tropical storms and hurricanes are characterized by destructive winds, storm surge, and catastrophic flooding. Hurricanes

can unleash 2.4 trillion gallons of rainwater in a day (Nunez and Yang, 2023). According to the National Weather Service,

torrential rain from hurricanes can flood the neighborhoods of coastal communities within minutes. This phenomenon, known
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as freshwater or inland flooding, can damage infrastructure, cause landslides, destroy crops, and take lives. Inland flooding25

could be caused by both the river water level exceeding river bank heights or rainfall intensity exceeding the infiltration

capacity. The latter is the major cause of the flooding in case of tropical storms and hurricanes. Approximately, 25% of US

hurricane deaths from 1963 to 2012 were related to freshwater flooding (Rappaport, 2014). Predicting floods has the potential

to save lives, protect infrastructure, and minimize socio-economic impacts. Such predictions are challenging and remain an

area of active research and operational development.30

Streamflow predictions commonly integrate real-world observations with hydrologic model simulations, a practice known

as data assimilation (DA) (Houser et al., 1998; Margulis et al., 2002; Reichle, 2008; Yucel et al., 2015). This approach, preva-

lent across diverse fields including numerical weather prediction (NWP; Lorenc, 1986), has witnessed substantial growth in

streamflow prediction applications over the last two decades (e.g., Kim et al., 2021; Chao et al., 2022). Ensemble filtering

techniques, based on the Kalman filter (Kalman, 1960), are widely adopted due to their ease of implementation and high35

portability. The ensemble Kalman filter (EnKF; Evensen, 1994; Burgers et al., 1998) stands out among these methods, utiliz-

ing model forecast realizations during the analysis. The EnKF employs a minimum variance estimator, utilizing observations

to compute ensemble increments that are subsequently linearly combined with the predicted ensemble. Extensively used in

real-time and operational settings, the EnKF has been applied to enhance streamflow simulations. For instance, Pauwels and

De Lannoy (2006, 2009) investigated a retrospective EnKF formulation in several conceptual and operational rainfall-runoff40

models and assessed the impact of streamflow DA using linear and nonlinear observation operators. Rakovec et al. (2012)

explored performance of the EnKF in updating streamflow through synthetic and real-world experiments in the Meuse River

basin, Belgium. In an operational hydrological context, McMillan et al. (2013) introduced a recursive EnKF variant stabilizing

streamflow estimates across different catchments in New Zealand. Rafieeinasab et al. (2014) compared the performance of the

maximum likelihood ensemble filter with the EnKF for real-time streamflow assimilation in a Southern Texas headwater basin.45

Meanwhile, Huang et al. (2017) utilized the EnKF to update streamflow using snow water equivalent data in basins like the

Pacific Northwest, Rocky Mountains, and California in the western US. Additionally, Lee et al. (2019) developed a bias-aware

version of the EnKF to enhance flood forecasting for a subset of 10 headwater basins in the Southern US. Beyond the EnKF,

various methods, including particle filters (e.g., Weerts and El Serafy, 2006; DeChant and Moradkhani, 2011; Noh et al., 2013;

DeChant and Moradkhani, 2014; Abbaszadeh et al., 2020), ensemble smoothers (e.g., Margulis et al., 2015; Meng et al., 2017),50

variational methods (e.g., Seo et al., 2009; Mazrooei et al., 2021), and machine learning (e.g., Boucher et al., 2020), have been

employed for streamflow and flood prediction across diverse spatial and temporal scales. A comprehensive review of methods

used in streamflow prediction over the past four decades is available in Troin et al. (2021).

Despite its achievements in research, real-time applications, and operational frameworks, the EnKF operates as a sequential

estimation tool with inherent limitations, grappling with biases and sampling errors. The EnKF approximates the true prior55

(or forecast) covariance by employing a sample covariance from the ensemble, assuming unbiased background errors. In sce-

narios with small ensemble sizes, the estimated sample covariance may be plagued by substantial sampling errors, leading to

suboptimal analysis (or posterior) estimates. These errors often result in the underestimation of the true ensemble variance, po-

tentially causing filter divergence in severe situations (Furrer and Bengtsson, 2007). Moreover, the use of a restricted ensemble
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size can introduce spurious correlations in space, proving detrimental over successive assimilation cycles (Anderson, 2012).60

Model biases, typically unaccounted for in the EnKF, tend to dominate other error sources, potentially causing catastrophic

consequences such as complete ensemble collapse (Sacher and Bartello, 2008). Localization and inflation are commonly em-

ployed methods to address sampling errors. Localization (Houtekamer and Mitchell, 2001) restricts the impact of observations

to nearby state variables, mitigating nonphysical correlations, especially between spatially distant observations and state vari-

ables. Inflation (Anderson and Anderson, 1999) increases the ensemble spread around its mean, countering sampling errors65

and enhancing the fit to observations. Both inflation and localization have become integral tools in the majority of streamflow

ensemble DA studies in the literature (e.g., Emery et al., 2020). Additional techniques addressing sampling errors encompass

relaxation of prior spread and perturbations (Zhang et al., 2004; Whitaker and Hamill, 2012), the utilization of stochastic per-

turbations and multi-physics ensembles (e.g., Berner et al., 2011), and covariance hybridization (Hamill and Snyder, 2000).

Beyond sampling errors and biases, issues such as non-linearity and non-Gaussianity frequently compromise the optimality of70

the EnKF update step (Anderson, 2010).

Integrating the EnKF with other DA methods can mitigate some of its shortcomings. For instance, optimal interpolation (OI)

or three-dimensional variational (3D-Var) systems1 avoid sampling errors by depending on a time-invariant background error

covariance, typically estimated from the model’s climatology. This approach has been extensively explored in atmospheric and

ocean DA literature (Counillon et al., 2009; Bannister, 2017, and references therein). However, in the realm of streamflow75

applications, the utilization of hybrid ensemble and variational DA techniques remains limited and is actively researched. In

a study on high-resolution hydrologic forecasting, Hernández and Liang (2018) investigated streamflow predictive accuracy

using a hybrid scheme that combines particle filtering (PF) with four-dimensional variational (4D-Var) data assimilation. The

authors reported the hybrid algorithm’s ability to provide skillful streamflow predictions, accommodating non-Gaussian, non-

linear, and high-resolution estimation. In another exploration, Abbaszadeh et al. (2019) developed a similar hybrid PF and80

4D-Var system, assessing its performance across several river basins in the US. Their hybrid scheme, adept at handling various

sources of uncertainties, proved efficient and robust to the number of particles. In this work, we delve into the functionality,

performance, and efficiency of a hybrid EnKF and OI scheme, hereafter referred to as EnKF-OI, in the context of flash flooding

and freshwater events. We meticulously examine the weighting between the ensemble-based flow-dependent covariance and

the climatological static background covariance. Furthermore, we implement the adaptive hybrid weighting scheme proposed85

by El Gharamti (2021) and investigate the temporal and spatial variations of the weighting factor across the stream network.

Our analysis extends to assessing the impacts of the hybrid scheme on streamflow biases and sampling errors. To our knowl-

edge, this marks the inaugural application of an adaptive hybrid EnKF and 3D-Var DA scheme to real-world flood forecasting

problems.

The data assimilation framework employed in this study is based on the integrated HydroDART system, as detailed by90

El Gharamti et al. (2021). This system utilizes NOAA’s National Water Model (NWM) configuration within the WRF-Hydro

hydrological framework (Gochis et al., 2020). Our implementation involves a sub-model configuration of the NWM, specifi-

1Throughout this study, the terms OI and 3D-Var are used interchangeably, both solving the same DA problem and relying on the same static background

error covariance matrix.
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cally designed to incorporate both streamflow and conceptual groundwater storage. To facilitate the assimilation process, the

model is interfaced with the Data Assimilation Research Testbed (DART, Anderson et al., 2009). The HydroDART system,

as highlighted in El Gharamti et al. (2021), incorporates Along-The-Stream (ATS) localization, along with adaptive prior and95

posterior inflation, to enhance ensemble performance. To extend the capabilities of HydroDART, we introduce a hybrid method

using a 42-year retrospective run of WRF-Hydro covering the entire Contiguous United States (CONUS). This extensive model

run is leveraged to construct climatological error covariances for both streamflow and groundwater bucket storage. The im-

plementation of the hybrid ensemble-variational scheme is the first of its kind within DART and features several flavors for

updating the hybrid weighting coefficients including: constant weights, time-varying homogeneous weights in addition to the100

more comprehensive temporally and spatially varying weights (as in this work).

Our EnKF-OI prediction system undergoes testing in two regional flooding scenarios. The initial case, spanning June 2016,

addresses an 11-day flash flooding event in West Virginia. The second case study focuses on inland flooding caused by Hurri-

cane Ian in central Florida (from September 15th to October 15th, 2022). In both instances, streamflow observations obtained

from United States Geological Survey (USGS) gauges are assimilated at hourly time steps. Our evaluation encompasses an105

assessment of the performance of both hybrid (EnKF-OI) and non-hybrid (EnKF) DA methodologies in improving simulated

hydrographs under diverse flooding conditions. To gain insights into the behavior of the hybrid EnKF-OI algorithm, we conduct

sensitivity experiments concerning the hybrid weighting coefficient and the ensemble size. Furthermore, the analyses derived

from the hybrid scheme’s posterior states contribute to generating short-range streamflow forecasts, allowing us to evaluate the

impact of data assimilation on these predictions.110

The subsequent sections delineate the paper’s organization. Section 2 delves into the detailed description of the integrated

HydroDART prediction system, shedding light on both the model and the DA tool. Particular attention is paid to elucidating the

methodology employed in generating the static-background covariance. Section 3 expounds on the specifics of the test cases,

providing insights into the hydrologic domains’ extent and elaborating on the USGS observations. Moving forward, Section

4 unfolds the results obtained from the EnKF and the hybrid EnKF-OI methodologies across the two hydrologic domains.115

Distinct spatial and temporal evaluations underscore the hybrid algorithm’s performance. The concluding insights and broader

discussions emanate in Section 5, encapsulating a comprehensive summary of the findings.

