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Abstract. Extreme precipitation in July 2021 caused devastating flooding in Germany, Belgium and the Netherlands, partic-

ularly in the Geul river catchment. Such precipitation extremes were not previously recorded and were not expected to occur

in summer. This contributed to poor flood forecast and hence to large damage. Climate change was mentioned as a potential

explanation for these unprecedented events. Yet, before such a statement can be made, we need a better understanding of the

drivers of floods in the Geul and their long-term variability, which are poorly understood and have not been examined recently.5

In this paper, we use an event-based approach to identify the dominant flood drivers in the Geul and employ a multi-temporal

trend analysis to investigate their temporal variabilities, as well as, a novel methodology to detect the dominant direction of a

trend. Results suggest that extreme 24-hour precipitation alone is typically insufficient to cause floods. The joint probability

of extreme and prolonged rainfall combined with wet initial conditions (compound event) determines the chances of flood-

ing. Flood producing precipitation shows a consistent increase in the winter half-year, a period in which more than 70% of10

extremely high flows have occurred historically. While no consistent trend patterns are evident in the majority of precipitation

and extreme flow trends in the summer half-year, an increasing direction in the recent past is visible.

1 Introduction

In July 2021, Western Europe was struck by extreme precipitation, leading to disastrous flooding in Germany, Belgium, and

the Netherlands (Journée et al., 2023; Kreienkamp et al., 2021). This event ranked among the most devastating natural disasters15

to hit Europe in the past 50 years, resulting in at least 220 deaths and causing an estimated economic damage of approximately

EUR 46 billion (MunichRe, 2022; Mohr et al., 2023). In the Netherlands, the Geul river catchment (344 km2) was the most

impacted, where the economic damage of the floods was estimated to exceed EUR 200 million, constituting approximately 50%

of the total estimated damage in the country (Task Force Fact Finding hoogwater 2021, 2021). The event revealed weaknesses

in flood risk management. Flood risks were poorly communicated to the inhabitants (Slager, 2023). The flood forecasting20

system for the Geul was under maintenance, and even if it had been operational, predictions would not have been accurate,

because of poor representation of flood-generating processes, according to the responsible authorities (Task Force Fact Finding

hoogwater 2021, 2021). The Geul catchment is considered quite an exceptional and atypical catchment for the Netherlands due
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to its steep topography (elevations range from 40 to nearly 400 m) and deep soils (tens of meters). A proper understanding of

flood drivers in the area is considered an important stepping-stone in mitigating the risks in the future.25

Floods in a catchment are caused by the interaction of meteorological, river system, and catchment characteristics (Andrés-

Doménech et al., 2015). Hydrological catchment properties can regulate streamflow response (Sharma et al., 2018), for ex-

ample, extreme precipitation does not always result in floods in various basins around the world (Wasko and Nathan, 2019;

Nanditha and Mishra, 2022; Berghuijs et al., 2019). Among the catchment characteristics, antecedent conditions (e.g., soil

moisture) can play a crucial role in driving high flows (Bertola et al., 2020; Woldemeskel and Sharma, 2016). Many locations30

around the world have experienced the effects of wet antecedent conditions on flood risk (e.g., Garg and Mishra, 2019; Bis-

chiniotis et al., 2018; Ivancic and Shaw, 2015; Cao et al., 2019). Especially in lowland catchments the discharge response can

be strongly influenced by the catchment wetness, due to shallow groundwater and its effects on rainfall flow paths (Brauer

et al., 2018). As a result, determining the relative contribution of antecedent wetness conditions and extreme precipitation in

causing high river flows is critical.35

The identification of the drivers of observed flood events has received increasing attention in the recent literature (e.g.,

Blöschl et al., 2019; Bertola et al., 2020). Examining relations between trends or seasonality in flood peaks and factors such

as extreme precipitation or soil moisture to define flood drivers is well established (Blöschl et al., 2019; Do et al., 2017;

Tramblay et al., 2021; Wasko et al., 2020). However, to enhance our knowledge of flood dynamics, an event-based approach

has been suggested (Nanditha and Mishra, 2022; Tramblay et al., 2021; Berghuijs et al., 2019). This approach entails identifying40

the specific drivers behind individual flood events or extremely high-flow occurrences. By analyzing the characteristics and

circumstances surrounding these events, one can gain valuable insights into the mechanisms and factors that contribute to their

intensity and occurrence (Nanditha and Mishra, 2022).

A proper understanding of flood drivers does not only include their identification but also their long-term change. Investi-

gating the changes of variables that can cause a hazard is crucial for managing the risks in an effective way (Yang et al., 2021)45

and can facilitate the planning of reliable and meaningful interventions. Making a critical assessment of the past and current

states and providing the long-term trends of hydroclimatic variables play a key role in future projections (Squintu et al., 2021).

Trends and changes in the time series of hydrological and climatological data have received attention in catchments and areas

across the world (e.g., Blöschl et al., 2017; Do et al., 2017; Hannaford et al., 2021; Murphy et al., 2020).

However, most of the existing trend tests are limited, as they are conducted within fixed timeframes, which may fail to50

accurately capture the historical variability. The significance and magnitude of trends can vary considerably based on the chosen

study period and duration. To deal with this limitation, multi-temporal trend approaches have been leveraged (e.g., Hannaford

et al., 2021; Murphy et al., 2020), considering all possible combinations of start and end-year periods. Although these analyses

have helped in identifying temporal variabilities, a research gap remains in determining the main trend direction, such as

consistency or stability, across all studied time frames. Lupikasza (2010) developed criteria for expressing trend stabilities55

using a fixed 30-year moving window, however, this approach did not fully consider the entire variability (multi-temporal

analysis) but instead utilized an overlapping period which can be misleading. Since each 30-year window overlaps with the

previous and subsequent windows, trends can be missed or misinterpreted because the overlapping periods could obscure them.
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Using only overlapping periods can lead to artificially smooth trends not representing the true (long-term) variability of the

data. In addition, the length of the selected moving window might introduce bias in the analysis. Trends over longer periods60

and with different combinations of start and end-year periods expressing the full historical variation should also be taken into

account in the calculation of the main direction. To address these limitations, our study builds on the multi-temporal approach

and develops a methodology capable of identifying and assessing trend consistency in multi-temporal analyses, taking into

account the complete range of variability. This new method is anticipated to deepen our understanding of flood driver trends in

the Geul river catchment, with potential applicability across broader contexts.65

In summary, the Geul river catchment consists an interesting example of a hilly catchment in northwest Europe, with unique

hydrological characteristics that are shaped by the underlying geology, topography and land use. The recent floods have shown

that there is a need for further research into the drivers of flooding in the area, particularly in the context of climate change.

Specifically, the role of extreme precipitation and antecedent conditions as potential flood drivers and their long-term variability

remain to be examined. Therefore, our objective is to detect the primary drivers of high-flow/flood events in the Geul river70

catchment and analyze their long-term trends. To achieve these objectives, we address the following scientific questions that

are crucial for our understanding of floods in the Geul river catchment: (a) What are the dominant flood drivers in the Geul

river catchment in different seasons? and (b) What are the trends (temporal variability and consistency) of the flood producing

precipitation and extreme discharges in the catchment? To identify the dominant flood drivers we use an event-based approach.

