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Abstract. Extreme precipitation in July 2021 caused devastating flooding in Germany, Belgium and in the Netherlands, partic-

ularly in the Geul river catchment. Such precipitation extremes were not recorded previously and were not expected to occur

in summer. This contributed to poor flood forecast and hence to large damage. Climate change was mentioned as a potential

explanation for these unprecedented events. Yet, before such a statement can be made, we need a better understanding of the

drivers of floods in the Geul and their long-term variability, which are poorly understood and have not been examined recently.5

In this paper, we use an event-based approach to identify the dominant flood drivers in the Geul and employ a multi-temporal

trend analysis to investigate their temporal variabilities, as well as, a novel methodology to detect the dominant direction of

a trend. Results suggest that extreme 24-hour precipitation cannot solely lead to floods. Heavy multi-day precipitation is the

primary high-flow driver in the catchment and the joint probability of heavy and prolonged rainfall with wet initial conditions

(compound event) determines the chances of flooding. Critical precipitation (precipitation that leads to floods) shows a con-10

sistent increase in the winter half-year, a period in which more than 70% of extremely high flows have occurred historically.

While no consistent trend patterns are evident in the majority of precipitation and extreme flow trends in the summer half-year,

an increasing direction in the recent past is visible.

1 Introduction

In July 2021, Western Europe was struck by unprecedented precipitation, leading to disastrous flooding in Germany, Belgium,15

and the Netherlands (Journée et al., 2023; Kreienkamp et al., 2021). This event ranked among the most devastating natural

disasters to hit Europe in the past 50 years, resulting in a minimum of 220 deaths and causing an estimated economic damage

of approximately EUR 46 billion (MunichRe, 2022; Mohr et al., 2023). In the Netherlands, the Geul river catchment (344

km2) was the most impacted, where the economic damage of the floods was estimated to exceed EUR 200 million, constituting

approximately 50% of the total estimated damage in the country (Task Force Fact Finding hoogwater 2021, 2021). The event20

revealed weaknesses in flood risk management. Flood risks were poorly communicated to the inhabitants (Slager, 2023). The

flood forecasting system for the Geul was under maintenance, and even if it had been operational, predictions would not have

been accurate, because of poor representation of flood-generating processes according to the responsible authorities (Task

Force Fact Finding hoogwater 2021, 2021). The Geul catchment is considered quite an exceptional and atypical catchment

1

https://doi.org/10.5194/hess-2023-263
Preprint. Discussion started: 15 November 2023
c© Author(s) 2023. CC BY 4.0 License.



for the Netherlands due to its steep topography (elevations range from 40 to nearly 400 m) and deep soils (tens of meters). A25

proper understanding of flood drivers in the area is considered an important stepping-stone in mitigating the risks in the future.

Floods in a catchment are caused by the interaction of meteorological, river system, and catchment characteristics (Andrés-

Doménech et al., 2015). Hydrological catchment properties can regulate streamflow response (Sharma et al., 2018), for ex-

ample, extreme precipitation does not always result in floods in various basins around the world (Wasko and Nathan, 2019;

Nanditha and Mishra, 2022; Berghuijs et al., 2019). Among the catchment characteristics, antecedent conditions (e.g., soil30

moisture) can play a crucial role in driving high flows (Bertola et al., 2020; Woldemeskel and Sharma, 2016). Many locations

around the world have seen the effects of wet antecedent conditions on flood risk (e.g., Garg and Mishra, 2019). Especially in

lowland catchments the discharge response can be strongly influenced by the catchment wetness, due to shallow groundwa-

ter and its effects on rainfall flow paths (Brauer et al., 2018). As a result, determining the relative contribution of antecedent

wetness conditions and extreme precipitation in causing high river flows is critical.35

The identification of the drivers of observed flood events has received increasing attention in the recent literature (e.g.,

Blöschl et al., 2019; Bertola et al., 2020). Examining relations between trends or seasonality in flood peaks and factors such

as extreme precipitation or soil moisture to define flood drivers is well established (Blöschl et al., 2019; Do et al., 2017;

Tramblay et al., 2021; Wasko et al., 2020). However, to enhance our knowledge of flood dynamics, an event-based approach

has been suggested (Nanditha and Mishra, 2022; Tramblay et al., 2021; Berghuijs et al., 2019). This approach entails identifying40

the specific drivers behind individual flood events or extremely high-flow occurrences. By analyzing the characteristics and

circumstances surrounding these events, one can gain valuable insights into the mechanisms and factors that contribute to their

intensity and occurrence (Nanditha and Mishra, 2022).

A proper understanding of flood drivers does not only include their identification but also their long-term change. Investi-

gating the changes of variables that can cause a hazard is crucial for managing the risks in an effective way (Yang et al., 2021)45

and can facilitate the planning of reliable and meaningful interventions. Making a critical assessment of the past and current

states and providing the long-term trends of hydroclimatic variables play a key role in future projections (Squintu et al., 2021).

Trends and changes in the time series of hydrological and climatological data have received attention in catchments and areas

across the world (e.g., Blöschl et al., 2017; Do et al., 2017; Hannaford et al., 2021; Murphy et al., 2020).

However, most of the existing trend tests are limited, as they are conducted within fixed timeframes, which may fail to50

accurately capture the historical variability. The significance and magnitude of trends can vary considerably based on the

chosen study period and duration. To deal with this limitation, multi-temporal trend approaches have been leveraged (e.g.,

Hannaford et al., 2021; Murphy et al., 2020), considering all possible combinations of start and end-year periods. Although

these analyses have helped in the identification of temporal variabilities, a research gap remains in determining the main trend

direction, such as consistency or stability, across all studied time frames. Lupikasza (2010) developed criteria for expressing55

trend stabilities using a fixed 30-year moving window, however, this approach did not fully consider the entire variability

(multi-temporal analysis) but instead utilized an overlapping period which can be misleading. Since each 30-year window

overlaps with the previous and subsequent windows, trends can be missed or misinterpreted because the overlapping periods

could obscure them. Using only overlapping periods can lead to artificially smooth trends not representing the true (long-term)
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variability of the data. In addition, the length of the selected moving window might introduce bias in the analysis. Trends over60

longer periods and with different combinations of start and end-year periods expressing the full historical variation should

be also taken into account in the calculation of the main direction. To address these limitations, our study aims to develop a

methodology that can identify and assess trend consistency in multi-temporal analysis, taking into account the complete range

of variability.