2 Model and Methods

2.1 WRF-Hydro

The Weather Research and Forecasting, Hydrological modeling system (WRF-Hydro) is used widely across the hydrology120

community both in coupled and uncoupled modes with atmospheric models (e.g., Senatore et al., 2015; Kerandi et al., 2018;

Wang et al., 2022; Son et al., 2023). A prominent application of WRF-Hydro is the National Water Model (NWM) which

became operational in August 2016 and has gone through several version upgrades since then. The National Water Model

is a particular configuration of the uncoupled WRF-Hydro system which is operational over CONUS, Hawaii, Puerto Rico

and Virgin Islands (NWMv2.1) and Alaska (NWMv3.0). The modules and physics in this paper are equivalent to the NWM125
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version 2.1 standard analysis and assimilation cycle without the streamflow nudging used in the NWM. Streamflow nudging is

the current data assimilation methodology in NWM operationally. "Nudging" also known as direct insertion refers to moving

the modeled flow towards the observed discharge at each time step of the routing model.

The NWMv2.1 configuration consists of the Noah-MP land surface model (Niu et al., 2011; Yang et al., 2011), subsurface

and surface flow routing, baseflow/groundwater routing, channel and lake/reservoir (i.e. waterbodies) routing (Cosgrove et al.,130

2024). In each time step, first the land surface model is operated on a coarse resolution of 1 km2. Then, terrain routing

(subsurface and surface flow routing) is performed on the 250 m2 grid spacing. NWM utilizes the USGS National Hydrography

Data (NHD) Plus Version 2 medium-resolution dataset (McKay et al., 2012), which provides both streams and corresponding

catchments. Each stream is represented by a channel/reach vector in the model, and the basin associated with the stream

acts as a conceptual groundwater basin/bucket in the model. The inflow to each groundwater bucket/basin is the aggregated135

outflow from the soil column (1 km land surface model grid) to the NHDPlusV2 catchments. Then, a conceptual groundwater

routing is performed. The outflow from bucket/basin is estimated based on an exponential storage-discharge function. Next, the

outflow from groundwater basin/bucket combined with the lateral channel inflows from the terrain routing are routed through

the channels using the Muskingum-Cunge routing method (Read et al., 2023). WRF-Hydro also includes options to represent

lakes and reservoirs. Inflow fluxes to lakes and reservoir objects embedded into the NWM routing network are routed using140

level pool scheme (Gochis et al., 2020; Cosgrove et al., 2024).

Because the channel, reservoir, and conceptual groundwater components are one-way coupled to the other model compo-

nents, following El Gharamti et al. (2021), a channel, reservoir, and conceptual groundwater submodel of the NWM is used.

This configuration is computationally cheaper compared to the full model and therefore appealing for running an ensemble

system. The prognostic variables that are updated in this study are the streamflow discharge and groundwater bucket head. It145

should be noted that the lake/reservoir objects are defined on the stream reaches, however they are not considered in the state

updating. Figure 1 shows the chain of modeling components in our system and how the deterministic fluxes from the full NWM

model arrive as boundary conditions to the HydroDART system.

Random noise is applied to these deterministic boundary fluxes to generate an ensemble of input fluxes for the streamflow,

reservoir, and conceptual groundwater system. In addition to this time-varying uncertainty, we also generate an invariant en-150

semble of channel parameters which provides a "multiphysics" streamflow ensemble (El Gharamti et al., 2021). These two

levels of perturbations were found necessary to generate larger variability in the predicted ensemble. Because ensemble DA

relies on probabilistic forecasts, increasing the variability in the ensemble can help fit the observations and obtain accurate

hydrologic states.

To perturb the boundary fluxes to the streamflow and bucket models, we use Gaussian samples with zero mean and stan-155

dard deviation equal to 40% of the flux value at each location. The Gaussian choice yielded the best streamflow estimates

(in terms of accuracy and spread consistency) as compared to other tested distributions, e.g., gamma, inverse-gamma and

exponential. We also perturb the geometric and other channel parameters using uniform noise models. The parameters of

the uniform densities were carefully selected such that the resulting streamflow ensembles were found not only skillful

but also reliable. For detailed description of the WRF-Hydro configuration used in this paper as well as the creation of160
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Figure 1. Streamflow data assimilation workflow adapted from El Gharamti et al. (2021). The vertical boxes on the left depict the WRF-Hydro

components that are executed once and produce the deterministic fluxes into the channels and groundwater buckets. The arrows represent

the order of the physics component execution and a two way arrow represents two way coupling. Dotted box represents the HydroDART

components. Random noise is applied to the deterministic input fluxes to HydroDART generating an ensemble of input fluxes for both

channel and conceptual groundwater models. Three arrows denote the presence of ensembles, however, the ensemble size is larger than

three. As shown in this workflow, DART assimilates USGS streamflow observations and updates the streamflow (in cubic meters per second)

and bucket head (in meters) state variables in the channel and reservoir model, and groundwater bucket model, respectively.

the forcing ensemble and channel parameter ensemble, please refer to El Gharamti et al. (2021). Here, the model code

(https://github.com/NCAR/wrf_hydro_nwm_public/releases/tag/nwm-v2.1-beta3), domain data and parameter sets (https://

www.nco.ncep.noaa.gov/pmb/codes/nwprod/nwm.v2.2.3/parm/domain/) are based on the NWMv2.1. There are a number of

parameters in the WRF-Hydro modules, in particular, the NoahMP land surface model (Mendoza et al., 2015; Cuntz et al.,

2016; He et al., 2023), with different degrees of sensitivity that could be tuned via calibration. In NWMv2.1, 14 parameters165

impacting different processes (vegetation, soil, snow, and runoff parameters) were chosen based on the previous sensitivity

analysis and studies (Cosgrove et al., 2024). These parameters were calibrated using the iterative Dynamically Dimensioned

Search approach (Tolson and Shoemaker, 2007) for a large number of basins throughout the US. The objective function was

one minus weighted Nash–Sutcliffe efficiency (NSE) and log(NSE), calculated based on the hourly streamflow simulations.
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Summary statistics of the model statistics prior and after calibration can be found in Cosgrove et al. (2024). Although the170

model biases have been reduced through calibration, there still exists some biases in the model.

2.2 DART

2.2.1 Ensemble Filtering

The Data Assimilation Research Testbed (DART, Anderson et al., 2009) is a sequential ensemble DA tool developed and

maintained at the National Center for Atmospheric Research. DART employs different variants of the ensemble Kalman filter175

for linear and nonlinear estimation problems. The filtering schemes are based on Bayes rule such that the prior distribution is

recursively updated using the observation likelihood to obtain a posterior probability density function (pdf). For HydroDART,

several streamflow realizations are first integrated forward in time using the hydrologic model, WRF-Hydro, denoted byM,

until the next observations become available.

xf,i
k =M

(
xa,i
k−1,θ

i,γi
k

)
, i= 1,2, . . . ,Ne (1)180

Here, x denotes the hydrologic state which consists of streamflow and the conceptual groundwater storage. The superscripts

f,a, i denote forecast, analysis and ensemble member, respectively. The subscript k denotes time and Ne is the ensemble size.

θ is a set of 6 physical parameters that describe the geometry of the streamflow compound channel. The parameters are: top

channel width, bottom width, side slope, Manning’s N, width of the compound channel and Manning’s N of the compound

channel. Notice that for each member, a different configuration of these channel parameters is used following the multiphysics185

approach outlined in El Gharamti et al. (2021). Perturbed boundary fluxes to the streamflow and the groundwater models are

given in γ. Using equation (1), the first and second moments of the prior distribution are approximated as follows:

xf
k =

1

Ne

Ne∑
i=1

xf,i
k , (2)

Pf
k = λ ·Pf

k , (3)

= λ · 1

Ne− 1

Ne∑
i=1

(
xf,i
k −xf

k

)(
xf,i
k −xf

k

)T
, (4)190

where xf
k and P

f

k are the prior ensemble mean and the prior sample covariance, respectively. The coefficient λ in equation

(4) is an inflation factor used to restore the ensemble variance after the forecast. In this study, the inflation factor is selected

adaptively in space and time using the adaptive inflation scheme of El Gharamti (2018). We also apply adaptive posterior

inflation to the analysis ensemble according to El Gharamti et al. (2019). The estimated (inflated) prior covariance at time tk is

given by Pf
k .195

At the time of the analysis, DART assimilates the observations serially according to Anderson (2003):

∆yi = ya,i− yf,i, (5)

xa,i
j,k = xf,i

j,k + ρ
σxy
σ2
y

∆yi, j = 1,2, . . . ,Nx. (6)
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The subscript j is an index to the variables in the state and the total number of state variables is denoted by Nx. σxy is the prior

covariance between the observation y and jth state element while σ2
y is the sample variance of the observed variable. As can200

be shown, the EnKF solution is obtained as a linear regression of the observation increments ∆y on the entire state vector. ρ

is a localization coefficient typically between 0 and 1 and is computed using the common Gaspari-Cohn correlation function

(Gaspari and Cohn, 1999). The localization strategy employed here follows the ATS localization scheme (El Gharamti et al.,

2021) such that only reaches upstream and downstream from a particular gauge are updated during the analysis.

