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Abstract. High-resolution, spatially distributed process-based (PB) simulators are widely employed in the study of complex 

watershedcatchment processes and their responses to a changing climate. However, calibrating these PB simulators to observed 

data remains a significant challenge due to several persistent issues including: (1) intractability stemming from the 

computational demands and complex responses of simulators, which renders infeasible calculation of the conditional 

probability of parameters and data, and (2) uncertainty stemming from the choice of simplified model representations of 20 

complex natural hydrologic processes. Here we demonstrate how Simulation-Based Inference (SBI) can help address both 

these challenges for parameter estimation. SBI uses a learned mapping between parameter space and observed data to estimate  

parameters for generation of calibrated model simulations. To demonstrate the potential of SBI in hydrologic modelling, we 

conduct a set of synthetic experiments to infer two common physical parameters, Manning's coefficient and hydraulic 

conductivity, using a representation of a snowmelt-dominated catchment in Colorado, USA. We introduce novel deep learning 25 

(DL) components to the SBI approach, including an 'emulator' as a surrogate for the process-based simulator to rapidly explore 

parameter responses. We also employ a density-based neural network to represent the joint probability of parameters and data 

without strong assumptions about its functional form. While addressing intractability, we also show that where uncertainty 

about model structure is significantthe simulator does not represent the system under study well enough, SBI can yield 

unreliable parameter estimates. Approaches to adopting the SBI framework to cases where multiple model structure(s) 30 

simulator(s) may not be adequate are introduced using a performance-weighting approach. The synthetic experiments 

presented here test the performance of SBI, using the relationship between the surrogate and PB modelssimulators as a proxy 

for the real case. 
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1 Introduction 35 

Robust hydrologic tools are necessary to understand and predict watershed (watershedcatchment) behaviors in a 

changing climate (Condon, 2022). This need is underscored by long-term drought in the American West (Williams et al., 

2022), which has led to the withering of water supplies from the Colorado River (Santos and Patno, 2022), increased 

groundwater pumping (Castle et al., 2014), and uncertainty about what is next (Tenney, 2022). Hydrologic simulators that 

represent physical processes and connections within the hydrologic cycle (Paniconi and Putti, 2015) are very commonly used 40 

tools to address these needs.  These 'process-based' (PB) simulators explicitly represent hydrologic states and fluxes at multiple 

scales based upon physics first-principles (Fatichi et al., 2016). WatershedCatchment scientists often use PB simulators to 

answer ‘what if’ questions about behavior of watershedcatchment snowpack, soil moisture, and streamflow in a changed future 

because they encode fundamental processes, and not just historical data (Maxwell et al., 2021).  

The behaviors and skills of these PB watershedcatchment simulators (henceforth referred to as PB simulators) 45 

strongly depend on spatially varying parameters (Tsai et al., 2021). Parameters represent the structure and physical properties 

of the hydrologic system, such as the roughness of the land surface (i.e., Manning's Coefficient, M) or the water-transmitting 

properties of the subsurface (i.e., Hydraulic Conductivity, K). There are many approaches to parameter determination in 

hydrology (Beven and Binley, 1992.; Gupta et al., 1998; Bastidas et al., 1999; Hunt et al., 2007; Vrugt and Sadegh, 2013; 

White et al., 2020; Tsai et al., 2021). The variety of approaches and long history of research in this area underscores that there 50 

is “no obvious formulation of [parameter determination] that previous generations of modelers have overlooked” (Hunt et al., 

2007). Yet, the question of how best to infer parameters for PB simulators remains unsettled.  

Parameter determination remains a challenge with watershedcatchment PB PB simulators, and an impediment to 

robust, physics-informed hydrologic predictions. There are two related and ongoing difficulties that make parameter 

determination a very challenging problem. The first is the problem of intractability. For a dynamical watershedcatchment 55 

simulator with a range of possible model configurations, many combinations of parameters may be plausible given observed 

data (Beven, 2011; Nearing et al, 2015). Therefore, many have argued it may be preferable to simulate distributions of 

hydrologic variables and the underlying parameters that give rise to them (e.g. Vrugt and Sadegh, 2013). Intractability arises 

when these distributions cannot be approximated for theoretical or computational reasons. For example, large-scale, high-

resolution PB simulations can require massively parallel, high-performance computing (e.g., Maxwell et al., 2015), limiting 60 

the number of exploratory model runssimulations due to computational demands. A solution to the problem of intractability 

needs to efficiently approximate complex distributions of probable parameters given observations with a sufficient level of 

accuracy and precision.  

Deep learning (DL) may provide new opportunities vis-à-vis the intractability problem in parameter determination. 

In DL, behaviors are learned from data, as opposed to PB approaches, which derive behavior from established theory. The 65 

Earth Sciences have recently seen greater adoption of DL approaches (Wilkinson et al., 2016), for example in streamflow 

prediction (Kratzert et al., 2018). However, DL methods are not widely used in the prediction of distributed 
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watershedcatchment  prediction variables due to the “inadequacy of available data in representing the complex spaces of 

hypotheses” (Karpatne et al., 2017), such as watershedcatchment observations. Recently, there has been a push for methods 

that can incorporate process understanding into DL models approaches (e.g., Zhao et al., 2019; Jiang et al., 2020). Still, studies 70 

are rare that employ DL to improve PB simulator performance by aiding in the hunt for better parameters1. (e.g., Tsai et al., 

2021). Tsai et al. (2021) use a neural network to learn the mapping between observable attributes and unobserved physical 

parameters, for a set of catchment rainfall-runoff simulators optimized to a regional loss function. This ‘differentiable learning’ 

approach can effectively find parameter sets that yield continuity across neighbouring domains.  While the approach is strong 

for spatial generalization of lumped catchment simulators, it does not explicitly address the case where many parameter sets 75 

may be plausible (the equifinality problem), nor does it provide a mechanism to constrain the role of deficiencies in the 

simulator on parameter estimates.   

Simulation-based inference (SBI) is a DL-informed approach to PB parameter determination that has shown promise 

in particle physics (Cranmer et al., 2020), cosmology (Alsing et al., 2019), and neural dynamics (Lueckmann et al., 2017). In 

SBI, a neural network is employed to approximate the conditional density of parameters and simulated outputs from the 80 

behavior of a simulator. That The learned conditional relationship can then be evaluated using observations to estimate a set 

of probable parameters. Surrogate simulators are neural networks that emulate the complex interdependence of variables, 

inputs, and parameters encoded in PB simulators, such as watershedcatchment simulators (Maxwell et al., 2021; Tran et al., 

2021). Once trained, surrogate simulators can preserve fidelity closely mimic the to the PB simulator, run at a fraction of the 

cost, and speed up the exploration of parameter space. Restated, this approach uses one neural network (the 'surrogate’) to 85 

quickly generate thousands of simulations that are utilized to train another neural network (via conditional density estimation) 

to develop a statistical representation of the relationship between parameters and simulated data. Via SBI, this statistical 

representation can be used to infer distributions of PB parameter values based on observed data.  Assuming the model is 

correctly specified, the inferred set of parameters accurately and precisely reflects the uncertainty of the parameter estimate 

(Cranmer et al., 2020). To our knowledge, applications of SBI in hydrology have been limited (e.g., Maxwell et al., 2021). A 90 

brief introduction to SBI is presented in the background section.  

A second challenge to parameter determination is the problem of epistemic uncertainty arising from limited 

knowledge, data, and understanding of complex hydrologic processes. The sources of epistemic uncertainty in the modelling 

process are various, including: uncertainties in data (for example, in model simulator inputs and misleading information in 

observed data used to train and assess modelssimulators); uncertainties derived from performance measures and information 95 

to omit; and uncertainties uncertainty  about what the structure model of the structuresimulator should be, which arises from 

the inherent challenge of choosing simplified models to representations of complex processes (Leamer, 1978; Beven & Binley, 

1992; Draper,1995; Gupta et al., 2012; Nearing et al., 2015).  For example, the structure of PB catchment simulators is defined 

 
1 We make a distinction between the parameters of PB simulators and the parameters embedded in neural networks, which are optimized during training by 
backpropagation. In this report, we almost-exclusively refer to the parameters of PB simulators even as we discuss the capacity of neural networks to learn 
and represent them.   
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by the mathematical description of hydrologic flows, state variables, and parameters.  This description may or may not be able 

to represent catchment behaviour without error.  DL surrogate simulators trained to mimic PB behaviour inherit this assumed 100 

structure, in addition to error from imperfect training.  In other words, uncertainty about structure arises from both the 

relationship between the PB simulator and the catchment under study, and the relationship between the surrogate and the PB 

simulators.  In this work, we focus on a subclass of epistemic uncertainty of the appropriate simulator (both PB and surrogate) 

structure(s) of appropriate model structure(s) known as “model misspecification”, in which a unique and optimal model 

structure description of the catchment for the simulation parameters is assumed to exist but is unknown.  Discounting the role 105 

of uncertainty about the appropriate simulator structure model simulation parameter structures can have profound 

consequences on the insights we draw from inference tasks like parameter determination .determination.  

A common challenge is the potential under-representation of uncertainty stemming from the choice of model 

simulator structure. This issue becomes evident when inference approaches yields parameter estimates that are overly 

confident, which can be problematic when a more conservative estimate that accounts for the inherent uncertainties about 110 

model simulator structure is preferred (Beven, 2011; Cranmer, 2020; Hermans, 2021). One potential remedy is the use of 

ensemble modelling, where to perform inference using multiple model simulators, with different underlying structures and 

quality of fit.  are employed to capture a range of plausible behaviours. The Once a set of competing simulator structures is 

assembled, the challenge then becomes deciding upon which model structures to consider and how to combine them. 

Generalized Likelihood Uncertainty Estimation, or GLUE (Beven and Binley, 1992; Beven and Binley, 2014), associates a 115 

measure of belief with each selected model simulator structure and parameter configuration, forming a conceptually simple 

way of weighting ensembles of predictions to estimate uncertainty stemming from various sources. A similar principle 

underlies Bayesian Model Averaging, or BMA (Leamer, 1978; Hoeting et al, 1999; Raftery et al., 2005; Duan et al., 2007). 

While GLUE and BMA differ in their implementations, they both adhere to the principle that models simulator structures 

capable of generating simulation results exhibiting behaviours closely aligned with observations should hold stronger 120 

credibility and carry greater significance within an ensemble of models; and simulator structures less capable of producing 

non-behavioural simulations model structures should be assigned a low probability or rejected. In the case of GLUE, this 

measure of credibility is derived from a modeler’s choice of metric, or informal likelihood function (e.g. Smith et al, 2008). 

GLUE and BMA are further described in the background section. 

 The primary objective of this work is to demonstrate an approach to generating accurate and precise estimates of the 125 

spatially distributed parameters of a PB hydrologic simulator where conventional methods might struggle due to the 

intractability problem. A secondary goal is to explore how this workflow could be extended to yield meaningful parameter 

estimates considering uncertainty about the appropriate model simulator (surrogate or PB) structural structureadequacy.  

Surrogate-derived SBI is utilized to address the problem of intractability in complex parameter spaces using a statistical, deep-

learning approach. The problem of model simulator structural adequacymisspecification is confronted using a quasi-BMA 130 

approach that utilizes an informal likelihood to weight the credibility of parameter estimates from SBI.  
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We primarily use synthetic test cases with diagnosable degrees of uncertainty error to test the performance of the 

inference workflow. Here, we determine the physical parameters of a headwater subbasincatchment of the Upper Colorado 

River BasinBasin by calibrating a PB watershedcatchment simulator to historical streamflow observations. We utilize SBI in 

tandem with a Long Short-Term Memory (LSTM) surrogate ((henceforth referred to as the surrogate simulator) for the PB 135 

simulator ParFlow  (Jones and Woodward, 2001; Maxwell and Kollet, 2006; Maxwell et al., 2015a) to rapidly generate 

probable configurations of Hydraulic Conductivity (K) and Manning’s Coefficient (M). Furthermore, we use the inferred 

distribution of parameters to generate streamflow predictions. The experiments presented use the relationship between the 

surrogate and PB simulators as a proxy for the real case. We explore the influence of synthetic observed data observations on 

parameter inference with a set of experiments that systematically vary the degree of uncertainty error in the simulator 140 

associated with how synthetic and real observations relate to the simulator (i.e., misspecification). In the latter experiments, a 

form of BMA is utilized to improve robustness of the parameter estimates to misspecification, in the extreme case by assigning 

zero probability to all models in the set. The experiments are outlined in Section 3.1.  

Novel aspects of the present analysis that bear noting include: (1) the usage of DL in conjunction with a PB 

watershedcatchment simulator to improve its performance; (2) the novel application of density-based SBI to the scientific 145 

domain of hydrology; and (3) the usage of informal likelihood measures to directly assign model probabilities to parameter 

estimates made by SBI in a manner similar to BMA. The significance of this work is to develop a framework to tackle harder 

inference problems in watershedcatchment modeling, and other domains of the Earth Sciences where complex PB simulators 

are used.  

 150 

2 Background of inference-based approaches to hydrologic parameter determination 

This section provides a brief background of methods used for parameter determination in watershedcatchment 

modeling simulationand related problems. We provide context relevant to understanding the “point of convergence” (Cranmer 

et al., 2020) we call simulation-based inference (SBI), and how it is similar to and different from some other approaches to 

inference. We start with a general overview of inference. Next, we discuss the traditional formulation of the inference of 155 

parameters using Bayes’ theorem (section 2.1). We then introduce what sets SBI apart from these traditional approaches 

(section 2.2). Next, we discuss the role of machine learning in SBI (section 2.3). Finally, we introduce some approaches to 

parameter estimation under epistemic uncertainty that have been applied in hydrology (2.4). For this section, ‘simulator’ 

generically refers to a computer program that requires some number of parameters and produces output data; this term 

encompasses most PB simulators, and their surrogates, used in hydrology and other research domains. The term ‘model’ refers 160 

to the statistical relationship between parameters and outputs, which is defined implicitly by a simulator (PB or surrogate). We 

define 'inference' as using data observations (observationsdata) and a the statistical model defined by a simulator  to describe 

some unobserved characteristics (parameters) of the system we are interested in (Cranmer et al., 2020; Wikle and Berliner 
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2007).  Note that unless otherwise indicated throughout this section we use the term simulation generically as inference and 

SBI can be applied to many different types of simulations.     165 

2.1 Bayesian inference 

Bayesian inference is a common method to extract information from observations. The essence of this formulation of 

inference unfolds in three steps (Wikle and Berliner, 2007): (1) Formulate a ‘full probability model’, which emerges from the 

joint probability distribution of observable and unobservable parameters; (2) Infer the conditional distribution of the parameters 

given observed data; (3) Evaluate the fit of the simulator (given parameters inferred in step 2) and its ability to adequately 170 

characterize the process(es) of interest. 