In addition, we utilize a multi-temporal trend analysis to investigate the temporal variabilities of the trends and introduce a new75

methodology to detect the dominant direction (i.e. consistency) of a trend. Although our study focuses on the Geul area, it is

essential to highlight that our combined approaches (integrating an event-based approach with multi-temporal analyses) and

proposed trend consistency method hold applicability beyond this specific case. Thus, our aim is to offer valuable insights for

the Geul area while avoiding constraining the scope of our methods and findings to a singular case study.

2 Methods and materials80

2.1 Study area

The Geul river is an important tributary of the Meuse and is located in the Netherlands, Belgium, and part of Germany, close

to the three-border region (Fig. 1). The total area of the Geul catchment is approximately 344 km2. The Geul drops about

250 m over approximately 60 km, making it one of the few steeply sloping rivers in the Netherlands. The Geul river has an

average discharge of approximately 3.2 m3s−1 (at the outlet of the catchment) and is mainly rain-fed. As a consequence, its85

discharge can change dramatically during flood and drought events (e.g. ranging from 1 m3s−1 during drought periods to more

than 40 m3s−1 during floods). The response time of the catchment is in the order of one to two days (Asselman et al., 2022).

The annual average precipitation is approximately 870 mm yr−1 and is rather uniformly distributed over the year (see Fig. 2a).

Average annual discharge at the outlet of the catchment and potential evaporation are about 307 mm yr−1 and 585 mm yr−1

respectively, based on time series from 1970 to 2021. The flow regimes in the Geul do not show large variations (Fig. 2). The,90

on average, equal distribution of runoff in the Geul throughout the year is due to the effect of groundwater storage provided by
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large chalk aquifers in the catchment (Tu, 2006). The long-term evaporative index is approximately 0.67 and the runoff ratio

0.35.

Figure 1. (a) Location of the Geul river catchment (blue shaded area), (b) elevation map of the study catchment including the location of

precipitation stations and the discharge observation station at the outlet.

2.2 Data sets

Streamflow time series at the outlet of the catchment (station Meerssen), were made available by the local water authority Wa-95

terschap Limburg, including 15-minute measurements from 1970 up to August 2021. From 1970 to 2011 measurements were

taken using a measuring weir, while since 2011 discharges are measured using Acoustic Doppler Current Profilers (ADCP)

(van der Deijl, 2023). Historical flood event data (i.e. date of occurrence) are based on Thewissen (2022), who performed a

local newspaper search using Delpher, a Dutch database containing digitized texts from newspapers, books, and magazines.

These collections are curated by scientific organizations, libraries, and heritage institutions. Thewissen (2022) obtained the100

data through an iterative process that involved Optical Character Recognition (OCR) and manual scanning. In this research,

a flood is defined as surpassing the bankful capacity. For detailed information about the search methodology, please refer to

Thewissen (2022).

Records of 24-hour precipitation from five stations located in (or near) the Geul river catchment are used (see Fig. 1).

The data used in this study come from the Royal Netherlands Meteorological Institute (KNMI) manual rain gauge network.105

Volunteer observers operate the rain gauges on a 24-hour basis (from 08:00 to 08:00 UTC). In addition to the volunteer KNMI

stations, daily (calendar days) measurements from the automated meteorological station at Maastricht are used. Data from

automated stations are also available at an hourly basis, however the daily scale is used in order to have the same resolution
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Figure 2. (a) Upper panel: Monthly averages for precipitation (averaged using Thiessen polygons), reference (Makkink) evaporation (ob-

tained from the Maastricht meteorological station) and discharge in the Geul catchment, Lower panel: Flow regimes of the Geul based on

Pardé coefficient, defined as the ratio of the average monthly discharge to the average annual discharge, (b) Flow duration curve along the

Geul based on the mean daily discharge. All graphs are produced using time series from 1970 to 2021.

for each station. The time series are complete (except for three missing months at Noorbeek) and are considered to be of high

quality, as KNMI performs regular quality tests (Buishand et al., 2013). Days with extremes were checked and it was found110

that all of them occurred during well-known high precipitation or flood events.

The available precipitation record periods slightly differ between the selected stations and mainly start in the 1950s, except

the new Epen station, which has a record from 1981 onward. Specifically, stations at Vaals, Valkenburg, and Noorbeek have a

record from 1951 onward, while the available time series at the Maastricht and Ubachsberg stations start from 1958 and 1955,

respectively. Due to its shorter available period the station Epen is excluded from the analysis. The precipitation stations located115

in the uppermost regions of the catchment in Belgium were not taken into account due to their limited temporal coverage, lack

of alignment with the discharge (and the KNMI) data, and unsuitability for trend analysis.

Another important factor to consider when analyzing meteorological time series, and especially trends, is data (in)homogeneity.

Trends represent the long-term changes in the data over time caused by natural/climate variability, while inhomogeneities rep-

resent changes in the data that are not part of the underlying trend. There are several types of modifications that can occur and120

can cause significant non-climatic alternations (inhomogeneities) in the data, especially in long time series, such as changes

in the location of the measuring station, differences in the manner and the procedures (e.g. measuring frequency) or changes

in the instruments/tools. Performing statistical tests for homogeneity on precipitation data measured at daily frequencies is

challenging or practically infeasible (Lupikasza, 2010). This can be attributed to the fact that daily time series show strong

random variations. For this reason, the precipitation time series were aggregated to monthly sums and then tested using two125
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well-known homogeneity tests: the Standard Normalised Homogeneity Test (SNHT) (Alexandersson, 1986; Alexandersson

and Moberg, 1997) and Buishand’s U test (Buishand, 1984). Both tests were applied at a significance level of 5% (α=0.05).

The test results showed that the data time series were free of significant errors and no inhomogeneities were detected.

2.3 Flood driver detection

2.3.1 Extreme indicators130

Hydrological years are used instead of calendar years to ensure a more accurate representation of the frequency and intensity

of extreme events that may occur within a particular hydrological regime. Similarly to Tu (2006) and Sperna-Weiland et al.

(2015), we define a hydrological year from November to October, for the study area. Half-year hydrological winter (from

November to April) and summer (from May to October) are also considered.

Two types of flood data time series are used: annual maxima (denoted as Qmax), including winter and summer yearly maxima135

(denoted as QW,max and QS,max, respectively), and extremely high flows using the peaks over threshold (POT) method (Haan,

2002). The maximum daily discharge is taken from the 15-min discharge data and hydrological years with over 20% missing

daily values are omitted from the analysis. Consequently, the years 1971, 1974, and 1990 have been excluded from the Qmax

times series. For identifying extremely high flows we use the 99th percentile threshold (Nanditha and Mishra, 2022; denoted

as Q99) extracted from the maximum daily discharge time series from 1970 to 2021, excluding daily missing values. We use140

only extremely high events separated by a time frame of five days to ensure that the selected high flows are independent and

do not belong to the same flood wave.

Floods are generally caused by a combination of initial moisture conditions and precipitation. To explore the probable causes

of high flow episodes, we employ six indicators to assess precipitation and antecedent soil moisture levels: extreme precipitation

(denoted as P99), multi-day precipitation (denoted as PMD), wet antecedent conditions (denoted as PWAC), P99 combined with145

PWAC (denoted as Compound I), PMD combined with PWAC (denoted as Compound II), and P99 and PMD combined with

PWAC (denoted as Compound III). These indicators allow us to examine the relative role of extreme precipitation, prolonged

heavy rainfall, extreme soil moisture conditions, and compound extremes in generating high flows.

