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Abstract.  

We introduce a comprehensive and robust theoretical framework and operational workflow that can be employed to enhance 

our understanding, modeling and management capability of complex heterogeneous large-scale groundwater systems. Our 

framework encapsulates key components such as the three-dimensional nature of groundwater flows, river-aquifer interactions, 

probabilistic reconstruction of three-dimensional spatial distributions of geomaterials and associated properties across the 10 

subsurface, multi-objective optimization for model parameter estimation through stochastic calibration, and informed global 

sensitivity analysis. By integrating these components, we effectively consider the inherent uncertainty associated with 

subsurface system characterizations as well as their interactions with surface water bodies. The approach enables us to identify 

parameters impacting diverse system responses. By employing a coevolutionary optimization algorithm, we ensure efficient 

model parameterization, facilitating simultaneous and informed optimization of the defined objective functions. Additionally, 15 

estimation of parameter uncertainty naturally leads to quantification of uncertainty in system responses. The methodology is 

designed to increase our knowledge of the dynamics of large-scale groundwater systems. It also has the potential to guide 

future data acquisition campaigns through the informed global sensitivity analysis. We demonstrate the effectiveness of our 

proposed methodology by applying it to the largest groundwater system in Italy. The system considered faces multiple 

challenges, including groundwater contamination, sea water intrusion, and water scarcity. Our study offers a promising 20 

modeling strategy applicable to large-scale subsurface systems and valuable insights into groundwater flow patterns that can 

then inform effective system management.  

 

Keywords: large-scale groundwater modeling, multi-objective optimization function, global sensitivity analysis, 

coevolutionary algorithm, uncertainty quantification. 25 
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1 Introduction 

Large-scale groundwater flow models have been developed in recent years (e.g., Maxwell et al., 2015; Naz et al., 2023) in 

response to growing interest in understanding potential impacts of climate and anthropogenic drivers on water systems as well 

as in assessing large-scale patterns and processes affecting water security. This progress has been facilitated by an increased 

availability of data and computational capabilities (e.g., Zhou and Li, 2011; Amanambu et al., 2020 and references therein). 30 

Building such large-scale models often requires to consider important simplifications. In some cases constant properties are 

assumed along the vertical direction (e.g., Maxwell et al., 2015; Shrestha et al., 2014; Soltani et al., 2022) without taking into 

account the three-dimensional nature of the spatial heterogeneity of the subsurface system. In addition, parametrization of 

these models does not rely on rigorous model calibration against data that are, in turn, typically scarce. Instead, parameter 

values are typically inferred from literature information (Naz et al., 2023; Maxwell et al., 2015), thus possibly introducing 35 

large margins of uncertainty that are seldom quantifiable. Although the literature includes examples of large/national-scale 

models covering extensive areas (~ 10,000 km2, e.g., Sophocleous and Perkins, 2000; De Lange et al., 2014; Højberg et al., 

2013), these models are calibrated only across specific portions of the system, thus challenging their predictive capabilities. 

Even in these cases, uncertainty associated with the estimated model parameters is usually overlooked. De Graaf et al. (2020) 

present a detailed geological reconstruction for the same domain analyzed by Maxwell et al. (2015). Due to computational 40 

constraints, their model could only simulate groundwater flow within selected portions of the domain and calibration of model 

parameters for the entire model domain was not achieved. Recently, Mather et al. (2022) introduced a three-dimensional data-

driven model of continental-scale groundwater flow. It is noted that data-driven models are heavily constrained by the quantity 

and quality of available training data and that the latter might not be readily accessible for the entire domain when considering 

large-scale scenarios. In general, a comprehensive calibration strategy encompassing the entire geographical extent of the 45 

model domain is still lacking. 

Groundwater systems are inherently heterogeneous, thus rendering modeling of flow and transport processes in such complex 

domains prone to uncertainty. The latter stems from the (generally unknown) spatial distribution of medium properties, 

boundary conditions and/or forcing terms, and limited data availability. This issue could be addressed upon relying on a 

stochastic framework for model calibration (e.g., Neuman, 2003; Riva et al., 2009; Ye et al., 2010; Panzeri et al., 2015; Siena 50 

and Riva, 2020). However, stochastic model calibration presents significant challenges, particularly in terms of computational 

cost when dealing with multiple source of uncertainty (e.g., Vrugt et al., 2008; Hendricks Franssen et al., 2009; Zhou et al., 

2014). Although stochastic model calibration has become feasible at laboratory scales (~ 10-2 – 1 m2) and at experimental sites 

of limited areal extent (~1-100 km2), the impact on the hydraulic response across large scale fields stemming from the inherent 

uncertainty plaguing our knowledge of the subsurface is still largely unexplored. In this framework, Bianchi Janetti et al. (2019, 55 

2021) analyze how the uncertainty related to the characterization of the subsurface system affects the distribution of hydraulic 

heads and subsurface fluxes in a regional-scale hydrological setting (~ 1,000 km2). 
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Here, we introduce and test a methodological approach for stochastic model calibration tailored to large-scale scenarios 

(exceeding 10,000 km²). Our proposed methodology and workflow combines tools that have been already applied to the 

analysis of smaller systems or simpler model setups. These entail (a) an innovative multi-objective optimization function for 60 

model parameter estimation, (b) uncertainty assessment, and (c) informed global sensitivity analysis developed to guide further 

experimental activity. The approach involves the development of a groundwater model that includes a probabilistic three-

dimensional hydrogeological reconstruction of the investigated area. Multi-objective optimization is a key step to assessing 

the way model parameters impact diverse system responses. This challenge is addressed upon relying on a coevolutionary 

optimization framework that is applied to a differential evolution optimization algorithm, thus ensuring effective control over 65 

the optimization process while preserving computational efficiency (e.g., Dagdia and Mirchev, 2020; Trunfio, 2015). The 

resulting algorithm is designed to handle multiple objectives and eliminates the need to assessing their relative weights within 

the overall objective function (Khan et al., 2022). The methodology we present is designed not only to increase our knowledge 

about the dynamics of large-scale systems but also to guide future data acquisition campaigns. The latter goal is attained by 

making use of an informed Global Sensitivity Analysis (GSA). We recall that GSA typically serves as a tool to assess the 70 

relative impact of uncertain model inputs on model outputs of interest (Morris, 1991; Campolongo et al., 2007; Razavi and 

Gupta, 2015; Pianosi et al., 2016; Dell’Oca et al., 2017). An informed GSA (Dell’Oca et al., 2020) is performed after 

(stochastic) model calibration and enables one to quantify the influence of residual (i.e., following model calibration) 

uncertainty associated with model parameter estimates on predictions of system dynamics. This strategy aligns with our focus 

on tackling major challenges posed by large-scale subsurface flow scenarios. It offers critical insights on model functioning 75 

through quantification of the impact of model parameters on target model outputs. It also provides guidance on the 

identification of locations where acquiring additional information can enhance the accuracy of parameter estimates and 

ultimately constrain the uncertainty associated with model results. 

