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Abstract. Accurate assessment of the probable maximum precipitation (PMP) is crucial in assessing the resilience of high-10 

risk water infrastructures, water resource management, and hydrological hazard mitigation. Conventionally, PMP is estimated 11 

based on a static climate assumption and is constrained by the insufficient spatial resolution of ground observations, thus 12 

neglecting the spatial heterogeneity and temporal variability of climate systems. Such assumptions are critical, especially for 13 

China, which is highly vulnerable to global warming in the premise of existing ~100,000 reservoirs. Here, we use the finest 14 

spatiotemporal resolution (1d & 1km) precipitation dataset from an ensemble of machine learning algorithms to present the 15 

spatial distribution of 1d PMP based on the improved Hershfield method. Current reservoir design values, a quasi-global 16 

satellite-based PMP database, and in-situ precipitation are used to benchmark against our results. The 35-year running trend 17 

from 1961-1995 to 1980-2014 is quantified and partitioned, followed by future projections using the Coupled Model Inter-18 

comparison Project Phase 6 simulations under two scenarios. We find the national PMP generally decreases from Southeast 19 

to Northwest and is typically dominated by the high variability of precipitation extremes in North China and high intensity in 20 

South China. Though consistent with previous project design values, our PMP calculations present underestimations by 21 

comparing with satellite and in-situ results due to differences in spatial scales and computation methods. Inter-annual 22 

variability, instead of the intensification of precipitation extremes, dominates the PMP running trends on a national scale. 23 

Climate change, mainly attributed to land-atmosphere coupling effects, leads to the widespread increase (>20%) of PMP across 24 

the country under the SSP126 scenario, which is projected to be higher along with the intensification of CO2 emission. Our 25 

observation- and modeling-based results can provide valuable implications for water managers under a changing climate. 26 

1 Introduction  27 

Over the past six decades, an increase in the frequency and intensity of extreme precipitation events have been 28 

documented in both observation- (Guerreiro et al., 2018; Martinez-Villalobos & Neelin, 2018; Visser et al., 2022; Zhao et al., 29 
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2023) and modelling-based studies globally (Donat et al., 2016; Kendon et al., 2017; Kunkel et al., 2013; Zhao et al., 2022). 30 

This increase will relatively be more pronounced in the majority of the regions worldwide in a warming climate (Hirabayashi 31 

et al., 2013; IPCC, 2021; Kim et al., 2022), leading to the enhanced risk of the consequent floods and the associated multi-32 

sectoral damage. Global damages due to floods amounted to an estimated $651 billion (USD) between 2000 and 2019 alone, 33 

which could increase by a factor of 20 by the year 2100 (Devitt et al., 2023; Winsemius et al., 2016). Traditional estimates of 34 

such precipitation extremes and subsequent applications reliant on precipitation-sensitive information (e.g., flooding designs) 35 

have primarily relied upon the stationary climate assumption, which is inadequate for a large duration and in the warming 36 

climate (Visser et al., 2022). Another crucial application is Probable Maximum Precipitation (PMP), which is key to assessing 37 

the resilience of high-risk water infrastructures such as large dams and nuclear power plants, efficient water resource 38 

management, and impact assessment and strategic management of hydrological hazard adaptation and mitigation. 39 

PMP, defined as the theoretical maximum precipitation for a given duration under modern meteorological conditions by 40 

the World Meteorological Organization (WMO), represents the upper limit of precipitation that is meteorologically possible 41 

over a watershed or a storm area of a given size at a certain time of a year (WMO, 2009). As an indicator of regional storm 42 

risks, PMP is physically dependent on various meteorological factors such as available atmospheric moisture content, moisture 43 

transportation efficiency, and persistent upward strength (Trenberth et al., 2003). In addition to the traditional flood frequency 44 

analysis method, PMP also serves as the most severe condition to estimate the associated theoretical maximum flood for a 45 

certain project in the area (Hansen, 1987). Therefore, it plays a significant role in both the design of hydraulic structures (e.g., 46 

dams, reservoirs) and routing infrastructure and the assessment of regional weather hazards (e.g., storms) (Luo et al., 2018).  47 

An underlying prevalent assumption of PMP estimation is the stationary climate leading to a static PMP value from 48 

observed meteorological data, such as wind speed, precipitation, and dewpoint, and maximized using empirical techniques, 49 

meaning there is only a fixed PMP on a specific spatiotemporal scale (Visser et al., 2022; WMO, 2009). However, it has been 50 

significantly challenged when both observations and models show that the above key factors, i.e., wind and moisture, in 51 

forming PMP can change due to climate change and internal variability (Lalk, 2004; Mudd et al., 2014; de Winter et al., 2013; 52 

Gimeno et al., 2019; Richter and Xie, 2010; van Dilke et al., 2022). For example, the warming climate-induced increase in 53 

atmospheric moisture availability may favour the formation of extreme storm events (Liu et al., 2020). Besides, the natural 54 

climate variability from annual to decadal scales (e.g., ENSO) may impact the accurate maximization of regional precipitation 55 

extremes, particularly with limited record length (Kenyon and Hegerl, 2010). A few previous studies have discussed the 56 

impacts of changing climate on PMP estimations over different regions of the world using global and/or regional climate 57 

models (Beauchamp et al., 2011; Rousseau et al., 2014; Rouhani and Leconte, 2016; Afrooz et al., 2015; Park et al., 2013; Lee 58 

and Kim, 2016; Visser et al., 2022). Specifically, Jakob et al. (2009) performed an early investigation in Australia and reported 59 

increases in moisture availability in coastal regions that had tendencies to experience further projected increases under climate 60 

change. A global assessment from Kunkel et al. (2013) projected that future PMP values might intensify in the United States, 61 

contributed mainly by the higher levels of atmospheric moisture content. These projected PMP values showed a 20%~30% 62 

increase in the United States by the end of the 21st century under a high gas emission scenario. Similar growth caused by a 63 
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changing climate has been documented in India, Spain, and other parts globally (Sarkar and Maity, 2020; Monjo et al., 2023). 64 

However, opposite patterns were also reported in a few regions, possibly due to the reduced actual moisture availability and 65 

wind speed by atmospheric dynamic constraints (Afzali-Gorouh et al., 2022; Yin et al., 2023). These inconsistent and 66 

contradictory findings imply the complicated mechanism and uncertainty in PMP estimations across regions and underscore 67 

the need for a holistic qualification of PMP considering non-stationary climate and at finer spatiotemporal scales.  68 

Despite that the changeable PMP under a changing climate has attracted wide attention from hydrologists, most of the 69 

previous studies primarily focus on the static scenario comparisons between history and the future (Jakob et al., 2009; Kunkel 70 

et al., 2013; Sarkar and Maity, 2020; Monjo et al., 2023; Afzali-Gorouh et al., 2022). Since the return periods corresponding 71 

to the PMP values outpace the longest return periods traditionally used in applied climatology products, major water retention 72 

and routing structures will likely experience the acute impact of climate change. It thus highlights the elusive sense of security 73 

inferred from the assessments ignoring the climate-change-induced probabilities of extreme events (Kunkel et al., 2013). 74 

Furthermore, the gradual transformation of the past climate and the partitioned contributions from various climate change 75 

sources also remain largely unexplored in the literature. Accounting for such realistic and crucial attributes and mechanisms 76 

is thereby necessary and topical, particularly for China, which has experienced persistent precipitation disasters over the past 77 

few decades (Gu et al., 2022). Covering a wide range of geophysical elevations and climate zones (Figures 1a and 1b), the 78 

country has faced increasingly significant spatial heterogeneities in extreme precipitation (Sun et al., 2017). It implies the 79 

potentially intensified hydrological risk in different regions, which is more evident given the approximately 100,000 dams and 80 

reservoirs constructed until 2015, mainly for flood control (Figures 1c and 1d, MWR, 2016; Song et al., 2022). However, the 81 

systematic investigation of PMP in China was previously limited by inadequate spatiotemporal resolution and duration of 82 

precipitation measurements over the country and related climate modelling experiments. 83 