We estimate P99 as the events that exceed the 99th percentile of wet days (days with more than 1 mm precipitation) (Nanditha

and Mishra, 2022). We define PMD events using the 95th percentile of all k-day accumulated (rolling sum) precipitation time150

series (Nanditha and Mishra, 2022). To clarify the PMD definition, we ensure that the 95th percentile of multi-day rainfall

consistently surpasses the 99th percentile of the 24-hour rainfall on wet days, aiding in distinguishing between P99 and PMD.

In this way usually more than two days of precipitation are necessary to exceed the k-day 95th percentile and trigger PMD,

allowing the assumption that PMD can be used as a proxy of heavy prolonged events. As we use the 95th percentile of all k-day

accumulated (rolling sum) precipitation to define PMD and we have “daily” values, this threshold is expected to be exceeded in155

prolonged events irrespective of the selected duration, indicating that we have prolonged (multi-day) heavy events (larger than

the 95th percentile of the selected k-day accumulations), although not so extreme as the 24-hour P99, which helps us examine

the relative contributions of extreme precipitation and prolonged heavy rainfall in generating high flows. However, in rare cases,
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24-hour precipitation can simultaneously trigger both P99 and PMD especially for the lower k-day accumulation periods, which

is unavoidable. Thus, for each of the five precipitation stations considered, we calculated the PMD 95th percentile for different160

durations. It was found that a duration longer than 4 days is required for this percentile to surpass the 99th percentile used in

defining P99. Finally, to determine the most suitable k-day PMD duration for k ≥ 4, we evaluate the PMD probability preceding

high flows across multi-day precipitation durations up to 10 days (see Sec. 3.1.1).

Furthermore, we use the Antecedent Precipitation Index (ratio of 30-day pre-event precipitation to long-term average for

the same period; API) as developed by Marchi et al. (2010), to assess the initial catchment conditions and get an estimate of165

the initial (soil) conditions. Marchi et al. (2010) classifies antecedent moisture conditions as follows: (1) dry: 0 < API ≤ 0.5;

(2) normal: 0.5 < API ≤ 1.5; and (3) wet: API > 1.5. PWAC corresponds to API values higher than 1.5 (Marchi et al., 2010).

The API’s effectiveness in assessing initial soil wetness conditions was documented for instance by Marchi et al. (2010), who

demonstrated its strong agreement with predictions from a continuous soil moisture accounting hydrological model (Norbiato

et al., 2008). However, since the index is based solely on precipitation, its sensitivity to evaporation is further discussed in170

Sect. 3.1.5. This is done by computing the 30-day pre-event effective rainfall, which entails subtracting reference evaporation

obtained from the Maastricht station from the precipitation measurements.

2.3.2 Monthly distribution of extremes

In order to get a rough indication of the effects of extreme rainfall on high flows, we estimate the monthly distribution of P99,

PMD, annual maximum precipitation (denoted as Pmax) and high flow extremes (i.e. Q99 and Qmax), together with the past175

flood events (as defined in Sect. 2.2). Despite the fact that the monthly distribution of PWAC events cannot be directly related

to the monthly distribution of high flow extremes, as PWAC indicate wetter than average conditions any time of the year, their

relative frequencies can provide useful insights. For this reason, we also calculate the monthly frequencies of PWAC. To achieve

this, each daily timestep in the precipitation series is treated as an individual event. This involves summing the precipitation

amount for each day over the previous 30 days and then dividing this sum by the 30-day long-term average for the same period180

across the entire time series. In this way, an API index per day is obtained.

The use of all-day percentiles for discharge (Q99) and wet-day percentiles for rainfall (P99) may lack statistical robustness,

primarily because there could be a potential increase in the number of wet days over the study period (Schär et al., 2016). To

address the potential issue a trend test in the number of wet days per year and station was conducted using the non-parametric

Mann-Kendall (M-K) (Kendall, 1955; Mann, 1945) test at a significance level of 0.05. The analysis did not reveal any significant185

trends in the number of wet days.

2.3.3 Event-based analysis

After the seasonal assessment of the extreme indicators and high-flow events, an event-based approach is followed to detect the

predominant flood driver(s) in the catchment. Specifically, we calculate the likelihood of the six precipitation indicators (i.e.,

P99, PMD, PWAC, Compound I, Compound II and Compound III) preceding selected high flow episodes (i.e. Qmax) in order190

to determine the primary flood cause. We use the Qmax events instead of the Q99, as they are better defined for identifying
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flood drivers including all major flood events, considering also that the P99 is calculated from a significantly longer data series

than the Q99. We conduct a comprehensive analysis of each high-flow event, examining the frequency of occurrence for each

indicator before a Qmax event. Specifically, we determine how many times an indicator occurred in relation to the total number

of Qmax events, effectively calculating its likelihood in contributing to such occurrences. For instance, if P99 is the main flood195

cause in the catchment, then P99 is highly likely to occur during the duration of the flood (precipitation amount of the same

day) or within one day before the commencement of the event. Here, we use a two-day interval (i.e. precipitation at the same

or the previous day of the flood event) for mainly two reasons: (a) the lag time of the catchment and (b) to eliminate errors due

to the use of daily values (e.g., a high flow event may occur early morning due to P99 from the previous day). For Compound

I events (P99 on PWAC), we verify whether the P99 on PWAC occurred either on the event day itself or if the P99 on PWAC200

took place one day prior to the event. This approach guarantees that the P99 consistently occurs in pre-existing wet conditions.

Thus, we establish the requirement for a P99 to appear on PWAC for a compound event, thereby preventing scenarios where a

P99 occurring one day prior to the Qmax under normal circumstances could increase the API on the day of the Qmax, leading

to a PWAC. In a similar manner, we calculate the probability of Compound III preceding the Qmax events: PMD and P99 and

PWAC on the day of the event or one day before. For the remaining indices, PMD and PWAC, we simply verify whether these205

indicators are present on the day of the event.

As we directly compare the likelihood of each indicator leading to Qmax, it is important to note that the comparison among

different flood drivers may be affected by the rarity of certain events. The total number of flood indicators varies, particularly

for the most extreme ones, such as P99, Compound I, and Compound III. For instance, in some years, a P99 event might not

occur, and therefore, it cannot precede Qmax. To account for this effect, the reverse scenario is also considered: given that a210

driver has occurred, what is the relative frequency of it being followed by a Qmax event. Thus, we calculate the number of

unique hydrological years in which a driver is observed and determine how often Qmax is also observed within these instances.

Additionally, we provide general information about the frequency of the different drivers occurring, regardless of whether Qmax

has occurred, along with their corresponding discharge values. In this reverse extreme precipitation-based analysis, the highest

discharge is extracted either on the day of the indicator or the next day for P99, Compound I, and III, while for other indices,215

the discharge value on the day of the event is taken to ensure alignment with the extreme discharge event-based analysis.

Antecedent catchment wetness and precipitation depths are crucial factors for floods in terms of magnitudes and volumes.