The proposed methodological approach is then employed to analyze the largest groundwater system in Italy, corresponding to 

the Po River watershed. This region faces a variety of challenges, related to groundwater contamination (Guadagnini et al., 80 

2020; Balestrini et al., 2021), sea water intrusion (Colombani et al., 2016), and water scarcity (Bozzola and Swanson, 2014). 

Thus, the design of comprehensive policies addressing risks to water quality across large scale groundwater systems of this 

kind is grounded on the implementation of a modeling framework capable of addressing the key patterns of groundwater flow 

at the scale of the entire domain (Giuliano, 1995; Nespoli et al., 2021). 

The work is organized as follows. Sect. 2 provides an overview of the large-scale groundwater system we consider. The 85 

proposed methodology and workflow are illustrated in Sect. 3. Sect. 3.1 describes the modeling approach employed to assess 

groundwater recharge. Sect. 3.2 focuses on the large-scale groundwater model, which involves integrating data from multiple 

sources such as large-scale hydrogeological reconstruction, remote sensing, and global-scale databases. Sect. 3.3 delves into 

the inverse modeling approach employed and introduces a novel application of a coevolutionary algorithm to address the multi-

objective function associated with large-scale hydrogeology settings. Sect. 3.4 describes the informed GSA approach. Key 90 

results are presented in Sect. 4, while Sect. 5 summarizes main findings and implications. 
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2 General Setting 

Our analysis focuses on the Po River basin. Along with the Rhône and the Nile, the Po is one of the main Mediterranean rivers. 

With an average flow rate of about 1,500 m3/s, it has more than 140 tributaries forming an intricate network of waterways that 

also intersects with a dense network of irrigation canals (ISPRA, 2010). This area (denoted as Po Plain, Pianura Padana) 95 

encompasses the largest and most exploited groundwater system across Italy, which provides fresh water to about 24 million 

residents (ISTAT, 2020). This area holds significant economic importance, contributing to nearly 40% of Italy’s Gross 

Domestic Product. Due to the high density of industrial and agricultural activities, the system is facing a significant risk of 

overexploitation and possible exposure to multiple contaminants (AdB-Po, 2021). Seawater intrusion is also a potential 

negative issue in the coastal portion of the system (Kazakis et al., 2019; Antonellini et al., 2008). 100 

As shown in Fig. 1, the domain is geographically bounded by the Adige River to the northeast and by the Adriatic Sea to the 

east, while its remaining boundaries encompass the mountain ranges of the Alps and the Apennines. 

Our study is framed across the entire Po River District (AdB-Po, 2021). The latter covers approximately 87,000 km2, spanning 

nine Italian Regions as well as the Swiss canton of Ticino and some valleys in the French and Swiss Alps (see Fig. 1). This 

area includes the entire catchment area of the Po River (72,000 km2). Main features of the study area vary from the high 105 

peaks of the Alps and Apennines (with altitude exceeding 4,000 meters above sea level, steep slopes of more than 15%, and a 

population density of less than one inhabitant per km2) to flat terrain and densely populated areas (with more than 2,000 

inhabitants per km2) (SEDAC, 2018). The district also experiences notable climatic differences. The lowland area is 

characterized by a continental and temperate climate with moderate annual precipitation levels ranging from 600 to 900 mm 

(Morgan, 1973; Grimm et al., 2023). The Alps include a variety of climate zones at different elevations, corresponding to 110 

distinct biotic features. These zones are often characterized by multiple precipitation patterns, including both snow and rain 

(Elsasser and Bürki, 2002; Agrawala, 2007). The foothill (Prealpi) zone features highest cumulative precipitation levels, with 

an annual precipitation of 1500-2000 mm (Fratianni and Acquaotta, 2017; Morgan, 1973). 

https://doi.org/10.5194/hess-2023-268
Preprint. Discussion started: 11 December 2023
c© Author(s) 2023. CC BY 4.0 License.



5 

 

 

Figure 1: Spatial location of the Po River District, which includes the Po Plain groundwater system and the sub-basins considered 115 
to assess lateral flow boundary conditions. Dots correspond to locations of wells for which head data are available. Coordinates 

Reference System (CRS) = ESRI:54012. 

3 Methods 

Steady state groundwater flow across the large-scale system described in Sect. 2 is evaluated through a three-dimensional (3D) 

finite element model that we develop in the OpenGeoSys v. 6.4.1 (Bilke et al., 2022). We describe the methodology used for 120 

evaluating groundwater recharge in Sect. 3.1. This step is performed within the entire Po district (i.e., not only within the 

considered groundwater system) to assess (i) surface recharge within the domain and (ii) contributions of the surrounding 

basins to lateral flow exchanges with the domain. Sect.s 3.2, 3.3, and 3.4 include key details about the groundwater model, its 

calibration, and the informed GSA, respectively. 

3.1 Groundwater Recharge 125 

We estimate the spatial and temporal variations of groundwater recharge at the scale of the entire Po district (87,000 km2). 

The study area is discretized into square cells with a spatial resolution of 250 × 250 m (resulting in approximately 1.4 million 

cells). Cell elevation data are obtained through the European Digital Elevation Model (ESA, 2019). 
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Groundwater recharge, 𝑅, is evaluated within each grid cell upon making use of the soil-water balance method of  Thornthwaite 

(1948) and Thornthwaite and Mather (1955, 1957), as implemented in the widely used and tested (e.g., Zhang et al., 2016; 130 

Shuler et al., 2021; Roland et al., 2021) USGS SWB model Version 2.0 (Westenbroek et al., 2018), i.e., 

𝑅 = 𝑅𝐺 + 𝑆𝑀 + 𝐼𝑅𝑅 + 𝑅𝑖𝑛 − 𝐸𝑇 − 𝑅𝑜𝑓𝑓 − (𝑆𝑊𝐻𝐶 − 𝑆𝑊𝐶 ).      (1) 

Here, 𝑅𝐺  is the non-intercepted rain (rainfall reaching the ground); 𝑆𝑀  is snowmelt; 𝐼𝑅𝑅  is irrigation; 𝐸𝑇  is actual 

evapotranspiration; and 𝑅𝑖𝑛 and 𝑅𝑜𝑓𝑓 are overland inflow and outflow, respectively. The last term in Eq. (1) corresponds to 

the amount of water that can still be stored in the soil at a given time, 𝑆𝑊𝐻𝐶 and 𝑆𝑊𝐶 being soil water holding capacity and 135 

soil water content, respectively. Equation (1) is solved with a temporal resolution equal to one day, covering the entire period 

from January (2010) to December (2019). Due to uncertainty of initial conditions, model results from January (2010) to 

December (2012) are discarded as they are associated with the warm-up periods of the hydrological model (Kim et al., 2018). 

Meteorological data (such as precipitation and temperature) are obtained from the latest generation of ECMWF reanalysis data 

from ERA5 (Copernicus Climate Change Service (C3S), 2017). This dataset includes daily maximum and minimum 140 

temperatures evaluated at an elevation of two meters above ground, as well as precipitation data. The spatial distribution of 

the required soil information is collected from the global-scale maps of Poggio et al. (2021). To estimate the land cover type, 

we integrate crop type spatial distribution data from the EU CROP MAP  (d’Andrimont et al., 2021) into the CORINE land 

cover map (European Environment Agency, 2018). 