Traditionally, to tackle inference problems we apply Bayes’ Theorem. For illustration, let θ denote unobserved 

parameters of interest (such as Hydraulic Conductivity); and let Y represent simulated or observed data of the variable of 

interest (such as streamflow). The joint probability p(θ, Y) can be factored into the conditional and marginal distribution by 

applying Bayes’ Rule, such that we obtain: 175 

 𝑝(𝜃|𝑌)  =
௣(௒|ఏ) ௣(ఏ)

௣(௒)
             (1) 

Where,  

● The data distribution, p(Y|θ), is the distribution of data given unobservable parameters. This distribution is referred 

to as the likelihood when viewed as a function of θ for a fixed Y. The likelihood function of “implicit” simulators 

(such as those used in watershedcatchment modelinghydrology) is often regarded as ‘intractable’ – i.e., its form cannot 180 

be evaluated (integrated), at least not in a computationally-feasible way (Cranmer et al., 2020). 

● The prior distribution, p(θ), is our a priori understanding of unobservable parameters. The prior often results from a 

choice made by the domain expert. For example, in watershedcatchment modeling simulation the prior distribution 

arises from a belief about the possible structures and magnitudes of parameters (for example, hydraulic conductivity) 

in a study domain, as well as the probability that they could be observed. 185 

● The marginal distribution, p(Y), can be thought of as a normalizing constant or ‘evidence’. In practice, this distribution 

is rarely computed as it contains no information about the parameters. As such, we do not include P(Y) and instead 

work with the unnormalized density provided by Equation 2: 

𝑝(𝜃|𝑌)  ∝  𝑝(𝑌| 𝜃) 𝑝(𝜃)           (2) 

● The posterior distribution, p(θ|Y), which is the distribution of unobservable parameters given the data. The posterior 190 

is the primary goal of Bayesian inference; it is proportional to the product of our prior knowledge of parameters and 

the information provided in our observations.  

Inference conducted using a Bayesian paradigm has a long history in computational hydrology (Vrugt and Sadegh, 2013). 

However, applications have been somewhat limited due to challenges centering on the intractability of the data distribution, 

p(Y|θ), for watershedcatchment simulators with many parameters.  195 
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2.2 Simulation-based inference 

SBI is a set of methods that attempt to overcome the intractability of the data distribution by learning the form of the 

posterior distribution directly from the behavior of the simulator itself (Tejero-Cantero et al., 2020). There are a range of SBI 

approaches, some of which include deep learning, but traditionally deep learning has not been part of SBI workflows.  The 

classic approach is Approximate Bayesian Computation (ABC), which compares observed and simulated data, rejecting and 200 

accepting simulation results based on some distance measure (Fenicia et al., 2018; Vrugt and Sadegh, 2013; Weiss and von 

Haeseler, 1998). While this approach has been widely used, it suffers from a range of issues, including poor scaling to high-

dimensional problems (resulting in the need for summary statistics), and uncertainty arising from the selection of a distance 

threshold (Alsing et al., 2019). Additionally, in traditional ABC it is necessary to restart the inference process as new data 

become available (Papamakarios and Murray, 2016), making it inefficient to evaluate large numbers of observations (Cranmer 205 

et al., 2020). 

SBI methods predicated on density estimation enable an alternative that does not suffer from the same shortcomings 

of ABC. The density estimation approach aims to train a flexible density estimator of the posterior parameter distribution from 

a set of simulated data-parameter pairs (Alsing et al., 2019). Some of the key advantages of a density estimation approach over 

ABC: (a) it represents the posterior2 distribution parametrically (as a trained neural network) that can be reused to evaluate 210 

new data as it comes available; (b) it drops the need for a distance threshold by targeting an ‘exact’ approximation of the 

posterior; (c) it more efficiently uses simulations by adaptively focusing on the plausible parameter region (Papamakarios and 

Murray, 2016). 

One general purpose workflow that we employ in this paper uses a neural density estimator to learn the distribution 

of streamflow data as a function of the physical parameters of the simulator and employs active learning algorithms to run 215 

simulations in the most relevant regions of parameter space (Alsing et al., 2019; Lueckmann et al., 2017). The SBI workflow 

is further described in Sect. 3.5, and the neural density estimator is described in Sect. 3.6.  

2.3 The role of Machine Learning in SBI 

Due to advances in the capacity of neural networks to learn complex relationships, we can learn high-dimensional 

probability distributions from data in a way that was hardly possible before (Cranmer et al., 2020). This has led to strong claims 220 

in other fields, including cosmology and computational neuroscience, regarding the potential of SBI to “shift the way 

observational [science] is done in practice” (Alsing et al., 2019). While our implementation is described in more detail 

throughout the methods section, we direct readers to the literature for a broader (Cranmer et al., 2020) and deeper 

(Papamakarios and Murray, 2016) understanding of density based SBI. 

 
2 We share the literature’s tendency to use ‘conditional’ and ‘posterior’ density interchangeably; denotations of 𝑝(𝜃 | 𝑌 =  𝑌 ௥௨௘ ), for the posterior density 
evaluated at an observation 𝑌ை௕௦; and 𝑝(𝜃 | 𝑌), for conditional density representative of a large set of simulated {θ, Y}, are used when possible to reduce 
ambiguity. 
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Learning the full conditional density p(θ|Y) requires many simulated parameter-data pairs: thousands (or hundreds of 225 

thousands) of forward simulations. This presents a challenge with some high-resolution PB simulators, where each forward 

simulation can take hours of computecomputer time to run. Many have noted that deep-learned surrogate simulators can help; 

after an initial simulation and training phase, these simulators can be run forward very efficiently. “Surrogate-derived 

approaches benefit from imposing suitable inductive bias for a given problem” (Cranmer et al., 2020). In our case, this 

“inductive bias” is applied by learning the rainfall-runoff response of our PB domain using a Long Short-Term Memory 230 

(LSTM) modelsimulator, a type of neural network that is suited for learning temporal patterns in data (Kratzert et al., 2018). 

The surrogate simulator is described in more detail in Sect. 3.3. Surrogate simulators can be used directly in the construction 

of viable posterior distributions of physical parameters and run at low-cost relative to the PB simulator.  

It should be noted that inference is always done within the context of a simulator (Cranmer, 2022). As such, if the 

structure of the model underlying the simulator structure is is not adequateadequate, it will affect inference in undesirable 235 

ways. Model Simulator structural inadequacy arises in the case when a simulator does not capture the behavior of the dynamical 

system, giving rise to mismatch between simulated and observed data (Cranmer et al., 2020). SBI conducted with structurally 

inadequate models simulators can result in overly precise and otherwise erroneous inference. Similar concerns about the quality 

of inference arise from other potential sources of epistemic uncertainty in the modeling process, such as undiagnosed error in 

the data used to condition the model.  240 

 

2.4 Multi-modelModel averaging combination and parameter determination in hydrology 

As simulator structural adequacy is not guaranteed, basing inference on one simulator structure alone is risky (Hoeting 

et al, 1999). Bayesian Model Averaging (BMA) is an approach developed in the statistical literature on linear regression 

(Madigan and Raftery, 1994) to address the this problem of model selection. Note that when we talk about ‘model selection’ 245 

here this refers to parameter set for a given simulator.  We use the term ‘model’ in the following description to stay consistent 

with the terminology of BMA. Also note that BMA is a generic method that can be applied to PB simulators or surrogate 

simulators. At the end of this section we provide more detail on how it will be applied in our framework specifically.   The 

principle is that basing inferences on one model structure alone is risky (Hoeting et al, 1999), since “part of the evidence is 

spent to specify the model” (Leamer, 1978, page 91). In its simplest form, BMA creates an updated statistical model is a 250 

method of by averaging combining the opinions of two or more competing model ones (Roberts, 1965); in the case of 

dynamical systems, the competing models are defined implicitly by simulators with differing underlying structuresstructures 

about a quantity of interest (Roberts, 1965). For example, In dynamical systems modeling, this BMA approach has been 

adopted to create weighted averages of climate forecasts derived from multiple types of models simulators, each with different 

quality of fit to observed data (i.e. Raftery et al, 2005). For exampleSimilarly, BMA has been has been used to generate 255 

streamflow forecasts from taken from multiple types of several structurally distinct rainfall-runoff models simulators (Duan et 
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al, 2006). Results from these analyses shows that the weighted combination of models results yields in more accurate inference 

and descriptions of uncertainty than those derived from any one model simulatorstructure.  

BMA is introduced here generically and extended to the current analysis at the end of the section.  

In BMA, cConsider 𝑌௢௕௦  to be observed data, such as a streamflow time series; a set of models M1,…, Mk with shared 260 

or different underlying structures; and; a quantity of interest △ to be inferred, such as a predicted prediction variable or 

underlying set of parameters 𝜃. ; and the set of competing models M1,…, MK . Each model Mk is defined by a simulator with 

unique underlying structure, which encodes the simulated data Y for possible values of 𝜃. The probability of △ in the presence 

of Yobs can be represented as a weighted average, such that:  

 265 

𝑝(△ |𝑌௢௕௦) = ∑ 𝑝(△ |𝑀௞ , 𝑌௢௕௦)௄
௞ୀଵ 𝑤௞           (3) 

Where:  

 𝑝(△ |𝑀௞ , 𝑌௢௕௦) is the posterior distribution of △ given the model under consideration 𝑀௞ and 𝑌௢௕௦, which can be 

interpreted as the conditional probability of △ given that 𝑀௞ is the best model in the ensemble set (Raftery et al, 

2005), and 270 

 𝑤௞ is the posterior model probability, or the model weight. This can be interpreted as the posterior probability 

that model 𝑀௞ is the best one (Raftery et al, 2005)  

Even in relatively simple test cases (i.e. Raftery et al., 1997), the calculation of 𝑝(△ |𝑌௢௕௦) is difficult due to the large 

number of possible models and computational and conceptual challenges related to 𝑤௞ , and so defensible approximation 

methods are required (Hoeting, 1999). In the arena of dynamical systems modeling simulation (i.e. Raftery et al, 2005; Duan 275 

et al, 2006), this problem has typically been solved iteratively as an expectation-maximization problem that simultaneously 

maximizes the likelihood of both 𝑝(△ |𝑀௞ , 𝑌௢௕௦) and 𝑤௞ , though other approaches have been employed in other domains (i.e. 

Ker and Liu, 2020). 

Generalized Likelihood Uncertainty Estimation (GLUE) is an approach to uncertainty estimation with wide use in 

hydrology (Beven and Binley, 2014). GLUE recognizes that discrepancies between observed and model-simulated data often 280 

exhibit non-random patterns, reflecting the presence of heteroscedasticity and autocorrelation resulting from errors in model 

simulator structure, inputs, and data (Beven, 2012). To account for these uncertainties, GLUE allows the modeler to assigns a 

"measure of belief" to each simulation result , reflecting their confidence in its validity. This measure of belief, or likelihood 

function, may not be formal in the statistical sense but serves to express the modeler’s practitioner’s subjective judgement 

(Beven, 2012). The selection of an appropriate likelihood is crucial, often relying on performance metrics such as Nash 285 

Efficiency (NSE), but its choice depends on the study objective (Smith et al., 2008). Likelihoods are used to develop 

acceptability limits,  and weight a set of acceptable models simulation results, and and approximate the uncertainty associated 

with the inference of parameters or other model-derived quantities. By considering allowing consideration of multiple plausible 

model simulator structures and developing a clear metric by which models to evaluate themare evaluated, GLUE provides a 
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holistic and flexible framework for parameter estimation in the presence of uncertainty error about the appropriate model 290 

related to simulator structure structure and other epistemic uncertainties (Beven, 2012).  

The current analysis adopts a strategy that combines SBI with informal likelihood weighting to address model error 

related to the simulator misspecificationstructure. This approach involves generating weighted averages of estimated parameter 

distributions from multi-model ensembles a set of simulators with different underlying structures using a form of Bayesian 

Model Averaging (BMA) (Eqn. 3). Specifically, we take the weighted average of the conditional estimates of for p(θ|Y) (Eqn. 295 

2) obtained through SBI for a set of surrogate rainfall-runoff simulators M1,…, Mk, so that a range of models and parameter 

combinations are considered. As in GLUE, the weights are derived calculated from a selected performance metric, reflecting 

the suitability of predictions simulated given observed data; simulation results where performance is below a pre-defined limit 

of acceptability, the model  are not is not considered in the weighting process. The claim is that this method of model 

combination mitigates over-confident inference due to model simulator structural inadequacy without diluting the valuable 300 

information in the parameter estimates made by SBI. The broader implication is an approach to extend the usage of SBI to 

situations where some structural error related to the we are uncertain about the appropriate model structuresimulator is 

inevitable, as is often the case for real systems. We believe that being able to extend SBI in this way could, broadly speaking, 

be part of a strategy to build morea more comprehensive understanding of the inherent uncertainties associated with 

hydrological modeling approaches. Experiment 4 evaluates whether BMA produces more accurate parameter estimates and 305 

realistic parameter spreads compared to standalone SBI. For detailed implementation specifics, rRefer to Section 3.8 for 

implementation details.  