2.2.2 Hybridized Covariance205

Hybridizing the prior ensemble covariance matrix is performed linearly right before the update:

Ph
k = αkP

f
k + (1−αk)B, (7)

where h denotes the hybrid form of the prior covariance and B is a static background covariance matrix. αk is a weighting

factor chosen between 0 and 1. Notice that B is a stationary covariance and is typically used in 3-4D variational systems. B

can be estimated from the model’s climatology using a large inventory of historical forecasts. In NWP systems, for instance,210

the National Meteorological Center (NMC, Parrish and Derber, 1992) technique is often used to compute B. More details on

the computation of B for the current streamflow work can be found in the next section. From equation (7), one may argue that

Ph
k is a better estimate of the true covariance compared to the ensemble one Pf

k . This is because blending in climatological

information in the ensemble covariance usually presents the ensemble with new correction directions (Hamill and Snyder,

2000). When αk is set to 1, equation (7) results in a purely flow-dependent covariance reducing the algorithm to the EnKF. In215

contrast, when αk = 0 the system morphs into an ensemble optimal interpolation (EnOI) scheme. The hybrid EnKF-OI scheme

is activated for 0< αk < 1.

Rather than manually tuning αk, one can adaptively estimate it (El Gharamti, 2021) using Bayes rule:

p(αk|dk)≈ p(αk) · p(dk|αk) , (8)

where dk is the background innovation (i.e., observation minus forecast). Equation (8) assumes that αk is a random variable220

with prior distribution p(αk) which is considered Gaussian in this work. The likelihood term on the right hand side of (8) is

also assumed Gaussian with zero mean and covariance:

E
[
dkd

T
k

]
= Rk +HkP

t
kH

T
k , (9)

≈ Rk +αkHkP
f
kH

T
k + (1−αk)HkBHT

k . (10)

This result holds as long as the background and observation errors are uncorrelated (Desroziers et al., 2005). Hk is the obser-225

vation operator and Rk is the observation error covariance matrix. The hybridized covariance Ph
k is assumed to be equivalent

to the true background covariance Pt
k allowing the insertion of equation (7) in (9). Using equation (10), the likelihood of the
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weighting coefficient can be written as:

p(dk|αk) =
(√

2πβ
)−1

exp

[
−dT

k dk

2β2

]
, where (11)

β =

√∑
i

(Rk)ii +αk

∑
i

(HkP
f
kH

T
k )ii + (1−αk)

∑
i

(HkBHT
k )ii. (12)230

The notation
∑

i(Rk)ii is equivalent to the trace of matrix Rk. Taking the product of the likelihood and the prior of αk results

in a Gaussian posterior which can be used in subsequent DA cycles. The updated value of αk is obtained by maximizing its

posterior p(αk|dk) pdf. Following this formulation, a spatially and temporally adaptive weighting coefficient can be computed.

This algorithm has been incorporated within the coupled streamflow prediction system, HydroDART. More details on the

adaptive hybrid EnKF-OI scheme can be found in El Gharamti (2021).235

3 Test Cases

3.1 Domains

Two extreme flooding events are selected for this study. One is a flash flood resulting from a thunderstorm. The other is a long

lasting flooding event resulting from a hurricane landfall. Figure 2 shows the location and extent of the two domains and they

are explained in more detail below.240

3.1.1 Florida’s Flooding Case (2022)

Hurricane Ian became a tropical storm on September 24, 2022. Ian made landfall on western Cuba as a high-end category 3

hurricane on September 27. On September 28, Ian made landfall on southwestern Florida as a category 4 hurricane, producing

catastrophic storm surge and historic freshwater flooding across much of central and northern Florida. Ian was responsible for

more than 156 fatalities in the United States of which 66 were directly caused by the storm. Ian caused over $112 billion in245

damages; the costliest hurricane in Florida’s history and the third costliest in United States history (National Hurricane Center

Tropical Cyclone Report; Bucci et al., 2023).

Figure 2-(a) shows the WRF-Hydro modeling domain for hurricane Ian. The colored map background depicts accumulated

rainfall drawn for September 28 through 30, 2022, as modeled by the NWMv2.1 Analysis and Assimilation atmospheric forcing

(described below) used to drive this case. The domain is a subset of the NWMv2.1 CONUS domain and includes 18,190 reaches250

and 151 lakes and reservoirs. Stream reaches are color coded based on their 10-year flood magnitudes as calculated from the 42

year NWMv2.1 respective model simulations described in more detail below. There are 171 USGS gauges with their drainage

area fully contained in this domain and are assimilated and also used in performance assessment (dark red circles in Figure 2).

Twenty-two of these gauges are GAGES-II reference gauges (Falcone, 2011) which have little or no anthropogenic alterations

to their natural streamflows (green squares). Since WRF-Hydro does not have an active reservoir model and is performing a255

simple level pool routing, GAGES-II reference gauges are better suited for verification because they avoid accounting for heavy
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flow regulation at many reservoirs. Figure 2-(a) also shows the location of five labeled verification gauges (black triangles) for

which streamflow time-series will be provided in the results (section 4).

The full WRF-Hydro/NWMv2.1 model was run (without nudging data assimilation) for the FL’s Ian test case using the

NWMv2.1 analysis and assimilation cycle forcing dataset (https://water.noaa.gov/about/nwm). This meteorological forcing set260

is drawn from the Multi-Radar Multi-Sensor (MRMS) Gauge-adjusted and Radar-only observed precipitation products along

with short-range Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) . These atmospheric forcings drive the

single model run depicted vertically on the left side of Fig. 1 and produce the output fluxes used by HydroDART to generate

ensemble forcing for the channel+conceptual groundwater submodel. The simulation period is from August 15 to October 15,

2022. The model is initialized based on the operational NWMv2.1 model states on August 15, then the first month is used as a265

spin up period and streamflow assimilation begins on September 15, 2022.

Figure 2. Study domains for (a) Florida’s flood due to hurricane Ian and (b) West Virginia’s flood. The background map for Ian depicts

the accumulated rainfall drawn from NWMv2.1 Analysis and Assimilation atmospheric forcing during September 28 through 30, 2022. In

(b), the colored map depicts accumulated rainfall drawn from Analysis of Record for Calibration (AORC) atmospheric forcing during June

23 and 24, 2016. Stream reaches in both domains are color coded based on their 10-year flood magnitudes calculated from the 42-year

NWMv2.1 retrospective model simulation. USGS streamflow observation gauges are shown in red circles. GAGES-II reference streamflow

gauges are shown by green rectangles, and five verification gauges are denoted by black triangles each with their 15-digit gauge identifiers.

Lakes and reservoir bodies are shown as blue polygons.
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3.1.2 West Virginia’s Flooding Case (2016)

Several rounds of thunderstorms on June 23rd, 2016 produced torrential rainfall in West Virginia (WV) and western-central

Virginia. Record rainfall accumulations of 200-250 mm were observed over a 24 hour period ending on 1200 UTC of June 24th

(Martinaitis et al., 2020). This resulted in a rapid rise of water (in some places less than 6 hours) and extensive flooding across270

the domain. This was one of the deadliest flooding events in West Virginia’s history with 23 fatalities. The event was classified

as a billion-dollar disaster which damaged thousands of structures and over 1500 roads and bridges (Martinaitis et al., 2020).

Many USGS gauges in the domain reported some level of flooding. Five of those gauges had their record flood stage measured

in this event. The data assimilation and verification period for this test case is from June 20, 2016 through June 30, 2016; an

11 day period which encompasses the flash flooding event and the recession period completely at all verification gauges.275

Figure 2-(b) shows the WV flooding domain. Just like FL’s Ian, the domain is a cutout of the NWMv2.1 CONUS domain

including 47,046 reaches and 25 lakes and reservoirs. There are 121 USGS gauges with their drainage area fully contained in

the modeling domain. These gauges are assimilated and used in performance assessment. Figure 2-(b) shows the location of

all those gauges as well as the subset of GAGES-II reference gauges. Figure 2-(b) also shows the location of a few verification

gauges for which streamflow time series are provided and analyzed in section 4.280

Analysis of Record for Calibration (AORC, Fall et al., 2023) is used as the atmospheric forcing for the West Virginia test

case. This is a new dataset developed to support NWM calibration and long term retrospective model simulations. AORC data

has been cut out to the West Virginia modeling domain and used to force the WRF-Hydro model. The inflows to the channel and

conceptual groundwater from this simulation are then used as forcing in all experiments (both data assimilation and forecasts).

The simulation period is from June 1 through June 31, 2016. The model is initialized based on the NWMv2.1 retrospective285

model states on June 1, then the first 20 days are used as a spin up period and streamflow assimilation begins on June 20, 2016.

3.2 Observations

Hourly or sub-hourly streamflow observations, with frequencies as high as 5 minutes, are gathered from the USGS streamflow

measurement sites. Our data collection involves accessing observations well after the events, and we do not rely on near-real-

time data acquisition. Consequently, discharge estimates have been updated through subsequent quality controls, including290

potential revisions to rating curves to better align with extreme flooding events and out-of-bank flows. For our West Virginia

and Florida’s Hurricane Ian test cases, streamflow observations were downloaded on 01/11/2022 and 01/30/2023, respectively.