For the evaluation of 𝑅𝐺, we account for a water interception budget, representing the amount of precipitation that can be 145 

intercepted by vegetation. This interception budget varies across space depending on land use. Precipitation must exceed the 

intercepted amount in order to reach the soil and contribute to the soil water balance. The accumulation and melting term, 𝑆𝑀, 

is evaluated on the basis of precipitation and maximum and minimum daily temperatures, as proposed by Dripps and Bradbury 

(2007). We recall that, according to previous studies (Farinotti et al., 2016), the investigated area receives a significant 

contribution from glacier melt. The irrigation term, 𝐼𝑅𝑅, is triggered only in the absence of precipitation during crop-specific 150 

irrigation period. It is evaluated (in each cell) by dividing the crop water need (i.e., the amount of water required to meet the 

evapotranspiration losses, considering the crop type and its growth stage) by the field application efficiency. We rely on the 

FAO 56 model  (Allen et al., 1998) to assess the crop water need for 31 diverse types of crops identified in the area, for four 

different growth stages and their related periods. Due to lack of detailed space- and time-dependent irrigation data, here we 

use a constant field application efficiency value, set to its average national counterpart of 0.75 (Wriedt et al., 2009). For the 155 

evaluation of the actual evapotranspiration, 𝐸𝑇, potential evapotranspiration is first computed by (i) making use of  Hargreaves 

and Samani (1985) model in non-irrigated regions and (ii) combining the Penman-Monteith model with the correction crop 

coefficient reported in  Allen et al. (1998) in cultivated areas. The latter method has been developed and widely applied for 

estimating evapotranspiration in irrigated soils. Actual evapotranspiration is then computed on the basis of the soil water 

content. If 𝑆𝑊𝐶 is larger than the potential evapotranspiration, 𝐸𝑇 is equal to the potential evapotranspiration; otherwise, 160 

𝐸𝑇 = 𝑆𝑊𝐶 . Note that the Hargreaves-Samani and Penman-Monteith models are implemented without considering any 
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corrections for wind effects, as the study area experiences weak surface winds, with an average wind speed of approximately 

2 m/s (Bonafe’ et al., 2012). Overland outflow (or surface runoff) is evaluated upon making use the Soil Conservation Service 

(SCS) Curve Number (CN) method (Mishra and Singh, 2003). Note that the estimation of 𝑅𝑜𝑓𝑓 requires the availability of 

maps of hydrological soil class and land cover type. Hydrological soil classes are assessed through the broadly used ROSETTA 165 

software (Schaap et al., 2001), that makes use of physical soil attributes such as clay and sand soil content as well as soil bulk 

density. Given the presence of very cold temperatures in different periods of the year for a large portion of the study area, we 

include a runoff enhancement factor in the case of frozen ground, as proposed by Molnau and Bissell (1983). Finally, the 

overland inflow to a given cell is evaluated as the sum of 𝑅𝑜𝑓𝑓 values computed for the uphill neighbor cells in the previous 

time step iteration. A workflow of the recharge modeling approach is offered in Fig. 2. Detailed information regarding all input 170 

values here employed can be found in the open code repository (https://doi.org/10.5281/zenodo.10013442). 
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Figure 2: Conceptual workflow of the Groundwater Recharge Model. 

3.2 Groundwater modeling approach 175 

We build a large-scale groundwater model that covers an area of approximately 31,500 km2 within the Po River district (see 

Fig. 1). The architecture of the subsurface system is assessed by curating information embedded in datasets from three distinct 

local authorities. In this sense, we obtain an original integration of data stemming from the hydrostratigraphic survey of Emilia-

Romagna (Regione Emilia-Romagna, 1998), as well as from the regional water protection plans of the Lombardia  (Regione 

Lombardia, 2016) and Piemonte  (Regione Piemonte, 2022) Regions. Based on these information, we determine both the lateral 180 

extent and the base surface of the depositional group that includes the groundwater system. As already noted in Sect. 3.1, we 

employ the Digital Elevation Model  (ESA, 2019) to determine the topographic map of land surface. 
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We discretize the 3D subsurface domain through a hybrid mesh, as obtained within the Gmsh environment  (Geuzaine and 

Remacle, 2009) through the OpenGeoSys Data Explorer GUI (Rink et al., 2013). The selected mesh enables us to capture the 

irregular shape of the boundaries of the investigated domain as well as its natural features while preserving the advantages of 185 

regular meshes for modeling layered geological systems. Domain discretization is performed according to a two-step approach. 

First, the ground surface is discretized using triangular elements with variable sizes (ensuring a maximum edge length of mesh 

elements of 5 km). Elements are adjusted to closely represent the ground surface as well as the irregular geometry of rivers 

and boundaries. The surface grid is then extruded along the vertical direction to create layers whose thickness increases with 

depth according to the following criteria: (i) within the top 100 meters below the surface level, layers maintain a constant 190 

thickness of less than 10 meters; (ii) at depths comprised between 100 m and 200 m, the maximum layer thickness is less than 

20 meters, and (iii) for layers corresponding to depths larger than 200 m, a constant thickness of less than 40 m is maintained. 

This layering scheme ensures an appropriate description of the system since data availability decreases with depth (see also 

Manzoni et al., 2023). 

To determine the types of geomaterials associated with each cell of the resulting grid, we rely on the detailed three-dimensional 195 

probabilistic hydrostratigraphic model developed for the Po River District by Manzoni et al. (2023). The dataset includes six 

macro categories (or geomaterials, denoted as gravel, sand, silt, clay, fractured rock, and rock) according to which the data 

associated with lithostratigraphic information across the area can be grouped. Manzoni et al. (2023) rely on a fine structured 

grid (resolution of 1000 × 1000 m along the horizontal plane and 1 m along the vertical direction) and evaluate the probability 

that each cell is associated with one of these six geomaterials. On these bases, we can evaluate the fraction of the 𝑐-th 200 

geomaterial that can be assigned to the 𝑖-th cell of our simulation grid, 𝑓𝑐,𝑖, as 

𝑓𝑐,𝑖 =
1

𝑁𝑖
∑ 𝑃𝑐,𝑗

𝑁𝑖
𝑗             (2) 

Here, 𝑁𝑖 denotes the number of cells associated with the hydrostratigraphic model of  Manzoni et al. (2023) that are included 

in the 𝑖-th cell of our simulation grid and 𝑃𝑐,𝑗 is the probability that the 𝑐-th category (or geomaterial) be assigned to cell 𝑗 of 

the above mentioned hydrostratigraphic model. We then assess the permeability of the 𝑖-th cell of the grid as 205 

�̅�𝑖 =   ∑ 𝑓𝑐,𝑖  𝑘𝑐
𝑁𝑐
𝑐   with 𝑁𝑐 = 6         (3) 

where 𝑘𝑐 is the permeability of the 𝑐-th category. Details regarding model calibration and estimation of 𝑘𝑐 are illustrated in 

Sect. 3.3. 