In addition to the aforementioned flood indicators, we delve deeper into this relationship by employing the nonparametric

Spearman’s rank-order correlation method to correlate the half-year maximum discharge time series (QW,max and QS,max)

with their k-day antecedent precipitation depth (denoted as PkD, where k = 1, 3, 5, 7, 10, 15, 30 and 40 days; Tu, 2006).220

The antecedent precipitation depths are computed by summing the precipitation on the day of the high flow event and the

previous k days (Tu, 2006). Table 1 provides an overview of all the different flood indicators used in this study, along with their

corresponding definitions.

One crucial concern is the timing difference of the measured daily values, i.e. calendar days for discharges and 24-hour sums

from 08:00 UTC for precipitation. The reported time/date in the precipitation time series (for the manual rain gauge network;225

Valkenburg, Ubachsberg, Noorbeek and Vaals stations) is the end time of observation. For this reason, the time of occurrence
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Table 1. Extreme indicators used to identify the main flood drivers. The initial six indicators are used to calculate probabilities preceding

high-flow episodes, whereas the last indicator is correlated with high flows

Indicator Estimation method

Extreme precipitation (P99) 24-hour precipitation exceeding the 99th percentile of rainy days (more than 1 mm)

Multi-day precipitation (PMD ) Four-day (Sect. 3.1) accumulated precipitation amount exceeding the 95th percentile thresholds

Wet antecedent conditions (PWAC) Antecedent Precipitation Index (API) value higher than 1.5

Compound I Extreme precipitation occurring on wet antecedent conditions

Compound II Multi-day precipitation occurring on wet antecedent conditions

Compound III Extreme and multi-day precipitation occurring on wet antecedent conditions

Antecedent precipitation depths (PkD) Sum of precipitation on the day of the high flow event and the previous k days

of the max daily discharge is checked: if the time of the maximum 15-min discharge values is observed to be between 00:00

and 08:00 UTC, the calendar day of this event is reported, otherwise, the next day is considered as the date of occurrence of

the event for the (manual rain gauge) precipitation time series. In this way, we ensure the agreement between the precipitation

and discharge time series.230

2.4 Trend analysis

The temporal variability and the trends of the aforementioned potential flood drivers (i.e. P99, PMD and PkD) are investigated.

Trends in PkD are based on the highest k-day total precipitation per year (a summation moving window with different lengths

is applied over the whole time series from the 1950s to 2021 and the annual maxima are extracted). In contrast to the definition

of P99 in Sect. 2.3.3, we use the 95th percentile, as events that exceed the 99th percentile are extremely rare and result in many235

zero values in the time series, especially in winter periods, making the trend analysis unstable. The new index is denoted as P95

and represents the annual total precipitation from days exceeding the 95th percentile. Similarly to P99 the 95th percentile is

calculated using the whole range of the time series and only wet days. Finally, the PMD trends are investigated by summing the

annual amount of four-day accumulated precipitation that exceeds the 95th percentile thresholds (of the four-day rolling sum).

The used precipitation trend indices are similar to ETCCDI (Expert Team on Climate Change Detection Indices) and have240

been frequently applied (Klein Tank et al., 2002; Dunn et al., 2020). The aforementioned precipitation indices are calculated

for winter and summer periods. In addition, trends in the half-year maximum discharges (QW,max and QS,max) are examined

in order to detect possible consequences of extreme precipitation on extreme streamflows. We use the non-parametric M-K test

to detect significant trends. To this end, a Python package that contains all the types/modifications of the M-K test, as developed

by Hussain and Mahmud (2019), is used. The original M-K test is employed on both the precipitation indices and discharge245

time series, instead of a modified M-K version that accounts for the influence of serial correlation on trend calculations. This

choice is guided by the assumption that the precipitation time series exhibit no significant serial correlation and that the annual

maximum discharge values are typically considered uncorrelated by construction.
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The statistical significance and direction of the trends in the multi-temporal approach are used in order to determine the

temporal consistency of a trend for each precipitation index. We express consistency as the percentage of time (t) for which250

trends are statistically significant. Trends that are significant at α= 0.2 (Łupikasza et al., 2011) are defined as statistically

significant trends. Since precipitation is characterized by strong temporal and spatial variation, the statistical significance levels

can be lower compared to other climatic variables (Łupikasza et al., 2011). In addition, the large number of calculated trends

(more than 850 for most stations) allows the use of lower significance levels for expressing stabilities or consistencies. In a

multi-temporal approach, it is preferable to focus on the direction and intensity of the trends, rather than whether they surpass a255

strictly predetermined and somewhat arbitrary level of significance (Hannaford et al., 2013). A trend in an index is considered

as inconsistent, weakly consistent, consistent and strongly consistent according to the following criteria: (1) inconsistent: 0 %

< t≤ 15 % or the number of significant increasing and decreasing trends are similar (i.e. the percentages of significant trends in

the same direction ranges between 40 % and 60 %); (2) weakly consistent: 15 % < t ≤ 25 % and more than 60 % of significant

trends are in the same direction; (3) consistent: 25 % < t ≤ 45 % and more than 60 % of significant trends are in the same260

direction; and (4) strongly consistent: t > 45 % and more than 60 % of significant trends are in the same direction.

3 Results

3.1 Identification of the dominant flood driver

3.1.1 Selection of PMD duration

In this section, we explore the sensitivity of the probability of PMD (95th percentile of all k day accumulated time series, see265

Sect. 2.3.1) occurrences before high flows (i.e. Qmax) with respect to the duration of multi-day precipitation. Our analysis

reveals that a 4-day duration is the most suitable for defining PMD, as the average relative frequency of Qmax preceded by this

duration is the highest compared to other accumulation periods (i.e. PMD durations of 5, 6, 7, 8, 9, and 10 days; Table 2). This

finding aligns with the hydrological behavior of the catchment, as documented by Asselman et al. (2022). Additionally, we

observe that the average relative probability of PMD decreases by approximately 10% when the duration increases from four to270

five days. However, for durations longer than five days, the frequency of PMD preceding high flows remains relatively stable.

In light of these results, the 4-day duration is utilized as the standard for PMD definition.

3.1.2 Seasonality of extreme indicators

The seasonal distribution of extreme precipitation, high flow events, and flood drivers indicate that extreme precipitation,

although more frequent during summer months, does not consistently coincide with high flow events (Fig. 3). Specifically,275

Fig. 3 shows the seasonal distribution of extreme precipitation (P99; 69 events - about 0.4% of the daily time series from 1970

to 2021), annual maximum precipitation (Pmax; 52 events), multi-day precipitation (PMD; 933 events - 5% of the four-day

accumulated time series from 1970 to 2021) and wet antecedent condition events (PWAC; 2705 events - 14% of the 30-day

accumulated time series from 1970 to 2021) at the Vaals station, as an example, as well as high flow events (Qmax and
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Table 2. Mean relative frequencies for all stations of high flow events preceded by multi-day precipitation (PMD) for different accumulation

periods.