3 Materials and Methods 

This section describes our implementation of surrogate-derived SBI, and four experiments undertaken to test it. We 

first introduce those experiments, and the goals associated with them (Sect. 3.1). Then, we describe the domain of interest, the 310 

Taylor River watershedcatchment (Sect. 3.2). The rest of the methods subsections describe the components, implementation, 

and validation of SBI, as outlined in Table 1.  

 

Table 1.  Outline of the components described in the methods section. 

Section Name Description 

3.1 Experiments  

3.2 Taylor River BasinCatchment Domain of study 

3.3 ParFlow Process-Based simulator 
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3.4 Long-Short Term Memory (LSTM) Network Surrogate simulator 

3.5 Simulation-Based Inference (SBI) Method for parameter inference  

3.6 Conditional Density Estimator, qϕ(θ|Y) Learns distribution of parameters 

3.7 Posterior Predictive Check 
 

From inferred parameters, make prediction 

3.8 Calculation of Model Weights  Method for model combination considering 
multiple simulator structures 

3.9 Evaluation Metrics Assess performance of SBI 

 315 
 

Figure 1 shows how the components of surrogate-derived SBI interrelate. In Fig. 1A, a small set of process-based 

simulations are generated by ParFlow. A LSTM neural network learns from these simulations to mimic the behavior of 

ParFlow, interpolating the relationship between climate forcings, watershedcatchment parameters M and K and output 

streamflow time series. The LSTM can be used as a ParFlow surrogate to quickly explore the streamflow response to different 320 

parameter configurations and forcing scenarios.  Throughout the rest of the paper we will refer to the ParFlow model as the 

PB simulator and the LSTM model as the surrogate simulator or the LSTM.  

We leverage the efficiency of the surrogate to conduct SBI on parameters, as depicted by Fig. 1B. Our goal with SBI 

is to estimate probable values for the watershedcatchment parameters M and K given the occurrence of a particular streamflow 

observation. To that end, we randomly sample many (n=5000) parameter configurations from a prior distribution p(θ)  and 325 

from the LSTM simulate  an equivalent number of streamflow timeseriestime series Y. This set of simulated parameter-data 

pairs is used to train a neural density estimator qϕ(θ|Y), which is a deep-learned model of the full conditional density of 

parameters given data p(θ|Y). Once trained, the neural density estimator is evaluated with a given observation to produce a 

distribution of parameters, the posterior distribution p(θ | Y = YObs), which representrepresents our ‘best guess’ of what the 

parameters should be.  The prior distribution and other details of the density estimation approach are described in Table C1 330 

and Section 3.5.    

Finally, a predictive check (Fig. 1C) ensures that the parameter estimates generate a calibrated modelsurrogate 

simulator. The simplest version of this check is to put the estimates of parameters from the previous step back into the LSTM, 

which generates a new ensemble of streamflow simulations. The simulations should resemble the observation closely if the 

simulator captures the behavior of the dynamical system well, and parameter inference was done correctly. Optionally, the 335 

parameter estimates may be weighted using a performance evaluation of the predictive check.  
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Figure 1. An illustration of surrogate-derived simulation-based inference (SBI). In subplot (a), a Long Short-Term Memory (LSTM) 
neural network learns watershedcatchment behavior from ParFlow, a process-based simulator. The implementation of SBI is shown 340 
in subplot (b), where the objective is to estimate watershedcatchment parameters θ given an observation Yobs. This parameter 
estimate is formally known as the posterior parameter distribution p(θ | Y = YObs). We randomly sample many parameter 
configurations from a prior distribution p(θ) and from the LSTM simulate an equivalent number of streamflow timeseriestime series 
Y. This set of simulated parameter-data pairs is used to train a neural density estimator qϕ(θ|Y). Subplot (c) shows the posterior 
predictive check, which involves using the parameter estimate to (ideally) generate a calibrated modelset of simulations.  345 

3.1 Experiments 

We explore the performance of SBI in four experiments.  The se experiments subject of interest is the test the ability 

of SBI to accurately and precisely estimate parameters given observations under varying conditions of uncertainty for simulator 

calibration.  The uncertainty comes from error related to the structure of the surrogate simulator.  Synthetic observations with 

known parameters are used to conduct the experiments because they are easier to benchmark; for completeness, the analysis 350 

is extended to actual catchment data in Appendix E.  To test SBI, we first draw the synthetic observations from the surrogate 

simulator, and then the harder-to-match PB simulator.  The subject of interest in these experiments is the potential mismatch 

between observations and the simulator. To test this, we vary the degree of uncertainty associated with how observations relate 

to the simulator and sStrategies to address uncertainty about the simulator structure this mismatchand the effect on parameter 

estimates are presented in the final experiments.    simulator simulatorSynthetic observations with known parameters are used 355 

to conduct the experiments because they are easier to benchmark. These The experiments are further described in Table 2 and 

below and in Table 2, and the results are explored in Sect. 4: 

1. ‘Best Case’: Find p(θ | Y = YObs_LSTM). We use as observation the streamflow generated by a surrogate simulator (e.g., 

with a given combination of parameters) and use SBI to infer the parameters. Because we are treating the simulator 

as observations in this case (i.e. we assume the simulator can by definition generategenerate data identical to the 360 

observation), no uncertainty exists about the structural adequacy of the model simulatorrepresented by the surrogate 

simulator. This experiment serves as a baseline check for our SBI workflow. 

2. ‘Tough Case’: Find p(θ | Y = YObs_ParFlow). We use a ParFlow simulation as observation and use SBI to infer the values 

of the parameters. As there is a slight mismatch between observed (in this case ParFlow simulation) and simulated 
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data (i.e. the surrogate simulator), there is some uncertainty about the structural adequacy of the model represented 365 

by the surrogate simulator. This experiment tests whether the proposed framework, where SBI is carried out with the 

surrogate simulator, can be successful given misspecification of the surrogate. 

3. ‘Boosted Case’: Find more accurate p(θ | Y = YObs_ParFlow). Building from the ‘Tough Case’, we again use a ParFlow 

simulation as observation but instead use an ensemble (‘boosted’) surrogate simulator to infer the known parameters. 

Unlike in the ‘Tough Case’, multiple forms of the surrogate simulator are considered to represent uncertainty about 370 

the appropriate model structure. In this case we’re testing whether the proposed framework can be made more robust 

to surrogate misspecification if multiple surrogate structures are combined in an unweighted way.  

4. ‘Weighted Case’: Find Bayesian Model Averaged p(θ | Y = YObs_ParFlow, w). Building from the ‘Boosted Case’, we 

add a performance measure (e.g. informal likelihood) to emphasize (‘weight’) credible and reject implausible forms 

of the surrogate simulator that have been identified by SBI. Unlike in the ‘Boosted Case’, uncertainty about the 375 

adequacy of surrogate simulator structures and configurations is explicitly evaluated using the likelihood weighting. 

This experiment tests whether the proposed framework is more robust to surrogate misspecification if competing 

surrogate structures are weighted based on the fit between simulated and observed data.   

 

Table 2. The four experiments explore how the observation and simulator type affectsaffect the quality of parameter inference.  380 

Experiment # Name Goal 

1 Best Case Infer parameters given no mismatch between observed and simulated data   

2 Tough Case Infer parameters given some mismatch between observed and simulated data  

3 Boosted Case Infer parameters given some mismatch between observed and multi-model 
simulated data if multiple surrogate structures are combined in an unweighted way.   

4 Weighted Case Infer parameters given some mismatch between observed and simulated data from 
multiple modelssurrogate structures  weighted on by their goodness of fit. 

 

3.2 Taylor River – The Domain 

The physical area of study is the Taylor River headwater catchment located in the Upper Colorado River BasinCatchment 

(Figure 2). The Taylor is an important mountain headwater system for flood control and water supply in the Upper Colorado 

River BasinCatchment (Leonarduzzi et al., 2022). This catchment is at an elevation of between 2451 and 3958 meters above 385 

mean sea level and has a surface area of around. 1144 km2. This catchment is snowmelt-dominated in summer. The 

geographical extent of the watershedcatchment is defined by the USGS streamflow gage in Almont, Colorado (ID: 09110000) 

at the basincatchment outlet. Over the full period of record (1910 - 2022), the lowest average monthly discharges are recorded 



 

14 
 

in January and February, with values of approximately 100 [cfs] (3 [cms]), after which there is a steady increase of discharge 

and generally wetness in the catchment up until June, when an average discharge of approximately 900 [cfs] (25 [cms]) is 390 

recorded. Synthetic data corresponding to the Almont gage (USGS 09110000) location are used for Experiments 1-4, as 

described in Sect. 3.1. Observed streamflow data from water year 1995 are revisited in the discussion and Appendix E.  

 

 

Figure 2. Map showing the study domain Taylor River catchment near Almont, Colorado.  395 
 

3.3 The Process-Based Simulations (ParFlow) 

We use the integrated hydrologic model simulator ParFlow-CLM to simulate groundwater and surface water flow in 

our domain. ParFlow-CLM is designed to capture dynamically evolving interactions between groundwater, surface water and 

land surface fluxes (Jones and Woodward, 2001; Maxwell and Kollet, 2006; Maxwell et al., 2015a). In the subsurface, variably 400 

saturated flow is solved using the mixed form of Richards Equation. Overland flow is solved by the kinematic wave 
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approximation and Manning’s equation. ParFlow is coupled to the Common Land Model (CLM). CLM is a land surface model 

which handles the surface water-energy balance (Maxwell and Miller, 2005; Kollet and Maxwell, 2008). It is thus well-suited 

to examine evolving watershedcatchment dynamics at the large scales (e.g., Maxwell et al., 2015b), as in the Taylor River 

BasinCatchment in Colorado, USA.  405 

The Taylor catchment is represented by ParFlow at 1 kilometer resolution, with five vertical layers of total depth 102 

meters (Leonarduzzi et al., 2022). As with Leonarduzzi et al., 2022, all the required input files - including soil properties, 

landcover, and meteorological forcings - are subset from Upper Colorado River BasinCatchment ParFlow-CLM simulations 

of Tran et al. 2022. The subsurface contains 23 separate soil and geological units.  

We explore the sensitivity of streamflow to an  large ensemble of different configurations of Manning’s roughness 410 

coefficient (M), and hydraulic conductivity (K). For the baseline configuration of the modelsimulator, K ranges between 6.162 

x 10e--03 and 2.769e x 10-01-1 [m/h] across the 23 spatial units; M is constant across the domain surface at 2.4 x 10e-06 [h/m^(1/3)]. 

An ensemble of 183 simulations is generated by systematically varying M and K.  For M since the values are spatially constant 

it is easy to adjust this single value. K is spatially variable; therefore, we apply a single scaling factor to all three dimensions 

(Table A1). To make the distinction clear, we call these ‘single’ scalar representations Ks and Ms, respectively. The values Ks 415 

and Ms used in this study are shown in Table A2. A sensitivity analysis of streamflow to parameter configurations is shown in 

Fig. A1. 

All simulations are run for a one-year period (8760 hours) using forcings from water year 1995 taken from Tran et 

al., 2020. Surface pressure outputs are converted to runoff using the overland flow utility built into ParFlow. This study focuses 

on runoff at the cell closest to USGS gage 09110000. We convert to cubic feet per second (cfs) for direct comparison to gaged 420 

data and rescale from 0 to 1. Streamflow simulations from ParFlow are relatively more sensitive to changes in K than M, as 

shown in Fig. A1.  The relatively small size of the ensemble is due in part to the computational demand of ParFlow.  The time 

for each ParFlow simulation was 28 minutes. Since there are 183 simulations in the ensemble, the total simulation time was 

about 85 hours. All simulations were undertaken in the Princeton Hydrologic Data Center (PHDC) on NVIDIA A100 GPUs. 

The purpose of generating this ParFlow ensemble is not to create the most diverse set of system realizations but provide a 425 

foundation from which to train the surrogate model simulator and test performance of the simulation-based inference approach.  

3.4 The Surrogate Simulator (LSTM) 

We employ a Long Short-Term Memory (LSTM) network to learn from our process-based simulator ParFlow. 

LSTMs  networks are neural networks that are designed to learn temporal relationships (Rumelhart et al., 1986; Hochreiter 

and Schmidhuber, 1997). They have had some use LSTMs are widely used for for prediction predictive tasks in hydrology , 430 

for example to relate (Kratzert et al., 2018) to learn how sequences of previous meteorological forcing data sequences (Kratzert 

et al. 2018) affect to streamflow at the basincatchment streamflowoutflow. In our study, an LSTM network learns the response 

of streamflow at gaged location 09110000 to forcings and parameters in the Taylor River basincatchment, as defined by the 

ensemble of ParFlow simulations described in Sect. 3.3.  
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Throughout our experiments, we useused an LSTM with 10 input features containing forcings X and parameters θ, 435 

and one output class containing streamflow Y. As in Kratzert et al. 2018, we employ a ‘look-back’ approach. For each sample, 

the LSTM ingests a sequence length of ‘l’=14 days of previous forcings weighted by scalar representations of ParFlow 

parameters (Ks, Ms) and returns streamflow the next day. More explicitly:  

 𝑌௧ାଵ =  𝐿𝑆𝑇𝑀(𝑋௧→(௧ିଵ), 𝐾௦ , 𝑀௦)          (4) 

where Yt+1 is the streamflow the next day, l is the ‘look back’ which controls the length of the input sequence used for 440 

prediction, 𝑋௧→(௧ିଵ) are vectors containing sequences of forcing data from today (i.e., day t) back to day t minus l for each of 

the 8 forcing variables. Ks and Ms are scalar representations of the ParFlow parameters hydraulic conductivity (K) and 

Manning’s roughness (M). Since these values do not vary over time each is ingested as a vector repeated ‘l’ times by the 

LSTM. 