As boundary conditions, we set a constant hydraulic head, ℎ = 0 m, along the coastline and a Cauchy boundary condition along 

the Adige River. Flow boundary conditions are imposed along the remaining lateral boundaries (see Fig. 1). Here, boundary 210 

fluxes are assigned using a mass balance analysis performed across the 14 main sub-basins surrounding investigate subsurface 

domain (denoted as sub-basins 1, 2, …, 14 in Fig. 1). The delineation of these sub-basins is provided by the Po River Basin 

Authority (AdB-Po, 2021). Making use of the results of Sect. 3.1, we evaluate within each of these sub-basins the average (in 
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time) amount of water that infiltrates within a day as 𝑄𝑠 = 𝑟𝑞𝑅′𝑠𝑆𝑠, where 𝑅′𝑠  is the mean recharge computed for the s-th sub-

basin (of surface area 𝑆𝑠) during the temporal window spanning years 2013-2019. To account for external effects that may 215 

cause exfiltration of infiltrated water or infiltration of water due to surface-groundwater interaction (e.g., river water 

infiltration), we also introduce a correction coefficient, 𝑟𝑞 , which is constant for all sub-basins and is estimated through model 

calibration as detailed in Sect. 3.3. Finally, we determine a uniform flow rate boundary condition for the 𝑠-th sub-basin as 

𝑞𝑠 = 𝑄𝑠/𝐴𝑠 , where 𝐴𝑠  represents the lateral surface of the system within the 𝑠-th sub-basin. We assign water flow rate 

boundary conditions at the ground surface of the domain upon considering the mean groundwater recharge (see Sect. 3.3) and 220 

domestic water use. To estimate the volumetric flow rate for domestic use, we rely on the public water supply data provided 

by the Italian National Institute of Statistics (ISTAT, 2020). The domestic water flux associated with the use of groundwater 

resources is obtained as the ratio between the total volumetric flow rate associated with groundwater extractions of drinking 

water within a municipality and the surface area covered by the municipality itself. Due to the lack of comprehensive 

information regarding the location of extraction wells, we implement this water flux as a distributed sink term within the 225 

deepest layer of the simulation grid. This assumption is grounded on the notion that drinking water wells are typically 

engineered to extract water from locations as distant as possible from potential contaminants that may infiltrate and pollute 

shallower regions of subsurface water bodies. Finally, we set Robin boundary conditions along the cells associated with the 

main 18 rivers comprised within the domain (see Fig. 1 for their location), i.e., 

𝑄𝑟,𝑖 = −𝐶𝑟,𝑖(ℎ𝑖 − ℎ𝑟𝑠,𝑖),           (4) 230 

where 𝑄𝑟,𝑖  represent the water flow rate from the segment of the 𝑟-th river of length 𝐿𝑟,𝑖  within the 𝑖-th grid cell to the 

groundwater systems; 𝐶𝑟,𝑖 represents the riverbed conductance of segment 𝐿𝑟,𝑖; and ℎ𝑖 and ℎ𝑟𝑠,𝑖 are the groundwater hydraulic 

head at cell i and the elevation of the river stage of segment 𝐿𝑟,𝑖 , respectively. Each river is assigned a uniform specific 

conductance, α𝑟 = 𝐶𝑟,𝑖/𝐿𝑟,𝑖, with the exception of the Po River. The latter is subdivided into three segments (see Fig. 1), each 

with a different specific conductance due to the varying geological characteristics, i.e.: (i) the eastern portion of the river flows 235 

over a geologic region mainly characterized by deltaic, floodplain, coastal, and wind deposits; (ii) the middle portion of the 

river flows over a geologic region mainly characterized by terraced alluvium and aeolian deposits; and (iii) the western portions 

of the river meander through hilly regions, which exhibit diverse geological features (Compagnoni et al., 2004). This 

subdivision leads to 20 distinct values of α𝑟, estimated as detailed in Sect. 3.3. 

3.3 Calibration Data and Inverse Modeling Strategy 240 

In this section we report first the procedures applied to obtain calibration data from raw datasets (Sect. 3.3.1), and then we 

describe the main traits of the model inversion strategies (Sect. 3.3.2). More details on the algorithm implemented are then 

given in Appendix A.    
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3.3.1 Data curation 

Model parameters are estimated using time-averaged measurements of groundwater levels available across the domain and 245 

collected between January (2013) and December (2019). These data are available for the three main Italian Regions within 

which the groundwater system resides (i.e., Piemonte, Lombardia, and Emilia-Romagna). Available data are not homogeneous 

in terms of quantities monitored, temporal windows associated with data collection, and data format. Data curation is therefore 

a critical element to enable effective use of the available information. The resulting data set is here presented and employed 

for the first time. It serves as a basis upon which future studies aimed at further enhancing our knowledge of the hydrological 250 

functioning of this large-scale groundwater system and designing appropriate water management strategies therein can be 

developed. 

Hydraulic head data have been collected with a sampling frequency of eight hours for the Piemonte Region (Agenzia Regionale 

per la Protezione Ambientale Piemonte, 2020). In the Emilia-Romagna and Lombardia Regions, the sampling frequency varies 

among wells, with an average approximately corresponding to 2 and 10 samples per year, respectively (Regione Emilia-255 

Romagna, 2020; Regione Lombardia, 2021). We apply a filtering process to the raw data before combining the different 

datasets. To avoid seasonal biases, we exclude from the dataset wells that do not have at least one observation in two different 

seasons for each year within the given time range. Furthermore, we exclude observation wells affected by local operational 

activities. For the 𝑁ℎ𝑏
=  286 remaining wells, whose locations are indicated in Fig. 1, we evaluate the average hydraulic 

head, ℎ�̅� (with l = 1, ..., 𝑁ℎ𝑏
), associated with the investigated period. 260 

3.3.2 Model calibration 

Model parameters are estimated through a multi-objective optimization approach. The latter is tied to the joint minimization 

of two objective functions formulated as 

𝑓𝑁 = √
∑ (ℎ𝑙̅̅ ̅− ℎ𝑙)2𝑁

𝑙=1

𝑁
   with 𝑁 =  𝑁ℎ𝑏

 , 𝑁ℎ𝑟
 (5) 

where, ℎ�̅�  and ℎ𝑙 denote observed and estimated hydraulic head at well 𝑙, respectively. Estimation of permeability of each 265 

geomaterial (𝑘𝑐) and of the correction coefficient (𝑟𝑞) entails minimizing Eq. (5) upon setting 𝑁 =  𝑁ℎ𝑏
 (i.e., considering all 

available hydraulic head data). To estimate the specific conductance of the riverbeds, 𝛼𝑟 (with 𝑟 =  1, … , 20), we minimize 

Eq. (5) with 𝑁 =  𝑁ℎ𝑟
< 𝑁ℎ𝑏

, where 𝑁ℎ𝑟
  is the number of wells located within a maximum distance of 5 km from a river (see 

orange dots in Fig. 1). Including this constraint on the distance between a river and observation wells enables us to refine the 

estimation of 𝛼𝑟  by considering only hydraulic head observations that are significantly impacted by the interconnection 270 

between the groundwater system and the rivers. Note that minimization of Eq. (5) is equivalent to relying on a Maximum 