Here, for the first time, we use the precipitation dataset with potentially the finest spatiotemporal resolution (1d & 1km) 84 

covering 1961-2014 to calculate the long-term average PMP distribution in China using the modified statistical method. The 85 

national estimations of PMP are benchmarked with a quasi-global PMP dataset based on satellite products and in-situ data 86 

from 2417 weather stations across the country (Figure 1c). The historical tendency in changing PMP is detected based on a 87 

35-year running window method (consistent with the period of historical run of global climate models during 1980-2014). 88 

Moreover, the respective contribution from climate change and internal variability to the PMP variability is partitioned. The 89 

role of land-atmosphere coupling, which is an important contributor to climatic extremes, is further evaluated via an ensemble 90 

of global climate models. Finally, we project future changes in PMP in both the near and far future periods in both low-91 

emission and high-emission scenarios relative to the baseline period (i.e., 1980-2014). All the results are separately discussed 92 

on different scales from river basins to country for efficient and effective policymaking inferences for the regional to national 93 

water managers.  94 
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 95 
Figure 1: (a) The national map, major rivers, major river basin boundaries, and 1-km elevation of China. The digital elevation map 96 
is provided by A Big Earth Data Platform for Three Poles (Tang, 2019). The divisions of nine major river basins excluding a few 97 
coastal islands are provided by the Resource and Environment Science and Data Centre of China (https://www.resdc.cn/), which 98 
include Haihe River basin (HRB), Yellow River basin (YRB), Huaihe River basin (HHB), Yangtze River basin (YTB), Southeast 99 
basin (including Taiwan Province, SEB), Pearl River basin (including Hainan Province, PRB), Northwest basin (NWB), Southwest 100 
basin (SWB), and Songhua and Liaohe River basin (SLB). The divisions of the 80 major secondary river basins outlined in green 101 
colour are based on the regulations for the compilation of water resources protection planning of the Ministry of Water Resources 102 
(GIWRHPD et al., 2013). (b) The climate zones of China are produced by the China Meteorological Administration. The map is 103 
accessible on the Resource and Environment Science and Data Centre of China (https://www.resdc.cn/), which is calculated using 104 
the national daily temperature and water measurements. The inserted abbreviations in the map represent the secondary climate 105 
zones, and more details can be found in previous references (Zhu, 1962; WCNR, 1959; Zhu, 1931). (c) The provincial administrative 106 
regions and locations of 2417 weather stations of China. The national map and provinces are made under the guidance of the 107 
standard map service of the Ministry of Natural Resources of the People’s Republic of China (http://bzdt.ch.mnr.gov.cn/index.html). 108 
(d) The spatial distribution of 933 dams and reservoirs included in the Global Reservoir and Dam Database (GRanD) in China 109 
(Lehner et al., 2011). 110 
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2 Materials and Methods  111 

2.1 High-resolution precipitation data 112 

A daily gridded precipitation data at a fine 1km spatial resolution covering the period 1951-2014 (namely the HRLT 113 

dataset) is used to estimate PMP over China (Qin et al., 2022). The HRLT precipitation data were interpolated using the best 114 

ensemble among various machine learning methods (i.e., boosted regression trees, random forests, neural network, multivariate 115 

adaptive regression splines, support vector machines, and generalized additional models; see Qin et al., 2022 for details) from 116 

the 0.5°×0.5° observation-derived gridded precipitation from the China Meteorological Administration. Multiple external 117 

variables related to elevation, location, topography, and climate conditions have also been combined for HRLT data 118 

preparation (Zhao and Zhu, 2015). The superior spatial resolution of the HRLT dataset (i.e., 1 km) can prevent the effects of 119 

spatial heterogeneity in regional climate conditions on grid-scale PMP estimations. Apart from the major advantages of a 120 

longer period (1951-2019) and higher resolution, it has shown better accuracy than other widely used meteorological datasets 121 

in China like the China Meteorological Administration Land Data Assimilation System (CLDAS, from 2017 to 2019 with ~7.5 122 

km resolution) version 2 and China Meteorological Forcing Dataset (CMFD, from 1979 to 2018 with ~12 km resolution) (Shi 123 

et al., 2014; He et al., 2020). However, we selected the period 1951-2014 in this study to avoid the several unrealistic high 124 

precipitation values starting the year 2015 in the HRLT due to errors in the raw precipitation records, which could consequently 125 

lead to significant PMP overestimations (see Table S1 for details). Moreover, the locations and basic attributes (e.g., year of 126 

construction, year of decommissioning, and storage capacity) of dams and reservoirs from China are collected from the GRanD 127 

dataset (Lehner et al., 2011) to analyse the temporal variations of total storage capacity of China. It is calculated as the ratio 128 

between the total storage capacity of dams within a certain region (e.g., river basin and the whole country) to the area, with 129 

the same unit as our PMP estimations (i.e., mm). Years of construction and decommissioning are also considered in the 130 

computation. The GRanD dataset contains a total of 7320 dams worldwide based on the existing global lakes and wetlands 131 

database and national/continental statistics from different sources, of which 933 are located in China (Figure 1d). All the 132 

records of the GRanD dataset are georeferenced and have undergone manual inspection and validation to avoid spatial 133 

inconsistency (between locations and attributes of dams) and redundancy. Since it only considers the dams with large sizes 134 

(>0.1 km3), the number of included dams in China is much less than other similar collections (e.g., 97435 dams in CRD, see 135 

Song et al., 2022). However, the total storage capacity of dams in GRanD (670 km3) accounts for ~70% of the CRD (980 km3), 136 

the latter of which does not contain the necessary attributes for temporal analysis (e.g., year of construction). By comparing 137 

the changes in PMP and the available storage capacity of dams with time, we can qualitatively measure the total capability of 138 

anthropogenetic efforts to store water from extreme precipitation. A higher difference between PMP and total dam storage 139 

capacity means more water cannot be stored in the basin reservoirs (needs to be consumed via evaporation and/or streamflow), 140 

and therefore, greater potential to translate to regional floods. 141 



6 
 

2.2 Validation of PMP estimations 142 

Two independent data sources are collected to validate our 1d and 1 km PMP estimations using the HRLT dataset, 143 

including a quasi-global PMP dataset based on remote sensing products and a suite of national PMP results using in-situ 144 

precipitation records. The quasi-global PMP dataset is calculated based on the Integrated Multi-satellite Retrievals for GPM 145 

(Global Precipitation Measurement, namely GPMM hereafter) during 2000-2022 using the conventional Hershfield method 146 

(Ekpetere et al., 2023). GPMM applies two existing corrections for the removal of the inversion problem caused by the 147 

relatively short period of IMERG product (i.e., 23 years) and for the correction of missing maximum precipitation samples. It 148 

has shown reasonable accuracy compared with NOAA ground gauges in Kansas, USA, from various time scales of 30 minutes 149 

to 24 hours (Ekpetere, 2021). Though sharing the same 1d timescale with the PMP estimations using HRLT, several key 150 

differences between GPMM and our methods are worth mentioning. First, the GPMM is calculated using the classic Hershfield 151 

algorithm combined with two statistical corrections above, which is different from our modified Hershfield algorithm (see 152 

details in Section 2.3). Second, the spatial scale of the GPMM is 0.1° (~11 km at the equator), which is much coarser than the 153 

HRLT dataset (1 km). Third, the period used for calculation in GPMM is 2000-2022, which is much shorter than our 154 

estimations that are based on HRLT data from 1961-2014. We additionally calculate the 1d PMP purely based on in-situ daily 155 

precipitation during 1961-2014 from 2417 weather stations of the country using the same modified Hershfield method (Figure 156 

1c). The raw precipitation observations are provided by the China Meteorological Administration 157 

(https://www.cma.gov.cn/en2014/m/pc/) and the Resources and Environmental Science Data Centre, Chinese Academy of 158 

Sciences (http://www.resdc.cn/, last access: 29 October 2023) upon research request. Despite the strict quality control (e.g., 159 

inspection of unphysical records) performed by the data providers, the spatial distribution of in-situ stations is uneven. The 160 

number of available data decreases from south-eastern to north-western parts of China, especially in the Qinghai-Tibetan 161 