The relevant hyperparameters used to fit the LSTM surrogate are further defined in Table A1 and B1. The 445 

computational cost of the LSTM is much less than the cost of ParFlow. The time for training the LSTM is around 15 minutes 

in the PHDC. Once trained, simulation from the LSTM is low cost (less than 6 x 10-5 seconds).  Fig. B1A shows the distribution 

of train-validation and test sets across parameter space and the performance of the LSTM relative to ParFlow on a streamflow 

time series generated by a randomly selected test parameter set, θA. θA is used throughout the results section for benchmarking. 

Hyperparameters were determined by trial and error. The LSTM captures the general streamflow behavior quite well, but not 450 

quite perfectly(Figure B1B). The Kling Gupta Efficiency (KGE) exceeds 0.7 for test data reserved from ParFlow. The LSTM 

captures the general streamflow behavior quite well, but not quite perfectly (Figure B1B). We emphasize that the goal here is 

to produce a surrogate simulator adequate for the simulation-based inference of parameters Ks and Ms.   

3.5 Implementation of Simulation-Based Inference 

The goal of SBI is to infer appropriate values flexibly and efficiently for simulator parameters, given a particular 455 

observation. SBI is illustrated in Fig. 1B. Take θ to be a vector of parameters that control a simulator, and let Y be a vector of 

simulated data. The simulator implicitly defines a conditional probability p(Y|θ), which may very well be analytically 

intractable. p(θ) encodes our prior beliefs about parameters. We are interested in inferring the parameters θ given an 

observation YObs, i.e., we would like to know the posterior probability density p(θ|Y=YObs ), after Papamakarios and Murray 

(2016): 460 

 

𝑝(𝜃|𝑌 = 𝑌ை௕௦)  ∝  𝑝(𝑌 = 𝑌ை௕௦| 𝜃) 𝑝(𝜃)            (5) 

 

where θ contains Ks and Ms, and YObs is an ‘observed’ streamflow timeseriestime series. Y is a set of simulated outputs that are 

formally equivalent but not identical to the observation YObs. Here, parameter-data pairs are simulated by a surrogate (Sect. 465 

3.4) of ParFlow. Simulations are drawn from the same forcing scenario to limit the degrees of freedom of parameter inference.  
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A conditional density estimator qϕ(θ|Y) learns the posterior density directly from simulations generated by the 

surrogate. qϕ is a learnable model - often a neural network - that fits to p(θ | Y) and can be evaluated to approximate p(θ | Y = 

YObs). (See section 3.6 for details about qϕ ).  The procedure can be summarized as follows, after Papamakarios and Murray, 

(2016):  470 

1. Propose a prior set of parameter vectors {θ}, sampled from p(θ).  

2. For each θ,  run the simulator to obtain the corresponding data vector, Y. 

3. Train the neural density estimator qϕ(θ|Y) on the simulated set from {θ, Y}. 

4. Evaluate qϕ at observed data vector YObs to generate a posterior set of parameter vectors {θ} proportional to p(θ | Y = 

YObs). 475 

The SBI workflow and architectures used in this study are derived from a python toolbox for simulation-based inference 

(Tejero-Cantero et al., 2020). We direct the reader to Papamakarios and Murray (2016) for a detailed description of the 

structure, training, and evaluation of a neural conditional density estimator for simulation-based inference. Others (Lueckmann 

et al. 2017; Greenberg, Nonnenmacher, and Macke 2019) have built on this idea to introduce MCMC-like approaches to 

sequential learning of the posterior at observations to make inference more efficient. We employ a sequential learning 480 

procedure in our workflow, as described in Appendix C.2. The hyperparameters and architectures used in SBI are shown in 

Table C1.  

3.6 Neural Conditional Density Estimators for SBI  

The conditional density estimator qϕ(θ|Y) is an essential ingredient of SBI. The neural conditional density estimator 

differs from conventional neural networks (such as the LSTM) in two important ways. First,  it learns a conditional probability 485 

distribution, as opposed to a function. Second, it represents the ‘inverse’ model – the probability of parameters given data p(θ 

| Y) – as opposed to the dependency of data on parameters, which is encoded in ‘forward’ simulators like ParFlow and its 

surrogate, the LSTM. Once trained, the neural conditional density estimator is evaluated with an observation to infer a 

distribution of plausible parameters, the posterior distribution p(θ | Y = YObs) (Fig. 1B).  

Conditional density estimators create a model for “a flexible family of conditional densities”, parameterized by a 490 

vector of parameters (ϕ) (Papamakarios and Murray, 2016). Density estimator parameters are not to be confused with the 

simulator parameters of PB simulators or its surrogate, θ. The latter are the target of inference while the former parameterize 

the density-estimated posterior probability and must be learned or derived to conduct inference of simulation parameters. Deep 

neural networks provide new opportunities to learn ϕ for complex classes of densities, which gives rise to the term neural 

conditional density estimator. 495 

Mixture Density Networks (MDNs) are an intuitive class of conditional density estimators capable of modeling any 

arbitrary conditional density (Bishop, 1994). They take the form of a mixture of k (not hydraulic conductivity, K) Gaussian 

components, as below.  
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𝑞థ(𝜃|𝑌) = ∑ 𝛼௞𝒩(𝜃|𝑚௞
⬚
௞ , 𝑆௞)           (6) 500 

 

where the mixing coefficients (α), means (m), and covariance matrices (S) comprise the neural density parameterization, ϕ. 

They can be computed by a feedforward neural network.  

Training an MDN is a maximum likelihood optimization problem (Bishop, 1994). Given a training set of N simulation 

parameters and data pairs, {θ, Y}, the objective is to maximize the average log probability (or minimize the negative log 505 

probability) with respect to the parameters, ϕ. 

 

argmaxథ
ଵ

୒
∑ log 𝑞థ(𝜃௡|𝑌௡)௡            (7) 

 

For a fuller description of the parameterization and training of neural density estimators, see the supplementary 510 

material in Papamakarios and Murray (2016) or the original write-up in Bishop (1994). This study uses a specialization of this 

family of neural networks called a Masked Autoencoder for Density Estimation, further described in Appendix C.1.  

3.7 Posterior Predictive Check 

A crucial diagnostic step in the SBI workflow is to check the ability of the simulator to characterize process(es) of 

interest after inference has been conducted (Cranmer et al., 2020). To be more explicit, this step checks that parameters from 515 

the inferred posterior p(θ | Y = YObs) can simulate streamflow data (Y) consistent with the observation (YObs) when plugged 

back into the simulator.  The simulated data should ‘look similar’ to the observation (Tejero-Cantero et al., 2020). Gabry et al. 

(2019) describe this type of model evaluation as a ‘posterior predictive check’. This predictive check is represented by the 

FigFig. 1C.  

Here, we conduct posterior predictive checks by drawing a small number of parameter sets from our inferred 520 

parameter posterior density. In our workflow, the inferred posterior parameter density is represented by an array containing 

thousands (n=5000) of plausible parameter sets. The frequency of their occurrence is 'probability weighted', in the sense that 

there are very few occurrences of parameter sets in the 'tails' and many occurrences close to the mean, and improbable 

parameter sets do not exist at all. For our posterior predictive check, we randomly sample (n=50) parameter sets from this 

frequency-weighted parameter posterior array. We use these parameter samples to generate an ensemble of ‘predicted’ 525 

streamflow time series using the LSTM. 

3.8 Calculation of Model Weights 

Bayesian Model Averaging (BMA) is a method of combining different model simulator forms structures to reduce 

the risk of overfitting on prediction or inference (Madigan and Raftery, 1994). The implementation explored here uses an 

informal likelihood measure to assign unique probabilities, or weights, to models the SBI-derived parameter estimates of some 530 
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number of simulators. Note that the simulators could be PB or surrogates. The structure of each simulator may be unique, in 

that the mathematical description of the relationship between streamflow and parameters 𝜃 differs. (both model structures and 

parameters) inferred by simulation-based inference. Specifically, the sets of parameters estimated by SBI are resampled using 

weights based on the fit of observed and simulated streamflow to estimate a new probability density. (Note that in this generic 

example the simulator could be the PB simulator or the surrogate simulator). Given a set of K K models (M1, Mk,…, MK) 535 

structuresdefined implicitly by the simulators considered, M1, Mk,…, MK, this weighted estimated density, 𝑝(𝜃|𝑌ை௕௦ ,  𝑤௞), is:  

is:  

𝑝(𝜃|𝑌ை௕௦ ,  𝑤௞) = ∑ 𝑝(𝜃|𝑀௞ , 𝑌௢௕௦)௄
௞ୀଵ 𝑤௞          (8)  

 

where 𝑝(𝜃|𝑀௞ , 𝑌௢௕௦) is equivalent to the posterior parameter density, 𝑝(𝜃|𝑌 = 𝑌ை௕௦), from SBI (eq. 5); and 𝑤௞  is the 540 

model probability or weight, which is based on the goodness of fit of simulated data from the posterior predictive check. All 

probabilities are implicitly conditional on the set of all models being considered. 

 

In the current application, weights are calculated using the informal likelihood 𝐿௜௞  for simulations drawn from the  

posterior predictive check. Simulations are defined as values for parameters 𝜃 and resulting simulated data Y. The informal 545 

likelihood is , a measure of acceptability for each simulation result result based on its error relative to observed data. Model 

Simulations with configurations with likelihood measures below a pre-defined limit of acceptability are rejected; the set of 

remaining models simulations are is assumed to be equally probable prior to weighting. Weights for each individual model 

simulator configuration in the set K of structures, each composed of a set of I parameter configurationssimulations, is equal to:  

 550 

 𝑤௞ =
௅೔ೖ

∑ ∑ ௅೔ೖ
಺
೔సభ

಼
ೖసభ

          (9) 

 

The informed reader will recognize disagreement and inconsistent usage in the literature about the likelihood function 

(Beven, 2012; Nearing et al, 2015). We acknowledge legitimacy in all camps, but here adopt a subjective, or informal, 

likelihood as sometimes used in Generalized Likelihood Uncertainty Estimation (GLUE). We choose to use the Kling Gupta 555 

Efficiency (KGE; Gupta et al., 2009) as the likelihood metric for its utility and history rainfall-runoff model 

simulationassessment. Furthermore, we note that the method is not dependent on a specific metric and others could apply this 

approach using a different metric if they choose.   The KGE metric is computed using the following equation: 

 

 𝐾𝐺𝐸 = 1 − ඥ(1 − 𝛼)ଶ + (1 − 𝛽)ଶ + (1 − 𝜌)ଶ       (10) 560 

 

Where α is the ratio of the standard deviation of simulated and observed streamflow data, respectively; β is the ratio 

of their means; and ρ is the correlation coefficient in time.  

Commented [RH21]: Comment 1.17 
Addressed 



 

20 
 

The weighted probability density 𝑝(𝜃|𝑌ை௕௦ ,  𝑤௞) is estimated using a distribution samplingn algorithm that can 

broadly be explained as sampling from a distribution, where the distribution represents the weights of each distinct parameter 565 

configuration simulation i under each model structure simulator k. Model Simulation indices are sampled by mapping a random 

target probability between 0 and 1 to the cumulative distribution of model simulation weights. This approach can be used to 

sample sets of parameters from the SBI-inferred posterior parameter density weighted to high-likelihood model configurations 

simulations identified by the posterior predictive check. 

3.9 Evaluation Metrics 570 

The performance of simulation-based inference is evaluated in terms of accuracy and precision. First, we evaluate 

performance with respect to the parameter posterior (the inferred parameters); and second with respect to the posterior 

predictive check (the ability to generate realistic data using the inferred parameters).  

3.9.1 Evaluating the Posterior Parameter Density 

Accuracy of parameter inference is evaluated using the Mahalanobis distance, DM(θTrue). Mahalanobis distance 575 

measures the distance between a point and a distribution of values after Maesschalck et al. (2000), such that: 

𝐷ெ(𝜃்௥௨௘) = ට൫𝜃்௥௨௘ − 𝜃ఓ൯
்

𝛴ିଵ൫𝜃்௥௨௘ − 𝜃ఓ൯             (11) 

 

where θTrue is the set of observed or ‘true’ parameters; θμ is the mean of the posterior distribution p(θ | Y = YObs); and Σ is the 

covariance matrix of p(θ | Y = YObs). In essence, Mahalanobis distance measures how far off our parameter estimate is from 580 

the ‘truth’. For this study values less than two are defined as acceptable (within ~two standard deviations); this threshold was 

identified via trial and error. 

Precision of parameter inference is evaluated in terms of the determinant of the covariance matrix of the inferred 

parameter posterior, |Σ|. The determinant can be interpreted geometrically as the ‘volume’ contained by the covariance matrix, 

and by extension the inferred parameter posterior distribution. Larger determinant values are less precise; smaller values more 585 

precise (4.3 Determinants and Volumes). In this study we define values less than 10-6 as acceptable, identified via trial and 

error. 

3.9.2 Evaluating the Posterior Predictive Check 

We evaluate the ability of the simulated ensemble of streamflow to adequately characterize the observed streamflow 

using the root mean squared error (RMSE) between each (n=50) simulated streamflow time series (Y) and the observed 590 

streamflow time series (YObs). RMSE is calculated for each predication as the square root of the mean squared error, such that: 
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𝑅𝑀𝑆𝐸(𝑌) = ට
∑ ൫௒೟ି௒ೀ್ೞ೟൯

మ೅
೟సభ

்
            (12) 

 

where 𝑌௣௥௘ௗ ௧
is the simulator-predicted streamflow at time t, taken from 𝑌௣௥௘ௗ; 𝑌ை௕௦௧

 is the observed or true streamflow at time 595 

t, taken from 𝑌ை௕௦; T is the number of times (days) in the streamflow time series. 

Accuracy of the simulator characterization of streamflow is the mean of the RMSE calculated for all n=50 Y relative 

to YObs (RMSEAve). Precision of the simulator characterization of streamflow is assessed as the standard deviation of the RMSE 

calculated for all n=50 Ypred relative to YObs  (RMSEstd). For both the mean and variance RMSE values less than 0.01 [scaled 

streamflow units], identified via trial and error, are acceptable.   RMSE was selected to evaluate the posterior prediction out 600 

of convenience.  Other metrics, such as KGE, could also be used.   

