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Abstract. Glacial Lake Outburst Floods (GLOFs) are widely recognized as one of the most devastating natural hazards in the 

Himalayas, with catastrophic consequences including substantial loss of life. To effectively mitigate these risks and enhance 

regional resilience, it is imperative to conduct an objective and holistic assessment of GLOF hazards and their potential impacts 10 

over a large spatial scale. However, this is challenged by the limited availability of data and the inaccessibility to most of the 

glacial lakes in high-altitude areas. The data challenge is exacerbated when dealing with multiple lakes across an expansive 

spatial area. This study aims to exploit remote sensing techniques, well-established Bayesian regression models for estimating 

glacial lake conditions, cutting-edge flood modelling technology, and open data from various sources to innovate a framework 

for assessing the national exposure and impact of GLOFs. In the innovative framework, multi-temporal imagery is utilized 15 

with a Random Forest model to extract glacial lake water surfaces. Bayesian models are employed to estimate a plausible 

range of glacial lake water volumes and associated GLOF peak discharges while accounting for the uncertainty stemming from 

the limited size of available data and outliers within the data. A significant number of GLOF scenarios is subsequently 

generated based on this estimated plausible range of peak discharges. A graphics processing unit (GPU)-based hydrodynamic 

model is then adopted to simulate the resulting flood hydrodynamics in different GLOF scenarios. Necessary socio-economic 20 

information is collected and processed from multiple sources, including OpenStreetMap, Google Earth, local archives, and 

global data products, to support exposure analysis. Established depth-damage curves are used to assess the GLOF damage 

extents to different exposures. The evaluation framework is applied to 21 glacial lakes identified as potentially dangerous in 

the Nepal Himalayas. The results indicate that, in the scenario of a complete breach of dam height across 21 lakes, Tsho Rolpa 

Lake, Thulagi Lake, and Lower Barun Lake bear the most serious impacts of GLOFs on buildings, roads and agriculture areas, 25 

while Thulagi Lake could influence existing hydropower facilities. One unnamed lake in the Trishuli River Basin, two 

unnamed lakes in the Tamor River Basin, and three unnamed lakes in the Dudh River Basin have the potential to impact more 

than 200 buildings. Moreover, the unnamed lake in the Trishuli River Basin has the potential to inundate existing hydropower 

facilities. 

1 Introduction 30 

Glacial Lake Outburst Floods (GLOFs) are recognized as one of the most impactful natural hazards in the Himalayas, where 

these disasters have had the highest death toll worldwide and caused serious economic damage (Veh et al., 2020). GLOFs can 

generate transient discharges that are orders of magnitude greater than the typical annual floods in the receiving rivers 

(Cenderelli and Wohl, 2001) and some of them can travel >200 km downstream (Richardson & Reynolds, 2000). The extreme 

discharges, accelerating along the steep mountainous terrains, make GLOFs extremely destructive to downstream communities 35 

and infrastructure systems. The unpredictable nature of GLOFs, often occurring without warning, has left downstream 

communities and infrastructure ill-prepared, causing the loss of human lives and economic damages. The ongoing impact of 

climate change has introduced additional uncertainty into GLOF risk. The Himalaya region is observing extensive glacier 
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shrinkage and a proliferation of glacial lakes (Zhang et al., 2015). The potential impacts of GLOFs on downstream communities 

are expected to intensify further due to population growth and socio-economic development. Hence, it is crucial to develop 40 

effective strategies for managing GLOF risks to enhance human safety and support sustainable development. This necessitates 

the requirement for reproducible assessment of GLOF hazards and their potential impacts arising from these glacial lakes. 