Plateau due to extreme natural environments to install and maintain the measuring stations. We use the bilinear interpolation 162 

method to extrapolate the PMP results based on the HRLT dataset to the locations of each grid cell of the GPMM and each 163 

field station of the precipitation network to facilitate inter-comparisons. The same procedure is repeated between GPMM and 164 

the in-situ precipitation results for better justification of our HRLT-based PMP estimations. However, we note such spatial 165 

interpolation may introduce significant bias for the comparison of PMP estimations at different resolutions (Rajulapati et al., 166 

2021), in addition to the systematic differences implicit to the methods and data sources (e.g., gauge vs satellite data). 167 

2.3 Statistical estimation of PMP 168 

The methods of estimating PMP are generally classified into meteorological methods and statistical methods. The 169 

essence of the meteorological methods is the maximization of moisture factor and/or dynamic factor for a typical storm or an 170 

ideal storm model. However, it requires abundant hydro-meteorological data like dew point temperature and wind speed (Wang, 171 

1999). The statistical approach is therefore recommended by WMO owing to its simplicity since it only needs precipitation 172 

data (WMO, 2009; Casas et al., 2008; Yang et al., 2018). The traditional statistical method was originally developed by 173 
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Hershfield (Hershfield, 1961) based on Chow’s frequency equation where a quantile of a probability distribution is expressed 174 

as a function of the mean, standard deviation, and a frequency factor 𝐾! (Chow, 1951). The frequency factor 𝐾! was estimated 175 

based on records of 24-h rainfall for 2700 stations in the United States (90% of the total stations) and subsequently modified 176 

to account for the effects of the sample size, outliers, and the difference between daily maximum and 24-h recorded data set 177 

(Hershfield, 1965, 1977). Salas et al. (2020) pointed out that the Hershfield method needs proper modification for applications 178 

in different climatic zones. Here, we employ an adjusted approach that has been widely applied for PMP design in China with 179 

the sampling bias and calendar day errors corrected (Lin, 1981; Hershfield, 1961): 180 

𝑃𝑀𝑃 = (1 + 𝐾! ∙ 𝐶") ∙ 𝑋#$ (1) 181 

𝑋#$ = ,1 +
3 ∙ 𝐶"
√𝑛

0 ∙ 𝑋# (2) 182 

𝐶" =
𝜎%
𝑋3#

(3) 183 

𝐾! =
𝑋! − 𝑋3#&'
𝜎#&'

(4) 184 

𝑇! =
𝑋! − 𝑋3#
𝜎#

(5) 185 

𝑁! = 𝑇!( + 2 (6) 186 

where Eqs. (1) – (4) represent the generalized formula of Hershfield’s algorithm (Hershfield, 1961), which is based on the 187 

product of mean annual maximum precipitation and the maximization factor	𝐾!. 𝑋! is the annual maximum precipitation 188 

series, and 𝜎#(𝑋3#) is its standard deviation (mean) value, with 𝜎#&'(𝑋3#&') meaning the same as the series but excluding the 189 

maximum value. Lin (1981) revised the expression of 𝑋#  to correct the sampling error in averaging annual maximum 190 

precipitation (𝑋#$ ). 𝐶" is the coefficient of variation of the annual maximum precipitation series. An additional constraint is 191 

given to the ultimate PMP estimations in Eqs. (5) – (6) to determine if the length of the precipitation series has satisfied the 192 

requirement to capture the inter-annual variability of precipitation extremes, serving as quality checks of PMP results. We 193 

perform all the PMP calculations for each 1 km grid of China, which can reasonably be considered as a hydro-meteorological 194 

homogeneous region to capture consistent characteristics of precipitation extremes. The ultimate PMP estimates are 195 

additionally multiplied by 1.13 to reflect the influences of a single fixed precipitation record frequency on yielding true maxima 196 

(WMO, 2009). The above computations are performed for each 1 km grid cell over the country (~1,400,000) during each 197 

running period, generating a comprehensively high-resolution and time-varying detection of national PMP (see details in the 198 

next section). Apart from the traditional statistical methods to calculate PMP, many other methods have been proposed to 199 

describe the probabilistic nature of extreme precipitation events, though the assumptions are shown to be unrealistic (Salas et 200 

al., 2014).  201 
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2.4 Detection and partition of PMP trends 202 

Given the fact that the changing climate may influence the PMP estimates of a specific region over a specific period, we 203 

separately compute the PMP of each grid during different 35-year running windows (i.e., 1961-1995, 1962-1996, …, 1980-204 

2014). It is selected to be consistent with the period of the historical run of global climate models during 1980-2014 (refer to 205 

Section 2.5 for details). We consequently obtain a total of 20 subsets of PMP estimations for each 35-year period during 1961-206 

2014, which are subsequently used to calculate trend slopes using the linear regression method, with the significance level 207 

identified based on Mann Kendall’s Z-statistics (5% in our study) (Xiong et al., 2020; Mann, 1945; Yin et al., 2021). 208 

Furthermore, looking back at Eq. (1), we reformulate the formation of PMP as two key factors of intensity and inter-annual 209 

variability of extreme precipitation and write it as. 210 

𝑃𝑀𝑃 = 𝐾 ∙ 𝑋#$ (7) 211 

where 𝐾 is the integrated maximization factor equivalent to the item (1 + 𝐾! ∙ 𝐶") in Eq. (1). We consider 𝑋#$  to reflect the 212 

intensity of extreme precipitation events since they are closely related to the available atmospheric moisture and persistent 213 

upward motion that are sensitive to atmospheric warming (Loriaux et al., 2016). The K factor is an indicator of inter-annual 214 

variability of precipitation extremes during a certain period as it is derived from the standard deviation and maximum value of 215 

annual maximum precipitation (standardized by the long-term mean). Eq. (7) can further be transformed into a logarithmic 216 

form: 217 
𝑙𝑔)*) = 𝑙𝑔+ + 𝑙𝑔,!" (8) 218 

In such case, a multiple regression model between these logarithmic items can be constructed to quantify the respective 219 

contributions from intensity (𝑋#$ ) and variability (K) factor, where the trend of 𝑙𝑔)*) can be sourced from the constituent 𝑙𝑔,!"  220 

and	𝑙𝑔+. Their relative contribution rates (%) of trends can thereby be estimated as 
-#$%

-#$&'&
 and 

-#$
(!
"

-#$&'&
, respectively (S is the 221 

trend slope). Note all the actual trend slopes are calculated using the original variables, while the logarithmic transformation 222 

is only applied to calculate the relative contribution rates of both 𝑋#$  and K factor. 223 

Furthermore, as a major contributor to precipitation extremes, land-atmosphere coupling effects have received special 224 

attention by comparing ensemble global climate model (GCM) simulations from the historical simulations of Coupled Model 225 

Inter-comparison Project phase 6 (CMIP6) and the Land Surface, Snow and Soil Moisture Model Inter-comparison Project 226 

(LS3MIP) during 1980-2014 (a time slice of the observational 35-year running results 1961-1995, 1962-1996, …, 1980-2014) 227 

(van den Hurk et al., 2016). Their only difference lies in the prescription of dynamic land states of the LS3MIP (namely 228 

LFMIP-pdLC experiment), including snow and soil moisture based on the long-term climatology during 1980-2014. This 229 

experiment does not consider the seasonal variability of soil moisture, thus diminishing the influences of land’s feedback on 230 

the atmosphere, providing a good way to remove the land-atmosphere coupling. The GCMs we selected include CMCC-ESM2, 231 

CNRM-CM6-1, EC-Earth3, IPSL-CM6A-LR, MIROC6, and MPI-ESM1-2-LR models, which are the only models that 232 

provide the daily precipitation in both CMIP and LFMIP-pdLC experiments currently. However, we note a few models do not 233 
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provide specific flux variables (e.g., latent heat flux) that can be used to further explain the potential mechanisms of land-234 

atmosphere coupling to influence PMP, which are also included in our analysis to extend the data availability and reduce the 235 

uncertainty of a single model (Table S2).  236 

2.5 Projection of PMP under climate change 237 

Using the daily precipitation data of the same GCMs from the Scenario Model Inter-comparison Project (SMIP) and 238 