Likelihood (ML) estimation approach assuming that measurement errors of hydraulic head are not correlated and can be 

described through a Gaussian distribution (Carrera and Neuman, 1986). 
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The two objective functions to minimize are closely interconnected. We implement an enhanced variant of the Differential 

Evolution (DE) optimization method  (Storn and Price, 1997) to effectively minimize both objective functions simultaneously. 275 

Here, we rest on a Cooperative Coevolutionary Differential Evolution (CCDE) optimization algorithm (Trunfio, 2015), which 

is an adaptation of the standard DE algorithm to the theory of Coevolutionary Algorithms (CAs). We note that CCDE does not 

require defining a single weighted multi-objective function, as otherwise required by the standard DE. Thus, this approach 

eliminates the non-trivial task of determining the appropriate (relative) weights between each of the terms that constitute the 

multi-objective function (e.g., Dell’Oca et al., 2023). The aim of applying a CCDE algorithm is to strike a balance between 280 

simplicity, which makes it easier to tune and manage algorithm hyperparameters similar to DE, and the efficiency documented 

for CAs when dealing with multi-objective fitness functions (Khan et al., 2022). 

As nature-inspired optimization techniques, CAs draw upon principles of biological coevolution, where optimization problems 

are linked to coevolving species (Dagdia and Mirchev, 2020). CAs share similarities with Evolutionary algorithms, as their 

sampling mechanisms and dynamics are inspired by Darwin’s Theory of Evolution. Just as species evolve based on their fitness 285 

to survive and reproduce within an environment, solutions within a search space evolve to achieve the minimum of an objective 

function (Simoncini and Zhang, 2019). Additionally, the coevolution principle considers that a change in one species can 

trigger changes in related species, thus leading to adaptive changes in each species (Khan et al., 2022). In this context, Eq. (5) 

with 𝑁 = 𝑁ℎ𝑏
 and 𝑁ℎ𝑟

 represents the optimization functions for two coevolving species, which are optimized through CCDE. 

A description of the key elements of the CCDE algorithm is included in Appendix A. 290 

Finally, to quantify the residual (i.e., after calibration) uncertainty associated with each estimated model parameter, we 

compute the parameter estimation covariance matrix, 𝚺𝑁, as 

𝚺𝑁

𝜎ℎ,𝑁
2 = [𝐉𝐓 𝐉]−𝟏, with 𝑁 =  𝑁ℎ𝑏

, 𝑁ℎ𝑟
  (6) 

where 𝐉 is the Jacobian matrix (T denoting transpose) of size [𝑁  𝑁𝑝, 𝑁𝑝], 𝑁𝑝 being the number of parameters (i.e., 𝑁𝑝  =  7 

when 𝑁 =  𝑁ℎ𝑏
 and 𝑁𝑝 =  20 when 𝑁 = 𝑁ℎ𝑟

) and 𝜎ℎ,𝑁
2  is measurement error variance. The latter is generally unknown and 295 

can be computed a posteriori as detailed in Carrera and Neuman (1986). Matrix 𝐉 contains the derivatives of ℎ with respect to 

model parameters. These are evaluated at the end of the optimization procedure using a centered difference scheme. 

3.4 Global Sensitivity Analysis 

GSA is performed in the surrounding of the parameter values obtained through model calibration. A GSA analysis provides 

valuable insights on the impact of parameter uncertainty on the simulated variable (i.e., hydraulic head values in our case). 300 

Furthermore, an informed GSA offers guidance about where new (hydraulic head) measurements can enhance the quality of 

parameter estimates. As a GSA metric, we rely on the Morris indices. These are defined through the introduction of elementary 

effects, 𝐸𝐸𝜃𝑝,𝑛
, 
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𝐸𝐸𝜃𝑝,𝑛
=

ℎ(𝜃1,…,𝜃𝑝+Δ𝜃𝑝,…,𝜃𝑁𝑝)−ℎ(𝜃1,…,𝜃𝑝,…,𝜃𝑁𝑝)

Δ𝜃𝑝
         (7) 

Here, 𝐸𝐸𝜃𝑝,𝑛
 is the incremental ratio for the uncertain parameter 𝜃𝑝 computed along trajectory n within the parameter space; 305 

and Δ𝜃𝑝 is an increment evaluated as proposed by Campolongo et al. (2007). The Morris index 𝜇𝜃𝑝 
∗  is then defined as 

𝜇𝜃𝑝 
∗ =

1

𝑀
∑ |𝐸𝐸𝜃𝑝,𝑛|𝑀

𝑛 ,           (8) 

Here, 𝑀 represents the number of trajectories (i.e., the number of diverse parameter combinations) selected employing a radial-

sampling strategy (Campolongo et al., 2007). Stable results have been obtained with 𝑀 = 500, requiring (𝑀 + 1)𝑁𝑃 forward 

model simulations. We recall that the absolute value in Eq. (8) prevents cancellation between positive and negative values of 310 

𝐸𝐸𝜃𝑝,𝑛
. Variations in the value of parameters associated with low values of 𝜇𝜃𝑝 

∗  induce negligible changes in ℎ. Note that we 

evaluate 𝜇𝜃𝑝 
∗  at all spatial locations within the simulated domain. This enables us to create a three-dimensional spatial 

distribution of Morris indices, providing insights on the impact of each parameter on hydraulic head values across the entire 

domain. 

4 Results and discussion 315 

This Section is devoted to the discussion of the results related to groundwater recharge spatial distribution (Sect. 4.1), 

groundwater flow model calibration and simulations (Sect. 4.2), and global sensitivity analysis (Sect. 4.3). 

We begin by examining the spatial distribution of groundwater recharge and its impacts on the groundwater flow model. Our 

discussion encompasses model parameterization results and the large-scale three-dimensional flow patterns obtained through 

the calibrated model. The insights gained from model calibration assist the definition of an informed parameter space for the 320 

subsequent GSA. 

4.1 Groundwater Recharge 

Figure 3 depicts (time-averaged, during the years 2013-2019) spatial distribution of estimated annual groundwater recharge. 

The highest rates of recharge are detected in the Northern part of the domain, which is characterized by high precipitation 

levels and permeable geomaterials (Poggio et al., 2021). The eastern area of the domain exhibits shallow groundwater 325 

conditions and low permeability geomaterials, resulting in reduced infiltration rates. These findings are consistent with the 

spatial distribution of groundwater recharge presented by Rossi et al. (2022). These authors estimate groundwater recharge in 

Italy using a water balance approach and open access data upon relying on a spatial resolution that is otherwise coarser that 

the one we consider (i.e., grid-cell resolution of 10×10 km). Their study places annual groundwater recharge for the Po River 

watershed at values ranging between 27 and 37 billion m3 per year. Our calculated average annual groundwater recharge for 330 
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the entire watershed for the period 2013-2019 corresponds approximately to 38 billion m3 per year, thus being in line with the 

above-mentioned range. 