In summary, the Geul river catchment consists an interesting example of a hilly catchment in northwest Europe, with unique65

hydrological characteristics that are shaped by the underlying geology, topography and land use. The recent floods have shown

that there is a need for further research into the drivers of flooding in the area, particularly in the context of climate change.

Specifically, the role of extreme precipitation and antecedent conditions as potential flood drivers and their long-term variability

remain to be examined. In this paper, we address the following scientific questions that are crucial for our understanding of

floods in the Geul River catchment: (a) What are the dominant flood drivers in the Geul river catchment in different seasons?70

and (b) What are the trends (temporal variability and consistency) of the critical precipitation and extreme discharges in the

catchment? To identify the dominant flood drivers we use an event-based approach. In addition, we utilize a multi-temporal

trend analysis to investigate the temporal variabilities of the trends and we develop a new methodology to detect the dominant

direction (i.e. consistency) of a trend.

2 Methods and materials75

2.1 Study area

The Geul river is an important tributary of the Meuse and is located in the Netherlands, Belgium, and part of Germany, close

to the three-border region (Fig. 1). The total area of the Geul catchment is approximately 344 km2. The Geul drops about

250 m over approximately 60 km, making it one of the few steeply sloping rivers in the Netherlands. The Geul river has an

average discharge of approximately 3.2 m3s−1 (at the outlet of the catchment) and is mainly rain-fed. As a consequence, its80

discharge can change dramatically during flood and drought events (e.g. ranging from 1 m3s−1 during drought periods to more

than 40 m3s−1 during floods). The response time of the catchment is in the order of one to two days (Asselman et al., 2022).

The annual average precipitation is approximately 870 mm yr−1 and is rather uniformly distributed over the year (see Fig.

2a). Average annual discharge at the outlet of the catchment and potential evaporation are about 307 mm yr−1 and 585 mm

yr−1 respectively, based on time series from 1970 to 2021. The flow regimes in the Geul do not show large variations (Fig. 2).85

The, on average, rather equal distribution of runoff in the Geul throughout the year is due to the effect of groundwater storage

provided by large chalk aquifers in the catchment (Tu, 2006). The long-term evaporative index is approximately 0.67 and the

runoff ratio 0.35.
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Figure 1. (a) Location of the Geul river catchment (blue shaded area), (b) elevation map of the study catchment including the location of

precipitation stations and the discharge observation station at the outlet.

Figure 2. (a) Upper panel: Monthly averages for precipitation (averaged using Thiessen polygons), reference (Makkink) evaporation (ob-

tained from the Maastricht meteorological station) and discharge in the Geul catchment, Lower panel: Flow regimes of the Geul based on

Pardé coefficient, defined as the ratio of the average monthly discharge to the average annual discharge, (b) Flow duration curve along the

Geul based on the mean daily discharge. All graphs are produced using time series from 1970 to 2021.
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2.2 Data sets

Streamflow time series at the outlet of the catchment (station Meerssen), were made available by the local water authority Wa-90

terschap Limburg, including 15-minute measurements from 1970 up to August 2021. From 1970 to 2011 measurements were

taken using a measuring weir, while since 2011 discharges are measured using Acoustic Doppler Current Profilers (ADCP)

(van der Deijl, 2023). Historical flood event data (i.e. date of occurrence) are based on Thewissen (2022), who performed a

local newspaper search using Delpher, a Dutch database containing digitized texts from newspapers, books, and magazines.

These collections are curated by scientific organizations, libraries, and heritage institutions. Thewissen (2022) obtained the95

data through an iterative process that involved Optical Character Recognition (OCR) and manual scanning. In this research,

a flood is defined as surpassing the bankful capacity. For detailed information about the search methodology, please refer to

Thewissen (2022).

Records of 24-hour precipitation from five stations located in (or near) the Geul river catchment are used (see Fig. 1).

The data used in this study come from the Royal Netherlands Meteorological Institute (KNMI) manual rain gauge network.100

Volunteer observers operate the rain gauges on a 24-hour basis (from 8 am to 8 am local time). In addition to the volunteer

KNMI stations, daily (calendar days) measurements from the automated meteorological station at Maastricht are used. Data

from automated stations are also available at an hourly basis, however the daily scale is used in order to have the same resolution

for each station. The time series are complete (except for three missing months at Noorbeek) and are considered to be of high

quality, as KNMI performs regular quality tests (Buishand et al., 2013). Days with extremes were checked and it was found105

that all of them occurred during well-known high precipitation or flood events.

The available precipitation record periods slightly differ between the selected stations and mainly start in the 1950s, except

the new Epen station, which has a record from 1981 onward. Specifically, stations at Vaals, Valkenburg, and Noorbeek have a

record from 1951 onward, while the available time series at the Maastricht and Ubachsberg stations start from 1958 and 1955,

respectively. Due to its shorter available period the station Epen is excluded from the analysis. The precipitation stations located110

in the uppermost regions of the catchment in Belgium were not taken into account due to their limited temporal coverage, lack

of alignment with the discharge (and the KNMI) data, and unsuitability for trend analysis.

Another important factor to consider when analyzing meteorological time series, and especially trends, is data (in)homogeneity.

Trends represent the long-term changes in the data over time caused by natural/climate variability, while inhomogeneities rep-

resent changes in the data that are not part of the underlying trend. There are several types of modifications that can occur and115

can cause significant non-climatic alternations (inhomogeneities) in the data, especially in long time series, such as changes

in the location of the measuring station, differences in the manner and the procedures (e.g. measuring frequency) or changes

in the instruments/tools. Performing statistical tests for homogeneity on precipitation data measured at daily frequencies is

challenging or practically infeasible (Lupikasza, 2010). This can be attributed to the fact that daily time series show strong

random variations. For this reason, the precipitation time series were aggregated to monthly sums and then tested using two120

well-known homogeneity tests: the Standard Normalised Homogeneity Test (SNHT) (Alexandersson, 1986; Alexandersson
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and Moberg, 1997) and Buishand’s U test (Buishand, 1984). Both tests were applied at a significance level of 5% (α=0.05).