LFMIP-pdLC as those in the historical CMIP experiments, we project the temporal variations of PMP during 1980-2099 under 239 

the Shared Socioeconomic Pathways 1-2.6 (SSP126) and 5-8.5 (SSP585) scenarios. These correspondingly represent the least 240 

and most extreme pathways with high greenhouse gas emissions (2.6 and 8.5 W/m2 of forcing in the year 2100), together with 241 

the slow and rapid social-economic growth (O’Neil et al., 2016; Eyring et al., 2016; Pörtner et al., 2022). Comparisons between 242 

future and historical periods for the two most extreme scenarios allow the understanding of the bounding influences of climate 243 

change on future PMP conditions. Specifically, we quantify the percentage changes in PMP between the middle and end of 244 

the 21st century (2030-2064 and 2065-2099, respectively) and the reference historical baseline (1980-2014) using the same 245 

models from the CMIP and SMIP projects, which represent the predicted PMP changes in the near and far future. Moreover, 246 

we conduct the inter-comparison between SMIP and LFMIP experiments to examine the potential influences of land-247 

atmosphere coupling effects on PMP shifts under climate change. Although the raw CMIP6 models can contain a large bias 248 

for precipitation extremes, we could not perform the bias correction or the post-processing adjustments due to unavailable in-249 

situ observations under the LFMIP scenarios. Alternatively, the multi-model mean method is applied to constrain the individual 250 

model uncertainties in simulating precipitation extremes (e.g., Zhou et al., 2022; Qiao et al., 2023). The deviations across 251 

models are additionally illustrated in the supplementary files to reflect the model variance. Our findings provide a large-scale 252 

assessment of the future PMP changes over the country for policymaking and the local-scale investigations may further be 253 

supplemented by future field observations and climate models for informed decision-making.  254 

3 Results 255 

3.1 Spatial distribution of PMP  256 

Long-term average 1d PMP and its constituting factors (𝑋#$  and K) during 1961-2014 are estimated over China to reveal 257 

their spatial patterns (Figure 2). We observe a general three-step spatial distribution with 𝑋#$  generally decreasing from 258 

southeast to northwest, especially high for the coastal regions of Hainan and Taiwan islands (refer to Figure 1c for their 259 

locations) (>120 mm/d locally). High values are also discovered in mountainous areas like the southern Himalayan region and 260 

the middle and lower reaches of the Yangtze River basin (Figures 1a and 2a). However, the regional 𝑋#$  keeps below 15 mm/d 261 

over the majority of northwestern China due to the arid climate (Figures 1b and 2a). Contrary to the variable 𝑋#$  representing 262 

the intensification of precipitation extremes, the K factor captures a gradually decreasing tendency from north-western to south-263 

eastern China, ranging from 17.2 to 1.2. It indicates that the inter-annual variability of precipitation is stronger in arid north-264 
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western China than in the humid regions in the south-eastern parts. A few regions with significant variability are discovered 265 

in North China, the southern part of the Qinghai-Tibetan Plateau, and scattered regions of South China (Figure 2b), which are 266 

possibly related to the local geophysical and climatic conditions (e.g., elevated terrain and coastal storm). Consequently, the 267 

contributions of divergent spatial patterns in 𝑋#$  and K leads to the complex distribution of PMP over China. It is characterized 268 

by the overall ‘high in south-eastern and low in north-western’ distribution similar to  𝑋#$ , with a few regions highlighted by 269 

overwhelming PMP strengthened by local K factor (e.g., Huaihe and Haihe River basins of North China) (Figure 2c). The 270 

Central Yangtze River basin, where both factors forming PMP (𝑋#$  and K) present relatively high values, is highlighted by the 271 

large amplitude of PMP. Specifically, the area-averaged values for the Yangtze, Southeast, and Pearl River basins are 131, 272 

225, and 196 mm/d, respectively (109 mm/d for the whole of China). Overall, it coincides with the national dam and reservoir 273 

distribution to imply the regional flood potential and consequential human interventions to alleviate such impacts (Figures 2c 274 

and 1d). The negative linear regression between the upstream drainage area and PMP of 52 major water conservancy projects 275 

of China (R2=0.53, p<0.05) is reasonably reconstructed from our PMP results from over 80 major secondary river basins 276 

(R2=0.39, p<0.05) (Table S3 and Figure 2d). Differences in the slopes are mainly induced by varying spatiotemporal scales 277 

for calculations and equip us with improved insights into the scale dependencies of the estimated PMP. 278 

Comparisons in the spatial distribution of PMP with previous estimates demonstrate the robustness of our HRLT-based 279 

results. Our estimations of 𝑋#$  well reproduce the national distribution of historical records of daily precipitation maxima, 280 

except for the Inner Mongolia Province, where a historical precipitation extreme of ~1400 mm/d occurred in 1977 (Figures 1c, 281 

2a, and 3b). However, scale differences between ground stations and grid cells lead to neglecting such events in PMP 282 

calculations, which should deserve more attention for future regional investigations. Furthermore, the spatial distribution of 283 

our PMP results corresponds well with a previous preliminary estimation of the national PMP map based on in-situ data, which 284 

has been transformed from the original contour line to a gridded rendering map for better visualization (Figure 3a). The 285 

coherent high PMP is not only located in East China along the coastline but also in a few arid regions in north-western China, 286 

as well as the southernmost part of Xizang Province (Figure 1c). Independent comparisons with two suites of PMP estimations 287 

over China additionally suggest that our HRLT-based PMP can illustrate a similar spatial distribution to that of in-situ results, 288 

where abundant ground precipitation is available (e.g., East and South China) (Figure 3c). More importantly, it depicts the 289 

PMP distribution for data-scarce regions like Xinjiang and Tibet Provinces in Western China, where very limited information 290 

can be extracted from in-situ results (Figure 1c), which is supported by the GPMM results that are derived from remote sensing 291 

precipitation product (e.g., relatively high PMP in South Tibet) (Figure 3d). However, the GPMM data presents obvious 292 

overestimations of PMP for nearly the whole of the country, reaching ~4300 mm/d by comparing with previous investigations 293 

and the in-situ results (Figures 3a-3c). They result from the systematic overestimation of GPM IMERG products in China, 294 

especially in the northern parts (Pan et al., 2023; Tang et al., 2020). Such overestimation can propagate into the calculation of 295 

the K factor and, therefore, further unrealistically amplify the PMP. The differences in the computation methods with GPMM 296 

and the relatively short period (i.e., 2000-2022) may also contribute to the overestimated PMP. Moreover, more specific 297 

regional distributions of PMP, e.g., the high PMP values in the south-north Taihang Mountains in North China, are highlighted 298 
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by the HRLT-based PMP. This is not seen in the GPMM because HRLT-based PMP was calculated on a much finer spatial 299 

resolution (1 km) than GPMM (0.1°, ~11km). 300 

Quantitative validation is performed on various scales among PMP estimations from HRLT, GPMM, and in-situ results 301 

(Figure 4). Relatively good correlations between PMP estimations from HRLT and the other two subsets are found on the grid 302 

scale, with the Pearson Correlation Coefficient (CC) of 0.65 and 0.66 to GPMM and in-situ results, respectively (Figures 4a 303 

and 4b). However, the significant overestimation of GPMM is reported by comparing it to HRLT results, where a line with a 304 

slope of 2.51 is fitted, consistent with the overall estimation of spatial distributions (Figures 2c and 3d). This slope is apparently 305 

higher than that between in-situ results and HRLT data (1.54), indicating the effectiveness of our HRLT results. We also report 306 

similar overestimations of GPMM to the in-situ results and decreased correlations (CC=0.52) (Figure 4c). Examination results 307 

on the region scale also reveal a similar situation, with better agreement between HRLT and in-situ results (CC=0.96) than 308 

that with GPMM due to its significant overestimations at a regression slope of 3.67 (Figures 4d-4e). The regional estimate of 309 