4 Results 

Here we present the outcomes of the three experiments described in Sect. 3.1. The first two experiments showcase 

inference problems that increase in difficulty from the easy best case (Sect. 4.1) to the hard tough case (Section 4.2). The final 

experiments offer workarounds by way of the boosted case (Sect. 4.3) and weighted case (Sect 4.4). The performance of the 605 

methods explored in the three experiments is first discussed in terms of one shared benchmark scenario. Then, we show the 

results of the three experiments on a larger shared set (n=18) of benchmark scenarios (Sect. 4.5).  

4.1 Experiment 1 – Best Case 

For the Best Case scenario, we attempt to infer the parameters of synthetic observation(s) taken from the trained 

surrogate simulator, such that p(θ | Y = YObs_LSTM).  We first infer the parameters of just one randomly selected streamflow 610 

observation, denoted with an ‘A’ (YObs_LSTM_A). The set of ‘benchmark’ parameters (θA) used to generate the underlying 

simulation are approximately 0.60 for Ks, and 0.85 for Ms. θA is also our benchmark in parameter space for Experiments 2 and 

3.  
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 615 

Figure 3. The parameter posterior estimate for observation YObs_LSTM_A closely matches the true parameter values in the ‘best’ case. 
Subplots (a), (b) and (c) comprise a pair plot of posterior densities across the full possible parameter space; subplot (d) is zoomed in 
for detail. The posterior density of MS (a) and KS (b) are shown individually, and together (c). Axes are expressed in both the 
scale/transformed and unscaled units of the parameters. The ‘true’ parameters are denoted by the red line and circle, respectively.  
 620 

We accurately and precisely estimate parameters for our benchmark case (Figure 3). The pair plot approximates the 

posterior parameter density evaluated by the neural density estimator at the observation. In individual parameter space, 

narrower peaks (in blue) correspond with more confident and precise parameter estimates. In shared parameter space (c), zones 

of deep purple are effectively zones of no probability; zones of blue-green-yellow are zones of high probability. The benchmark 

parameters (i.e., the parameters used to generate the simulation) are denoted by the red line and circle, respectively. Accuracy 625 

is evaluated by the Mahalanobis Distance, which is 3 x 10e-1-01; thus, the ‘true’ parameter set can be thought of as less than 

one ‘standard deviation’ from the central tendency of the inferred distribution. Precision is estimated by taking the determinant 

of the covariance matrix.  The determinant of the covariance matrix is 9 x 10-e-08. This is well below our threshold of 1 x 10e-

06 for sufficiently precise parameter inference.   

 630 
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Figure 4. Results of the posterior predictive check on synthetic observation YObs_LSTM_AAYobs in Experiment 1 (‘base’ case). Subplots 
(a) shows streamflow simulations resulting from inference of p(θ|Y = YObs_LSTM_AAYobs). The ensemble of predictions is bounded by 
blue, and observation in red. . Blue lines represent time series of upper- and lower- streamflow values in this ensemble, and the red 
line represents the observation YObs_LSTM_A. In subplot (b), we zoom into the area of greatest uncertainty between days 200 and 300, 635 
which correspond to the spring snow melt-off.     
 

Taking this one step further we can use the inferred parameter distributions to generate an ensemble of streamflow 

simulations using the LSTM model and compare this to the observed streamflow (referred to as our posterior predictive check).  

As show in Figure 4a, the inferred parameters generate simulation results that characterize the observed streamflow observation 640 

reasonably well.  Greater uncertainty exists around higher streamflow values over the course of the water year, as shown by 

the increasing width of the uncertainty envelope after day 200 (Figure 4B). Note that this is the time of year during which 

snow melt-off occurs in the Taylor River BasinCatchment. Mean and standard deviation of streamflow error are approximately 

6e6 x 10-03 and 4 x 10e--03 [scaled streamflow units], respectively.  

4.1.1 Inference for many observations 645 

In addition to conducting this analysis for one observation as described, an advantage of SBI is the low computational 

expense of evaluating new observations. Simulations from the process-based simulations (i.e., ParFlow) are slow and scale 
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linearly with the number of simulations. It takes ~105 times longer to generate a ParFlow simulation (1680 seconds) than to 

evaluate one observation YObs using a trained neural density estimator (0.045 seconds) on a high performancehigh-performance 

computer system allocation of one CPU node with four gigabytes of working memory. Put another way, after an upfront sunk 650 

cost to learn the distributions, we can evaluate new observations, YObs, practically for free. Many other techniques to parameter 

determination are not ‘amortized’ in this way (Cranmer et al., 2020). For example, Approximate Bayesian Computation (ABC) 

requires restarting most steps in the inference process when new data comes available (Vrugt and Sadegh, 2013). This property 

of SBI can be handy in domains where the system structure (parameters) stays the same, but new observations come available 

all the time - as can be the case in watershedcatchment hydrology. In Appendix D, we extend Experiment 1 to evaluate the 655 

posterior parameter density for many synthetic observations (YObs_LSTM_i). 

4.2 Experiment 2  –  Tough Case 

Experiment 2 is our tough case. We attempt to infer the parameters of synthetic observations from ParFlow, such that 

p(θ | Y = YObs_ParFlow). We do this using the same realization of the neural density estimator from Experiment 1 (the best case). 

The ‘tough’ case is a realistic test of the robustness of parameter inference. Specifically, it tests our ability to evaluate data 660 

from a different source. Unlike in the best case, we must deal with uncertainties related to the goodness of fit between the 

simulator (the LSTM surrogate) and ‘observation’ (the underlying ParFlow modelsimulator). We generate the posterior 

parameter and predictive densities to the benchmark case (θA) explored in Experiment 1. The only difference is that 

YObs_ParFlow_A is a simulation generated by ParFlow, and not the surrogate.  

 665 
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Figure 5. Results of parameter inference and posterior predictive check on synthetic observation YObs_ParFlow_A in Experiment 2 
(‘tough’ case). Subplots (a) and (b) show overconfident parameter inference that still results in well-constrained posterior predictive 
check.  
 670 

Figure 5 plots the results of experiment two.  Here we see that the quality of inference is somewhat degraded for the 

tough case compared to the best case. Parameter inference here is overconfident; it is precise but biased as indicated by the 

tight probability distributions and the difference between the peak probability and the observation (indicted by the red line in 

Figure 7A). The true parameter value does not plot in the area corresponding to highest probability. The determinant is 6 x 

10e-08, which is within the same order of magnitude as the best case. However, the Mahalanobis Distance is much higher, at 675 

7e0. Thus, the ‘true’ parameter set can be thought of heuristically as approximately seven ‘standard deviations’ from the central 
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tendency of the inferred distribution. Visual inspection of Figure 7B shows that streamflow simulations yielded by inferred 

parameters still characterize the synthetic streamflow observation well. However, average error is roughly twice as high for 

the tough case compared to the best case (1 x 10e-02 compared to 6 x 10e-03), which is approximately equal the acceptability 

criterion described in Sect. 3.7.  680 

Overconfident posterior estimates are a result of the misfit between our LSTM surrogate compared to ParFlow (Figure 

B1B). One interpretation of overconfident parameter inference is that the relationship between data (streamflow) and 

parameters (Ms, Ks) in the LSTM surrogate does not quite represent their relationship as it exists in ParFlow. These differences 

are not unexpected, because ParFlow has parameters that vary across a three-dimensional domain but are lumped together in 

the LSTM (See also Appendix A). This bias in the surrogate simulator increases the possibility of overconfidence in the 685 

conditional density learned by the neural density estimator. We consider this suboptimal performance in parameter inference 

a consequence of ‘surrogate misspecification’, as described further in Sect. 6.  

4.3 Experiment 3 – Boosted Case 

A desirable approach tTo prevent overfitting by the neural density estimator and circumventing overconfident 

parameter posteriors,  is we may use multiple `weak` LSTM surrogates as opposed to one ̀ strong` surrogateto make the LSTM 690 

surrogate simulator less biased. In our study, wWe utilize an ensemble of surrogate LSTM simulators with distinct bias 

stemming from surrogate misspecification subject to the initialization and selection of training data. That ensemble is then 

used to generate the set of simulated pairs {θ, Y} to train a new neural density estimator. The underlying principle is that the 

overall behavior of an ensemble of surrogate simulators in aggregate may not be biased, even if each individual simulator has 

its own bias.  695 

Experiment 3 is our boosted case. As in Experiment 2, we attempt to infer the parameters of synthetic observation(s) 

reserved from ParFlow, p(θ | Y = YObs_ParFlow). As opposed to Experiments 1-2, we learn the conditional probability from an 

ensemble of 10 surrogate LSTM simulators instead of just one. We refer to the LSTM ensemble as a ‘boosted’ surrogate. 

Compared to the LSTM used in Experiment 1 and 2, these LSTMs are trained for fewer epochs (100, as compared to 300) and 

on a smaller random split of the data (0.7, as compared to 0.6). The reserved test data is the same across the LSTMs for 700 

Experiments 1, 2, and 3. Note that we don’t use an adaptive learning algorithm such as AdaBoost (Freund and Schapire, 1997), 

and instead we equally weight each ‘weak’ LSTM simulator. The neural conditional density estimator is trained by taking a 

random draw from the ensemble of LSTMs and using the selected LSTM to generate a forward simulation of streamflow from 

a randomized parameter combination. Thousands of such draws are repeated until the conditional density has been sufficiently 

learned (see Appendix B for details), at which point it can be utilized for parameter inference.  705 
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Figure 6. Results of parameter inference and posterior predictive check on synthetic observation YObs_ParFlow_A in Experiment 3 
(‘boosted’ case). Subplots (a) and (b) show accurate parameter inference that is somewhat less precise, resulting in a wider but still 
well-constrained posterior predictive check.  
 710 

Results of the boosted case in Experiment 3 show that we may be able to work around the issue of overconfident 

posteriors encountered in the tough case in Experiment 2. Fig. 6A shows precise and accurate parameter inference for our 

benchmark case in Experiment 3. The benchmark parameter values are in the area identified by the highest probability, as 

opposed to in Experiment 2. We note that the area of highest density is somewhat larger than in Experiment 2. The determinant 

is 5 x 10e-07, which is about an order of magnitude higher than the tough case, 6 x 10e-08. The Mahalanobis Distance is 1e0. For 715 

comparison, Mahalanobis Distance in the previous ‘overconfident’ experiment was 7e0. The inferred parameters generate 
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streamflow simulations that characterize the synthetic streamflow observation well, as shown by the posterior predictive check 

(Fig. 6B). We note that compared to Experiment 2 (Figure 5B) our simulations are somewhat more variable, as shown by the 

larger distance between the larger uncertainty envelopethe minimum and maximum simulated data. The average streamflow 

error is about twice as high for the boosted case as compared to the tough case, (2e2 x 10-02 compared to 1 x 10e-02). The 720 

standard deviation if the error is also greater (5 x 10e-03 compared to 2 x 10e-03). The sacrifice in precision with respect to both 

parameter inference and the posterior prediction is a consequence of using an ensemble of surrogates to simulate each 

parameter set.  

4.4 Experiment 4 – Weighted Case 

In the preceding Experiments, we aimed to rectify overconfident parameter estimates arising from SBI due to 725 

surrogate misspecification. Adding an informal likelihood measure to the inferential paradigm may help to address the issue 

of overconfident parameter estimates by decreasing the importance of low-credibilitylow credibility modelssimulator 

structures. Experiment 4 demonstrates our weighted case. As in Experiments 2-3, we attempt to infer the parameters of 

synthetic observation(s) reserved from ParFlow, p(θ | Y = YObs_ParFlow). We extend the competing set of surrogate LSTM 

simulators from Experiment 3, each with distinct misspecification relative to ParFlow, to train a set of competing neural density 730 

estimators. Once These are evaluated with the synthetic observations observed datato generate posterior parameter estimates 

and the associated posterior predictive check for each simulator considered. , a metric of simulation quality representing the 

modeler’s belief in the results of inference is used to re-weight the inferred parameter sets drawn from each of the density 

estimators. As opposed to Experiments 1-3, we use the Kling Gupta Efficiency (KGE) of the simulated data drawn from the 

posterior predictive check to weight the importance of each set of inferred parameters. The added metric, the informal 735 

likelihood, emphasizes credible model simulator structures and configurationssimulations (values for parameters 𝜃  and 

resulting simulated data Y),, and safeguards against those that deviate significantly from observations.  

Experiment 4 demonstrates our weighted case. As in Experiments 2-3, we attempt to infer the parameters of synthetic 

observation(s) reserved from ParFlow, p(θ | Y = YObs_ParFlow). As opposed to Experiments 1-3, we use the Kling Gupta 

Efficiency (KGE) of the simulations resulting from the posterior predictive check as an informal likelihood measure to weight 740 

the importance of the inferred parameters. Model configurationsSimulations scoring less than persistence (defined by setting 

next week’s predicted data equal to today’s observed data) are considered not credible and assigned a weight of zero. The 

weights, w, are used to condition sampling from p(θ | Y = YObs_ParFlow). Weighted sampling yields a new set of inferred 

parameters p(θ | Y = YObs_ParFlow, w). We term this quantity the weighted posterior parameter density, an output of the 

methodology described in Section 3.8. 745 

Table 3 characterizes the parameter estimates from the ensemble set of competing surrogate models simulators and 

posterior density estimates estimators for the benchmark scenario, YObs_ParFlow and θA. Individual ensemble members Each 

simulator are is a separate rows, with the resultant weighted model outcome last. Some surrogate models simulators contain 

simulator configurations that are more credible than others, where credibility is represented by the average KGE of simulated 
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data taken from the posterior predictive check for each surrogate. The average KGE (second column) for most members 750 

simulators clusters above 0.90, and for members 7 and 9 is near a perfect match of 1.00. On the other hand, members Simulators 

3 and 6, with have surrogate simulator configurations average KGE below 0.80, are generally less credible. The weighted KGE 

of 0.94 (Table 3, second column) indicates that the performance of the weighted model outcome most resembles the most-

credible simulator sconfigurations, but also incorporates information from less-credible ensemble membersones.  