PMD duration Pr(PMD | Qmax) [%]

4-day 74.7

5-day 65.3

6-day 64.5

7-day 61.6

8-day 57.9

9-day 61.2

10-day 58.4

Q99; 49 and 91 events, respectively) together with past flood events (30 events) in the catchment. General information on280

the frequency of the flood drivers averaged for all rainfall stations, is provided in Table 5. An opposing seasonality is visible

between extreme precipitation and high flow events. The relative frequencies of P99 and Pmax in half-year summer periods are

75% and 73%, respectively, while these percentages are only 22% and 29%, for the Qmax and Q99 events. This pattern is also

verified by the past flood events: only 26% of them occurred during half-year summers. PMD appears to occur with relatively

similar frequencies throughout the year. Similar to PMD, PWAC shows an equal distribution all over seasons as expected. Since285

precipitation is rather uniformly distributed all over the year (see Fig. 2a) wetter than average conditions can occur in any

season, and monthly distribution of PWAC cannot be directly linked to the seasonal distribution of high flows. However, wetter

conditions (indicated by higher API values) are expected to have different effects on high flows, and a closer examination of the

specific condition before every high flow event is necessary. Overall, our findings indicate that extreme 24-hour precipitation

is not the most critical driver of high flows. Although extreme precipitation events tend to occur more frequently during the290

summer months, high flow and flood events do not align with these periods. Factors such as antecedent soil moisture conditions,

as well as the timing, duration, and intensity of rainfall events, may exert a more significant influence on high-flow generation

in the catchment. Therefore, greater attention is required in understanding these factors.

3.1.3 Extreme discharge event-based analysis

Figure 4 illustrates the relative frequencies of the introduced indicators (see Table 1) preceding high-flow episodes (i.e., Qmax),295

as described in Sect. 2.3.3. In approximately 75% of the Qmax cases, a PMD precedes high-flow events (Fig. 4b), while the

corresponding percentage for PWAC is approximately 48% (Fig. 4c). In most cases, PWAC should be followed by PMD in order

to generate high flows (similar percentages between PWAC (Fig. 4c) and Compound II (Fig. 4e)). This is also visible in the

calculation of the conditional probability of PMD preceding Qmax given that PWAC precedes Qmax which is approximately

84% (Fig. 4e). In other words, given that PWAC precedes Qmax, there is 84% chance that PMD will be followed by Qmax. The300

percentages between Compound I and Compound III events (Fig. 4d and 4f) are the same, showing that each time a Qmax is
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Figure 3. Monthly distribution of annual maximum precipitation (Pmax), extreme precipitation (P99), multi-day precipitation (PMD) and

wet antecedent condition events (PWAC) at the Vaals station, annual maximum discharge (Qmax), extremely high flows (Q99) and past flood

events in the Geul.

preceded by P99 it also preceded by PMD. This effect in most cases is caused by the high amount of precipitation that fell on

the day of the event or the previous day (definition of P99) which also increases the 4-day precipitation (higher than the PMD

95th percentile).

Figure 5 shows the Qmax events plotted against their API, including also their preceding precipitation indicators (i.e. P99305

and PMD) at the Maastricht and Vaals stations. This figure actually presents how the different events are classified based on the

preceded defined indicators (Table 1), emphasizing the influence of wet conditions on high flows and exploring correlations

between Qmax and associated precipitation amounts (P99 or PMD). For example, all PMD markers (both orange and purple

markers), irrespective of their wetness (API), are classified as PMD and thus used to calculate the relative frequencies of Qmax

being preceded by PMD in Fig.4b. Furthermore, Fig. 5 reveals overlapping event classifications, where one event can align with310

multiple indicators at the same time, e.g. a Compound III event is classified as PWAC, P99, PMD, Compound I and II, while a

P99 event can be at the same time PMD. A Qmax event preceded by P99 may appear in the "Wet" classification without being

classified as Compound I. This is because we require that P99 should occur under existing PWAC conditions to be classified

as Compound I. This condition is imposed to prevent a P99 event from inflating the API the day before the event, potentially

leading to an API > 1.5 on the day of the event (see Sect. 2.3). For example, the 1970 event at Vaals (Fig. 5d), which is preceded315

by P99, PMD, PWAC, and Compound II, is not classified as Compound I or III.

All high flow events appear to happen during normal or wet conditions (Fig. 5). Most extreme events are caused by a

combination of P99 and PMD or just PMD. Antecedent conditions play also a crucial role in translating precipitation extremes

to high flows. We observe that higher API values (higher wet initial conditions) lead to higher peak discharges, especially in

events preceded by compound and P99, where a strong correlation between Qmax and API is observed while a very weak320

correlation between Qmax and total event PMD or P99 precipitation is reported (see Fig. 5). PWAC makes the difference

between a "regular high flow" and a flood event. This is also evident in the initial conditions of the top five floods that occurred

in the catchment during the study period (Fig. 5 and Table 3). Details about these events (i.e date of occurrence, different

rainfall accumulations, and an estimate of their initial conditions) are presented in Table 3 based on the precipitation records
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Figure 4. Relative frequencies of Qmax being preceded by (a) extreme precipitation (P99), (b) multi-day precipitation (PMD), (c) wet

antecedent conditions (PWAC), (d) extreme precipitation on wet antecedent conditions (Compound I), (e) multi-day precipitation on wet

antecedent conditions (Compound II), and (f) extreme and multi-day precipitation on wet antecedent conditions (Compound III), in the total

Qmax events (count of a driver leading to Qmax in the Qmax cases divided by the total number of cases). The mean relative frequency (in

%) for all rainfall stations is reported in brackets. The mean conditional probabilities of P99 and/or PMD preceding Qmax given that PWAC

precedes Qmax are also reported per Compound indicator.

at Maastricht and Vaals. Examining the preceding conditions for the major past floods, it appears that in most of these cases,325

while the precipitation events spanning 1 to 3 days were heavy, the overall precipitation over the 30 days preceding the events

was substantial. This extended period of precipitation likely played a critical role in saturating the catchment, making it more

susceptible to flooding. The combination of intense rainfall over shorter durations and continuous precipitation over the 30-day

period seemed to collectively contribute to the formation of wet initial conditions, ultimately increasing the risk and eventually

resulting in flooding. It is also important to note that the large discrepancies in rainfall accumulations between the two stations330
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Figure 5. Annual maxima events (Qmax) and their Antecedent Precipitation Indices (API) at Maastricht (a) and Vaals (d), including their

preceding extreme indicators. Orange markers denote events preceded solely by PMD, green markers indicate events preceded exclusively by

P99, purple markers represent events preceded by both P99 and PMD (thus classified as both P99 and PMD in Fig. 4), and blue markers signify

events without any extreme precipitation indicator preceding them. Purple and orange markers within the "Wet" classification, along with

PWAC, P99, and/or PMD classifications, are also classified as Compound II events in Fig.4. Discharge events preceded by Compound III (and

thus Compound I and II) are indicated with red circles. The top five floods during the study period are shown with their year of occurrence.

The dashed purple line represents the linear fit, using the least squares approach, between the API of the high flow events preceded by P99

and PMD and their respective Qmax values, while the red dashed line represents the linear fit between the API of the Compound III events

and their Qmax. The total four-day precipitation versus Qmax is presented for these events at Maastricht (b) and Vaals (e), and also the highest

24-hour precipitation (highest of the two P99 amounts on the day of the event or the previous day) versus Qmax at Maastricht (c) and Vaals

(f). The shaded area shows the 95% confidence intervals for the fits, and the Pearson’s correlation coefficients (ρ) are also reported.

found in Table 3 are caused mainly by the different time interval they include, i.e calendar days for the Maastricht station and

24-hour sums from 08:00 UTC for the Vaals station, but also the spatial variability.