PMP from GPMM is nearly double the in-situ results over different river basins, fitting a line of 0.55 between both subsets 310 

(Figure 4f). Therefore, the HRLT-based PMP shows relatively better accuracy than the GPMM dataset in China by comparing 311 

with the in-situ-based results, though it also presents moderate overestimations than in-situ data. 312 

 313 
Figure 2: Spatial distribution of (a) 𝑿𝒏" , (b) K factor, and (c) PMP based on HRLT dataset during 1961-2014. The grid cells and 314 
stations where the minimum length of years to calculate PMP is not satisfied are masked out for clarification. (d) Scatter plots 315 
between PMP estimations and catchment area of 52 major Chinese water conservancy projects (blue) (GIWCHPD, 1982, 1990, 316 
Table S3) and 80 secondary river basins (orange). Both PMP estimations and catchment areas have undergone logarithmic 317 
transformations for better visualization. 318 
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 319 
Figure 3: (a) Spatial distribution of field-based PMP over 80 secondary river basins (Wang, 2002). (b) Spatial distribution of 320 
recorded historical maximum daily precipitation (Wang, 2002, Table S4). (c) Spatial distribution of PMP based on in-situ daily 321 
precipitation during 1961-2014. (d) Spatial distribution of PMP results from the GPMM database.  322 

 323 
Figure 4: Scatter plots between PMP estimations from (a, d) HRLT and GPMM, (b, e) HRLT and in-situ precipitation, and (c, f) 324 
GPMM and in-situ precipitation dataset on (a, b, c) the grid/station scale and (d, e, f) the basin scale. The dashed grey and solid 325 
black lines represent the 1:1 line and fitted linear regression line, respectively. Sub-figures (a-c) are heatmaps where high (low) point 326 
density is translated to yellow (blue) colours. CC means the Pearson Correlation Coefficient. Black dots and red triangle in sub-327 
figures (d-f) represent the different river basins and the whole country, respectively. 328 
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3.2 Variations and attributions of PMP 329 

Firstly, based on the assumption of a static climate, the spatial distribution of PMP over China is evaluated using the 330 

high-resolution HRLT dataset and validated with in-situ results and GPMM data. However, since the changing climate is a 331 

widely acknowledged fact by the community, it significantly challenges the accurate estimation of PMP (Piao et al., 2010). 332 

Secondly, we estimate the changes in PMP and its constituting factors (i.e., 𝑋#$  and K) over different time slices of 35 years 333 

from 1961-1995 to 1980-2014 to detect such influences (Figure 5). On a national scale, we observe a reduction of K from the 334 

period 1961-1995 (2.3) to 1971-2005 (2.23), followed by an increase until the period 1977-2011, and nearly stable at around 335 

2.28 in the following years (Figure 5a). Contrary to K, 𝑋#$  presents a stably increasing tendency over all the periods, meaning 336 

a relative increase of 3% if compared to the first period, i.e., from 43.5 (1961-1995) to 44.6 mm/d (1980-2014) (Figure 5b). 337 

Consequently, the national PMP shows a pattern that is dominated by the K factor, including a minor decline before the period 338 

1971-2005 and a continuous increase afterward. The accelerated rise of PMP from 1977-2011 should be highlighted, which 339 

results from the joint contribution of the increase in 𝑋#$  and K factor (Figure 5c). It can be the result of the intensification of 340 

both climate variability (e.g., El Niño–Southern Oscillation events) (Huang and Stevenson, 2023) and anthropogenic forcing 341 

(e.g., irrigation and urbanization) (Wu et al., 2021; Han et al., 2022). Overall, the national average PMP increased from 106.5 342 

to 109.5 mm/d between the period 1961-1995 to 1980-2014, equivalent to a 3% increase with baseline from the first period. 343 

This growth also coincides with the steady rise of the total storage capacity of the dams and reservoirs, implying the artificial 344 

efforts to alleviate the impacts of increasing and more intense precipitation extremes. On the other hand, it also provides 345 

advance warning to the water resource managers that more constructions are needed in the future in case of the overwhelming 346 

increase rate of PMP than reservoir and dam constructions, even though the total reservoir capacity of the country has increased 347 

by ~80% from 1961 (35.9 mm) to 2014 (64 mm) (Figure 5d). 348 

The inter-annual trend of 1d PMP during the 35-year running window from 1961-1995 to 1980-2014 is firstly estimated 349 

for each grid cell (Figure 6a). The spatial distribution of national PMP trend is featured by the widespread increase of PMP 350 

across North China with regional hotspots in Inner Mongolia and Heilongjiang Provinces (>5 mm/d/a) (refer to Figure 1 for 351 

their location). The region-averaged result for the Yellow and Songliao River basins where they are distributed is 0.41 and 352 

0.14 mm/d/a, respectively. Another region with a significant PMP increase is in the Southern part of the country, comprising 353 

mainly the central Yangtze and Pearl River basins (0.7 and 0.27 mm/d/a, respectively), where slopes are higher than 7.5 mm/d/a 354 

locally. In addition, both significant (p<0.05) increasing and decreasing trends are detected in the scattered regions of 355 

Northwest and East China. Such a distribution provides a piece of evidence on the necessity of incorporating the non-356 

stationarity of a climate system in the calculation of PMP as well as the pressing need to consider its long-term change 357 

behaviours.  358 

The drivers of the PMP trend are attributed to its two contributors (i.e., 𝑋#$  and K) according to Eq. 8. It is found the 359 

national distribution of PMP is mainly controlled by the latter in the spatial domain (Figures 6b to 6e). The relative contribution 360 

of the trend in the K factor accounts for higher than 100% of both increasing and decreasing trends of regional PMP over most 361 
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of the country and rises up to 400% for certain areas in Northern and Western China (Figure 6e). Another variable, the 𝑋#$ , 362 

presents a divergent pattern in the remaining parts of the country, with contribution rates lower than 50% (Figure 6d). However, 363 

apart from the consistent growth of the 𝑋#$  in Southeast China (trend rates: 0.25 to 0.75 mm/d/a), there are significant increases 364 

over the Northwest part, though the change slopes are generally lower than 0.25 mm/d/a (Figure 2b). Differently, the K factor 365 

mainly illustrates growth in Northern China and the neighbouring Qinghai-Tibetan Plateau, even though a few regional 366 

hotspots with rapid decline are found in the Yangtze and Pearl River basins (Figure 6c). We observe the opposite trends in 𝑋#$  367 

and K nationwide, resulting in the patterns of extremely high (low) relative contribution of K (𝑋#$ ) over regions where PMP 368 

changes are controlled by the former (Figures 6d and 6e). These findings underpin our hypothesis that a static climate 369 

assumption to calculate PMP is not appropriate for most areas of China due to significant increasing/decreasing trends, which 370 

are overall caused by the changes in the inter-annual variability of precipitation extremes instead of its intensity, though the 371 

latter has demonstrated widespread increase over most of the country. On the national scale, the PMP increases at a rate of 372 

0.08 mm/d/a, of which 71% (29%) is caused by the increasing K factor (𝑋#$ ). It is also the governing factor in most river basins 373 

of the country, where the highest contribution of 98% is in the Pearl River basin (Figure 6f), with the opposite pattern observed 374 

in the Haihe River basin, where the 𝑋#$  contributes most, up to 38%. 375 

 376 
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 377 
Figure 5: Temporal changes of 35-year estimate of (a) K factor, (b) 𝑿𝒏" , (c) PMP, and (d) total reservoir capacity from 1961-1995 to 378 
1980-2014 in China. The x-axis label 1995, 1996, …, 2014 means the period 1961-1995, 1962-1996, …, 1980-2014, respectively. 379 
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 380 
Figure 6: Trend slopes of (a) PMP, (b) 𝑿𝒏" , and (c) K on the daily scale of the moving 35-year periods from 1961-1995, 1962-1996, …, 381 
to 1980-2014 over China. Contribution of (d) 𝑿𝒏"  and (e) K factor to the changing 1d PMP. The grid cells whose trend values do not 382 
reach a 0.05 significance level are masked out. (f) Scaled contribution of different variables to the changing PMP in different river 383 
basins. Please refer to Figure 1 for details of the regional abbreviations. 384 