 755 

 

Table 3. Calculation of the weighted model posterior density from a set of competing surrogatesurrogates models for baseline 
synthetic observation YObs_ParFlow_A. 

Model1Simulator1 KGE2 
Cumulative 
Weight (%)3 

Rejections 
(%)4 

DM
5 |Σ|5 

9 0.97 13.5% < 0.200 % 3.8 2.9 x 100E-07 

7 0.97 13.4% < 0.200 % 0.3 7.2 x 100E-08 

5 0.96 13.3% < 0.200 % 2.3 1.40 Ex 10-07 

4 0.96 13.2% < 0.200 % 5.4 1.2 0Ex 10-07 

8 0.95 13.1% < 0.200 % 4.6 1.2 x 100E-07 

2 0.90 12.4% < 0.200 % 3.8 1.30E3 x 10-07 

0 0.86 11.7% 2.20% 1.7 1.20E2 x 10-07 

1 0.85 9.34% 23.0% 7.0 7.5 x 10 0E-07 

3 0.78 0.045% 99.6% 4.5 1.7 x 100E-07 

6 0.77 < .00100% 100.0% 6.6 1.8 x 100E-07 

Weighted6 0.94 -- -- 1.1 3.0 x 100E-06 
1. Members of the ensemble of Competing surrogate  simulatorsmodels , and their the probability associated neural density densities they implicitly 

define estimators (n=109). 760 
2. Average Kling Gupta Efficiency (KGE) calculated from unweighted posterior predictions. 
3. Each posterior predictive simulation is weighted by the associated KGE; simulation weights are zero where poorer than persistence (KGE<0.81). The 

value in this column is the sum of the individual weights of 5000 predictive simulations taken for each surrogate model. 
4. Count of rejected (zero weight) simulator simulations configurations divided by the total number of configurations simulations for each model 

ensemble membersurrogate. 765 
5. Mahalanobis Distance, DM, and determinant, |Σ|, calculated by comparing are θ, Ms = 0.85 and θA Ks = 0.60 to the unweighted parameter posterior p(θ | 

Y = YObs_ParFlow_A) for each surrogate model  
6. The weighted posterior parameter density p(θ | Y = YObs_ParFlow, w), derived by resampling the posterior densities using individual weights. 
 

The simulator weights, which are calculated from individual simulation KGEs, are presented in the third column. The 770 

ensemble members simulators with many that produce many credible configurations simulations have a higher weight, or 

importance, in the weighted model. The weights, which are calculated from the sum of KGEs of the simulator configurations, 

are presented in the third column as the cumulative weights. Because predictive checks from members simulators 8, 4, 5, 7, 

and 9 contain an equivalent number of credible simulator configurationssimulations, they are nearly equally weighted. 

Surrogates 1, 3, and 6 have many rejected simulations, which are assigned a weight of zero. Less importance assigned to some 775 

members in the weighted model is derived from lower likelihoods and rThe percent of simulations drawn from the posterior 
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predictive check for each simulator with KGE less than the limit of acceptability (0.81) is ejectionshown in the fourth column, 

(fourth column) where KGE is less than the limit of acceptability (i.e. <0.81). Surrogates 1, 3, and 6 have many rejected 

configurations, which are assigned a weight of zero.  

The relative accuracy of parameter estimates is presented in the fifth column as the Mahalanobis Distance, DM, of the 780 

posterior parameter density for each surrogate. The parameter estimates derived from the weighted model posterior density is 

considered are more accurate than those drawn from all but more accurate than all but simulator 7one of the ensemble members. 

The relative accuracy of parameter estimates is presented in the fifth column as the Mahalanobis Distance, DM, of the posterior 

parameter density for each surrogate. This increase in accuracy reflects in part that higher-weighted members are associated 

with more-accurate parameter estimates compared to those that are lower-weighted. Note that the weighted parameter estimate 785 

is also less precise compared to that of the individual surrogates, as represented by the determinant |Σ| in column six.  
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Figure 7. Results of parameter inference and posterior predictive check on synthetic observation in Experiment 4 (‘weighted' case). 
Subplot (a) shows accurate parameter inference that is somewhat less precise and discontinuous, focused on model simulator 790 
structures and parameter combinations that are defined by associated with a higher informal likelihood. The result is a narrow, 
well-constrained posterior predictive check in (b).  

 

Results of the weighted case in Experiment 4 demonstrate that it is a viable approach to the issue of overconfident 

posteriors encountered in the tough case in Experiment 2. Fig. 7A shows accurate parameter inference for our benchmark case 795 

in Experiment 4. As in Experiment 3, the benchmark parameter values are in the area identified by the highest probability. The 

Mahalanobis Distance, 1.1, is like that of Experiment 3. The geometry of the area of the highest density differs from 

Experiment 3, covering a larger area due to differences in the unweighted parameter estimates associated with each surrogate. 

As a result, the parameter estimate is less precise: the determinant |Σ| is 3 x 10e-06, which is about an order of magnitude higher 

than the boosted case, 5 x 10e-07. The inferred parameters generate streamflow simulations that characterize the synthetic 800 

streamflow observation well, as shown by the posterior predictive check (Fig. 7B). We note that compared to Experiment 3 

(Figure 6B) our simulations are about as variable. The average streamflow error RMSE is similar for the boosted case as 

compared to the weighted case (2 x 10e-02). The standard deviation of the error is also very similar (5 x 10e-03 compared to 6e6 

x 10-03).  

4.5 Summary of Experiments 1-4 805 

Previously, we compared the performance of simulation-based inference in Experiments 1 (best case), 2 (tough case), 

3 (boosted case), and 4 (weighted case) on only one benchmark parameter set. In this section, we expand the comparison of 

SBI across the experiments to a larger number (n=18) of parameter sets and corresponding observations. In the case of 

Experiments 1 and 2, the same neural density estimator was utilized to conduct inference. For Experiment 3, an ensemble 

approach was used to create one new neural density estimator; for Experiment 4, likelihood-weighted parameter estimates 810 

from an ensemble of neural density estimators was used. In the case of Experiments 2- 4, the mock data are the same benchmark 

streamflow simulations from ParFlow; for Experiment 1, the observations are taken from the surrogate. All four experiments 

utilize mock data corresponding to the same test parameter sets, to make an apples-to-apples comparison. For reference, those 

test parameter sets are plotted relative to parameter space in the FigFig. B1A. The results of the analysis of multiple (n=18) 

parameter sets are shown by the box plots in Fig. 8.  815 

4.5.1 The precision and accuracy of parameter inference 

In general, the parameter estimates from the four experiments are accurate and precise, as shown in Fig. 8A and 8B. 

The best case (Experiment 1) tends to be both precise and accurate. Compared to Experiment 1, the tough case (Experiment 

2) tends to be just as precise but less accurate, while the boosted case. This is to be expected as we made the problem harder 

for Experiments 2-4 by not assuming a perfect surrogate.  Experiment 3 tends to be less precise but more accurate than 820 
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Experiment 2. Compared to Experiment 3, the weighted case (Experiment 4) tends to be yet less precise and more accurate. A 

couple of second-order discussion points arise from Figs. 8A and 8B.   

The resulting box plots of the determinant, a metric for the precision of inference, are shown in Fig. 8B. Here we see 

that the training of the conditional density estimator – and not the source of the observations – seems to define the precision 

of inference. The box plots show parameter inference is more precise (i.e., the determinant smaller) for Experiments 1 and 2, 825 

compared to Experiments 3 and 4. Experiments 1 and 2 use synthetic observations from different sources (the LSTM surrogate 

and ParFlow, respectively), however they are both evaluated using the same neural conditional density estimator; note the 

similar behavior of the determinant in the first two experiments. On the other hand, the determinant behaves quite differently 

in Experiment 2 compared to Experiments 3 and 4; all three experiments use synthetic observations from ParFlow, butParFlow 

but use different configurations of the neural conditional density estimator. In the case of Experiment 3 (the boosted case), 830 

differences within an ensemble of LSTM surrogates are lumped into the training of one neural density estimator; in the case 

of Experiment 4 (the weighted case), those differences are incorporated in the training of separate neural density estimators. 

Results show that Experiment 3 is associated with greater precision in parameter inference (i.e. smaller determinant) compared 

to Experient 4, as shown by the expanded volume of the parameter estimates in Figs. 7A compared to 6A. The lumping 

approach in the boosted case may smooth differences between the surrogates, de-emphasizing parameter combinations in the 835 

tails of the separated posterior densities used in the weighted case. The likelihood-weighting and limits of acceptability also 

influence the distribution of the parameter estimate, but not in a manner that significantly decreases its precision. More 

fundamentally, the precision of parameter inference for those methods seems to reflect the simulator(s) (i.e., the variety in 

simulated responses, Y, to parameter configurations, θ), and not contain much, if any, information about the goodness-of-fit 

between observations, Yobs. and simulated data, Y.3 840 

Box plots of the Mahalanobis4 distance, a metric of the accuracy of inference, are shown in Fig. 8A. The box plots 

show that parameter inference in Experiments 2 and 3 degrade in accuracy compared to Experiment 1, while parameter 

inference from Experiment 4 is nearly as accurate. The box plots also demonstrate that parameter inference is in general more 

accurate for the boosted case (Experiment 3) compared to the tough case (Experiment 2). However, the Mahalanobis distance 

is greater at some outlier points in the boosted case (Figure 7B). What this means is that while the boosted case yields more 845 

accurate inference in some parts of parameter space (for example, the benchmark parameter set θA explored throughout the 

earlier results sections), this implementation is no silver bullet for averting overconfident parameter estimates. On the other 

hand, the weighted case introduced in Experiment 4 is consistently associated with much smaller Mahalanobis distances 

compared to either the tough or boosted cases. The apparent accuracy of the weighted case can be attributed to the likelihood-

 
3 This behavior is also observed in Figure D1A, which shows that the determinant exhibits a fixed pattern across parameter 
space. 
4 Note that Mahalnobis distance is a precision-weighted metric of distance, unlike Euclidean distance. These numbers should 
not be considered raw distance. 
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based weighting and limits of acceptability methodology, as well as the decrease in precision due to drawing from a set of 850 

competing density estimates. 

 

 

Figure 8: Comparative plots showing the performance of simulation-based inference of parameters and predicted quantities across 
a set of n=18 test data. We compare the results of Experiments 1 (‘base’ case), 2 (‘tough’ case), 3 (‘boosted’ case), and 4 (‘weighted’ 855 
case). Subplots (a) and (b) show the accuracy and precision of parameter inference. Accuracy is shown in subplot (a) via the 
Mahalanobis Distance of the posterior parameter density. Precision is shown in subplot (b) via the Determinant, |Σ|. Subplots (c) 
and (d) show the accuracy and precision of the posterior predictive check. Subplot (c) shows the average of the error, RMSEAve of 
streamflow ensembles relative to ‘truth’, which can be thought of as a measure of accuracy. Subplot (d) shows the standard deviation 
of the error, RMSEstd of streamflow ensembles, which can be thought of as a measure of precision. Values closer to the x-axis are 860 
more desirable. 

4.5.2 The precision and accuracy of posterior predictions 

Taking this one step further we can use the inferred parameter distributions to generate an ensemble of streamflow 

simulations using the LSTM and compare this to the observed streamflow (referred to as our posterior predictive check).  As 

shown in Fig. 8C and 8D, the posterior predictions are precise, and generally fairly accurate. Fig. 8C shows the average of the 865 
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error (RMSEAve) between the simulated streamflow timeseriestime series and the observed time series, with lower average 

error corresponding to greater accuracy. Streamflow prediction accuracy decreases between Experiments 1, 2, and 3. This is 

represented by the fact that the RMSEAVE increases nearly 3-fold across each of our experiments (median ~0.005 in best case, 

~0.010 in best case, and ~0.015 in boosted case [scaled streamflow units]). The degradation in posterior predictive accuracy 

is related to degradation in the accuracy of parameter inference (Figure 8A). Fig. 8D shows the variability of the error 870 

(RMSESTD) between the simulated streamflow timeseriestime series and the observed time series, with lower error variability 

corresponding to greater precision. We see that the central tendency of the RMSESTD of streamflow simulations for the base, 

tough, and boosted cases are all similar. Streamflow posterior predictions across all three experiments remained precise, in 

spite of the breakdown in the accuracy.  

In Experiment 4 (the weighted case), the posterior predictive accuracy (RMSEAVE) and the average variability 875 

(RMSESTD) is improved compared to Experiment 3. Improvement is seen in the outliers, where simulator configurations with 

a poor fit relative to observed data are assigned low or no weight in Experiment 4 based on the informal likelihood. Importantly, 

KGE was used in the calculation of the informal likelihood. So, conclusions about the accuracy and precision of posterior 

predictions associated with the four Experiments may differ as measured by KGE as opposed to RMSE.  

The multi-observation comparison helps us to generalize some insights. 1. Inference results are often desirable; in 880 

particular, SBI seems to result in precise parameter inference across all conditions. 2. Parameter inference with a well-trained 

surrogate simulator is precise, but not always suited for conducting inference on observations with an uncertain relationship 

to simulated data (as in Experiment 2). 3. The performance of posterior predictive checks is dependent on both the performance 

of the simulator and the neural density estimator. As such it can be a valuable tool in assessing the performance of parameter 

inference. 4. Although a density estimate derived from an ensemble of simulators (as in Experiment 3) may yield more accurate 885 

parameter inference, overconfident parameter estimates are a recalcitrant problem for some observed data. 5. In Experiment 

4, an approach to likelihood-weighting parameter estimates from SBI was demonstrated to overcome the problem of 

overconfidence in these controlled experiments. 