In the case of FL’s Hurricane Ian, some gauges still lack event information in the observations, and the data remains provisional

even months after the occurrence. The assimilation is conducted hourly in both domains, with sub-hourly USGS data averaged

before the assimilation process begins.295

To model streamflow observation errors, we adopt a heteroscedastic Gaussian error model with zero mean and a standard

deviation set to 25% of the observed flow, following Abbaszadeh et al. (2019). Given that the gauges are situated on the stream

network, this results in a linear observation operator H which simplifies the Kalman update, excluding nonlinear issues from
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the analysis step of HydroDART. Additionally, we assume that observations and their associated errors are uncorrelated in both

space and time, yielding a diagonal observation error covariance matrix, R.300

Within the HydroDART framework, observations falling beyond 3 total standard deviations (equivalent to the square root

of the sum of the prior ensemble and observation error variance) from the prior ensemble mean are rejected. This threshold,

determined by the outlier threshold parameter in DART, serves multiple purposes. It helps avoid assimilating inaccurate obser-

vations, and it prevents the inclusion of observations where the mean of the ensemble members is significantly distant from the

observation value. Such assimilation could lead to unacceptably large increments, potentially destabilizing the model run.305

3.3 Retrospective Model Simulations

The NOAA National Water Model version 2.1 offers a publicly accessible multi-decade retrospective simulation covering

the Contiguous United States (CONUS). This simulation is based on the NWMv2.1 model code and static files, driven by

AORC atmospheric forcings. Notably, the retrospective simulation lacks data assimilation within the hydrologic model. While

serving as a valuable resource for historical modeling context and real-time operations, it also facilitates the assessment of flow310

frequencies and model verification over an extended period. The 42-year retrospective simulation for NWMv2.1, spanning

from February 1979 to December 2020, is openly available in two formats: Network Common Data Form (NetCDF) and Zarr

on Amazon Web Services (AWS). Interested users can access the data at the following link: https://registry.opendata.aws/

nwm-archive/.

In our approach, we leverage the 42-year NWMv2.1 retrospective simulations to construct the static background covariance315

matrix, denoted as B, for our hybrid ensemble-variational filter. To achieve this, we assemble a 1,000-member ensemble from

the retrospective model simulation. While the climatological ensemble could potentially be larger given the extensive data

volume in the retrospective simulation, we opt for 1,000 samples to manage storage and computational costs. Previous research

has explored the climatological ensemble size in the context of hybrid ensemble-variational data assimilation, indicating that

an ensemble on the order of hundreds to a few thousands is generally sufficient to match the mean correlation length scales of320

B (e.g., Lei et al., 2021). It’s important to note that the climatological ensemble is not advanced forward in time.

The climatological ensemble is subjected to an offline Empirical Orthogonal Function (EOF) analysis. The purpose of this

analysis is to determine the spatial patterns and correlations present in the ensemble. This exploration aids in understanding

the variability captured by the climatology and its potential impact on the hybrid ensemble-variational filter. The EOF analysis

reveals that employing 1,000 static members results in a covariance matrix free from noise, where large-scale patterns dominate325

the initial EOFs, and smaller-scale patterns are encapsulated in the latter EOFs. This information is instrumental in shaping our

understanding of the climatological ensemble’s composition and behavior.

In terms of implementation, for Hurricane Ian, the process involves extracting two state variables, streamflow and water

depth, from the dataset encompassing all 42 years for all reaches and buckets in the domain. A temporal subset is then created,

focusing exclusively on the month of September, given Ian’s occurrence during that period. Every model simulation within330

the month of September from these 42-year model simulations is considered a plausible member of the climatology ensemble.

Because the model simulation is at an hourly temporal scale, there are 42 (number of years)× 30 (number of days in September)
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× 24 (number of hours in a day) = 30,240 realizations to choose from. Subsequently, 1,000 members are randomly selected

from this dataset and preserved for use by HydroDART, as outlined in equation (7). For West Virginia, a parallel approach is

adopted, with the exception that the model simulations from the month of June are utilized in constructing the static/climatology335

members. It’s important to note that, for the purpose of constructing the climatology, we exclude the year 2016 in West Virginia

to ensure that the flooding scenario under observation is not part of the climatology. In the case of Hurricane Ian, the year 2022

is not part of the retrospective run, eliminating the need for its exclusion.

3.4 Experimental Design and Verification

To test the performance of the hybrid scheme against the EnKF, we perform different assimilation runs in which we set the ATS340

localization cutoff distance to 100 km and turn on adaptive prior and posterior inflation following El Gharamti et al. (2021).

Our experiments commence in Section 4.1 by testing the performance of the EnKF within the HydroDART framework using

an ensemble of 80 members. This approach is similar to the experiments outlined in the prior HydroDART study which focused

on hurricane Florence in North Carolina (El Gharamti et al., 2021). The objective is twofold: to assess the prediction system’s

performance in distinct basins characterized by diverse modeling and precipitation complexities, and to establish a baseline345

performance, both qualitatively and quantitatively, for the EnKF. This baseline serves as a reference point from which we intend

to enhance predictive capabilities through the implementation of the hybrid approach in subsequent sections. For the hybrid

EnKF-OI runs, we first examine the sensitivity of the scheme with respect to a few constant choices of the weighting factor

(Section 4.2) and explore the impact of hybridizing the background covariance on the ensemble spread and inflation (Section

4.2.1). The idea is to determine whether the inclusion of climatological covariances would nullify the use of inflation in the350

dynamic ensemble. After determining the optimal hybrid weight (Section 4.2.2), several sensitivity runs with respect to the size

of the dynamic ensemble are conducted (Section 4.3). Those runs are aimed to uncover the computational characteristics of the

hybrid scheme and figure out whether it can be run more efficiently than the EnKF. The adaptive variant of the hybrid EnKF-OI

algorithm is then studied in detail in Section 4.4. Finally, the application of the adaptive scheme for short-range forecasts is

investigated in both domains in Section 4.5.355

To assess the quality of the estimated streamflow, we use many ensemble and hydrological metrics as shown in Table 1.

Some of these metrics are deterministic in nature such as the root mean square error (RMSE) and others are probabilistic such

as the reliability index (RI). We provide summary statistics by aggregating a few of these metrics for all flow gauges using

boxplots. Where necessary, two sample t-tests are conducted to comment on the statistical significance of one experimental

result over others. The metrics are also computed separately for individual hydrographs, low flows and high flows. Low flows360

are characterized by computing the 10th percentile of observed streamflow at each gauge over the entire assimilation period,

while anything above the 90th percentile is deemed a high flow. From Table 1, the centered root mean square error is used to

construct Taylor diagrams (Taylor, 2001) which offer a comprehensive view for all gauges in the present hydrologic domains.

For optimal performance, Taylor diagrams are generally characterized by a correlation of 1, with both C-RMSE and standard

deviation equal to 0. Rank Histograms (Anderson, 1996) are also utilized to study the reliability of the predicted streamflow365
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ensembles. Flat rank histograms often indicate reliable predictions while skewed ones usually hint to limited ensemble spread

and poor coverage of the observation.

4 Results

4.1 EnKF Runs

Figure 3 illustrates the estimated streamflow for Sebastian River in FL and Kanawha River in WV. The hydrographs depict the370

evolution of observed and OL discharge, overlaid with the prior and posterior estimates. The South Prong St. Sebastian River,

located on the eastern side of FL, witnessed a rapid surge in streamflow on September 28, 2022, coinciding with the landfall

of Hurricane Ian. This flooding persisted for about a week before returning to normal flow conditions. In comparison to the

OL, both the prior and posterior ensemble estimates exhibit significantly improved accuracy, offering a better representation

of observed flows, particularly during the flooding event. On average, the prior and posterior streamflow estimates are 45%375

and 51% more accurate, respectively (measured in terms of RMSE), compared to the OL. Additionally, the NSE and KGE

values, derived from the EnKF ensemble mean, are notably higher and closer to 1 than those associated with the OL. This

underscores the substantial improvement in prediction achieved through the assimilation of streamflow data with the EnKF.

Adaptive inflation plays a crucial role in this success, dynamically growing during the flooding event to enhance ensemble

spread and refine its conformity to observed data.380

Kanawha River in WV underwent severe flooding in our case study, with discharge values soaring to around 4000 cms.

Similar to FL’s Ian case, the EnKF demonstrated superior alignment with streamflow observations compared to the OL. No-

tably, the EnKF estimates displayed a precise correspondence with the falling limb of the hydrograph. While excelling on the

rising limb, the EnKF fell short of assimilating all data due to a pronounced underestimation of streamflow. In this instance,

the EnKF’s prior ensemble yielded an approximately 31% lower RMSE than the OL.385

Figure 4 presents comprehensive summary diagnostics for both the Ian and WV flooding cases, utilizing data from both ‘all’

and ‘reference’ USGS gauges within the domains. The ‘reference’ designation pertains to the GAGES-II reference gauges.