3.3 Response of PMP to the changing climate 385 

A static period from 1980-2014 is chosen to evaluate the prediction capability of ensemble GCMs. By comparing the 386 

historical PMP results from the CMIP experiment with the HRLT PMP results during the same period, we observe coherent 387 

distributions among them in terms of 𝑋#$ , K factor, and PMP (Figure 7). However, differences in the amplitude of these 388 

variables exist due to divergent spatial scales (1 km vs 1°) upon PMP calculation, causing the larger cells (1°) to generally 389 

possess lower values, with more local details found in the former (1 km). No significant differences are observed between 390 

CMIP and LFMIP-pdLC experiments, meaning the subtle effects of land-atmosphere coupling in the past. Individual 391 
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simulations from single models are presented to analyse the inter-member uncertainty (Figure S1). We find the ensemble mean 392 

PMP is the balanced result of overestimated values from CMCC-ESM2 and MIROC6 and the underestimated values from 393 

MPI-ESM1-2-LR, which is caused by the requisite interpolation from the native coarse model resolution (~2°). Historical 394 

evaluations have also shown the relatively better performance of EC-Earth and MPI-ESM1-2-LR than the remaining models 395 

with wet or dry biases over China (Dong and Dong, 2021; Jia et al., 2023). Despite the bias in raw CMIP6 outputs of different 396 

models, the multi-model ensemble has been shown as a useful method to reduce the uncertainty than individual models, which 397 

have the potential to further improve with future model evolution (Qiao et al., 2023; Zhu et al., 2020). Overall, the consistent 398 

PMP distributions in the ensemble mean of models and observational results indicate the effectiveness of GCM predictions, 399 

which are, therefore, further applied to project future changes under climate warming. 400 

We quantify the relative changes in 1d PMP between future periods and baseline (1980-2014) under two climate change 401 

scenarios (Figure 8). A widespread increase during the near future (2030-2064) is projected across nearly the whole country 402 

from the SMIP experiment under the SSP126 scenario. In particular, the regions witnessing such an increase include the 403 

Southern coastal region, Northeast China, the Central part of the Yangtze River basin, the West of Inner Mongolia, and the 404 

Yarlung Zangbo River basin located in Southwest China (Figure 8a). The percentage change generally exceeds 20% and 405 

reaches up to 60% for certain regions, which results from the intensification of both 𝑋#$  and K factor (Figures. S2a and S4a). 406 

Specifically, the overall increasing PMP is mainly caused by the growth of 𝑋#$  at the national domain, with the intensification 407 

of the K factor over specific regions. However, such an increase is significantly dampened (and even reversed) in the LFMIP-408 

pdLC experiment due to the widespread reduction of 𝑋#$  except for a few regions around the western and northern boundaries 409 

of China (Figures 8c, S2c, and S4c), with the K factor almost unchanged during the same period (Figure S4). The overestimated 410 

PMP results between SMIP and LFMIP-pdLC are mainly located in the Southern tropics and arid and semi-arid zones of 411 

Northwest and Northeast China, which are caused by the underestimated 𝑋#$  in the LFMIP-pdLC with K factor slightly reduced 412 

(Figures 8a and 8c). However, the increase in PMP of the scattered regions in the Northwest China persistently exists in both 413 

experiments. No significant differences between near (2030-2064) and far future (2065-2099) projections are discovered in 414 

both SMIP and LFMIP-pdLC experiments (Figures 8a-8d). To conclude, the projected PMP increase reaches 20% and 17% 415 

for the whole country during the near and far future periods, respectively, according to the SMIP experiment, of which the 416 

Southwest (31%) and Southeast (21%) basins are, correspondingly, the highest. The percentage changes are reduced to only 417 

2% (near future) and 0% (far future) for the LFMIP-pdLC experiment. Furthermore, we observe the continuous intensifications 418 

of PMP in the SSP585 scenario compared to the SSP126 scenario in the SMIP experiment, with the overall decrease of PMP 419 

in the LFMIP-pdLC experiment (Figures 9, S3, and S5). These changes are caused by the increase/decrease in the 𝑋#$  from the 420 

SSP126 to SSP585 scenario during the SMIP/LFMIP-pdLC experiments, with the K factor almost unchanged among scenarios. 421 

The PMP increases to 51% and 43% for the SSP585 scenario from the SMIP experiment during the near and far future 422 

compared to the baseline period, much higher than the LFMIP-pdLC results (-1% and -5% for the near and far future) (Figure 423 

9e). These findings suggest that the land-atmosphere coupling controls the increase in PMP for the majority of China mainly 424 

by influencing the intensity of precipitation extremes (i.e., 𝑋#$ ). However, the climatic change unrelated to the land-atmosphere 425 
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coupling governs the strengthened PMP in Northwest China, where significant increases in PMP are detected due to the 426 

growing variability of precipitation extremes (i.e., K factor). They imply the compound risk of increasing intensity and 427 

variability of precipitation extremes under climate change. These findings are consistent with previous global assessments 428 

using the GLACE-CMIP5 framework, which found a decrease in the annual sum of daily precipitation (>95 percentile) after 429 

removing soil moisture variability (i.e., representative of land-atmosphere coupling) in South China (Lorenz et al., 2016). 430 

However, it also indicated enhanced variability of heavy precipitation in water-limited regions due to increased latent heat flux 431 

that tends to increase evaporation and precipitation (Berg et al., 2014). It is different from our examinations over the semi-arid 432 

and arid zones across the country (Figure 1b), possibly due to the divergent response of latent/sensible heat flux to atmosphere 433 

states spatially (Wu et al., 2023).  434 

 435 
Figure 7: Estimates of 1d (a, d) 𝑿𝒏" , (b, e) K factor, and (c, f) PMP from the (upper panel) HRLT and (lower panel) ensemble mean 436 
of the CMIP experiment during 1980-2014 over China.  437 
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Figure 8: Multi-model mean percentage changes in 1d PMP from (a, c) 2030-2064 and (b, d) 2065-2099 period to 1980-2014 under 439 
SSP126 scenario over China from (a, b) SMIP and (c, d) LFMIP-pdLC ensembles. (e) Regional summary of the percentage PMP 440 
changes. Please refer to Figure 1 for more details on the regional abbreviations. 441 
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Figure 9: Same as Figure 8, but for the SSP585 scenario. 443 

4 Discussions 444 

4.1 Comparisons with previous studies  445 

Quantitative assessment with design values of large hydropower projects and in-situ estimations of PMP has presented 446 

a contradictory conclusion, i.e., overestimation of the water projects (Figure 2f) and underestimation of in-situ results and the 447 

GPMM database (Figure 4). This fact suggests more justification should be carried out by comparing with previous research. 448 

A few regional studies have calculated 1d PMP over different parts of China (Svensson & Rakhecha, 1998; Yang et al., 2018; 449 

Zhou et al., 2020). For example, Svensson & Rakhecha (1998) used the moisture maximization factor to estimate PMP over 450 

the Hongru River basin of the Huaihe River basin in eastern China, resulting in a result of 460 mm/d that is generally within 451 

the range of our 1km PMP map of the corresponding area (200~600 mm/d, Figure 2c). Zhou et al. (2020) applied the storm 452 

transposition method to estimate PMP for a small ungauged catchment in northern China from 118°20’E~118°26’E and 453 

40°26’N~40°30’N. The results change from 397 to 570 mm/d at most stations, with an extreme value of 1026 mm/d in 454 