Most of the groundwater recharge takes place in the mountain areas of the Po River district, with only approximately 0.4 billion 

m3 per year being received from the top surface of the aquifer. This result suggests that the main water inflow to groundwater 

is related to the lateral surface located close to the foothills. 335 

 

Figure 3: Estimated mean annual groundwater recharge across the Po River District. Coordinates Reference System (CRS) = 

ESRI:54012. 

4.2 Groundwater Model 

To ensure effective convergence of the CCDE algorithm, we rely on the set of metrics depicted in Fig. 4a-b. Note that the 340 

optimization algorithm leads to a converge of both objective functions (𝑓𝑁𝑏
 and 𝑓𝑁𝑟

) in less than 50 iterations. The ensuing 

calibrated model is seen to display a remarkable degree of consistency with the system behavior observed across the domain 

(see Fig. 4b). The mean absolute error (in terms of hydraulic head) in the central and eastern areas of the Po plain is consistently 

low, averaging at about 4.5 m for these regions. Highest errors are observed near the foothill areas and in the planar areas of 

the Piemonte Region. Estimated model parameter values are listed in Table 1. 345 

Results associated with the entries of the parameter estimation covariance matrices (𝚺𝑁𝑏
/𝜎ℎ,𝑁𝑏

2  and 𝚺𝑁𝑟
/𝜎ℎ,𝑁𝑟

2 ) are depicted in 

Fig. 4c and Fig. 4d, respectively. As shown by the diagonal terms in Fig. 4c, the estimation variance of permeability is higher 

for geomaterial categories five (fractured rock) and six (rock) as compared to the other ones. This result is related to the 
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observation that these geomaterials are present in small amounts within the domain (see Fig. S1 in the supplementary material). 

Furthermore, there is a certain degree of negative correlation between permeability of geomaterial five and 𝑟𝑞 . This finding is 350 

attributed to the fact that the simulation grid cells with the highest proportion of geomaterial five are located near the foothills, 

which are close to the boundary where an inflow boundary condition is applied. Therefore, in these locations, an increase (or 

decrease) in the inflow across the boundaries can be obtained by increasing (or decreasing) both k5 and 𝑟𝑞 . 

When considering riverbed conductance, it is observed that rivers with lower flows, such as the Chiese, Lamone, Savio, and 

Sesia (associated with parameters 𝛼5 , 𝛼12 , 𝛼13 , and 𝛼17 ) rivers (see Fig. 1 for their planar location), exhibit the largest 355 

parameter estimation variance. In the central part of the Po River, the estimation variance of 𝛼10 is generally low. This suggests 

that the available data can effectively inform and provide valuable insights into the dynamics of river-groundwater interactions 

in this area. Conversely, estimates of parameters 𝛼8 and 𝛼9, characterizing the western and eastern portion of Po River, are 

associated with a high estimation variance. Additionally, a negative correlation can be observed between 𝛼8 and 𝛼9. 

 360 

Figure 4: (a) Convergence analysis of 𝒇𝑵𝒃
 and 𝒇𝑵𝒓

 (Eq. 5) (b) Observed versus simulated hydraulic heads (head values associated 

with the 𝑵𝒉𝒓
 wells located close to the rivers are depicted in orange); (c)  - (d) covariance matrix associated with parameter 

estimates. 
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Parameter  Description Parameter estimate Parameter range of variability 

𝑘1  10-9 [m2] Permeability of geomaterial one 1.02  0.64 – 1.61  

𝑘2  10-9 [m2] Permeability of geomaterial two 3.83 2.24 – 6.08  

𝑘3  10-13 [m2] Permeability of geomaterial three 2.24  1.41 – 2.55  

𝑘4   10-10 [m2]  Permeability of geomaterial four 1.57 0.99 – 2.49  

𝑘5  10-15 [m2] Permeability of geomaterial five 2.12 1.34 – 3.37  

𝑘6   10-18 [m2] Permeability of geomaterial six 5.04 3.18 – 8.00  

𝑟𝑞[-] Lateral inflow correction coefficient 0.99  0.79 – 1.19  

𝛼1  10-5 [m2s-1] Specific conductance of Adige 8.18  10-2  8.18  10-4 – 8.18  

𝛼2  10-5 [m2s-1] Specific conductance of Secchia 7.12  10-2 7.12  10-4 – 7.12 

𝛼3  10-4 [m2s-1] Specific conductance of Dora Baltea 1.02  10-2  1.02  10-4 – 1.02  

𝛼4  10-7 [m2s-1] Specific conductance of Ticino 1.10  10-2  1.10  10-4 – 1.10 

𝛼5  10-3 [m2s-1] Specific conductance of Chiese 3.34  10-2  3.34  10-4 – 3.34  

𝛼6  10-7 [m2s-1] Specific conductance of Oglio 2.44  10-2  2.44  10-4 – 2.44 

𝛼7  10-5 [m2s-1] Specific conductance of Tanaro 3.04  10-2  3.04  10-4 – 3.04  

𝛼8  10-2 [m2s-1] Specific conductance of Po - western section 2.95 10-2  2.95 10-4 – 2.95 

𝛼9  10-2 [m2s-1] Specific conductance of Po - eastern section 1.34 10-2  1.34 10-4 – 1.34 

𝛼10  10-4 [m2s-1] Specific conductance of Po - central section 1.16 10-2  1.16 10-4 – 1.16 

𝛼11  10-5 [m2s-1] Specific conductance of Reno 2.90  10-2  2.90  10-4 – 2.90 

𝛼12  10-5 [m2s-1] Specific conductance of Lamone 5.53  10-2  5.53  10-4 – 5.53 

𝛼13  10-2 [m2s-1] Specific conductance of Savio 7.50 10-2  7.50 10-4 – 7.5 

𝛼14  10-5 [m2s-1] Specific conductance of Adda 3.20  10-2  3.20  10-4 – 3.20 

𝛼15  10-5 [m2s-1] Specific conductance of Taro 1.83  10-2  1.83  10-4 – 1.83 

𝛼16  10-8 [m2s-1] Specific conductance of Mincio 7.3  10-2 7.30  10-4 – 7.30 

𝛼17  10-2 [m2s-1] Specific conductance of Sesia 2.16 10-2  2.16  10-4 – 2.16 

𝛼18   10-4 [m2s-1] Specific conductance of Orco 1.79  10-2 1.79  10-4 – 1.79 

𝛼19  10-4 [m2s-1] Specific conductance of Lambro 4.39  10-2  4.39  10-4 – 4.39 

𝛼20  10-6 [m2s-1] Specific conductance of Naviglio Grande 1.03  10-2  1.03  10-4 – 1.03 

Table 1: Uncertain model parameters, associated estimated values resulting from model calibration and intervals of variability 

employed in the GSA.  365 

Figure 5a depicts the frequency distribution of the estimated permeability values (k). Our results suggest that the subsurface 

domain can be conceptualized as comprising three main macro-areas. Each of these is characterized by similar permeability 

values whose spatial distribution is consistent with the distribution of the three main sediment types indicated in the Italian 
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Geological Map (Compagnoni et al., 2004) within the Po Plain (see Fig. 5c). Figure 5a provides an appraisal of the spatial 

distribution of the three macro-areas by means of envelopes obtained through projection of their otherwise three-dimensional 370 

shape on a two-dimensional plane. This visualization is complemented by Fig. 5b, which depicts the vertical distribution of 

log(k) along selected cross-sections. The first macro-area generally corresponds to the south-eastern portion of the alluvial 

plain (Adriatic sector), where finer and less permeable sediments constitute the main features associated with geological 

deposition processes. The second macro-area is primarily located near the northern and western boundary, adjacent to the 

foothill areas, and is characterized by intermediate permeability values. Note that, according to Éupolis Lombardia (2016), the 375 

planar area adjacent to the foothills in the Lombardia Region is very heterogeneous and features a series of highly permeable 

layers interspersed with less permeable layers. This is consistent with the intermediate range of permeability values obtained 

within our large-scale domain through model calibration. The third macro-area is characterized by high permeability values. 