The test results showed that the data time series were free of significant errors and no inhomogeneities were detected.

2.3 Flood driver detection

2.3.1 Extreme indicators125

Hydrological years are used instead of calendar years to ensure a more accurate representation of the frequency and intensity

of extreme events that may occur within a particular hydrological regime. Similarly to Tu (2006) and Sperna-Weiland et al.

(2015), we define a hydrological year from November to October, for the study area. Half-year hydrological winter (from

November to April) and summer (from May to October) are also considered.

Two types of flood data time series are used: annual maxima (denoted as Qmax), including winter and summer yearly maxima130

(denoted as QW,max and QS,max, respectively), and extremely high flows using the peaks over threshold (POT) method (Haan,

2002). The maximum daily discharge is extracted from the 15-min discharge data and hydrological years with over 20%

missing daily values are omitted from the analysis. Consequently, the years 1971, 1974, and 1990 have been excluded from

the Qmax times series. For identifying extremely high flows we use the 99th percentile threshold (Nanditha and Mishra, 2022;

denoted as Q99) extracted from the maximum daily discharge time series from 1970 to 2021, excluding daily missing values.135

We use only extremely high events separated by a time frame of five days to ensure that the selected high flows are independent

and do not belong to the same flood wave.

Floods are generally caused by a combination of initial moisture conditions and precipitation. To explore the probable causes

of high flow episodes, we employ six indicators to assess precipitation and antecedent soil moisture levels: extreme precipitation

(denoted as P99), multi-day precipitation (denoted as PMD), wet antecedent conditions (denoted as PWAC), P99 combined with140

PWAC (denoted as Compound I), PMD combined with PWAC (denoted as Compound II), and P99 and PMD combined with

PWAC (denoted as Compound III). We estimate P99 as the events that exceed the 99th percentile of wet days (days with more

than 1 mm precipitation). We define PMD events, using the 95th percentile threshold (Nanditha and Mishra, 2022) of the

all-4day accumulated (rolling sum) precipitation, considering the hydrological functioning of the catchment (Asselman et al.,

2022). With a 4-day duration, we want also to ensure that the 95th percentile used for a PMD event is higher than the 99th145

percentile used for an P99 event. In this way, the distinction between PMD and P99 becomes clearer. As a PMD event cannot

cause a P99 event, we expect that usually more than 24 hours of precipitation are needed to cause PMD. This is not always

the case as in very extreme events the 24-hour precipitation can cause at the same time P99 and PMD which is unavoidable.

The sensitivity of the results to the duration of a PMD event is further discussed in Sect. 3.1.1. In addition, the PMD definition

allows the assumption that PMD can be used as a proxy of heavy prolonged rainfall. Furthermore, we use the Antecedent150

Precipitation Index (ratio of 30-day pre-event precipitation to long-term average for the same period; API) as developed by

Marchi et al. (2010), to access the initial catchment conditions and get an estimate of the initial (soil) conditions. Marchi et al.

(2010) classifies antecedent moisture conditions as follows: (1) dry: 0 < API ≤ 0.5; (2) normal: 0.5 < API ≤ 1.5; and (3) wet:

API > 1.5. PWAC corresponds to API values higher than 1.5 (Marchi et al., 2010).
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2.3.2 Monthly distribution of extremes155

In order to get a rough indication of the effects of extreme rainfall on high flows, we estimate the monthly distribution of P99,

PMD, annual maximum precipitation (denoted as Pmax) and high flow extremes (i.e. Q99 and Qmax), together with the past

flood events (denoted as FE). Despite the fact that the monthly distribution of PWAC events cannot be directly related to the

monthly distribution of high flow extremes, as PWAC indicate wetter than average conditions any time of the year, their relative

frequencies can provide useful insights. For this reason, we also calculate the monthly frequencies of PWAC. To achieve this160

each, daily timestep in the precipitation series is treated as an individual event. This involves summing the precipitation amount

for each day over the previous 30 days and then dividing this sum by the 30-day long-term average for the same period across

the entire time series. In this way, an API index per day is obtained.

The use of all-day percentiles for discharge (Q99) and wet-day percentiles for rainfall (P99) may lack statistical robustness,

primarily because there could be a potential increase in the number of wet days over the study period (Schär et al., 2016). To165

address the potential issue a trend test in the number of wet days per year and station was conducted using the non-parametric

Mann-Kendall (M-K) (Kendall, 1955; Mann, 1945) test at a significance level of 0.05. The analysis did not reveal any significant

trends in the number of wet days.

2.3.3 Event-based analysis

After the seasonal assessment of the extreme indicators and high-flow events, an event-based approach is followed to detect the170

predominant flood driver(s) in the catchment. Specifically, we calculate the likelihood of the six precipitation indicators (i.e.,

P99, PMD, PWAC, Compound I, Compound II and Compound III) preceding selected high flow episodes (i.e. Qmax) in order

to determine the primary flood cause. We use the Qmax events instead of the Q99, as they are better defined for identifying

flood drivers including all major flood events, considering also that the P99 is calculated from a significantly longer data

series than the Q99. We conduct a comprehensive analysis of each high-flow event, examining the frequency of occurrence for175

each indicator before a Qmax event. Specifically, we determine how many times an indicator occurred in relation to the total

number of Qmax events, effectively calculating its likelihood in contributing to such occurrences. The six indicators used in

this paper help examine the relative role of extreme precipitation, prolonged heavy rainfall, extreme soil moisture conditions,

and compound extremes in generating high flows. For instance, if P99 is the main flood cause in the catchment, then P99 is

highly likely to occur during the duration of the flood (precipitation amount of the same day) or within one day before the180

commencement of the event. Here, we use a two-day interval (i.e. precipitation at the same or the previous day of the flood

event) for mainly two reasons: (a) the lag time of the catchment and (b) to eliminate errors due to the use of daily values (e.g.,

a high flow event may occur early morning due to P99 from the previous day).