Zhangmu, Hebei Province (see Figure 1c). They are overall higher than our gridded estimations using HRLT, with PMP 455 

approximately fluctuating between 80 and 200 mm/d. Such difference may arise from the distinctive calculation methods (i.e., 456 

hydrometeorological method vs statistical method) and data length with our study, as most historical maximum precipitation 457 

occurred prior to the beginning year of the HRLT dataset (1961). It suggests the sensitivity of PMP estimations on different 458 

computation methods and data representativeness for valid precipitation extremes. Another example in western China is the 459 

calculation of PMP for the Nujiang River basin (part of the Southwest basin, Figure 1a) (Liu et al., 2016). The study uses a 460 

gridded precipitation dataset to estimate PMP based on the model storm amplification approach. It discovered the PMP 461 

increases from upstream to downstream within the basin, and the value changes from 15.4 to 99.7 mm/d. The spatial 462 

distribution (Figure 2c) and amplitude (28.7~87.8 mm/d) are quite similar to our findings. Using three remote sensing 463 

precipitation products and the statistical method, Yang et al. (2018) discussed the potential of gridded precipitation extremes 464 

to estimate PMP in poorly gauged regions by taking the Dadu River basin in western China (located in the upstream Yangtze 465 

River basin, Figure 1a) as an example. They pointed out the huge disparity among PMP values based on various satellite 466 

products (ranging between 51.88–519.11 mm, 90.16–417.61 mm, 122.41–391.79 mm, and 128.37–740.45 mm for CGDPA, 467 

CMORPH, PERSIANN-CDR, and TRMM 3B42V7, respectively) and recommended the PMP of 52~519 mm/d over the 468 

region, nearly two-fold higher than our result of about 29~279 mm/d. The large differences among global precipitation products 469 

highlight the lack of consistent PMP representations in different areas, which may partly be solved by merging multiple data 470 

sources based on their regional performance and uncertainty quantification (Rajulapati et al., 2020). However, a consistent 471 

spatial variability and distribution is reported where PMP generally increases from upper to lower reach. We also find lower 472 

PMP values of HRLT PMP (~350 mm/d) in the Hong Kong Island of South China than results based on site data (e.g., 1753 473 

mm/d in Lan et al., 2017 and Liao et al., 2020). Such underestimations, on the one hand, are the consequence of different 474 
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calculation algorithms, data sources, and uncertainties. On the other hand, they reflect the differences in spatial scales between 475 

field and grid cell PMP estimations. Previous studies generally take the highest estimation among various weather stations in 476 

a region as the final PMP, while the HRLT highlights the average PMP for each high-resolution 1km grid cell. Indeed, our 477 

approach tends to follow the definition of PMP more strictly, i.e., the theoretical maximum precipitation for a given duration 478 

under modern meteorological conditions, which should happen on an area scale instead of a point domain (WMO, 2009). This 479 

scale difference is further highlighted in a global study that quantified the change of 1d PMP and mean annual maximum daily 480 

precipitation (AMDP) using a 0.5° resolution global precipitation dataset (Sarkar & Maity, 2021). The mean AMDP of grid 481 

cells over tropical zones with high precipitation and low seasonality (e.g., Southeast Asia near Hong Kong and Taiwan Islands) 482 

generally ranges from 50 to 150 mm/d (see Figure 5 of Sarkar & Maity (2021)). It is much lower than our HRLT estimates 483 

(Figure 2a) and previous station-based estimates (e.g., Table 5 of Lan et al., 2017) due to larger grid cells for computation (~50 484 

km). Moreover, it indicated a significant increase of PMP in the southern and north-eastern parts of China by comparing the 485 

PMP results of two periods (i.e., 1948-1977 and 1979-2012), which coincide with our spatial distribution of PMP trends (Figure 486 

6a), even though over different calculation periods.  487 

Despite some differences between previous regional investigations that are derived from divergent datasets, methods, 488 

and spatial scales, our first high-resolution (1 km) PMP map generated over China captures the spatial distribution at a local 489 

scale very well. Moreover, all the previously mentioned studies estimate PMP under the assumption of a static climate and 490 

neglect the variability of climate systems. This point is addressed in this study by separately calculating the PMP for each 491 

moving 35-year time period, along with an attribution framework proposed to track the sources of PMP changes. 492 

Anthropogenetic climate change, which is not adequately discussed in previous studies, is also investigated using an ensemble 493 

of global climate models under different scenarios and periods. In a nutshell, this study constructs the first national high-494 

resolution PMP map and quantitatively detects the changing climate influences on PMP estimations in the past and future. 495 

4.2 Potential pathways of land-atmosphere coupling to PMP  496 

Linkages between land-atmosphere coupling and climate extremes have received much attention from the community 497 

over the years by means of observations and models (e.g., Koster et al., 2004; Zhou et al., 2019). However, most previous 498 

analyses focus on the mechanisms of land-atmosphere coupling to induce the hot extremes in the near-surface interface, leaving 499 

the rationales behind the extreme precipitation events (and PMP) still poorly understood (Lorenz et al., 2016). Nevertheless, a 500 

basic consensus is that land surface states (typically soil moisture) alter the atmospheric processes by modulating the allocation 501 

of sensible and latent heat flux of the energy budget in a positive and/or a negative way (Seneviratne et al., 2010). On the one 502 

hand, the increasing wetness of soil can provide more available moisture to be evaporated into the near-surface atmosphere, 503 

leading to higher evaporation (or upward latent heat flux); on the other hand, the increased evaporation can inversely reduce 504 

the available soil moisture. This reduction in available soil moisture should be lower than the increased soil moisture to 505 

maintain the interactions between soil and precipitation; otherwise, the soil would become drier. In this case, the elevated net 506 

evaporation can further influence the precipitation, by enhancing the moisture supply for the planetary boundary layer (PBL) 507 
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to affect the atmospheric heating rates and cloud formation (Zheng et al., 2015). However, such ‘second-hand’ influences are 508 

complex due to the multiple dynamic and thermal processes involved. Both positive and negative correlations have been 509 

reported from the previous modelling outputs and observed results depending on different regions and seasons (Diro et al., 510 

2014; Wu et al., 2023). 511 

Based on prior knowledge of the mechanisms of land-atmosphere coupling, we detect the percentage changes of the 512 

annual daily maximum of heat fluxes of future scenarios compared to the baseline (Figures 10 and 11). We discover the 513 

national increase in the annual daily maxima of latent heat flux that is most obvious in western parts of China according to the 514 

SMIP experiment, which is spatially consistent with the increase in 𝑋#$  (Figures 10 and S2). Such increase disappears in the 515 

LFMIP-pdLC experiment and keeps a similar spatial pattern to the 𝑋#$ , i.e., the decrease in the majority of the country with the 516 

regional increase in the West and South. Furthermore, these reported changes in the latent heat flux show no apparent deviation 517 

between the near and far future; however, they show significant positive sensitivity along with the enhancement of the gas 518 

emission scenarios. In addition, we also find the corresponding variations in the sensible heat flux that are opposite to the latent 519 

heat flux, except for Northeast China, where both fluxes increase in the LFMIP-pdLC experiment (Figures 10 and 11). 520 

Moreover, the strengthened changes in the sensible heat flux are observed in both ensembles. Based on the above analysis, it 521 

can be inferred that the land-atmosphere coupling can enhance the intensity of precipitation extremes by increasing the supply 522 

of latent heat flux (i.e., evapotranspiration) at the expense of reduced sensible heat flux and such impacts can be relatively 523 

stronger under a higher gas-emission-scenario.  524 
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 525 
Figure 10: Spatial distribution of the multi-model mean percentage changes in latent heat flux from (a, c, e, f) 2030-2064 and (b, d, 526 
f, h) 2065-2099 period to 1980-2014 under (left two columns) SSP126 and (right two columns) SSP585 scenarios over China from 527 
(upper row) SMIP and (lower row) LFMIP-pdLC ensembles.  528 
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 529 
Figure 11: Same as Figure 10, but for the sensible heat flux.  530 