The absence of green markers in Fig. 5 (only P99 events) indicates again that for days preceding Qmax the probability of a

PMD event given that P99 occurs equals one (Pr ( PMD | (P99 & Qmax) ) = 1). In the way we defined P99 (two days interval) we

observe that the P99 events preceding a Qmax usually coincide with also PMD. For very extreme 24-hour events the 4-day 95th335

percentile used for the PMD definition can be exceeded and cause at the same time both PMD and P99, which is unavoidable.

However, in longer accumulation periods for PMD (i.e. 5, 6, 7, 8, 9, and 10 days) the corresponding 95th percentile increases,

as the moving/accumulated period is extended, and becomes much larger than the 99th percentile used for the definition of

P99. In these cases, irrespective of the duration the mean relative frequencies of high flows preceded by Compound II and III
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Table 3. Top five floods that occurred in the catchment during the study period, their rainfall accumulations, and an estimate of their initial

conditions based on API. The day with the highest recorded discharge is considered as the date of occurrence of the event. The different

precipitation sums (and subsequently API) are based on daily precipitation records at the Maastricht (first value) and Vaals (second value)

stations.

No. Date
24-hour sum

[mm]

48-hour sum

[mm]

72-hour sum

[mm]

30-day before event sum

[mm]

API

[-]
Initial condition

1 15/07/2021 13.1 / 6.9 53.6 / 80.9 78.0 / 131.5 244.7 / 274.5 3.33 / 3.21 Wet / Wet

2 15/09/1998 9.2 / 28.1 31 / 71.4 48.7 / 74.7 135.5 / 187.2 2.16 / 2.42 Wet / Wet

3 28/02/1987 0.0 / 0.0 13.1 / 13.9 14.5 / 23.1 83.1 / 141.8 1.42 / 1.80 Normal / Wet

4 07/02/1984 22.5 / 10.4 57.1 / 53.2 60.5 / 58.3 131.4 / 170.3 2.24 / 2.20 Wet / Wet

5 22/02/1970 15.0 / 14.1 35.0 / 47.2 38.0 / 53.4 125.4 / 140.5 2.08 / 1.75 Wet / Wet

remain stable (see supplementary material for the analysis). This implies that preceding P99, rainfall events (whether heavy340

or not) probably occurred for these events as well (at least for less extreme ones), potentially resulting in wet conditions and

consequently high discharges, highlighting the correlation among the used different drivers and how they can be converted to

compounds. Thus, while it is found that Qmax is preceded by PMD 75% of the time, some of the PMD events could be forced or

even caused by P99. However, the definition of PMD still holds significance as it denotes an extended period of heavy rainfall.

Finally, we also explore the effect of antecedent precipitation depths on high flows, as an indicator of antecedent catchment345

wetness. Table 4 reports the correlation coefficients of the QW,max time series with their k-day (k = 1, 3, 5, 7, 10, 15, 30 and

40) antecedent depths per rainfall station. Results are presented only for the winter half-year as approximately 80% of Qmax

occurred in this period (Fig. 3). Thus, QS,max time series contains mainly low discharge values (most of them lower than 20

m3 s−1, see Fig. 10a) with meaningless correlations. Peak half-year winter discharges in the Geul appear to be closely related

to antecedent 10-40 days precipitation depths on wet soils (e.g. correlation coefficient of 0.66 in Vaals for the duration of 15350

days). The effect of wet antecedent conditions is also reflected here. These results seem reasonable considering the opposing

seasonality observed in the catchment (Fig. 3). The July 2021 flood event is consistent with these results as there is evidence

that the wetness of the catchments was much higher than usual for the time of the year (see Fig. 5 and Table 3).

3.1.4 Extreme precipitation based analysis

In this section we approach the problem from the reverse way compared to Sect. 3.1.3. Table 5 shows the frequency of the355

potential flood drivers actually leading to extreme discharge. P99, Compound I, and Compound III are rare events compared

to the other drivers, and there are years in which they are not observed at all (see Table 5). In the unique years when a P99

event occurs, it is followed by a Qmax event in about 37% of those cases, while these numbers are approximately 65% for

Compound I and Compound III, respectively (Table 5). Compound I and III events are extremely rare events (approximately

13 recorded events per station), however in most cases when they appear they lead to Qmax. This observation suggests that360
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Table 4. Correlation coefficients between the winter half-year discharge maxima and their antecedent k-day precipitation depths.

Station
PkD - Winter half-year

k=1 k=3 k=5 k=7 k=10 k=15 k=30 k=40

Vaals 0.44 0.32 0.44 0.40 0.59 0.66 0.56 0.50

Valkenburg 0.30 0.20 0.26 0.28 0.47 0.57 0.52 0.44

Ubachsberg 0.26 0.21 0.25 0.30 0.46 0.56 0.53 0.46

Noorbeek 0.36 0.27 0.36 0.34 0.54 0.61 0.55 0.50

Maastricht 0.24 0.15 0.27 0.27 0.41 0.53 0.49 0.43

Average 0.32 0.23 0.31 0.31 0.49 0.59 0.53 0.47

extreme precipitation P99 when occurs under wet antecedent conditions, leads to high flows, but alone is typically insufficient

to cause floods.

Table 5. General information, averaged for all rainfall stations, regarding the frequency of the different drivers occurring regardless of Qmax

having occurred, in the Qmax period (hydrological years from 1970 to 2021, excluding 1971, 1974 and 1990).

Number of

events

(1)

Number of unique

years occurred

(2)

Mean yearly

occurrence

(1) / (2)

Number of years

followed by Qmax

(3)

Relative (reverse)

frequency

(3) / (2)

P99 64.2 36.4 1.77 13.6 0.37

PMD 873.6 49.0 17.8 36.6 0.75

PWAC 2760.6 48.4 57.0 23.6 0.49

Compound I 13.4 10.0 1.34 6.2 0.62

Compound II 319.6 43.6 7.33 19.8 0.45

Compound III 13.0 9.6 1.35 6.2 0.65

It appears that flooding is rarely caused by a single mechanism. Figure 6 shows the discharge empirical cumulative distri-

bution functions for every station caused by every extreme precipitation indicator, for the number of events reported in Table

5. According to the local water authorities, a discharge exceeding approximately 40 m3s−1 could lead to flooding of the first365

houses, while a discharge greater than 30 m3s−1 could result in the inundation of floodplains, particularly concerning upstream

locations within the catchment area (Klein et al., 2023). These thresholds are often crossed during Compound I and III events,

particularly in extreme events at the Vaals station, indicating a stronger correlation with discharges compared to other locations.

It is important to note that these discharge thresholds pertain to the upstream sections of the catchment and not the outlet at

Meerssen. However, most of the water originates from the Belgian part while the contribution of the remaining tributaries is370

minor (Klein, 2022). Overall, it seems that single processes are not likely to cause floods, whereas compound events do. It

is also again clear that P99 in isolation is much less likely to cause floods compared to when combined with wet antecedent

conditions and PMD.
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Figure 6. Empirical Cumulative Distribution Functions (eCDFs) of discharge caused by the extreme precipitation indicators for all stations,

based on the number of events from Table 5.