As we directly compare the likelihood of each indicator leading to Qmax, it is important to note that the comparison among

different flood drivers may be affected by the rarity of certain events. The total number of flood indicators varies, particularly185

for the most extreme ones, such as P99, Compound I, and Compound III. For instance, in some years, a P99 event might not

occur, and therefore, it cannot precede Qmax. To account for this effect, the reverse scenario is also considered: given that a
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driver has occurred, what is the relative frequency of it being followed by a Qmax event. Thus, we calculate the number of

unique hydrological years in which a driver is observed and determine how often Qmax is also observed within these instances.

Additionally, we provide general information about the frequency of the different drivers occurring, regardless of whether190

Qmax has occurred.

Antecedent catchment wetness and precipitation depths are crucial factors for floods in terms of magnitudes and volumes.

In addition to the aforementioned flood indicators, we delve deeper into this relationship by employing the nonparametric

Spearman’s rank-order correlation method to correlate the half-year maximum discharge time series (QW,max and QS,max)

with their k-day antecedent precipitation depth (denoted as PkD, where k = 1, 3, 5, 7, 10, 15, 30 and 40 days; Tu, 2006).195

The antecedent precipitation depths are computed by summing the precipitation on the day of the high flow event and the

previous k days (Tu, 2006). Table 1 provides an overview of all the different flood indicators used in this study, along with their

corresponding definitions.

Table 1. Extreme indicators used to identify the main flood drivers. The initial six indicators are used to calculate probabilities preceding

high-flow episodes, whereas the last indicator is correlated with high flows

Indicator Estimation method

Extreme precipitation (P99) 24-hour precipitation exceeding the 99th percentile of rainy days (more than 1 mm)

Multi-day precipitation (PMD ) Four-day accumulated precipitation amount exceeding the 95th percentile thresholds

Wet antecedent conditions (PWAC) Antecedent Precipitation Index (API) value higher than 1.5

Compound I Extreme precipitation occurring on wet antecedent conditions

Compound II Multi-day precipitation occurring on wet antecedent conditions

Compound III Extreme and multi-day precipitation occurring on wet antecedent conditions

Antecedent precipitation depths (PkD) Sum of precipitation on the day of the high flow event and the previous k days

One crucial concern is the timing difference of the measured daily values, i.e. calendar days for discharges and 24-hour

sums from 8 UTC for precipitation. The reported time/date in the precipitation time series (for the manual rain gauge network;200

Valkenburg, Ubachsberg, Noorbeek and Vaals stations) is the end time of observation. For this reason, the Qmax time of

occurrence is checked: if the time of the maximum 15-min discharge values is observed to be between 00:00 and 8:00 AM

the calendar day of this event is reported, otherwise, the next day is considered as the date of occurrence of the event for the

(manual rain gauge) precipitation time series. In this way, we ensure the agreement in precipitation and Qmax time series.

2.4 Trend analysis205

The temporal variability and the trends of the aforementioned potential flood drivers (i.e. P99, PMD and PkD) are investigated.

Trends in PkD are based on the annual maximum values. In contrast to the definition of P99 in Sect. 2.3.3, we use the 95th

percentile, as events that exceed the 99th percentile are extremely rare and result in many zero values in the time series,

especially in winter periods, making the trend analysis unstable. The new index is denoted as P95 and represents the annual

total precipitation from days exceeding the 95th percentile. Similarly to P99 the 95th percentile is calculated using the whole210
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range of the time series and only wet days. Finally, the PMD trends are investigated by summing the annual amount of four-day

accumulated precipitation that exceeds the 95th percentile thresholds (of the four-day rolling sum). The used precipitation

trend indices are similar to ETCCDI (Expert Team on Climate Change Detection Indices) and have been frequently applied

(Klein Tank et al., 2002; Dunn et al., 2020). The aforementioned precipitation indices are calculated for winter and summer

periods. In addition, trends in the half-year maximum discharges (QW,max and QS,max) are examined in order to detect possible215

consequences of extreme precipitation on extreme streamflows. We use the non-parametric M-K test to detect significant trends.

To this end, a Python package that contains all the types/modifications of the M-K test, as developed by Hussain and Mahmud

(2019), is used. The modified M-K test, which accounts for the influence of serial correlation on trend calculations, is employed

for the analysis of the discharge time series, while the original M-K test is applied to the precipitation indices. This selection is

made based on the assumption that the precipitation time series exhibit no significant serial correlation.220

The statistical significance and direction of the trends in the multi-temporal approach are used in order to determine the

temporal consistency of a trend for each precipitation index. We express consistency as the percentage of time (t) for which

trends are statistically significant. Trends that are significant at α = 0.2 (Łupikasza et al., 2011) are defined as statistically

significant trends. Since precipitation is characterized by strong temporal and spatial variation, the statistical significance levels

can be lower compared to other climatic variables (Łupikasza et al., 2011). In addition, the large number of calculated trends225

(more than 850 for most stations) allows the use of lower significance levels for expressing stabilities or consistencies. In a

multi-temporal approach, it is preferable to focus on the direction and intensity of the trends, rather than whether they surpass a

strictly predetermined and somewhat arbitrary level of significance (Hannaford et al., 2013). A trend in an index is considered

as inconsistent, weakly consistent, consistent and strongly consistent according to the following criteria: (1) inconsistent: 0 %

< t≤ 15 % or the number of significant increasing and decreasing trends are similar (i.e. the percentages of significant trends in230

the same direction ranges between 40 % and 60 %); (2) weakly consistent: 15 % < t ≤ 25 % and more than 60 % of significant

trends are in the same direction; (3) consistent: 25 % < t ≤ 45 % and more than 60 % of significant trends are in the same

direction; and (4) strongly consistent: t > 45 % and more than 60 % of significant trends are in the same direction.