4.3 Limitations and future outlooks 531 

Although this study has provided the first national high-resolution PMP map and the quantitative evaluation of the effects 532 

of the changing climate on PMP estimations, it suffers from a few inevitable limitations associated with the inconsistent spatial 533 

scales between precipitation data and models and the lack of adequate ground information for physical attributions. As shown 534 

before in the comparisons with previous studies, the discrepancies between statistical methods and hydrometeorological 535 

methods are evident (see Section 4.1 for details). They are mainly derived from the different rationale behind the maximization 536 

framework, e.g., maximization of wind or moisture, and the uncertainty in the metrological data (e.g., dew point temperature, 537 

wind speed). Basically, these different methods of computing PMP have different storylines. For example, the 538 

hydrometeorological methods are characterized by the maximization of a single or several atmospheric factors, and emphasize 539 

the physical mechanisms behind the storms (Gu et al., 2022). While the statistical methods estimate an unprecedented extreme 540 

value from a probabilistic perspective (Papalexiou and Koutsoyiannis, 2006; Papalexiou et al., 2016). The hydrometeorological 541 

methods may be somewhat more physically realistic than statistical methods but they neglect the interaction of different factors 542 

and heavily rely on the meteorological data. These shortcomings hinder the large-scale assessment of PMP and accurate future 543 

projections using hydrometeorological methods. Overall, the sensitivity of PMP estimation to different calculation methods is 544 

worthy to be detected. However, we are unable to evaluate at this stage due to the lack of sufficiently long-term storm event 545 



27 
 

records and related meteorological data for the maximization, especially on a national scale. Although we have validated our 546 

estimates with the auxiliary quasi-global PMP dataset and the in-situ observations, additional measures for quantitative 547 

validation, such as various methods, may further be employed in the future. Another limitation lies in the mathematical partition 548 

and subsequent attribution of the statistical PMP estimation into two main components following Eq. 8. Though the framework 549 

can conveniently be implemented for the attribution of PMP trends to different factors, no more insights into the dynamic and 550 

thermal atmospheric processes can be provided. Recent studies have shown the applications of numerical weather models (e.g., 551 

Weather Research and Forecasting Model) in modelling the regional PMP (Hiraga et al., 2021). Such attempts can assess the 552 

sensitivity of PMP to different atmospheric (e.g., moisture) and geophysical factors (e.g., topography) and climate change from 553 

a physical perspective (Rastogi et al., 2017). Moreover, the scale difference of resolutions between the HRLT dataset (1 km) 554 

and GCM simulations (~1°, 100 km) may introduce regional disagreement between our historical assessment and future 555 

projections (Figure 7). This difference is caused by the relatively coarse spatial resolution in the parameterization of GCMs, 556 

highlighting the fact that caution should be taken when explaining the linked spatial distribution between past and future.  557 

Corresponding to the above-mentioned limitations, several strategies can be adopted to alleviate their impacts in future 558 

studies. A feasible solution is the use of multi-source meteorological data, for example, remote sensing product (e.g., MODIS-559 

based vapor pressure data) and reanalysis predictions (e.g., ERA5 and JRA55), in the estimation of large-scale PMP using the 560 

meteorological method, which can serve as a useful tool to verify the independent statistical estimations. Moreover, fully 561 

coupled regional-scale simulations can be performed using the numerical weather simulation and data assimilation techniques, 562 

of which WRF from NOAA has achieved much in the simulation and prediction of PMP (e.g., Rastogi et al., 2017). In addition 563 

to this, high-resolution global climate models such as the High-Resolution Model Intercomparison Project (HighResMIP v1.0) 564 

for CMIP6 provide another way for the PMP analysis on continental and global scales (Haarsma et al., 2016). However, inter-565 

member uncertainties implicit in the models are inevitable, possibly considerable and deserve relatively more efforts to 566 

constrain and alleviate. This point is highlighted by the comparison between historical CMIP PMP estimations and HRLT 567 

results (Figure 7) as well as the cross-comparison between CMIP and LFMIP-pdLC simulations in the past (Figure S6). The 568 

overestimated PMP and its components of the LFMIP-pdLC than the CMIP experiment during the baseline period can be a 569 

result of model sensitivity and uncertainty for the past climate. All of the issues discussed, including the unclear physical 570 

mechanisms of changing PMP and divergent spatial scales among datasets and uncertainties therein, deserve to be studied in 571 

the future with the advancement of observation systems and earth system models. 572 

5 Conclusions 573 

Given the lack of knowledge in the spatial distribution of PMP in China and the potential influences of the changing 574 

climate on PMP formation, this study uses the existing most high-resolution (1 km) precipitation dataset to compute the 1d 575 

PMP during 1961-2014 for the whole of China using the improved Hershfield method. The spatial distribution of PMP is 576 

generated on a national scale and has been validated with a satellite-based quasi-global PMP dataset and in-situ-based PMP 577 
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results. Changes in PMP and its constituting factors (𝑋#$  and K) are presented in each 35-year time window from 1961-1995 578 

to 1980-2014. Inter-annual trends are subsequently estimated during these periods and are attributed to the changes of these 579 

two contributors. An ensemble of GCMs is used to project the response of PMP to climate change under two scenarios (i.e., 580 

SSP126 and SSP585) in the near (2030-2064) and far future (2065-2099) of the 21st century relative to the baseline (1980-581 

2014). The main findings are as follows:  582 

(1) We find the approximately opposite spatial distribution of two constituting factors to form PMP (𝑋#$  and K) over the 583 

country, of which the variable 𝑋#$  (K) generally decreases (increases) from the south-eastern to the north-western sections. 584 

They jointly result in a unique spatial distribution of PMP, which is featured by both the typical ‘three steps’ distribution from 585 

southeast to northwest and regional hotspots in coastal regions, mountainous areas, and northern arid zones. Our PMP 586 

estimations are generally consistent with previous precipitation compilations and project design results. However, 587 

overestimations are discovered when comparing with the in-situ-based PMP results and GPMM dataset, with correlation 588 

coefficients ranging from 0.65 to 0.96. The differences might be caused by the different calculation methodologies and varying 589 

spatial resolutions. 590 

(2) Different temporal variations of 𝑋#$  and K are observed during moving time windows from 1961-2014. K shifts from 591 

decrease to increase after the turning period of 1971-2005, while 𝑋#$  keeps growing and achieved a 3% increase for the country. 592 

Consequently, PMP also increases from 106.5 to 109.5 mm/d from 1961-1996 to 1980-2014 period, with an accelerated speed 593 

after 1977-2011. The pattern suggests the increased flood control pressure in the context of simultaneously increasing reservoir 594 

capacity. The running trend of the 35-year PMP mainly lies in northern China, including inner Mongolia and Heilongjiang 595 

Provinces, which are predominately caused by the changes in the inter-annual variability (represented by the K factor) together 596 

with the intensity of extreme precipitation (represented by 𝑋#$ ). The PMP increases at a rate of 0.08 mm/day/a for the whole 597 

country, of which 71% (29%) is caused by the increasing K factor (𝑋#$ ). 598 

(3) The historical simulations of the CMIP ensemble spatially agree with the HRLT results. Land-atmosphere coupling 599 

dominates the widespread increase in PMP over China under both SSP126 and the SSP585 climate change scenarios by 600 

modulating the intensity of daily precipitation extremes (𝑋#$ ), except for scattered regions in Northwest China, where a 601 

significant increase in precipitation variability (K) is observed. No obvious differences in the future projections during the 602 

middle and end of the 21st century are discovered by comparing with the baseline. Nationally, the projected PMP changes are 603 

17~20% and 0~2%, according to the SMIP and LFMIP-pdLC experiments under the SSP126 scenario, respectively. The 604 

percentages change to 43%~51% (SMIP) and -1~-5% (LFMIP-pdLC) for the SSP585 climate change scenario, indicating the 605 

strengthened modulations of land-atmosphere coupling to PMP with anthropogenic forcing. 606 

Our study provides the first high-resolution map of PMP (1d & 1km) for China and quantitively challenges the reliability 607 

of the static climate assumption in conventional PMP estimation. Climate change and land-atmosphere coupling impacts are 608 

further projected using state-of-the-art ensemble models from CMIP6. Our results can provide scientific inferences to regional 609 

and national water managers and decision-makers for effective and efficient water resource management in the area. 610 
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