It spans the entire depth of the system in the central-southern portion of the plain while it does not reach the surface in the 

northeastern part of the domain. 380 

As shown in Fig. 6a, hydraulic heads exhibit a higher gradient on the western side of the domain. This behavior can be 

attributed to the shallow depth of the aquifer and to the steep gradient of the domain bottom in this area. Figures 6b and 6c 

illustrate the way velocity magnitude and pattern are influenced by the three-dimensional distribution of the geomaterials and 

the thickness of the domain. As exemplified in section A-A’, our results document that subsurface flow can be considered as 

chiefly two-dimensional (i.e., vertical flow is negligible) across regions where the groundwater system is very thin, and the 385 

bottom is fairly parallel to the ground surface. This is especially evident in the steepest areas within the domain. Otherwise, 

velocity distributions across sections B-B’ and C-C’ exhibit marked three-dimensional characteristics in terms of flow. With 

reference to section C-C’, we note that lower permeability close to the domain bottom results in reduced groundwater fluxes, 

as compared to the other sections. Additionally, the bottom right side of section B-B’ documents the impact of low-

permeability lenses on the local three-dimensional patterns of fluxes (in terms of magnitude and direction). Finally, Fig. 6c 390 

documents three-dimensional spatial variability of groundwater flow near the rivers, highlighting effects of river-groundwater 

interactions. 
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Figure 5: (a) Frequency distribution of natural logarithm of permeability, log(k) (k expressed in m2), estimates and 395 

spatial distribution of the three macro-areas corresponding to envelopes obtained through projection of their otherwise 

three-dimensional shape on a two-dimensional plane; (b) vertical distribution of log(k) along selected cross-sections 

(vertical exaggeration = 100); and (c) visual comparison between the spatial distribution of permeability estimates 

across the model top layer and the distribution of the three main sediment types indicated in the Italian Geological 

Map (Compagnoni et al., 2004) within the Po Plain. 400 
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Figure 6: Groundwater flow model outputs: (a) hydraulic head and (b) magnitude and direction of groundwater fluxes across the 

top layer of the model; (c) magnitude and direction of groundwater flux and permeability distribution along cross-sections A-A', 

B-B', and C-C'(vertical exaggeration = 100). 

4.3 Global Sensitivity Analysis 405 

Ranges of parameter variability employed for the GSA are listed in Table 1. These are selected to allow for (approximately) a 

100% variability in permeabilities values, while values of parameters 𝛼𝑟 (𝑟 = 1, … , 20) can vary by four orders of magnitude. 

This choice enables us to account for the extensive uncertainty associated with the quantification of the interconnections 

between subsurface and surface water bodies, as these variables are typically not monitored in the field. 

Figure 7 depicts values of 𝜇𝜃𝑝

∗  associated with geomaterial permeability and correction coefficient 𝑟𝑞 . These results suggest 410 

that permeability values of geomaterial categories three, five, and six have a negligible impact on the spatial distribution of 

hydraulic heads. We recall that categories three, five and six are detected only in a limited amount within the modeled domain 

(see Fig. S1). As expected, permeability of geomaterial one (gravel) significantly influences simulation results in the foothills 

of the western portion of the domain, while of category four (clay) primarily affects simulation results in the southeastern 

portion of the domain. These results are in line with the spatial distribution associated with two lithologies. Category two 415 

(sand) displays a noticeable impact on the hydraulic head distribution across the entire domain, which aligns with the 

observation that it is a widely available geomaterial within the system spanning from west to east. Finally, parameter 𝑟𝑞  

significantly impacts hydraulic heads within all foothill areas, where lateral flow enters the groundwater system. As expected, 

its importance gradually decreases moving away from the boundary. The influence of permeability and 𝑟𝑞  significantly 
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diminishes near the main rivers, where the flow field is primarily affected by parameters related to riverbed conductance (Fig. 420 

8). Most of the riverbed conductance values can only affect hydraulic head estimates close to the rivers. This enables us to 

quantify the extent of the river influence on groundwater flow and further supports our calibration strategy, i.e., the use of the 

designed multi-objective optimization approach. 

Rivers with the highest flow rates, such as the Adige (𝛼1), Ticino (𝛼4), Oglio (𝛼6), Reno (𝛼11), Adda (𝛼14), and the central 

section of the Po River (𝛼10), exhibit the highest values of 𝜇𝜃𝑝

∗ . Rivers like the Chiese River (𝛼5) and the western (𝛼8) and 425 

eastern part of the Po River exhibit limited impact on simulated hydraulic head fields, partially due to their proximity to specific 

boundaries. These boundaries primarily influence groundwater flow through lateral boundary conditions (see Sect. 4.2), thus 

shadowing the effect of river-groundwater exchanges. 

In Italy, irrigation channels have been documented to operate with efficiencies ranging from 0.43 to 0.6 (Wriedt et al., 2009). 

Then, a significant amount of the water lost from these channels enters the groundwater system. In this context, channels and 430 

rivers such as the Naviglio Grande and the Lambro (associated with 𝛼19 and 𝛼20, respectively) show a significant influence 

on the local hydraulic head distribution, even as they are characterized by a generally low flow rate. This is related to the 

observation that they are located in an area with a dense irrigation channel network  (De Caro et al., 2020) and their contribution 

to groundwater flow includes the cumulative effect of a high number of small irrigation channels. Fig. S2 (see supplementary 

material) illustrates the portions of the rivers recharging or draining the aquifer. 435 

It is worth noting that all Morris indices display only modest variability along the vertical direction. The complete three-

dimensional spatial distribution of 𝜇𝜃𝑝 
∗  can be accessed in an open-source Visualization Toolkit (VTK) format for structured 

grids (Schroeder et al., 2006). These data are available in the code and data repository 

(https://doi.org/10.5281/zenodo.10013272). 
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 440 

Figure 7: Spatial distribution of Morris indices related to geomaterial permeability and correction coefficient 𝒓𝒒 across the top 

layer of the model. 
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Figure 8: Spatial distribution (across the top layer of the model) of Morris indices related to specific conductance of the riverbeds. 