3 Results

3.1 Identification of the dominant flood driver235

Figure 3 shows the seasonal distribution of extreme precipitation (P99; 69 events - about 0.4% of the daily time series from

1970 to 2021), annual maximum precipitation (Pmax; 52 events), multi-day precipitation (PMD; 933 events - 5% of the four-

day accumulated time series from 1970 to 2021) and wet antecedent condition events (PWAC; 2705 events - 14% of the 30-day

accumulated time series from 1970 to 2021) at the Vaals station, as an example, as well as high flow events (Qmax and Q99;

49 and 91 events, respectively) together with past flood events (FE; 30 events) in the catchment. General information on the240

frequency of the flood drivers averaged for all rainfall stations, is provided in Table 2. An opposing seasonality is visible

between extreme precipitation and high flow events. The relative frequencies of P99 and Pmax in half-year summer periods are

75% and 73%, respectively, while these percentages are only 22% and 29%, for the Qmax and Q99 events. This pattern is also
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verified by the past flood events: only 26% of them occurred during half-year summers. PMD appears to occur with relatively

similar frequencies throughout the year. Similar to PMD, PWAC shows an equal distribution all over seasons as expected. Since245

precipitation is rather uniformly distributed all over the year (see Fig. 2a) wetter than average conditions can occur in any

season, and monthly distribution of PWAC cannot be directly linked to the seasonal distribution of high flows. However, wetter

conditions (indicated by higher API values) are expected to have different effects on high flows, and a closer examination of

the specific condition before every high flow event is necessary. Our findings indicate that extreme precipitation is not the most

critical driver of high flows.250

Figure 3. Monthly distribution of annual maximum precipitation (Pmax), extreme precipitation (P99), multi-day precipitation (PMD) and

wet antecedent condition events (PWAC) at the Vaals station, annual maximum discharge (Qmax), extremely high flows (Q99) and past flood

events (FE) in the Geul.

Figure 4 illustrates the relative frequencies of the introduced indicators (see Table 1) preceding high-flow episodes (i.e.,

Qmax), as described in Sect. 2.3.3. In approximately 75% of the Qmax cases, a PMD precedes high-flow events (Fig. 4b),

while the corresponding percentage for PWAC is approximately 48% (Fig. 4c). In most cases, PWAC should be followed by

PMD in order to generate high flows (similar percentages between PWAC (Fig. 4c) and Compound II (Fig. 4e)). This is also

visible in the calculation of the conditional probability of PMD preceding Qmax given that PWAC precedes Qmax which is255

approximately 86% (Fig. 4e). In other words, given that PWAC precedes Qmax, there is 86 percent chance that PMD will be

followed by Qmax. The percentages between Compound I and Compound III events (Fig. 4d and 4f) are the same, showing

that each time a Qmax is preceded by P99 it also preceded by PMD. This effect in most cases is caused by the high amount of

precipitation that fell at the day of the event or the previous day (definition of P99) which also increases the 4day precipitation

(higher than the PMD 95th percentile). P99, Compound I, and Compound III are rare events compared to the other drivers,260

and there are years in which they are not observed at all (see Table 2). Therefore, it is essential to focus on reverse relative

frequencies. In the unique years when a P99 event occurs, it is followed by a Qmax event in about 37% of those cases, while

these numbers are approximately 43% for Compound I and Compound III, respectively (Table 2). This observation suggests

that, despite the extremity of extreme precipitation events, they do not always lead to high flows. High-flow events driven by

extreme precipitation mostly occur under wet antecedent conditions, as indicated by the similar relative frequencies of P99 and265
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Compound I (Table 2). Our findings emphasize the role of wet antecedent soil moisture conditions and multiday precipitation

in driving high flows in the Geul.

Figure 4. Relative frequencies of Qmax being preceded by (a) extreme precipitation (P99), (b) multi-day precipitation (PMD), (c) wet

antecedent conditions (PWAC), (d) extreme precipitation on wet antecedent conditions (Compound I), (e) multi-day precipitation on wet

antecedent conditions (Compound II), and (f) extreme and multi-day precipitation on wet antecedent conditions (Compound III), in the total

Qmax events (count of a driver leading to Qmax in the Qmax cases divided by the total number of cases). The mean relative frequency (in

%) for all rainfall stations is reported in brackets. The mean conditional probabilities of P99 and/or PMD preceding Qmax given that PWAC

precedes Qmax are also reported per Compound indicator.

Figure 5 shows the Qmax events plotted against their API, including also their preceding precipitation indicators (i.e. P99

and PMD ) at the Maastricht and Vaals stations. The two stations are selected as an example because in this way the spatial

variability of the catchment is considered (the Vaals station is the most upstream station and the station in Maastricht is the most270

downstream one). P99 and/or PMD conditions (green, orange, or purple markers in Fig. 5) that fall under wet conditions (API

> 1.5) are classified as compound events (see Table 1). All high flow events appear to happen during normal or wet conditions.
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Table 2. General information, averaged for all rainfall stations, regarding the frequency of the different drivers occurring regardless of Qmax

having occurred, in the Qmax period (hydrological years from 1970 to 2021, excluding 1971, 1974 and 1990).

Number of

events

(1)

Number of unique

years occurred

(2)

Mean yearly

occurrence

(1) / (2)

Number of years

followed by Qmax

(3)

Relative

frequency

(3) / (2)

P99 64.2 36.4 1.77 13.6 0.37

PMD 873.6 49.0 17.8 36.6 0.75

PWAC 2758 48.4 57.0 23.4 0.49

Compound I 31.4 20.2 1.56 8.6 0.43

Compound II 378.2 44.4 8.52 19.6 0.44

Compound III 31.2 20.0 1.56 8.6 0.43

The absence of green markers in Fig. 5 (only P99 events) indicates again that for days preceding Qmax the probability of a PMD

event given that P99 occurs equals one (Pr ( PMD | (P99 & Qmax) ) = 1). Most extreme events are caused by a combination of

P99 and PMD or just PMD . Antecedent conditions play also a crucial role in translating precipitation extremes to high flows.275

We observe that higher API values (higher wet initial conditions) lead to higher peak discharges, especially in compound

events where a strong correlation between Qmax and API is observed while a very weak correlation between Qmax and total

event precipitation is reported (see Fig. 5). PWAC makes the difference between a "regular high flow" and a flood event. This

is also evident in the initial conditions of the top five floods that occurred in the catchment during the study period (Fig. 5 and

Table 3). Details about these events (i.e date of occurrence, different rainfall accumulations, and an estimate of their initial280

conditions) are presented in Table 3 based on the precipitation records at Maastricht and Vaals (the large discrepancies in

rainfall accumulations between the two stations found in Table 3 are caused mainly by the different time interval they include,

i.e calendar days for the Maastricht station and 24-hour sums from 8 UTC for the Vaals station, but also the spatial variability).