3.1.5 Sensitivity of API to evaporation

The exclusion of evaporative processes in the API used for evaluating initial catchment conditions could potentially pose375

significant concerns, as the index is solely based on antecedent precipitation depths. An important aspect to consider is whether

API reliably reflects soil wetness consistently throughout the year in our study region or if its interpretation is influenced by

the strong seasonal variations (reference evaporation is low in winter and high in summer, see Fig. 2). To investigate this,

the simple 30-day before an event effective rainfall (precipitation minus reference evaporation from the Maastricht station) is

calculated instead of the simple API, and Fig. 5 is reproduced.380

The results suggest that no significant biases are occurred due to the exclusion of evaporation. Larger offsets are visible in

the summer half-year events and the overall correlation is low (as in the regular API, Fig. 5), however, the high correlation

between the P99 and PMD events and the Qmax (purple markers and reported correlation value) is maintained (Fig. 7), which

is in line with the API results. Only 7/49 Qmax events occurred in summer and 6/7 summer Qmax events are in the P99 and

PMD events and as a result the calculated correlation includes them. In addition, the top five floods remain “higher” compared385

to other events.
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Figure 7. Annual maxima events (Qmax) and their 30-day pre-event effective rainfall at Maastricht (a) and Vaals (b), including their preceding

extreme indicators. The top five floods during the study period are shown with their year of occurrence. The dashed purple line represents

the linear fit, using the least squares approach, between the effective rainfall of the high flow events preceded by P99 and PMD and their

respective Qmax values, while the red dashed line represents the linear fit between the effective rainfall of the Compound III events and their

Qmax. The shaded areas show the 95% confidence intervals for the fits and the Pearson’s correlation coefficients (ρ) are also reported.

3.2 Trend analysis

3.2.1 Flood driver trends

Figure 8 illustrates the multi-temporal trend analysis for several precipitation indices for the Vaals station, for half-year periods,

as an example. The multi-temporal analysis for Vaals, which has a record from 1952 to 2021, results in 861 trends. In the390

winter half-year statistically significant increasing trends are found for the longest periods in all indices at Vaals. However,

a decreasing, mainly insignificant, pattern is visible in the recent past (trends starting after the 1980s). In summer (Fig. 8b)

negative trends are visible for the longest periods, while this changes to positive trends in the recent past for k≤ 5 days. Summer

trends for k > 5 days are rather mixed: generally insignificant trends, with shifts between positive and negative tendencies. For

the full multi-temporal analysis per index and station, please refer to the supplementary material.395

Figure 9 shows the consistency of statistically significant trends in each precipitation index per rainfall station. In winter

only increasing trends are visible, with the exception of the P15D index at Ubachsberg. The decreasing tendency in the recent

past detected at Vaals is very strong and statistically significant at Ubaschsberg for most indices (Fig. S3 in supplement), which
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Figure 8. Multi-temporal trend analysis for P1D, P5D, P15D and P95 at Vaals for (a) winter half-year and (b) summer half-year. Each pixel

presents a fixed single period (minimum window length of 30 years) of start and end year. For each period the M-K test is applied, and

the color indicates the Z-statistic value of the test (the same definitions apply to the subsequent figures). Blue colors indicate increasing

trends and red downward ones. The darker the color, the more significant the trend. Statistically significant trends are considered those with

Z-statistic values higher than 1.28 (or smaller than -1.28 for downward trends) corresponding to the defined significance level of 0.2 (see

Sect. 2.4).

causes this inconsistent decrease. Consistent and strongly consistent increases are observed in at least one station per index. In

the index P7D four out of five stations show consistent or strongly consistent increases. For k ≤ 10 days most stations have400

strongly consistent or consistent upward directions. With increasing k (15,..,40 days) the increase becomes weaker (incon-

sistent) for the majority of the stations, however still two out of five stations (located inside the catchment) show increases.

Indices for k ≤ 10 days are strongly consistently increasing, while for k > 10 days a consistent increase is visible in the station

Valkenburg. In addition, three out of five stations show strongly consistent or consistent increasing trends in the indices P95

and PMD. Overall, the trend analysis in winter for the Geul catchment shows a consistent increase of very wet days (P95)405

and maximum k-day precipitation sums. The rise in severe precipitation is caused mostly by more rain on already wet days.

Multi-day precipitation extremes are consistently increasing. This is a crucial finding, as the effects of prolonged heavy storms

in combination with wet antecedent conditions appear to be the dominant flood drivers in the Geul catchment.
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Figure 9. Temporal consistency of precipitation trend indices for winter and summer half-years. Blue colors indicate upward trends while

red colors indicate downward trends.

Trends in summer periods show variability across the different stations. The majority of the summer half-year k-day and

P95 indices are subject to inconsistent trends. Most stations show generally insignificant trends, with changes between positive410

and negative tendencies. The only consistent trends are mainly increasing and are found at the Valkenburg station for k = 5, 7,

10, 15 days, at Ubachsberg for k = 7 days, and at Maastricht (i.e PMD ). In addition, the P30D and P95 indices at Maastricht

show strong and statistically significant increasing trends in the majority of tested cases resulting in weakly consistent trends.

As mentioned, despite the fact that the difference between significant increasing and decreasing trends in the summer half-year

is not clear, the statistically significant increasing trends in the recent past, mainly for k≤3 days, are strong and should be415

taken into account (Fig. S6 - S10 in supplement). In addition, the consistent increasing trends at Valkenburg reveal a direction

towards more wet conditions in the summer half-year.

3.2.2 Discharge trends

The results of the multi-temporal analysis for the QW,max and QS,max time series are shown in Fig. 10. It can be observed

that the maximum flows show variability over the two half-year periods. Increasing trends are found in the longest periods420

for the winter half-year but this seems to have changed in the recent past to statistically insignificant decreasing tendencies.

Overall, the increase in the QW,max is considered consistent taking also into account the missing hydrological years of 1971,
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1974 and 1990. This pattern is in agreement with the extreme precipitation trends in the area for winter, as large similarities

are observed in terms of magnitudes, directions and variabilities. For example, QW,max trends variability is quite similar to

P95 index in winter at Vaals (see Fig. 8a): statistically stronger increasing trends in longer periods (from 1970 to 2021) with a425

weak decreasing direction in the recent past (trends starting from the 1980s).

Mixed and non statistically significant trends are observed in the summer half-year (Fig. 10c), as expected, considering that

the trends in extreme precipitation in the same period are inconsistent and their strength is (statistically) insignificant. QS,max

trends shift between negative and positive tendencies in similar, for some cases, periods with the extreme summer precipitation,

however this match is not so clear as in the winter period. The increasing direction of extreme precipitation in the recent past for430

summer starts becoming visible also in the QS,max direction (see positive values for trends starting after 1985). In general, in

summer the effect of the considerable increase in evaporation in the area (Tsiokanos, 2022) in combination with the large soil

moisture deficits should be taken into account when translating extreme precipitation to extreme streamflows, and subsequently

discussing correspondences and differences between discharge and precipitation trends.

Figure 10. Half-year yearly maxima time series (a) and multi-temporal trend analysis for (b) winter half-year yearly maxima (QW,max) and

(c) summer half-year yearly maxima (QS,max). The gray stripes in the heatmaps indicate the excluded hydrological years (i.e. 1971, 1974

and 1990).
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4 Discussion435

4.1 Data uncertainty

Records of 24-hour precipitation are used that come from the KNMI manual rain gauge network. The used precipitation time

resolution may be considered low for flood analysis, however the response time (i.e. longer than a day, see Sect. 2.1) of the

catchment allows the application of this resolution. In addition, the main goal of this paper is to investigate the role of P99, PMD,

and PWAC as potential flood drivers. The use of 24-hour resolution can affect the defined P99, while the applied resolution440

does not have a major impact on the definitions and meaning of PMD and PWAC. For this reason, allowances were made in the

way we define a P99 day (i.e. precipitation amount at the same or previous day of the high flow event; see Sect. 2.3.3).