Estimates derived from the OL and the EnKF at the reference gauges exhibit enhanced accuracy compared to those from all

gauges. This improvement is attributed to the fact that reference gauges are subject to little to no regulation and constitute only

a small subset of all gauges, resulting in fewer extreme outliers.390

The CRPSS boxplots highlight the added value of the DA system over the OL, evident in positive scores. The majority of

gauges achieve scores surpassing 0.5. The NSE and KGE scores from the EnKF notably outperform those of the OL. We note

here, that the KGE and NSE are not comparable metrics, although their ranges are similar (Knoben et al., 2019). For the OL

run, numerous gauges yielded efficiency estimates less than -10 (omitted for figure clarity). The summary boxplots for the

RMSE demonstrate the superior assimilation performance of the EnKF in both flooding cases. When averaging over all gauges395

and across time, EnKF predictions exhibit at least 50% and 30% greater skill than the OL for the Ian and WV flooding cases,

respectively. This was also supported through a statistical significance test using a two-sample t-test. The test (not shown)

rejects the null hypothesis which states that the RMSE averages resulting from the open loop and the HydroDART priors are
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Table 1. Performance metrics used for evaluating the streamflow ensemble estimates. Q refers to discharge or streamflow, measured in cubic

meters per second (cms). The superscript f |a means either prior or posterior discharge and o denotes the observed discharge. Nt is the total

time steps or DA cycles. The · and ·̂ notations refer to averaging over the ensemble and time, respectively. OL is a term used to describe the

open loop or the unconstrained ensemble model run (without assimilation). F and H denote the cumulative distribution function (CDF) and

the Heaviside function, respectively. CRPS is the continuous ranked probability score (Matheson and Winkler, 1976).

Name Equation Description

Root Mean Squared

Error (RMSE)
1

Nt

Nt∑
k=1

√√√√ 1

Ne

Ne∑
i=1

(
Q

f |a,i
k −Qo

k

)2 Deterministic metric that varies between 0 and∞, with a per-

fect score of 0. It measures the average distance between the

predicted ensemble members and the observed discharge.

Ensemble

Spread (ES)
1

Nt

Nt∑
k=1

√√√√ 1

Ne

Ne∑
i=1

(
Q

f |a,i
k −Qf |a

k

)2 A deterministic measure of the variability of the ensemble,

varying between 0 and∞.

Mean Absolute

Error (MAE)
1

NtNe

Nt∑
k=1

Ne∑
i=1

∣∣∣Qf |a,i
k −Qo

k

∣∣∣ A deterministic measure similar to the RMSE but better suited

for the case of non-Gaussian errors, using the L1-norm.

Continuous Ranked

Probability

Skill Score

(CRPSS)

CRPSS = 1−CRPSf
(

CRPSOL
)−1

,

CRPS =

+∞∫
−∞

(F (Q)−H (Q≥Qo))2 dQ

A probabilistic metric ∈ (−∞,1] that computes the added

skill by DA over the OL (Hersbach, 2000). A CRPSS of zero

means that DA didn’t improve the prediction skill of the model.

CRPSS = 1 is a perfect score. Negative CRPSS values indicate

that DA yields worse predictions than the OL.

Nash-Sutcliffe

Efficiency (NSE) 1−

∑Nt
k=1

(
Q

f

k −Qo
k

)2
∑Nt

k=1

(
Qo

k − Q̂o
)2

A deterministic metric, that varies (−∞,1], to quantitatively

assess the similarity between the estimated and the observed

flow (Nash and Sutcliffe, 1970). The closer NSE to 1, the more

accurate the estimated flow is.

Kling-Gupta

Efficiency (KGE)
KGE = 1−

√
(r− 1)2 +(ξ− 1)2 +(δ− 1)2

A deterministic measure combining correlation coefficient r,

bias ξ and flow variability δ (Gupta et al., 2009). It varies be-

tween (−∞,1] and it provides a statistically more concrete

metric than NSE.

Coefficient of

Variation (CV)

(
Nt∑
k=1

Qo
k

)−1
√√√√Nt

Nt∑
k=1

(
Qo

k − Q̂o
)2 A deterministic metric provides a concise measure of the vari-

ability in the observed flow. CV = 0 refers to a constant flow.

Centered Root Mean

Squared Error

(C-RMSE)

√√√√ 1

Nt

Nt∑
k=1

[(
Q

f

k −
1

Nt

Nt∑
k=1

Q
f

k

)
−
(
Qo

k − Q̂o
)]2 Deterministic measure used to aggregate estimates from differ-

ent gauges in a single metric.

Reliability

Index (RI) 1− 2

[
1

Nt

Nt∑
k=1

|Fk (Q
◦
k)−U (Q◦k)|

] Probabilistic metric (Renard et al., 2010) varying between 0 and

1, and is used to quantify how close the empirical CDF of the

observed flow to the uniform distribution, U . RI = 0 is the worst

and RI = 1 reflects perfect reliability.
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Figure 3. Left: Streamflow time-series (hydrograph) during hurricane Ian at South Prong Street Sebastian River. Observed streamflow is

given by hourly asterisks. Green asterisks indicate that the observation was assimilated. The rejected observations due to outlier threshold

are shown in red asterisks. OL streamflow estimates are given by the orange curve. Prior and Posterior ensemble means are denoted by

the thick black and blue curves, respectively. The light gray and cyan curves show the prior and posterior ensemble members, respectively.

Time-averaged streamflow RMSE values are reported in the legend. Other metrics such as CV, NSE, KGE and RI are also annotated. The

evolution of prior and posterior inflation over time is shown in the bottom panel. The right panels are similar to the left ones but for the

Kanawha River at Kanawha Falls in WV.

equal. In the subsequent sections, we will delve into the hybrid results to explore how they build upon the achievements of the

EnKF presented in this section.400

4.2 Hybrid Runs

We examine five cases where we fix the hybrid weighting coefficient both in space and time, setting α to values of 0.1, 0.3, 0.5,

0.7, and 0.9. It’s crucial to note that, from eq. (7), α represents the weight on the dynamic background error covariances, while

(1−α) signifies the weight on the static background. Therefore, the chosen values of α progressively emphasize the dynamic

background more in order. Experiments involving adaptive hybrid weighting are discussed further in section 4.4.405

Figure 5 displays hydrographs for the North Prong Alafia River at Keysville, FL. Situated just outside Tampa on the western

corridor of the state, this gauge provides valuable insights. All EnKF-OI runs exhibit an improved fit to the hydrograph peak

on September 29. Both the standard EnKF and the OL underestimate the flooding event, predicting a very delayed recession.

Beyond the primary flooding event, the hybrid runs precisely capture the rising and falling limbs of the hydrographs. The

EnKF-OI with α= 0.5 stands out as the most accurate, yielding a KGE value of 0.92. However, as α approaches 1, the410

performance starts to degrade due to the heavier weight placed on the dynamic sample covariance. Conversely, when α is close

to 0, time-dependent information in the background covariance is limited. For instance, in the case of α= 0.1, both the prior
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Figure 4. Top left: RMSE boxplots for OL and EnKF prior and posterior estimates for all gauges and for GAGES-II reference USGS gauges

in the FL domain. The number of all and reference gauges in both domains are given in the labels of panels (a) and (b). Note that the y-axis

is in log-scale. Averaged RMSE are reported underneath the individual boxplots. Bottom Left: CRPSS boxplots (blue) for all gauges and for

GAGES-II reference gauges. NSE (green) and KGE (yellow) boxplots are also shown for the reference gauges. The right panels are similar

to the left ones but for the WV flash flood case.

and posterior ensemble spread become quite large. This unusual increase in ensemble spread is a result of the dominance of

the climatological ensemble over the dynamic one.

Figure 6 provides a comparison between the hybrid EnKF-OI scheme and the standard EnKF at the Kanawha River gauge415

near Charleston, WV. This area was significantly affected by the flooding event under consideration. On June 23rd, the river’s

discharge rose to almost 5000 cms. The OL, representing the hydrologic model, fails to capture the flooding event entirely.

While the EnKF struggles to accurately predict the initial day, it improves toward the 24th by simulating the end of the flood

peak and its recession. However, given the intensity of the flood peak, the EnKF estimates, while surpassing the OL, are not

satisfactory (NSE ≈ 0). In contrast, the hybrid EnKF-OI solution, particularly with α≤ 0.5, more accurately simulates the420

observed streamflow, resulting in an NSE exceeding 0.95. Increasing the hybrid weight beyond 0.5 diminishes the EnKF-OI’s

skill, although it still outperforms the EnKF significantly (bottom panels). Remarkably, such outstanding performance can be
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North Prong Alafia River at Keysville FL, Gauge ID: 02301000
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Figure 5. Hydrographs for North Prong Alafia River in FL using the EnKF and the 5 hybrid EnKF-OI runs. The hybrid runs use different

weighting coefficients α reported in the title of the individual legends. Similar to Fig. 3, CV, NSE, KGE, RI, and RMSE values are reported

on all panels.

achieved by incorporating only 10% of the hybrid covariance from the climatology. Since the climatological covariance is not

susceptible to sampling errors, its partial integration into the EnKF helps mitigate significant model biases, especially during

flooding events. This is also apparent from the RI measures which tend to shrink as the impact of B decreases.425

4.2.1 Ensemble Spread and Inflation

The hybrid covariance approach provides the dynamic ensemble of the EnKF with more diverse correction directions allowing

for a better analysis. A crucial aspect of this hybridization is the augmentation of ensemble variability, a factor anticipated

to improve performance in the presence of model uncertainties and forcing biases. To illustrate this, Figure 7-(a) depicts the

Average Ensemble Spread (AES) across all gauges for both study domains. Given the unconstrained nature of the OL, it430

is reasonable for its AES to be larger than that of the EnKF. The EnKF, due to its hourly analyses, experiences substantial

shrinkage of the ensemble spread. This becomes problematic when the shrinkage occurs far from the observations, leading to

poor streamflow estimates, especially in the presence of model biases. While inflation is often employed to address this issue,

it may not always effectively counter biases. The introduction of climatological information with α= 0.1 results in a notable

increase in the ensemble spread. This is because the climatological covariance B comprises a substantial inventory (1,000435
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Figure 6. Similar to Fig. 5 but for Kanawha River at Charleston in WV.

instances over 42 years) of historical streamflow distributions, contributing to its relatively large variance. As α increases, the

ensemble spread decreases until it aligns with the EnKF spread for α= 0.9.