5 Discussion 

As users of hydrologic tools such as high-fidelity, process-based simulators, we are often interested in finding the 890 

model simulator configuration(s) most consistent with watershedcatchment observations and established physical theory. In 

practice, this gives rise to uncertainty about whether a model simulator is “adequate”, as measured by its predictive ability and 

structural interpretability (Gupta et al, 2012). In the special case where a correct model simulator structure exists, the modeler’s 

practitioner’s task is to conduct a specification search (Leamer, 1978) to identify it; other candidate models simulators 

inconsistent with observations and theory can be said to be “misspecified” (Cranmer et al., 2020). One example of 895 

misspecification in this work is underscored by the misfit between the process based ParFlow and the surrogate LSTM 

simulators. We call this special situation surrogate misspecification.  
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Our research shows that using a misspecified surrogate to conduct simulation-based inference for a process-based 

hydrologic simulator can yield erroneous parameter estimates. These ‘overconfident’ estimates occur because the neural 

density estimator learns the conditional relationship between parameters and data only from the surrogate simulator. Thus, SBI 900 

explicitly infers inputs to the surrogate and not parameters of the process-based simulator. Given surrogate misspecification, 

the inferred values of parameters may not retain their physical significance to the process-based simulator; this can be a barrier 

to the interpretability of those models simulator configurations identified by inference. 

We demonstrate that erroneous parameter estimates due to surrogate misspecification can be addressed through 

informal Bayesian model averaging (BMA). This approach to BMA applies a performance check – the informal likelihood – 905 

to weight and reject models simulator configurations identified by SBI. Notably, the likelihood and related limits of 

acceptability are chosen by the practitioner based on modelling simulation goals. Thus, broadly, informal BMA belongs to the 

class of approaches to encode expert / domain knowledge into a deep learning framework (e.g Reichstein et al., 2019). More 

specifically, SBI conducts a preliminary search of parameter space for plausible model simulator structures and configurations, 

and the likelihood test incorporates expert-defined information about model simulator adequacy into the parameter 910 

estimateestimates. Overconfident parameter estimates carry the risk of under-representing the uncertainty of the inferences we 

draw form modelssimulators. Our work shows that, with these two methods in combination, erroneously overconfident 

parameter estimates are less likely to occur than in standalone SBI. 

In our experiments we focused investigation on SBI and not the process based modelsimulator.  Extending this 

methodology to observed data requires consideration of many additional sources of uncertainty compared to the synthetic case. 915 

Among these is much deeper uncertainty about which model simulator structure(s) is (are) appropriate. In the synthetic 

experiments presented, the relationship between the model simulator (the surrogate) and the data-generating process (ParFlow) 

is well-defined; the surrogate is learned directly from ParFlow. Yet for real hydrologic problems, physics-based 

modelsimulators are nearly always simplified representations of real data-generating processes; stumbling upon a “true” 

representation is unlikely, even impossible. Moreover, physical parameters like hydraulic conductivity (K) and Manning’s 920 

roughness (M) are themselves conceptual quantities and are almost never known at the scale we care about, making estimates 

difficult to validate (Oreskes et al., 1994). In this real-world case, the modelpractitioner’ser’s search may be for a set of 

adequate modelsimulator structures and configurations (i.e. Gupta et. al, 2012), where adequacy is subjectively defined. Here, 

a reasonably good estimate of the hydrologic variable (i.e., streamflow) is often what watershedcatchment scientists strive for 

(Van Fraassen and others, 1980).  For completeness, a worked example demonstrating the estimation of parameters using the 925 

current modelsimulator formulation and observed streamflow data from the Taylor basincatchment is presented in Appendix 

E.  

The critic might suggest that not enough was done to tailor the present analysis to real world data. We disagree on 

the grounds that our purpose here is to rigorously present and evaluate a method for parameter inference given well-defined 

constraints. The challenge of this goal is real and relevant. In fact, this work seems to show an upper bound for the performance 930 

of SBI where undiagnosed structural error exists. A novel modelsimulator averaging approach inspired by Approximate 
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Bayesian Averaging (BMA) and General Likelihood Uncertainty Estimation (GLUE) (Hoeting, 1999; Beven and Binley, 1992) 

is demonstrated to be an important check to SBI, in presented synthetic and real examples. Further comparison to observations 

would instead shift the focus of this work from the quality of the SBI and BMA methods to the quality of the underlying 

hydrologic simulator.  935 

At the core of the challenge of extending SBI is the development of simulators that adequately capture hydrologic 

behavior. These challenges arise in both the surrogate and the PB modelsimulators. For example, the LSTM surrogate 

modelsimulator in this study is relatively effective at mimicking ParFlow.  This is understandable because the catchment is 

dominated by snowmelt, which the LSTM mimics well due to its strong memory capabilities.  However, in arid catchments, 

hydrologic responses arestreamflow dynamics are  often driven more strongly by  typically short-term reactions to acute rainfall 940 

events, and long-term climate and runoff patterns are generally less relevant. LSTMs may struggle to represent these processes 

(Feng et al, 2020).  Additionally, PB modelssimulators are not perfect themselves face challenges; for example, Richard's 

equation may not adequately represent groundwater flow through fractured bedrock (Ofterdinger et al, 2019) or preferential 

unsaturated zone flow (Vriens et al, 2021).  Inadequate surrogate and PB model simulator structures may yield erroneous 

parameter estimates when coupled with SBI. 945 

A more nuanced question regarding simulator adequacy is, "how good is good enough?" For example, when should an 

LSTM trained on PB simulator representations of arid catchment conditions be used with SBI for parameter estimation? The 

informal performance weighting approach defines simulator adequacy to exclude poorly performing surrogate simulator 

structures from the parameter estimation process. Here, the practitioner’s “belief" in each simulation defines its adequacy. This 

performance-weighted approach within the SBI framework can mitigate issues arising from mismatches between the system 950 

of interest and the surrogate simulator. If a surrogate trained on arid catchment conditions fails to meet the acceptability criteria, 

SBI will yield no viable parameter estimates, signaling the need for simulator reevaluation (as explored in Appendix E). This 

outcome highlights the necessity for practitioners to reconsider the assumed modesimulatorl structures, whether surrogate or 

process based. 

The development of robust simulator structures, both surrogates and process-based, remains a central challenge in 955 

hydrology. Advances in surrogates capable of representing spatially distributed hydrologic systems, as well as high-fidelity 

PB modelssimulators, like ParFlow, that capture a broad range of hydrologic processes across various scales, continue to 

enhance our ability to simulate real hydrologic conditions. As these modelssimulators improve, so too will the overall 

effectiveness of SBI. Logical next steps to further extendingextend this methodology to the real case are outlined below.  

Adding additional complexity to the training set for the surrogate simulator (i.e., exploring a larger number of 960 

parameters configurations, their spatial variability, or multiple forcing scenarios) may help yield better parameter estimates 

and associated predictions. Many of the practitioners of simulation-based inference advocate packing as much complexity into 

modelsimulators as possible (Alsing and Wandelt, 2019). High-resolution process-based simulators (such as ParFlow) can be 

used to explore the real-like behaviors of watershedcatchments across a great number of variable and parameter configurations 

by leveraging deep-learned surrogates and SBI. Beyond the informal BMA evaluation of SBI presented here, it may also be 965 
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important to control for the tradeoff between complexity and parsimony in this expanded set of modelsimulator structures and 

configurations. This could be achieved using a framework similar to the Akaike Information Criterion (e.g. Schoups et al., 

2008), which adds a penalty term related to the number of estimated physical parameters in the likelihood evaluation. A similar 

‘penalty for complexity’ concept was explored in traditional applications of Bayesian ModelSimulator Averaging for linear 

regression models statistical models through Occam’s Window (Madigan and Raftery, 1994).  970 

SBI is well-suited for inference in high-dimensional space relative to some approaches, and has had many adaptations 

(Cranmer, 2021). As with any approach to inference, scaling to a greater number of parameters will bump into computational 

constraints. Those constraints come from the cost of simulation (i.e. in the present work, the cost of ParFlowour PB 

simulations), and the cost of inference (i.e. the cost of training and evaluating the neural density estimator). In our study, the 

cost of simulation from ParFlowPB simulation is high, and this has a compounding effect on the cost of inference. Utilizing a 975 

surrogate can in some ways reduce the cost of inference, by reducing the need to resort to ParFlowthe more costly PB simulator, 

but as we show this comes at a tradeoff of accurate parameter estimates if the surrogate is not adequateis not perfect. Focusing 

inference on the most informative parts of higher-dimensional parameter space is important if SBI is conducted directly with 

a costly simulator. Papamarkarios’ early work with SBI developed sequential neural sampling techniques, which might be less 

wasteful than other approaches to sampling parameter space (i.e. Papamakarios et al., 2018; Lueckmann et al., 2017; Greenberg 980 

et al., 2019). Tsai et al. (2021) use a neural network to learn the mapping between physical parameters and outputs only for 

PB modesimulator l configurations that correspond closely to observations; SBI can be implemented similarly.  However, any 

framework for parameter learning focused only on observed behaviour needs to be updated as new observations become 

available and may omit reasonable model configurations from the parameter estimates.  Lastly is the option of compressing or 

reducing the dimensionality, which could be important for the case of estimating distributed parameters. The topic of 985 

compression and SBI is explored by Asling, 2019.  

Including additional watershedcatchment observation types (i.e., groundwater, soil moisture) in the inference 

workflow could also improve estimates of the physical parameters for real systems, and the predictions associated with 

complex simulators. However, observations in hydrology – particularly about groundwater systems – are generally sparse. 

This presents a problem. One option is to observe that complexity better. New spatially distributed ‘big data’ products that 990 

leverage remote sensing to offer new opportunities to observe hydrologic variables like soil moisture (Mohanty et al., 2017; 

Petropoulos et al., 2015). The extension of the methodology to real-world observations will also need to consider the role of 

data quality, adequacy (Gupta et al., 2012), and disinformation (Beven and Westerberg, 2011) and the challenge of defining 

limits of acceptability regarding model performance.  

Formatted: English (United States)

Commented [RH30]: Comment 2.2 - 
Addressed 



 

38 
 

6 Conclusion 995 

Our investigation implements simulation-based inference (SBI) to determine parameters for a spatially distributed, 

process-based watershedcatchment simulator. We believe this research is among the first to apply contemporary SBI to 

watershedcatchment modeling. The implementation employed here has a couple of noteworthy features:  

a. We use deep learning to train a surrogate Long Short-Term Memory (LSTM) on the original physically based 

simulations (from ParFlow). This allows for quick and comprehensive exploration of simulation results for which we 1000 

have corresponding observations, such as streamflow at a basincatchment outflow in a watershedcatchment. 

b. A density-based neural network leverages the capacity of the surrogate to generate simulations quickly to learn a 

representation of the full conditional density, p(θ|Y), of parameters given data. This learned conditional density can 

be evaluated using observations to determine the parameter posterior density, p(θ|Y = YObs). This parameter posterior 

represents our ‘best guess’ of what the parameters for our simulator should be. 1005 

We demonstrate that this approach to SBI can generate reasonable estimates of the parameters of a hydrologic 

simulator, ParFlow, through a set of synthetic experiments. We show in Experiment 1 (the best case) that SBI works well in 

controlled settings in which we assume that our surrogate LSTM simulator is accurate. Moreover, this experiment highlights 

how, once learned, the model of the conditional density can be used to determine the process-based parameters rapidly and 

effectively for many observations without the need for additional process-based simulations. That’s particularly valuable when 1010 

simulations are costly, as is often the case with high-resolution, transient simulators used in the field of watershedcatchment 

modeling. 

We show in Experiment 2 (the tough case) that SBI produces a set of probable parameters with precision in settings 

where the simulator does not represent the underlying system generating the observation perfectly. These inferred parameters 

are used to generate reasonable streamflow simulations relative to observations. However, the tough case shows that parameter 1015 

inference is not always accurate with respect to the physics-based simulator that was used to train the surrogate. This 

undesirable characteristic (of precision but not accuracy, or ‘overconfidence’) arises from issues related to the structural 

adequacy of the simulator, which is well-recognized in the literature as an impediment for accurate parameter inference 

(Cranmer, 2020). The controlled nature of Experiment 2 explores the special case of ‘surrogate misspecification’.  This special 

case arises from a mismatch between the surrogate and the process-based simulations from ParFlow. In inference, surrogate 1020 

misspecification gives rise to error in estimates of the physical parameters. We show that sources of this error can be quite 

difficult to diagnose, although conducting a posterior predictive check is a qualitative way of ascertaining the extent of 

simulator bias.  

In Experiments 3 and 4 (the boosted and weighted cases, respectively), we attempt to address the issue of 

‘overconfident’ parameter inference due to misspecification. In Experiment 3, we use an ensemble of ‘weak’ surrogate 1025 

simulators (instead of just one ‘strong’ surrogate simulator) to learn the full conditional density. The underlying principle is 

that the behavior of an ensemble of surrogate simulators in aggregate may not be biased, even if each individual simulator has 
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its own bias. This may ‘wash out’ the negative effects of surrogate misspecification on parameter inference. Evidence from 

the boosted case shows this approach reduces the occurrence of overconfident parameter estimates, but is not a silver bullet 

for conducting accurate inference.  1030 

In Experiment 4 (the weighted case), the modeler practitioner assigns a "measure of belief" to parameter estimates 

from a set of competing conditional density modelssurrogate simulators, reflecting their confidence in its validity. This measure 

of belief – or informal likelihood (i.e. Beven and Binley, 1992) – is used to weight and reject models simulator configurations 

identified by SBI. The underlying principle is that SBI conducts a preliminary search of parameter space for plausible model 

simulator structures and configurations, and the likelihood test incorporates expert-defined information about model simulator 1035 

adequacy into the parameter estimateestimates. The weighted case is demonstrated to solve the problem of overconfident 

parameter estimates introduced by surrogate misspecification.  