5 Conclusions and discussion 445 

The study introduces a comprehensive methodology that combines advanced numerical and data analysis methods, such as 

multi-objective optimization, informed GSA, and three-dimensional groundwater modeling, to analyze subsurface flow 

dynamics across large-scale domains. We support the suitability of the proposed approach to assess large-scale complex 

groundwater systems by employing it to analyze the main features of Italy's largest groundwater system, which is set within 

the Po River watershed. Our work leads to the following major conclusions. 450 

1. Groundwater recharge is evaluated across the analyzed large-scale system upon relying jointly on remote sensing 

information and on-site data on land use main soil properties and attributes. While our results are overall consistent 

with prior findings across the area based on a global water balance approach (Rossi et al., 2022), they are otherwise 
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associated with an enhanced spatial resolution. As such, they provide the basis for future applications aimed at 

delineating areas associated with vulnerability of the groundwater resource. 455 

2. A coevolutionary algorithm is successfully employed for the calibration of our large-scale groundwater system model. 

Our approach allows to differentiate the use of data depending on the spatial location of the observation wells. 

Notably, our approach is tailored to separate calibration of riverbed conductance, thus addressing surface-ground-

water interactions with a dedicated optimization. Casting model calibration within a stochastic context yields 

quantification of the residual (i.e., after calibration on available information) uncertainty associated with model 460 

parameters. This ultimately allows identifying model parameters whose estimates are associated with large 

uncertainty (as rendered through estimation variance) on the basis of the available dataset. In our test case, the 

resulting model parameterization enables us to subdivide the domain into three macro-areas, each characterized by 

mild spatial heterogeneity of permeability. The spatial arrangement of these areas is consistent with the distribution 

of sediment types documented by available geological maps associated with the studied domain (Compagnoni et al., 465 

2004). The calibrated model enables us to identify three-dimensional flow patterns, as driven by the (three-

dimensional) heterogeneous distribution of geomaterials across the subsurface. This represents a significant 

advancement as compared to commonly developed large-scale models based on two-dimensional geological maps. 

3. Global Sensitivity Analysis (GSA) quantifies the relative importance of uncertain model parameters on a target model 

output (i.e., hydraulic heads) across the whole domain. Our results document the spatially heterogeneous distribution 470 

of global sensitivity metrics associated with model parameters, thus providing information about where the 

acquisition of future information could contribute to enhance the quality of groundwater flow model parameterization 

and constrain hydraulic head estimates. Our findings suggest that the features of the foothills (an area that is highly 

unexplored to date, as compared to lowland areas) should be subject to additional investigation to improve the quality 

of hydraulic head estimates. Furthermore, GSA results allow identifying rivers where information on water exchange 475 

with groundwater could be beneficial to improve piezometric characterization. 

Appendix A 

The Coevolutionary Differential Evolution (CCDE) algorithm is designed to address global optimization problems through 

iterative evolution of candidate solutions. The algorithm uses mutation, crossover, and selection strategies to enhance the 

quality of solutions. 480 

We introduce a population of candidate solutions, 𝑺𝒔𝒑 = [𝒔𝑠𝑝,1, … , 𝒔𝑠𝑝,𝑁𝑠
], consisting of 𝑁𝑆 members, for the two, sp, species. 

Here, each member of the population represents a possible combination of model parameters. These parameters encompass 

different sets when dealing with different species, i.e. different objective functions. According to Storn and Price (1997), we 

set 𝑁𝑆 = 15  𝑁𝑝. Candidate solutions for the initial population are defined by randomly selecting parameter values from a 

parameter space whose extent is designed to encompass a broad range possible solutions. 485 
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Members of the populations are combined and mutated to calculate the next generations of candidate solutions as follows. We 

start by computing a mutated vector for each 𝑚-th candidate solution of a species associated with the 𝑘-th iteration of the 

optimization algorithm (or generation) as 

�̂�𝑠𝑝,𝑚
𝑘 =  𝒔𝑠𝑝,𝑚

𝑘 + 𝐹 (𝒔𝑠𝑝,𝑎
𝑘 − 𝒔𝑠𝑝,𝑏

𝑘 ) ,          (A1) 

where 𝐹  is an algorithm parameter termed differential weight and 𝒔𝑠𝑝,𝑎
𝑘  and 𝒔𝑠𝑝,𝑏

𝑘  (with 𝑎  ≠   𝑏  ≠  𝑚) correspond to two 490 

random members of the population. We then combine parameters of �̂�𝑠𝑝,𝑚
𝑘  and 𝒔𝑠𝑝,𝑚

𝑘  to determine the trial vector �̃�𝑠𝑝,𝑚
k : if a 

parameter of  �̃�𝑠𝑝,𝑚
𝑘  is selected for mutation, its value is taken from �̂�𝑠𝑝,𝑚

𝑘 ; otherwise, it is taken from 𝒔𝑠𝑝,𝑚
𝑘 . We randomly 

choose the parameters of 𝒔𝑠𝑝,𝑚
𝑘  that will undergo mutation from among the parameters associated with the sp species, with a 

probability of parameter mutation set to 0.5. We finally select the 𝑚-th candidate solution of the (𝑘 + 1)-th generation, 𝒔𝑠𝑝,𝑚
𝑘+1 , 

by comparing the trial member,  �̃�𝑠𝑝,𝑚
𝑘 , and the 𝑚-th population member from the 𝑘-th generation, 𝒔𝑠𝑝,𝑚

𝑘 , based on the 495 

following condition 

𝒔𝑠𝑝,𝑚
𝑘+1 = {

�̃�𝑠𝑝,𝑚
𝑘 ,       𝑖𝑓 𝑓𝑁(�̃�𝑠𝑝,𝑚

𝑘 ) < 𝑓𝑁(𝒔𝑠𝑝,𝑚
𝑘 )

 𝒔𝑠𝑝,𝑚
𝑘 ,       𝑖𝑓 𝑓𝑁(�̃�𝑠𝑝,𝑚

𝑘 ) ≥ 𝑓𝑁(𝒔𝑠𝑝,𝑚
𝑘 )

 ,        (A2) 

 

The algorithm steps can be summarized as follows at a given iteration k: 

1. Calculate a new generation k+1 of the first species using eqs (A1)-(A2) with sp = 1 and Eq. (5) with 𝑁 =  𝑁ℎ𝑏
, while 500 

keeping the parameters of  the second species fixed  

2. Transfer the parameter set with the best performance among the members of 𝒔1,𝑚
𝑘+1 to the second species (Eq. (5) with 

𝑁 =  𝑁ℎ𝑟
). 

3. Maintain the parameters of the first species as fixed while calculating 𝒔2,𝑚
𝑘+1, the next generation of the second species, 

thus repeating step 1 for the second species with sp = 2 and 𝑁 =  𝑁ℎ𝑟
. 505 

4. Pass the parameter set of the member in the second species with the best objective function value back to the first 

species. 

5. Repeat steps 1 to 4 until a stopping criterion is met. 

The patience stopping criterion is here employed for both objective functions, i.e., the algorithm stops if no improvement in 

performance over 80 consecutive iterations or epochs is detected. 510 

Code and data availability 

All data and codes are available on the following repositories: https://doi.org/10.5281/zenodo.10013272 and 

https://doi.org/10.5281/zenodo.10013442.  
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