Long precipitation time series may have been influenced by instrumental modifications and station relocations throughout the

recording period. As mentioned in Sect. 2.2, the data are considered to be of high quality, as KNMI performs regular quality

tests. In addition to that, two homogeneity tests were applied to monthly sums. In general, it is assumed that the analyzed445

precipitation time series in this research are not affected by instrumental and location alterations, so the trends that are found

can be attributed to climate and not to human interventions.

It must be acknowledged that the produced discharge results are subject to significant uncertainty (Di Baldassarre and

Montanari, 2009). Estimations during extremely high flows are very inaccurate. For example, the recorder discharge in July

2021 flood was 55 m3s−1, while it is estimated that it exceeded 80 m3s−1 (van Heeringen et al., 2022). However, our main450

findings about the role of compound events in generating high flows remain valid. In addition, periods of transition, changes

in gauge position, equipment, and monitoring frequencies, and stage-discharge relations can cause sudden variations in flow

rates. These changes can be more visible in mean flow trends where the values are low in contrast to high flows used in this

paper. The long-term measurements of the station Meerssen at the outlet of the catchment are considered reliable in terms

of homogeneity (Agor, 2003). The high flow trends are found to be similar to the directions and significance of the extreme455

precipitation trends, indicating that the results are likely not affected.

4.2 Implications

It is found for the Geul that extreme daily precipitation is not solely a flood driver. Wet antecedent soil conditions are a

crucial factor determining the probability of flooding. In this respect, the finding that heavy prolonged precipitation frequently

preceded high flows in the Geul seems reasonable, as multi-day precipitation can also serve as a proxy for heavy precipitation460

occurring in wet antecedent circumstances (Nanditha and Mishra, 2022). Most of the flood events are observed in winter

periods, when the catchment tends to be very wet, with shallow groundwater tables. In summer periods most of the extreme

(intense) precipitation events are not translated to high flow peaks, due to large soil moisture deficits. The most devastating

flood in the area (i.e. July 2021) was aggravated by rainfall events in preceding days and weeks. The role of wet antecedent

(soil) conditions in driving floods is well established, however, the focus tends to be on larger catchments (Wasko et al., 2020).465

Information about the initial (wet) conditions of the catchment is deemed essential, particularly for flood forecasting, since the

local water authority currently does not monitor soil moisture. In addition, the geology of the Geul can significantly control
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the runoff response, as there is a thick unsaturated chalk zone that can store much water (Klein, 2022). The (geo)hydrological

properties and characteristics of the catchments should receive more attention in the flood forecasting system (Zanon et al.,

2010; Douinot et al., 2022). Our findings are also expected to help in the understanding of flood mechanisms in other lowland470

or chalk catchments around the world. In addition, the followed event-based approach can be exploited in other catchments

to examine the relative role of wet antecedent soil moisture conditions and precipitation characteristics preceding high flows,

especially in areas where (long-term) soil moisture data are not available.

The statistical results obtained in Sect. 3.2.1 demonstrate some intriguing variations in the Geul catchment’s precipitation

regimes across the studied periods. The most notable change is the consistent and strong increase in critical precipitation475

during the winter half-year. During this period, various indices representing heavy prolonged events such as PkD for k ≥ 3

days and/or PMD, as well as 24-hour extreme indices like P1D and P95, show mostly consistent increases. These combinations

of indicators can contribute to the saturation of the catchment, thereby increasing the risk of flooding. In addition, it appears

that a portion of the rise in severe precipitation stems from increased rainfall on already wet days, as evidenced by consistent

(or strongly consistent) rises in P3D, P5D, P7D, and PMD across the majority of stations. All these findings are crucial as480

heavy and prolonged storms in combination with wet antecedent conditions have impacted the catchment and caused floods

mainly in winter. Although it cannot be concluded that climate change had a significant impact on the July 2021 flood event

in the Geul region, as there are no apparent consistent patterns in most summer precipitation trends, a concerning increasing

direction in the recent past (mainly after the 1980s) is visible. This finding is important as it shows that, except for the intense

showers in summer, the effects of heavy storms in combination with wet antecedent conditions should be also taken into485

account. At the same time, it is critical to consider the substantial increase in summer potential evaporation rates (due to

increases in temperature and radiation) in the area (Tsiokanos, 2022) that may lead to soil moisture deficits, when translating

extreme precipitation events into potential extreme flows. According to the recently published KNMI scenarios wetter winters

and increased extreme summer showers are projected for the Netherlands (KNMI, 2023). These projections suggest that the

number of heavy showers with significant precipitation is expected to rise, with a shift from light to heavier (more rain falls490

from the shower) and more intense (more rain falls in a certain time) showers (KNMI, 2023). These climate scenarios are in

line with the trends found in this study. Overall, the long-term trends of the critical precipitation are also visible in the runoff

patterns. Thus, climate change should be taken seriously into account in the area and should be incorporated into flood designs,

considering also the effects of agro-economic developments, such as land-use changes. Our findings from the precipitation

and discharge trend analyses can serve as a valuable reference for assessing the impact of climate change on precipitation495

and discharge patterns in other regions than the Geul as well. In addition, the use of a multi-temporal approach, including the

consistency criteria, appears useful and is recommended for identifying variability, recent directions but also long-term trends.

5 Conclusions

We used an event-based approach to detect the main flood drivers in the Geul river catchment and a multi-temporal trend

analysis to investigate their temporal variability and consistency. Our results indicate that heavy multi-day precipitation can500
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have a notable impact on high flows, preceding them approximately 75% of the time (using a 4-day precipitation duration; Fig.

4). Nevertheless, wet antecedent conditions play a crucial role in translating extreme precipitation events into extreme flows and

make the difference between a "regular high flow" and a flood event. Extreme 24-hour precipitation, without wet antecedent

conditions, which appears mainly in summer, has never led solely to floods in the past (Fig. 5 and Table 3). The joint probability

of extreme (prolonged) rainfall and wet initial conditions (which can be seen as a compound event) determines the chances505

of flooding. As a result, prolonged heavy rainfall and wet antecedent wetness appear to be the primary factors contributing to

extreme discharge events, and they should be used as flood indicators, rather than extreme precipitation alone. Flood producing

precipitation shows a consistent increase in the winter half-year, a period in which more than 70% of extremely high flows

have occurred historically. Heavy prolonged storms in combination with wet antecedent conditions can cause large flooding

and these conditions are becoming more frequent during winters. This rise is also reflected in the winter half-year maximum510

discharges, which are increasing in terms of magnitude. Although the majority of precipitation and flow trends do not exhibit

consistent patterns in the summer half-year, a notable and concerning upward direction has become evident in the recent past.

This observation underscores the necessity to account for compound events’ effects in addition to intense summer showers. The

extreme flood event of July 2021, along with the observed increase in flood drivers, emphasizes the importance of incorporating

compound events into flood risk assessment.515
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