The results of Experiments 2, 3, and 4 demonstrate progress towards being able to implement SBI in hydrological 

domains subject to uncertainty we can benchmark (i.e., the misspecification of the surrogate). Additional work is needed to 

address deeper uncertainty about the structural adequacy of the underlying physics-based modelsimulator. This uncertainty 1040 

often exists in watershedcatchment modeling – due to (e.g.) natural heterogeneities in the subsurface, approximations in 

process parameterizations, and bias in the meteorological input data – that can seldom be fully ‘accounted for’. The notion of 

structural ‘adequacy’ is thus nearly always subjective (Gupta et. al, 2012). In many ‘real world’ applications, a calibrated 

estimate of the hydrologic variable (i.e., streamflow) is what watershedcatchment scientists strive for. Enhancing standalone 

SBI with the likelihood-weighting methodology introduced in Experiment 4 embraces this principle of subjective ‘adequacy’ 1045 

and is broadly extendable to more complex inference problems in watershedcatchment modeling. Where no modelsimulators 

are identified as adequate, an obvious next step is to expand the simulator to explore more and different configurations of 

parameters and input variables.  

Appendix A The Process-Based Simulations (ParFlow) 

Table A1: The relationship between ParFlow and LSTM static inputs (e.g., parameters, θ), dynamic inputs (e.g., meteorological 1050 
forcings, X), and dynamic outputs (e.g. streamflow, Y). ParFlow variables must be ‘compressed’ into lower-dimensional 
representations in order to be used in the LSTM.  

 ParFlow Description LSTM Description 

Parameters, θ a) 2-dimensional homogeneous Manning’s 
Roughness, M 

b) 3-dimensional heterogeneous Hydraulic 
Conductivity, K   

(Other static inputs, such as soil properties and 
land cover, are not used by LSTM) 

a) Scalar value, Ms, set for all 
values of M 

b) Scalar factor, Ks, multiplied 
by all values of K 

(Both are log transformed and re- 
normalized to be between 0  and 1) 
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Dynamic 
Outputs, Y 

Hourly, 3D spatially distributed pressure field Daily, 1-dimensional discharge time 
series (length=350) at i,j location 
corresponding to USGS gage 
09110000, as follows: 

1. Gridded discharge calculated 
using surface pressure, 
slopes, Manning’s, resolution 
via the overland flow 
equation for each hourly time 
step (n=8,760) of one year of 
ParFlow results  

2. Slice at i,j location and 
calculate daily average 

3. Remove first 15 days of 
record (burn in time), and 
renormalize values between 0 
and 1 

Dynamic 
Inputs, X 

Hourly, 2D spatially distributed meteorological 
forcings, including: 

● DLWR: Long Wave Radiation [W.m-2] 
● DSWR: Short Wave Radiation [W.m-2] 
● Press: Atmospheric pressure [pa] 
● APCP: Precipitation [mm.s-1] 
● Temp: Air Temperature [K] 
● SPFH: Specific humidity [kg.kg-1] 
● UGRD: East-west wind speed [m.s-1] 
● VGRD: South-to-North wind speed 

[m.s-1] 

Daily, 1D time series (length=350) for 
each (n=8) forcing: 
 
(Except for APCP, forcings are 
averages taken over space and time for 
all hours (n=24) in each day. APCP is 
the sum over space and time for all 
hours (n=24) of precipitation each 
day.) 

 

Table A2: ParFlow was run many times under different parameter configurations. This table shows the scalar factors used to modify 
spatially distributed Manning’s Coefficient and Hydraulic Conductivity. We call these factors Ks and Ms, respectively, to keep the 1055 
distinction between them and ParFlow’s parameters clear. 

 

 

Ks  
(Scaling factor times whole 
domain)[unitless] 

Ms  
(Constant across domain), [h/m^(1/3)] 

Scalar 

Parameters 

0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 
0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10 

1e-8, 1e-7, 2.5e-7, 5e-7, 7.5e-7, 1e-6, 2.5e-6, 
5e-6, 7.5e-6, 1e-5, 2.5e-5, 5e-5, 1e-4 
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Figure A1: Sensitivity of ParFlow-generated streamflow time series for water year 1995 to perturbations of Hydraulic Conductivity 
and Mannings. We show sensitivity holding each of Ks and Ms constant at 0.1 and 5 x 10e-6, respectively, while varying the other 1060 
across the range of parameters explored in Table A2.  

Appendix B The Surrogate Simulator (LSTM) 

Table B1: Relevant notes on architecture, training, and hyperparameters for the surrogate LSTM simulator. 

 LSTM  Further Description 

Number of Epochs 300 Number of times iterating through training loops 

Batch Size 50 Batching during training 

Input Size 10 Number of input features 

Hidden Layers 1 Number of hidden layers 

Hidden Size 10 Number of hidden nodes / layers 

Number of Classes 1 Number of nodes in output 

Objective Function MSE Mean Squared Error 

Optimizer Adam  

Learning Rate 0.001  
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Train-Validation-

Test Split 

0.7, 0.2, 0.1 Simulations were divided into sets based on their parameters, 

such that each member characterizes the streamflow response 

(encoded as a year-long timeseriestime series) to an individual 

pair of parameter values Ks and Ms. We conduct the train-

validation-test split in a pseudo-Latin hypercube manner across 

parameters space. 

 

 1065 

Figure B1: Plots show the train/validation and test split for the LSTM surrogate trained on n=183 ParFlow simulations. In (a), the 
locations in parameter space where ParFlow simulations were run. The surrogate is trained and tested at orange dots. In (b), a 
comparison of ParFlow to LSTM streamflow simulation generated at benchmark parameter set θA Ks~0.6, Ms~0.85. The fit between 
ParFlow and LSTM is explored more in the results. 

Appendix C Improved Components for SBI 1070 

Deriving implicit statistical models using density estimation techniques is not new (Diggle and Gratton, 1984). 

However, these traditional approaches suffer from some shortcomings, including sample efficiency and inference quality, as 

described further in Cranmer, Brehmer, and Louppe 2020. We show two components of the density based SBI workflow 

utilized here that have benefited due to recent innovations: Masked Autoencoders for Density Estimation (MADEs) and 

sequential neural posterior sampling. 1075 

C.1 Masked Autoencoder for Density Estimation (MADE)  

While mixture density networks have a long operational history, there have been more recent innovations in using 

neural networks to learn and represent conditional probability distributions. This study utilizes a class of neural density 

estimators called Masked Autoregressive Flows (Alsing et al., 2019), which shareshares some of the underlying principles 
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described for Mixture Density Networks. Masked Autoregressive Flows arise from the principle that “any probability density 1080 

can be factorized as a product of one-dimensional conditionals” via the chain rule (Alsing et al., 2019); these one-dimensional 

conditionals are parameterized by a fully connected neural network known as a Masked Autoencoder for Density Estimation 

(MADE) (Uria et al., 2016). Masked Autoregressive Flows are composed of ‘stacks’ of Masked Autoencoder for Density 

Estimations, to add flexibility (Papamakarios et al., 2018) . A detailed description of these methods is beyond the scope of this 

paper.  1085 

C.2 Sequential Neural Posterior Estimation 

We use a sampling technique called Sequential Neural Posterior Estimation (SNPE) to speed up and improve the 

evaluation of a trained neural conditional density estimator. By evaluation, we here mean using data Y (most typically observed 

data, YObs) to generate a posterior estimate p(θ | Y = YObs) (step 4 in Sect. 3.5). The need for SNPE arises from the challenge 

that drawing simulation parameters from the full prior distribution is wasteful (Papamakarios et al., 2018; Lueckmann et al., 1090 

2017; Greenberg et al., 2019). This is due to the fact that data simulated from some parts of parameter space have higher or 

lower posterior density for YObs. SNPE iteratively refines the posterior estimate to make inference more efficient and flexible, 

as described by Greenberg et al, 2019.   

Details related to the architectures, hyperparameters, training, and evaluation of neural density estimators are shown 

in Table C1. Decisions about hyperparameters were made via trial and error. It’s important to note that the goal of our work is 1095 

not to create the most robust neural density estimator model, but to explore inference under a variety of different conditions.  

 

Table C1: Hyperparameters and model architecture for neural density estimation. See also (Tejero-Cantero et al., 2020). 

Hyper- parameter Value Significance 

Inference Method SNPE_C Sequential Neural Posterior Estimator (see text) 

Neural Density 
Model, qϕ(θ|Y) 

MAF Masked Autoregressive Flow (see text) 

Hidden Features 10 number of hidden layers in each MADE of qϕ(θ|Y) 

Number of 
Transforms 

2 Number of flows (transforms) between MADEs in qϕ(θ|Y), MAF 

Prior_min, 
Prior_max 

0.0, 1.0 Minimum and Maximum possible values of qϕ(θ|Y), Ks and Ms 

Prior Function Uniform All values a priori equally possible in parameter space 
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Number of 
simulations 

1000 Number of simulated {θ, Y} pairs; used to train qϕ(θ|Y) 

Number of samples 5000 Number of sampled {θ, Y} pairs; used to evaluate qϕ(θ|Y) 

Appendix D Inference for many observations, YObs_LSTM_i 

A trained neural density estimator can be used to infer the parameters of an observation without the need for additional 1100 

simulation runs. In this section, we extend Experiment 1 (the ‘best’ case) to evaluate the posterior parameter density for many 

synthetic observations (YObs_LSTM_i) quickly and effectively. We use many parameter sets (θi) of Ks and Ms sampled uniformly 

across parameter space to generate an equivalent number of synthetic observations, where i=1, 2, …, 441.  

 

 1105 

 

Figure D1. Once the neural conditional density estimator is trained, it can be evaluated quickly and effectively given new data. This 
figure shows the performance of SBI of Mannings (Ms), and Hydraulic Conductivity (Ks) given synthetic streamflow data generated 
by the surrogate from across 441 locations across parameter space. Subplot (a) shows the Determinant, |Σ| of the posterior parameter 
estimate, which quantifies the precision of parameter inference. Subplot (b) shows the Mahalanobis distance,  between 1110 

the inferred distribution and true parameter values, which quantifies the accuracy of inference. These values are shown across the 
entirety of parameter space investigated, where purple is better. The red star in subplots corresponds with benchmark location θA 

in parameter space of the analysis shown in Figure 3.  
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SBI can infer the parameters from many diverse and different synthetic observations well, as shown in Figure D1. 1115 

The precision of inference of the posterior parameter densities is explored in Figure D1A as a map of determinants across 

parameter space. Parameter inference is more precise (with a smaller determinant) in the center than at the edges of the 

parameter space; it is below our precision threshold of 1e1 x 10-06 everywhere. Parameter inference is accurate across parameter 

space, as shown by the map of Mahalanobis Distance in Fig. D1B. There are some pockets of parameter space characterized 

by more- and less- accurate parameter inference. The structure of the Mahalanobis distances across parameter space doesn’t 1120 

seem to be as well-defined as that of the determinant and are likely a consequence of randomness in the initialization of the 

neural density estimator (confirmed by many independent trials). We note that evaluating each of the synthetic observations 

in Fig. D1 took only a few seconds. 

 

 1125 

Figure D2. Posterior predictive check for many observations: Once parameters are inferred, the posterior can be drawn (n=50) to 
generate probabilistic streamflow ensembles. This figure shows the performance of streamflow ensembles derived from SBI at 441 
locations across parameter space. Subplot (a) shows the average of the error (RMSEAve) of streamflow ensembles relative to ‘truth’, 
which can be thought of as a measure of accuracy. Subplot (b) shows the standard deviation of the error (RMSEstd) of streamflow 
ensembles, which can be thought of as a measure of precision. Streamflow ensembles are evaluated against the ‘true’ synthetic 1130 
streamflow time series generated by the surrogate simulator, where blue is better.  

 

The posterior predictive check shows that streamflow characterization is generally both precise and accurate. This 

required drawing a subset of parameters from each of the 441 posterior parameter densities represented as points in Fig. D1 

and generating an ensemble of simulated streamflow time series using the surrogate simulator. The accuracy of the posterior 1135 

predictions is explored in Fig. D2A as a map across parameter space. In general, the posterior predictions have an average 

error of less than 0.01. Accuracy is highest in the middle of the parameter space and seems to degrade towards the upper 
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boundaries where parameters Ks and Ms are large. The precision of the posterior predictions is explored in Fig. D2B as a map 

across parameter space. In general, the posterior predictions are precise, with standard deviation of the error less than 0.01. 

We note that both the average and standard deviation of error increase at large parameter values, in particular large values of 1140 

hydraulic conductivity. Overall, Fig. D1 and D2 show that SBI can reliably infer parameters and characterize streamflow 

processes for many streamflow observations that span the parameter space we investigated. 

 

Appendix E Inference on non-synthetic observations at the Taylor River 

 1145 

The informal BMA methodology is suited to assessing the adequacy of model structures and configurations in the real-

world case. In Figure E1, inference is conducted on the observed streamflow timeseriestime series for water year 1995 from 

the Taylor River gage 09110000 (red). The figure shows the posterior predictive check with confidence intervals from 

standalone SBI (blue), as well as the “persistence” baseline (orange). Model configurations scoring less than persistence 

(defined by setting next week’s predicted data equal to today’s observed data) are considered not credible and assigned a 1150 

weight of zero. Note that standalone SBI does not perform well relative to persistence (KGE = 0.94). The culprit is the timing 

of peak simulated flows, which occur on average some 44 days before the peak observation and 51 days before persistence. 

With no models superior to persistence, the BMA methodology returns an empty set; no model structures (LSTM surrogates) 

or configurations (parameter sets) yield predications that are “reasonably good”. In fact, no model structures or configurations 

superior to persistence exist in the full space of possible combinations of M and K, as shown by the confidence intervals in 1155 

grey. We emphasize to the reader that the BMA methodology results in a desirable outcome: all models identified by standalone 

SBI are rejected, and overconfident predictions and parameter estimates are avoided.  

 

Figure E1. Time series comparing the observed streamflow for water year 1995 (red) with the persistence baseline (orange), posterior 
predictive check from standalone SBI (blue), and simulations drawn from the full parameter space (gray).  1160 
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