Table 3. Top five floods that occurred in the catchment during the study period, their rainfall accumulations, and an estimate of their initial

conditions based on API. The day with the highest recorded discharge is considered as the date of occurrence of the event. The different

precipitation sums (and subsequently API) are based on daily precipitation records at the Maastricht (first value) and Vaals (second value)

stations.

No. Date
24-hour sum

[mm]

48-hour sum

[mm]

72-hour sum

[mm]

30-day before event sum

[mm]

API

[-]
Initial condition

1 15/07/2021 13.1 / 6.9 53.6 / 80.9 78.0 / 131.5 244.7 / 274.5 3.33 / 3.21 Wet / Wet

2 15/09/1998 9.2 / 28.1 31 / 71.4 48.7 / 74.7 135.5 / 187.2 2.16 / 2.42 Wet / Wet

3 28/02/1987 0.0 / 0.0 13.1 / 13.9 14.5 / 23.1 83.1 / 141.8 1.42 / 1.80 Normal / Wet

4 07/02/1984 22.5 / 10.4 57.1 / 53.2 60.5 / 58.3 131.4 / 170.3 2.24 / 2.20 Wet / Wet

5 22/02/1970 15.0 / 14.1 35.0 / 47.2 38.0 / 53.4 125.4 / 140.5 2.08 / 1.75 Wet / Wet
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Figure 5. Annual maxima events (Qmax) and their Antecedent Precipitation Indices (API) at Maastricht (a) and Vaals (c), including their

preceding extreme indicators. Discharge events preceded by P99 and/or PMD at the "Wet" classification (API > 1.5) are defined as compound

events (see Sect. 2.3.3). The top five floods during the study period are shown with their year of occurrence. The dashed purple line represents

the linear fit, using the least squares approach, between the API of the high flow events preceded by P99 and PMD and their respective Qmax

values. The total (four-day) precipitation versus Qmax is also presented for these events ((b) Maastricht and (d) Vaals). The shaded area

shows the 95% confidence intervals for the fits and the Pearson’s correlation coefficients (ρ) are also reported.

We also explore the effect of antecedent precipitation depths on high flows, as an indicator of antecedent catchment wetness.

Table 4 reports the correlation coefficients of the QW,max time series with their k-day (k = 1, 3, 5, 7, 10, 15, 30 and 40)285

antecedent depths per rainfall station. Results are presented only for the winter half-year as approximately 80% of Qmax

occurred in this period (Fig. 3). Thus, QS,max time series contains mainly low discharge values (most of them lower than 20

m3 s−1, see Fig. 8a) with meaningless correlations. Peak half-year winter discharges in the Geul appear to be closely related

to antecedent 10-40 days precipitation depths on wet soils (e.g. correlation coefficient of 0.66 in Vaals for the duration of 15

days). The effect of wet antecedent conditions is also reflected here. These results seem reasonable considering the opposing290

seasonality observed in the catchment (Fig. 3). The July 2021 flood event is consistent with these results as there is evidence

that the wetness of the catchments was much higher than usual for the time of the year (see Fig. 5 and Table 3).
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Table 4. Correlation coefficients between the winter half-year discharge maxima and their antecedent k-day precipitation depths.

Station
PkD - Winter half-year

k=1 k=3 k=5 k=7 k=10 k=15 k=30 k=40

Vaals 0.44 0.32 0.44 0.40 0.59 0.66 0.56 0.50

Valkenburg 0.30 0.20 0.26 0.28 0.47 0.57 0.52 0.44

Ubachsberg 0.26 0.21 0.25 0.30 0.46 0.56 0.53 0.46

Noorbeek 0.36 0.27 0.36 0.34 0.54 0.61 0.55 0.50

Maastricht 0.24 0.15 0.27 0.27 0.41 0.53 0.49 0.43

Average 0.32 0.23 0.31 0.31 0.49 0.59 0.53 0.47

3.1.1 Sensitivity of PMD to precipitation duration

In this section, the sensitivity of the PMD probability (and subsequently Compound II and III) preceding high flows with respect

to the duration of multi-day precipitation is examined. Table 5 reports the mean relative frequency of Qmax events preceded295

by the extreme precipitation indicators (see Table 1) for different accumulation periods (i.e PMD using 5, 6, 7, 8, 9 and 10-day

duration). The mean relative probability of PMD decreases by approximately 10% upon increasing the duration from four to

five days. For longer than five-day durations the PMD frequency preceding high flows remains relatively stable. The mean

relative frequencies of Qmax preceded by Compound II and III events show a stable pattern irrespective of the selected PMD

duration. Overall, we observe that irrespective of the selected duration, our results remain stable. This is also evident from the300

non-sensitive Compound II probabilities.

Table 5. Mean relative frequencies for all stations of high flow events preceded by the defined extreme precipitation indicators for different

accumulation periods (see Fig. 4).

PMD duration
P99

[%]

PMD

[%]

PWAC

[%]

Compound I

[%]

Compound II

[%]

Compound III

[%]

4-day

27.7

74.7

47.8 17.5

38.4 17.5

5-day 64.5 39.6 17.5

6-day 64.5 39.6 17.5

7-day 61.6 39.6 17.1

8-day 57.5 38.3 17.1

9-day 60.8 41.6 17.5

10-day 58.4 39.2 16.3

A 4-day duration was selected for the definition of an PMD event as we wanted to ensure that the 95th percentile was higher

than the 99th percentile of P99. In this way usually more than two days of precipitation are required to exceed the four-day 95th
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percentile and cause PMD. In extreme 24-hour events this threshold could be exceeded, however, with increasing PMD duration

the difference between the 95th PMD percentile and the 99th P99 percentile becomes larger (since the 95th PMD percentile305

is much higher). However, in the way we defined P99 (two days interval) we observed that the P99 events preceding a Qmax

usually coincided with also PMD. This doesn’t affect the results. PMD, which cannot alone cause P99, mainly lead to Qmax.

Then depending mainly on the wet conditions, the extreme events are translated into floods.