The reliability of the predicted streamflow estimates is analyzed in panels (b) and (c) of Figure 7 using rank histograms.

At Ogleby Creek in FL, the discharge ensemble obtained using the EnKF is slightly overdispersive. The hybrid scheme with

0.3 weight, on the other hand, displays a flat rank histogram indicating better reliability. This also means the flow members440

resulting from the EnKF-OI scheme are indistinguishable from the observed flow. At Cowpasture River in second domain

(panel c), the rank histogram of the EnKF is skewed to the right which indicates an overestimation of the recorded discharge.

The hybrid scheme successfully mitigates that bias and yields an improved estimate of the uncertainty. Assessment of the

reliability at other locations offered a similar conclusion.

Figure 8 illustrates the time evolution of prior inflation for the same gauges examined in Figs. 5 and 6. At North Prong Alafia445

River in FL, the hybrid EnKF-OI runs utilize inflation solely during flooding events, turning it off completely before and after

the rainfall events. Early inflation spikes around Sep. 16 and 17 may address modeling bias and limited initial variability. For

Kanawha River in WV, inflation is predominantly unused by the hybrid runs, except for a brief initial period on June 20th. In
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Figure 7. (a) Average Ensemble Spread, AES across all gauges for the OL, EnKF and the hybrid EnKF-OI with 5 distinct weights. Results

are shown for FL (thin) and WV (thick) for the prior and the posterior ensembles. (b) and (c) show rank histograms for streamflow at different

locations in both test domains. The rank histograms are displayed for the EnKF and the hybrid EnKF-OI with weighting set to 0.3.

contrast, the EnKF employs inflation not only during flooding periods but also in non-flooding intervals. Averaging across all

gauges, the hybrid EnKF-OI with α= 0.5 requires approximately 5 to 10% less inflation than the EnKF, a trend consistent450

with posterior inflation. Consequently, we opted to retain the inflation algorithm for the hybrid runs. In summary, we posit

that inflation primarily addresses instantaneous bias, while the inclusion of static background information serves to alleviate

long-term biases and uncertainties.

4.2.2 Optimal Hybrid Weight

The Taylor diagrams and RMSE boxplots in Figure 9 offer a comprehensive view for all gauges within the FL and WV455

domains. Given the multitude of gauges in each domain, the Taylor diagram exhibits a cloud of points, one for each streamflow

gauge. Visually, the cloud of points corresponding to the hybrid runs tends to cluster closer to the ideal performance point than

the cloud for the EnKF. For instance, in the WV case, the EnKF cloud is perceptibly closer to the left side of the diagram,

indicating lower accuracy compared to other schemes. Aggregating results across all gauges, the resulting correlations for each

scheme are tabulated in Table 2. In both domains, correlations from the hybrid runs surpass those of the EnKF. The EnKF-OI460

schemes yield comparable correlations, with α= 0.5 consistently offering the best performance in both domains. The boxplots
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Figure 8. Time-series of prior inflation resulting from the EnKF (m, n) and the hybrid EnKF-OI with constant weights (panels c-i). The

inflation, denoted by λ, in equation (4) is adaptive in space and time. North Prong Alafia River in FL is represented by the left panels. The

right panels show the results for Kanawha River at Charleston in WV. Panels a, b show the open loop and EnKF-OI (0.1) streamflow in

addition to mean areal precipitation in mm/hr.

in Figure 9 echo a similar narrative-the hybrid EnKF-OI enhances prior RMSE by over 50% compared to the EnKF. Among

the tested hybrid runs, α= 0.1 contributes to the least accurate results, underscoring the significance of maintaining a dynamic

ensemble in the filtering framework for skillful streamflow estimation.

Table 2. Pearson correlation between the observed discharge and the prior estimates suggested by the EnKF and the hybrid EnKF-OI with

constant weights. The correlation is computed for all gauges in each domain and averaged over time.

Domain EnKF EnKF-OI (0.1) EnKF-OI (0.3) EnKF-OI (0.5) EnKF-OI (0.7) EnKF-OI (0.9)

FL 0.625 0.723 0.757 0.758 0.766 0.756

WV 0.666 0.859 0.858 0.861 0.852 0.850
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Figure 9. Top panels: Taylor diagrams for Ian’s flood (left) and WV’s flash flood (right). Each cloud of points on the diagram denotes all

gauges available in the domain. "BEST" is the point of ideal performance, having perfect correlation with the observed flow and zero error

and standard deviation. Gauges with standard deviations larger than 3 are omitted for visual purposes. Bottom panels: Prior RMSE boxplots

for all gauges in each domain, obtained using the EnKF and the hybrid scheme with fixed weights. Overall averaged prior RMSE in each

case is reported beneath the individual boxplots.
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Figure 10. Prior mean absolute error (MAE) boxplots for all/reference gauges at Ian (a) and WV (b). The boxplots are obtained using the

EnKF (with 80 members) and the hybrid scheme with different dynamic ensemble sizes. Time-averaged prior MAE for all gauges in each

case is reported above the individual boxplots. Note that the y-axis is in log-scale. The pdfs (gray) of the two sample t-tests for each EnKF-OI

run with respect to the EnKF are shown on top of the boxplots in panel (a). The t-statistics are denoted (and also annotated) by the circles

and the dashed lines denote the critical cutoff.

4.3 Dynamic Ensemble Size465

The findings in Section 4.2.2 prompt a critical question: How large of an ensemble is necessary to ensure precise and efficient

predictions?

Figure 10 illustrates the distribution of the mean absolute error for all USGS gauges and reference gauges separately for

five different sizes Ne = (10,20,40,60,80). Additionally, we compare the results with our baseline 80-member EnKF runs
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(without hybrid) in both domains. The observed prior MAE for the WV flash flooding is larger than that for FL flooding,470

attributed to the shorter duration of the WV event, making it inherently flashier. In comparison to the EnKF, the hybrid runs

consistently exhibit significantly improved bias, evident for both all and reference gauges. For instance, using only 10 members

results in an averaged prior bias of 4.79 cms and 12.41 cms for FL and WV cases, respectively. This represents an average

reduction of 29% (FL) and 40% (WV) in prior bias compared to the 80-member EnKF runs. A two sample t-test (with 5%

significance level) was conducted to confirm that the differences between the runs are statistically significant. As shown in475

Figure 10-(a), the value of the t-statistic for all hybrid runs falls outside the cutoff region (area between the two dashed lines).

This indicates that the reported MAE average for each EnKF-OI run is not equal to that of the EnKF thereby rejecting the test’s

null hypothesis. This was consistent for all runs in the WV case (not shown for figure clarity).

Among the hybrid runs, a dynamic ensemble of 80 members achieves the best performance in both cases. However, the

difference in prediction accuracy between the EnKF-OI with 80 and 20 members is minimal (≤ 6%). Notably, the computa-480

tional cost of running the EnKF-OI with 20 members is approximately four times smaller than the run with 80 members. While

reducing the ensemble size seems to slightly compromise prediction skill in our case studies, the trade-off of sacrificing 6% in

accuracy, particularly evident in the 20-member EnKF-OI, is considered favorable for improving computational efficiency in

operational settings. This conclusion is consistent across various metrics, including CRPSS, NSE, KGE, and RMSE.

4.4 Adaptive Hybrid Scheme485

Building upon the ensemble analysis discussed in the preceding section, we opted for an ensemble size of 20 in our adaptive

hybrid runs. The initial distribution for the hybrid weight (α) was strategically chosen as a Gaussian random variable centered

at 0.5, with a standard deviation of 0.005. This decision stems from insights gained in section 4.2, where our analysis revealed

that a weight of 0.5 produced the optimal representation of prior streamflow in both domains. Given the adaptive nature of the

algorithm, initiating DA with an equal weighting of dynamic and static covariances at 0.5 was deemed an intuitive starting point.490

In terms of the variance, we conducted several sensitivity experiments to assess the impact of the initial standard deviation of

α on the accuracy and performance of the hybrid filter. Our findings indicated that the standard deviation primarily influences

the speed at which the weight gets updated. Consequently, a standard deviation value of 0.005 was selected, as it yielded the

most favorable overall behavior in our experiments.

Figure 11 displays hydrographs at Arbuckle and Taylor Creeks in FL, offering a comparative assessment of prediction495

performance between the EnKF with 80 members and the adaptive hybrid EnKF-OI (a-EnKF-OI) with a reduced ensemble

size of 20 members. At Arbuckle Creek, the OL tends to overestimate the flooding event in late September by nearly 400

cms. While the EnKF excels before the main event, it mirrors the trajectory of the OL during the flood, rejecting 2 days

of data. In stark contrast, the a-EnKF-OI assimilates all observations, achieving a near-perfect fit to the observed discharge.