3.2 Trend analysis

3.2.1 Flood driver trends310

Figure 6 illustrates the multi-temporal trend analysis for several precipitation indices for the Vaals station, for half-year periods,

as an example. The multi-temporal analysis for Vaals, which has a record from 1952 to 2021, results in 861 trends. In the

winter half-year statistically significant increasing trends are found for the longest periods in all indices at Vaals. However,

a decreasing, mainly insignificant, pattern is visible in the recent past (trends starting after the 1980s). In summer (Fig. 6b)

negative trends are visible for the longest periods, while this changes to positive trends in the recent past for k≤ 5 days. Summer315

trends for k > 5 days are rather mixed: generally insignificant trends, with shifts between positive and negative tendencies. For

the full multi-temporal analysis per index and station, please refer to the supplementary material.

Figure 7 shows the consistency of statistically significant trends in each precipitation index per rainfall station. In winter

only increasing trends are visible, with the exception of the P15D index at Ubachsberg. The decreasing tendency in the recent

past detected at Vaals is very strong and statistically significant at Ubaschsberg for most indices (Fig. S3 in supplement), which320

causes this inconsistent decrease. Consistent and strongly consistent increases are observed in at least one station per index. In

the index P7D four out of five stations show consistent or strongly consistent increases. For k ≤ 10 days most stations have

strongly consistent or consistent upward directions. With increasing k (15,..,40 days) the increase becomes weaker (incon-

sistent) for the majority of the stations, however still two out of five stations (located inside the catchment) show increases.

Indices for k ≤ 10 days are strongly consistently increasing, while for k > 10 days a consistent increase is visible in the station325

Valkenburg. In addition, three out of five stations show strongly consistent or consistent increasing trends in the indices P95

and PMD. Overall, the trend analysis in winter for the Geul catchment shows a consistent increase of very wet days (P95)

and maximum k-day precipitation sums. The rise in severe precipitation is caused mostly by more rain on already wet days.

Multi-day precipitation extremes are consistently increasing. This is a crucial finding, as the effects of prolonged heavy storms

in combination with wet antecedent conditions appear to be the dominant flood drivers in the Geul catchment.330

Trends in summer periods show variability across the different stations. The majority of the summer half-year k-day and

P95 indices are subject to inconsistent trends. Most stations show generally insignificant trends, with changes between positive

and negative tendencies. The only consistent trends are mainly increasing and are found at the Valkenburg station for k = 5, 7,

10, 15 days, at Ubachsberg for k = 7 days, and at Maastricht (i.e PMD ). In addition, the P30D and P95 indices at Maastricht

show strong and statistically significant increasing trends in the majority of tested cases resulting in weakly consistent trends.335

As mentioned, despite the fact that the difference between significant increasing and decreasing trends in the summer half-year
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Figure 6. Multi-temporal trend analysis for P1D, P5D, P15D and P95 at Vaals for (a) winter half-year and (b) summer half-year. Each pixel

presents a fixed single period (minimum window length of 30 years) of start and end year. For each period the M-K test is applied, and

the color indicates the Z-statistic value of the test (the same definitions apply to the subsequent figures). Blue colors indicate increasing

trends and red downward ones. The darker the color, the more significant the trend. Statistically significant trends are considered those with

Z-statistic values higher than 1.28 (or smaller than -1.28 for downward trends) corresponding to the defined significance level of 0.2 (see

Sect. 2.4).

is not clear, the statistically significant increasing trends in the recent past, mainly for k≤3 days, are strong and should be

taken into account (Fig. S6 - S10 in supplement). In addition, the consistent increasing trends at Valkenburg reveal a direction

towards more wet conditions in the summer half-year.

3.2.2 Discharge trends340

The results of the multi-temporal analysis for the QW,max and QS,max time series are shown in Fig. 8. It can be observed that

the maximum flows show variability over the two half-year periods. Strong increasing trends are found in the longest periods

for the winter half-year but this seems to have changed in the recent past to statistically insignificant decreasing tendencies.

Overall, the increase in the QW,max is consistent. This pattern is in agreement with the extreme precipitation trends in the area

for winter, as large similarities are observed in terms of magnitudes, directions and variabilities. For example, QW,max trends345
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Figure 7. Temporal consistency of precipitation trend indices for winter and summer half-years. Blue colors indicate upward trends while

red colors indicate downward trends.

variability is quite similar to P95 index in winter at Vaals (see Fig. 6a): statistically stronger increasing trends in longer periods

(from 1970 to 2021) with a weak decreasing direction in the recent past (trends starting from the 1980s).

Mixed and non statistically significant trends are observed in the summer half-year (Fig. 8c), as expected, considering that

the trends in extreme precipitation in the same period are inconsistent and their strength is (statistically) insignificant. QS,max

trends shift between negative and positive tendencies in similar, for some cases, periods with the extreme summer precipitation,350

however this match is not so clear as in the winter period. The increasing direction of extreme precipitation in the recent past for

summer starts becoming visible also in the QS,max direction (see positive values for trends starting after 1985). In general, in

summer the effect of the considerable increase in evaporation in the area (Tsiokanos, 2022) in combination with the large soil

moisture deficits should be taken into account when translating extreme precipitation to extreme streamflows, and subsequently

discussing correspondences and differences between discharge and precipitation trends.355
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Figure 8. Half-year yearly maxima time series (a) and multi-temporal trend analysis for (b) winter half-year yearly maxima (QW,max) and

(c) summer half-year yearly maxima (QS,max). The gray stripes in the heatmaps indicate the excluded hydrological years (i.e. 1971, 1974

and 1990).

4 Discussion

4.1 Data uncertainty

Records of 24-hour precipitation are used that come from the KNMI manual rain gauge network. The used precipitation time

resolution may be considered low for flood analysis, however the response time (i.e. longer than a day, see Sect. 2.1) of the

catchment allows the application of this resolution. In addition, the main goal of this paper is to investigate the role of P99, PMD360

, and PWAC as potential flood drivers. The use of 24-hour resolution can affect the defined P99, while the applied resolution

does not have a major impact on the definitions and meaning of PMD and PWAC. For this reason, allowances were made in the

way we define a P99 day (i.e. precipitation amount at the same or previous day of the high flow event; see Sect. 2.3.3).

Long precipitation time series may have been influenced by instrumental modifications and station relocations throughout the

recording period. As mentioned in Sect. 2.2, the data are considered to be of high quality, as KNMI performs regular quality365

tests. In addition to that, two homogeneity tests were applied to monthly sums. In general, it is assumed that the analyzed

precipitation time series in this research are not affected by instrumental and location alterations, so the trends that are found

can be attributed to climate and not to human interventions.
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It must be acknowledged that the produced discharge results are subject to significant uncertainty (Di Baldassarre and

Montanari, 2009). Estimations during extremely high flows are very inaccurate. For example, the recorder discharge in July370

2021 flood was 55 m3s−1, while it is estimated that it exceeded 80 m3s−1 (van Heeringen et al., 2022). However, our main

findings about the role of PWAC and PMD in generating high flows remain valid. In addition, periods of transition, changes

in gauge position, equipment, and monitoring frequencies, and stage-discharge relations can cause sudden variations in flow

rates. These changes can be more visible in mean flow trends where the values are low in contrast to high flows used in this

paper. The long-term measurements of the station Meerssen at the outlet of the catchment are considered reliable in terms375

of homogeneity (Agor, 2003). The high flow trends are found to be similar to the directions and significance of the extreme

precipitation trends, indicating that the results are likely not affected.

4.2 Implications

It is found for the Geul that extreme daily precipitation is not solely a flood driver. Wet antecedent soil conditions are a crucial

factor determining the probability of flooding. In this respect, the finding that heavy prolonged precipitation is the main high380

flow mechanism in the Geul seems reasonable, as multi-day precipitation can be used also as a proxy for heavy precipitation

occurring on wet antecedent circumstances (Nanditha and Mishra, 2022). Most of the flood events are observed in winter

periods, when the catchment tends to be very wet, with shallow groundwater tables. In summer periods most of the extreme

(intense) precipitation events are not translated to high flow peaks, due to large soil moisture deficits. The most devastating

flood in the area (i.e. July 2021) was aggravated by rainfall events in preceding days and weeks. The role of wet antecedent385

(soil) conditions in driving floods is well established, however, the focus tends to be on larger catchments (Wasko et al., 2020).

Information about the initial (wet) conditions of the catchment is deemed essential, particularly for flood forecasting, since the

local water authority currently does not monitor soil moisture. In addition, the geology of the Geul can significantly control

the runoff response, as there is a thick unsaturated chalk zone that can store much water (Klein, 2022). The (geo)hydrological

properties and characteristics of the catchments should receive more attention in the flood forecasting system (Zanon et al.,390

2010; Douinot et al., 2022). Our findings are also expected to help in the understanding of flood mechanisms in other lowland

or chalk catchments around the world. In addition, the followed event-based approach can be exploited in other catchments

to examine the relative role of wet antecedent soil moisture conditions and precipitation characteristics preceding high flows,

especially in areas where (long-term) soil moisture data are not available.

The statistical results obtained in Sect. 3.2.1 demonstrate some intriguing variations in the Geul catchment’s precipitation395

regimes across the studied periods. The most notable change is the consistent and strong increase in critical precipitation

during the winter half-year. The rise in severe precipitation is caused mostly by more rain on already wet days. This is a crucial

finding as prolonged rainfall events have impacted the catchment and caused floods mainly in winter. Although it cannot be

concluded that climate change had a significant impact on the July 2021 flood event in the Geul region, as there are no apparent

consistent patterns in most summer precipitation trends, a concerning increasing direction in the recent past (mainly after the400

1980s) is visible. This finding is important as it shows that, except for the intense showers in summer, the effects of heavy

storms in combination with wet antecedent conditions should be also taken into account. At the same time, it is critical to
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consider the substantial increase in summer potential evaporation rates (due to increases in temperature and radiation) in the

area (Tsiokanos, 2022) that may lead to soil moisture deficits, when translating extreme precipitation events into potential

extreme flows. According to the recently published KNMI scenarios wetter winters and increased extreme summer showers405

are projected for the Netherlands (KNMI, 2023). These projections suggest that the number of heavy showers with significant

precipitation is expected to rise, with a shift from light to heavier (more rain falls from the shower) and more intense (more

rain falls in a certain time) showers (KNMI, 2023). These climate scenarios are in line with the trends found in this study.

Overall, the long-term trends of the critical precipitation are also visible in the runoff patterns. Thus, climate change should

be taken seriously into account in the area and should be incorporated into flood designs, considering also the effects of agro-410

economic developments, such as land-use changes. Our findings from the precipitation and discharge trend analyses can serve

as a valuable reference for assessing the impact of climate change on precipitation and discharge patterns in other regions than

the Geul as well. In addition, the use of a multi-temporal approach, including the consistency criteria, appears useful and is

recommended for identifying variability, recent directions but also long-term trends.

5 Conclusions415

We used an event-based approach to detect the main flood drivers in the Geul river catchment and a multi-temporal trend

analysis to investigate their temporal variability and consistency. Our results show that heavy multi-day precipitation is the

prominent high flow driver in the catchment, as it precedes high flow events approximately 75% of time (using a 4-day pre-

cipitation duration) (Fig. 4). Wet antecedent conditions play a crucial role in translating extreme events into extreme flows and

make the difference between a "regular high flow" and a flood event. Extreme (24-hour) precipitation, without wet antecedent420

conditions, which appears mainly in summer, has never led solely to floods in the past (Fig. 5 and Table 3). The joint probability

of heavy (prolonged) rainfall and wet initial conditions (which can be seen as a compound event) determines the chances of

flooding. As a result, prolonged heavy rainfall and wet antecedent wetness appear to be the main high-flow generating fac-

tors and should be used as flood indicators, rather than extreme precipitation alone. Critical precipitation (precipitation that

leads to floods) shows a consistent increase in the winter half-year, a period in which more than 70% of extremely high flows425

have occurred historically. Heavy prolonged storms in combination with wet antecedent conditions can cause large flooding

and these conditions are becoming more frequent during winters. This rise is also reflected in the winter half-year maximum

discharges, which are increasing in terms of magnitude. Although the majority of precipitation and flow trends do not exhibit

consistent patterns in the summer half-year, a notable and concerning upward direction has become evident in the recent past.

This observation underscores the necessity to account for compound events’ effects in addition to intense summer showers. The430

extreme flood event of July 2021, along with the observed increase in flood drivers, emphasizes the importance of incorporating

compound events into flood risk assessment.
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