Notably, the a-EnKF-OI attains high KGE and NSE values of 0.92, while the EnKF lags with scores of -0.49 and -2.80,500

respectively. The adaptive hybrid weight steadily increases from 0.5 to 0.55 during the assimilation period. Similarly, at Taylor

Creek, the a-EnKF-OI performs quite well, yielding KGE and NSE values of 0.94 and 0.96, respectively. It further increases

the reliability of the EnKF prior ensemble by 27%. Most improvements over the EnKF are evident during the last 2 days of
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Figure 11. Hydrographs for Arbuckle Creek near De Soto City, FL (left) and Taylor Creek near Okeeechobee, FL (right). Top panels show

the results from an 80-member EnKF together with the OL. The results from the a-EnKF-OI with 20 members are given in the bottom panels.

For the a-EnKF-OI, the change in the hybrid weight over time is displayed in purple according to the right y-axis. Time-averaged metrics

such as RMSE, NSE, KGE, and RI are annotated on the individual panels.

September, coinciding with the main flood peak. The lower discharge at Taylor Creek underscores the adaptive hybrid filter’s

consistency in varying hydrological conditions. The hybrid weight demonstrates an early increase, followed by a sharper rise505

on September 28th, reaching approximately 0.62 by the end of the simulation. The adaptive scheme’s increased weighting

on the dynamic ensemble, as reflected by the rising α, signifies reduced bias and improved ensemble statistics. This shift

renders climatological information less crucial, indicating the hybrid scheme’s adeptness at leveraging climatology to enhance

ensemble bias and subsequently placing greater emphasis on the dynamic ensemble. In terms of computational efficiency,

the 20-member a-EnKF-OI proves to be roughly 4 times more efficient than the 80-member EnKF, further highlighting the510

advantages of the adaptive hybrid filter.

The effectiveness of the 20-member a-EnKF-OI algorithm is further explored through its application to the flash flood events

at Cranberry and Gauley Rivers in WV, as illustrated in Figure 12. At Cranberry River, both the EnKF and a-EnKF-OI schemes

exhibit challenges in accurately capturing the observed discharge during the main flood peak. However, the a-EnKF-OI offers

an improved prediction of the earlier event on June 21st, 2016. Notably, the rising and falling limbs of the main event are515

more distinctly delineated using the hybrid filter. Both filtering algorithms demonstrate greater skill compared to the OL.
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Figure 12. Similar to Fig. 11 but for Cranberry River near Richwood and Gauley River above Belva in WV.

During the recession period, the hybrid weight is elevated to 0.75 and subsequently decreases back to 0.55 on June 30th. At

Gauley River, the a-EnKF-OI notably outperforms the EnKF, particularly during the early hours of the flooding event and the

subsequent recession period, resulting in an improved overall NSE of 0.53 compared to the EnKF’s score of 0.14. The hybrid

weight at this gauge undergoes a significant drop from 0.5 to almost 0.1 during the heavy rainfall event. This adjustment seems520

to be linked to the pronounced underestimation of streamflow. The adaptive scheme strategically places more weight on the

climatology in an effort to alleviate the observed discrepancy between priors and observations. It’s noteworthy that for both

gauges, the algorithm dynamically adjusts the hybrid weight, particularly around June 23rd, showcasing its responsiveness to

underlying prior ensemble biases.

Figure 13 illustrates the spatial variations in hybrid weights for streamflow (panel a) and groundwater storage (panel b)525

on the last DA cycle, October 14, in the FL case. The most significant changes to the hybrid weights are concentrated in

the proximity of observation points, aligning with the ATS localization strategy. In reaches far from observations, the hybrid

weighting coefficients remain relatively stable, falling within the range of 0.48< α < 0.52 (gray colored reaches). It’s crucial to

recall that ATS localization selectively influences reaches upstream and downstream from a given gauge, using a predetermined

cutoff distance, in this case, set at 100 km. Streams with smaller hybrid weights generally indicate limited ensemble variability.530

A considerable number of streams exhibit increased α, particularly on the western side of the state (green reaches) where
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Figure 13. Spatial maps for streamflow (left) and groundwater bucket (right) hybrid weight α. The maps are obtained on the 14th of October,

2022 at 11pm for Ian using the adaptive hybrid scheme. Black asterisks on the maps show the assimilated USGS gauges. The inset panel

(top-middle) plots the time-averaged prior (λf ) and posterior (λa) streamflow inflation on the x-axis and the streamflow hybrid weight on

the y-axis (the same weight shown on the map). The initial starting point for the weight; i.e. 0.5, is highlighted by the dashed gray line.

Hurricane Ian made landfall. For example, Peace River near Fort Myers and its tributaries predominantly showcase weights

exceeding 0.6. The augmentation of α corresponds to an expectation that streamflow realizations derived from the hydrologic

model will align more closely with observed flow, as demonstrated in Figure 11. The adaptive hybrid scheme extends its spatial

weight mapping to groundwater storage, an active participant in the assimilation process. The distribution of α for the buckets,535

as depicted in Figure 13-(b), mirrors that of streamflow. This suggests a non-zero correlation between discharge observations

and groundwater storage, leading to multivariate updates in the hydrological state.

Examining streamflow, the most significant deviations from the initial weights (set at 0.5) are observed along streams where

inflation was minimal (λ < 1.3), as highlighted in the inset panel of Figure 13. This observation implies that α undergoes

substantial updates in locations where inflation alone couldn’t adequately address sampling errors and biases in the ensemble.540

The synergy between covariance hybridization and ensemble inflation techniques emerges as crucial for enhancing the quality
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of streamflow predictions. As demonstrated in section 4.2, while inflation tackles current streamflow conditions, long-term

biases are effectively mitigated through the incorporation of climatological information-a facet where inflation alone falls

short.
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Figure 14. Boxplots for prior RMSE of upper decile (top panels) and lower decile (bottom panels) stream flows. 5 simulation runs are

compared: OL, 80-member EnKF, 20-member EnKF-OI (α= 0.5), 80-member EnKF-OI (α= 0.5) and a 20-member a-EnKF-OI. Ian’s

flooding results are shown to the left while WV’s flash flood estimates are shown to the right. Note that the y-axis is in log-scale. Averaged

RMSE values are annotated underneath the individual boxplots.

The evaluation of the adaptive hybrid algorithm’s performance is succinctly summarized for both low and high stream flows545

in Figure 14. The a-EnKF-OI with 20 members is compared against the OL, the original EnKF with 80 members, and the

fixed weight EnKF-OI (α= 0.5) with both 20 and 80 members. In FL, the most substantial improvements offered by the

various hybrid schemes over the EnKF are observed for the lowest decile of flows. For instance, the average prior prediction

of the a-EnKF-OI (2.74 cms) is 60% more accurate than the EnKF’s score (6.90) when considering the lowest flow decile.

Conversely, for the highest flow decile, the a-EnKF-OI (13.1 cms) exhibits a 21% gain in prediction skill over the EnKF550

(16.48), on average. In WV, the advantages of the adaptive hybrid scheme over the EnKF are comparable for both the highest

and lowest decile flows. The intriguing behavior observed in the FL case can be attributed to two key factors. Firstly, the Ian

simulation in FL spans a full month of streamflow analysis, wherein low-flow periods are more frequent than the main flooding

event. Consequently, the performance differences between the schemes are expected to be more pronounced during low-flow
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periods, highlighting the OI-based scheme’s benefits for both floods and non-peak flows. Secondly, unlike WV, where the model555

exhibits a strong positive bias compared to observed flow, in FL, the model generally suggests a negative bias. Compared to the

20-member EnKF-OI with a fixed α, the adaptive variant demonstrates slightly greater accuracy, particularly evident in Ian’s

high-flow diagnostics. Overall, the fixed weight 80-member EnKF-OI consistently delivers outstanding RMSE scores for both

low and high flows across the two hydrologic domains. The hybrid approach, encompassing various flavors, consistently yields

substantial gains compared to the EnKF and considerable improvements compared to the OL. The 20-member a-EnKF-OI560

emerges as highly competitive, showcasing exceptional computational efficiency suitable for both flooding and non-flooding

applications on larger domains.

4.5 Short-Range Reforecasts

The hybrid scheme and its adaptive variant have demonstrated substantial enhancements in streamflow simulations when

contrasted with the OL and the EnKF. Until now, our focus has been solely on verifying analyses (posteriors) and forecasts565

(priors) within the scope of hourly DA cycling. Put differently, we have yet to explore the influence of analyses beyond the one-

hour forecast (prior) timescale. In this section, we delve into assessing the lasting impact of analyses on forecasts spanning up

to 18 hours. We aim to unravel questions pertaining to the temporal persistence of state corrections in the model. Furthermore,

we seek to identify forecast lead times at which the hybrid streamflow predictions exhibit enhancements over the OL.

To address these inquiries, we conducted a reforecast employing identical forcing data as utilized in the analysis cycles above.570

A comprehensive reforecast of the NWM would typically involve utilizing its forecast forcing datasets. It is acknowledged that

these real-time forecasts might entail larger uncertainties compared to the analysis forcing datasets employed here. However,

our primary focus lies in exploring the DA system’s capacity to mitigate uncertainties in initial conditions and model biases.

The decision to employ retrospective atmospheric forcing allows us to assess the impact of DA on enhancing initial conditions

for forecast cycles, without being overshadowed by substantial uncertainties in the forcing dataset, as outlined by Rafieeinasab575

et al. (2014). Specifically, we employ the AORC forcings in the WV case and the NWMv2.1 analysis and assimilation forcing

in the FL case. Given its high skillfulness and computational efficiency, we use the 20-member a-EnKF-OI experiment for both

domains. In the context of hourly cycling, the ensemble-mean posterior (analysis) at each hour furnishes initial conditions for

predictions spanning up to 18 hours without additional DA. This time frame aligns with the NWMv2.1 short-range forecasts.

Given that the same forcings are utilized in the forecasts, our baseline comparison against the OL forecast involves directly580

assessing the OL run itself.

The skill assessment of reforecasts for the FL flooding case is summarized in the top panel of Figure 15. Across all lead

times, the reforecasts consistently demonstrate enhanced performance compared to the open loop. However, this improvement

diminishes with increasing lead time. For example, at an 18-hour lead time, the reforecasted streamflow (averaged over all

gauges) initialized by the a-EnKF-OI estimates is 11% more accurate than the OL. To underscore the significance of DA in585

achieving more accurate forecasts through improved initial states, hydrographs for the North Prong Alafia River at Keysville,

FL (Gauge ID: 02301000) are provided in the bottom panel of Figure 15. This gauge, with a drainage area of 135 square miles

and experiencing relatively brief flooding, exemplifies notable improvements in the shorter lead times (< 6 hours) compared
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Figure 15. Top Panel: Boxplots summarizing the streamflow RMSE of mean ensemble over time for open loop (orange box), posterior (green

box), and reforecasts at different lead times (blue boxes). The horizontal dashed line depicts the median of streamflow RMSE for open loop.

Averaged RMSE is annotated underneath the individual boxplots. Note that the y-axis is in log-scale. Bottom Panel: Hydrographs for North

Prong Alafia River at Keysville FL (Gauge ID: 02301000) during hurricane Ian. Red dots represent the observed streamflow in cms. The

orange dashed line depicts the open loop streamflow simulation. The blue lines show the model posterior (lead time of zero) and reforecasts

at different lead times.

to the open loop simulation. However, as the lead time extends to 18 hours, the model’s response tends to converge toward the

OL solution.590

Figure 16 encapsulates the reforecast performance for the WV test case. Similar to Fig. 15, the top panel features boxplots

illustrating streamflow RMSE across all USGS gauges in the domain for the OL, the posterior, and various reforecast lead

times. Just as observed in the FL case, noteworthy enhancements in streamflow predictions during shorter lead times gradually
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diminish within the first 6 hours. In a median statistical sense, these improvements align closely with the OL forecasts after

approximately 10 hours. Interestingly, when comparing FL’s Ian test case to the WV test case, forecasts for the Ian case595

are superior in quality particularly in higher forecast lead times. This distinction arises from the nature of the WV event,

characterized as a short-lived flash flood in contrast to the more prolonged event in FL’s Ian test case. Consequently, there is

relatively less memory of the DA correction in many streams for the WV event compared to the Ian event in FL.

Nevertheless, on average, the reforecasts for the WV test case consistently outperform the OL up to hour 18. This trend is

attributed to the fact that the mean RMSE is generally dominated by RMSEs of large rivers, which have an enduring memory,600

preserve the impact of DA for many hours, resulting in a considerable reduction in their error metrics. Consequently, the

mean RMSE across the domain remains lower than that of the OL, even for forecast lead times exceeding 10 hours. The

bottom panel in Figure 16 exemplifies this phenomenon at the Kanawha River. In the OL simulation, there is a substantial

underestimation of streamflow compared to the observations (depicted by red stars). With the assimilation of streamflow into

the a-EnKF-OI, predictions at short lead times significantly align with the observations. However, as the forecast lead time605

extends, the prediction gradually converges towards the OL solution. Given the nature of this relatively large river and the

multi-day duration of the event at this location, the model’s estimates remain notably more accurate than the OL even after 18

hours.

5 Summary and Discussion

In this study, we have delved into the innovative application of hybrid ensemble and variational data assimilation techniques610

for streamflow and flood prediction within the WRF-Hydro National Water Model (v2.1) configuration and the Data As-

similation Research Testbed (DART). The resulting "HydroDART" system is specifically tailored to offer precise ensemble

streamflow predictions during challenging flood events, such as intense rainfall and hurricanes. HydroDART leverages the

ensemble Kalman filter, incorporating adaptive covariance inflation and along-the-stream localization to address issues like

sampling errors and bias (e.g., El Gharamti et al., 2021). Our system delivers hourly streamflow analyses utilizing data from615

the extensive USGS gauging network across the United States.

The hybrid ensemble-variational scheme presented in this paper seamlessly combines the time-varying sample error covari-

ance derived from the ensemble with a static climatological error covariance commonly employed in systems like optimal

interpolation and 3/4D-Var. Our comprehensive testing across two distinct basins-West Virginia’s flash flooding in June 2016

and Florida’s inland flooding caused by Hurricane Ian in August 2022-demonstrates that the hybrid algorithm outperforms the620

EnKF, significantly enhancing prediction accuracy.

Our findings reveal that the judicious blending of the static background covariance with the EnKF effectively improves

the ensemble spread, successfully mitigating pronounced model biases observed during flooding events. Optimal results from

the hybrid filter were achieved when assigning equal weight to the ensemble and climatology (i.e., a hybrid weight of 0.5).

Notably, relying solely on climatological information while disregarding the dynamic ensemble led to degraded results and625
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Figure 16. Similar to Fig. 15 but for Kanawha River at Kanawha Falls WV (Gauge ID: 03193000).

yielded poor-quality discharge estimates. Across various gauges in both hydrologic basins, the hybrid scheme exhibited near-

perfect alignment with observations, boasting efficiency metrics such as NSE and KGE very close to 1.

Crucially, the hybridized covariance not only heightened prediction skill and reliability but also demonstrated outstanding

efficiency by operating effectively with a time-varying ensemble that utilized only 25% of the members employed by the

EnKF alone. Our results indicate that employing 20 realizations in the dynamic ensemble is sufficient to maintain high-accuracy630

streamflow predictions, consistent with the findings of Abbaszadeh et al. (2019). This, coupled with the NWM submodel design

of HydroDART (utilizing only the NWM’s streamflow, conceptual groundwater storage, and reservoir models), suggests that a

system like HydroDART may be computationally efficient enough for operational use.
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Additionally, we explored an adaptive variant of the hybrid scheme that automatically adjusts the hybrid weight at each

stream and bucket in the domain based on ensemble statistics. The adaptive scheme, employing 20 members, demonstrated635

robustness and high skillfulness. Finally, we conducted short-range streamflow forecasts initiated from the hybrid scheme

analyses and compared the results to the open loop, revealing consistent improvements in model forecasts for up to 18 hours.

Despite its successful application, the examined framework warrants further research and sensitivity studies. For instance,

the ATS localization was specifically tuned for the EnKF and not its hybrid counterparts. It remains conceivable that, with the

integration of climatological information, a reduction in localization (i.e., broader cutoff radii) might be possible. The poten-640

tial for mitigating spurious correlations arising from limited ensemble sizes through the application of the static background

covariance was evident in the observations made using the hybrid EnKF-OI scheme, particularly with a minimal number of en-

semble realizations in Section 4.3. Furthermore, studying the non-Gaussian aspects of streamflow, as in Hernández and Liang

(2018), was not explored in this work. Recent methods such as the Quantile Conserving Ensemble Filtering (QCEF, Anderson,

2022) can be utilized within HydroDART. Using the QCEF, streamflow can be expressed in various non-Gaussian forms during645

assimilation and this might be a more suitable approach than the on utilized here.

In the case of the adaptive hybrid variant, our study focused on scenarios where the hybrid weight initiates at 0.5. Acknowl-

edging that smaller weights may compromise performance, an exploration of commencing the algorithm with larger weights

could be a plausible avenue. This strategy might vary across different domains, considering the dynamic nature of hydrologic

basins and water conditions. It is noteworthy that the weight coefficients across the stream network in FL and WV did not650

converge to specific values. This lack of convergence was attributed to the changing ensemble conditions, such as spread and

bias, over our relatively short simulation periods. Extending the simulation duration could potentially lead to the convergence

of hybrid weights as streamflow conditions stabilize. In our case, the adaptive algorithm predominantly assigned a balanced

weight to the majority of gauges, i.e., α ∈ [0.48,0.52]. This aligns with the demonstrated optimal performance of a constant

homogeneous weight of 0.5 (Section 4.2). For extended simulations, one might consider implementing a reset mechanism for655

the hybrid weights or exploring the utilization of seasonal climatological covariances rather than a single one.

A potential extension of the present study involves assessing the efficacy of the hybrid DA approach in medium and long-

range forecasts. This expansion could encompass a broader array of hydrologic variables, such as stream temperature, and

involve additional modeling components like soil moisture and snow. Furthermore, instead of focusing on specific flooding

events, our forthcoming investigations will delve into evaluating the performance of the hybrid DA methodology in a compre-660

hensive simulation covering the entire CONUS. This strategic shift aims to ascertain the robustness of the latest HydroDART

version across diverse hydrologic conditions and to analyze its computational complexity within a large-scale domain.

Code availability. The data assimilation code used in this study is openly available as part of the DART repository (directory path: DART/-

models/wrf_hydro) on GitHub; https://doi.org/10.5065/D6WQ0202 (last access: 15 September 2022, DART team, 2022). The model code

is also freely available and can be accessed at https://ral.ucar.edu/projects/wrf_hydro (last access: 15 September 2022, WRF-Hydro team,665

2022).
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