Some potentially dangerous lakes have been well-studied individually, such as Tsho Rolpa Lake (e.g., Shrestha & Nakagawa, 

2014), Imja Tsho Lake (e.g., Somos-Valenzuela et al., 2015), and Lower Barun Lake (e.g., Sattar et al., 2021). However, these 

studies provide limited insight into the overall danger and potential impacts of glacial lakes as a whole. While there have been 45 

assessments of glacial lake hazards in the Himalayan region, certain limitations exist. Previous work by Mool et al. (2011) and 

Bajracharya et al. (2020) employed remote sensing techniques to identify potentially dangerous glacial lakes (PDGLs) in 

Nepal, considering different hazard factors. Rounce et al. (2017) undertook a similar study, quantifying the hazard level of 131 

glacial lakes with > 0.1 km2 area in Nepal. Furthermore, Rounce et al. (2017) evaluated the potential downstream impacts of 

GLOFs caused by these glacial lakes using a simple flood model without any physical basis. This simple flood model has also 50 

been applied to evaluate the overall impacts of GLOFs originating from multiple glacial lakes in the Indian Himalayas (Dubey 

& Goyal, 2020). Zheng et al. (2021) extended their analysis to assess the impacts of GLOFs across the Third Pole by using a 

Geographic Information System (GIS)-based hydrological model. However, the complexity of GLOFs renders simple flood 

models inadequate for capturing their dynamics, thereby making them incapable of supporting detailed assessments of potential 

impacts on downstream communities and infrastructure.  55 

A range of physically based hydrodynamic models have been developed and applied to predict the spatial-temporal process of 

GLOFs, offering detailed insights into the resulting flood impacts (e.g., Worni et al., 2014; Ancey et al., 2019; Sattar et al., 

2019). Recently, researchers have explored the use of a hydrodynamic model to assess GLOF downstream impacts in the Third 

Pole (Zhang et al., 2023b). However, hydrodynamic models entail a huge amount of computation and face substantial demands 

for computation resources when applied at a large scale. What's even more challenging is that the computational requirements 60 

increase significantly when addressing GLOF simulations involving a large number of scenarios, which is necessary for 

assessing GLOF's potential impact due to the complexity and uncertainty of the glacier lake breach process. Moreover, the 

application of hydrodynamic models to support GLOF modelling and impact assessment necessitates a considerable amount 

of data, and data availability poses another significant challenge. 

The high-alpine conditions have constrained our ability to acquire detailed spatial data for multiple lakes across a large scale. 65 

To correctly depict the dynamic inundation process of GLOFs, glacial lake conditions and dam breaching process are essential 

to estimating the outflow discharge resulting from a breach. While the distribution and changes of glacial lakes have been 

extensively mapped from increasingly available satellite imagery (e.g., Zhang et al., 2015; Nie et al., 2017; Shugar et al., 2020), 

accurately determining lake volume and reliably predicting dam breaching processes has remained a challenge because high-

alpine conditions impede detailed fieldwork. Combining satellite imagery with existing lake bathymetry measurements offers 70 

the possibility of estimating water volumes and peak discharges from outbursts by establishing empirical relationships (e.g., 

Zhang et al., 2023a). However, estimated lake volumes and potential peak discharges derived from these empirical 

relationships can vary by up to an order of magnitude (Cook and Quincey, 2015; Muñoz et al., 2020). To account for the 

uncertainties inherent in conventional empirical relationships, Veh et al. (2020) developed a Bayesian robust regression, 

utilizing data from the bathymetric survey of 24 glacial lakes. This model estimates water volume based on the surface areas 75 

of glacial lakes. Simultaneously, they created a Bayesian variant of a physical dam-break model originally proposed by Walder 

& O'Connor (1997) to predict peak discharge associated with the associated flood volume. The Bayesian estimates explore the 

parameter space of plausible flood volumes and associated peak discharges, generating a million possible outburst scenarios 

for each lake. These scenarios comprehensively consider all potential conditions of the dam breach process for each specific 

lake and provide a full range of input information for hydrodynamic models, thereby facilitating predictions of the GLOF 80 
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inundation process. Therefore, this study aims to leverage these established Bayesian models to support GLOF inundation 

simulations. 

GLOF exposure and impact assessment are also restricted by data sparsity. Previous studies have typically relied on census 

data at coarse spatial resolutions or aggregated land use data that encompasses various objects like properties and infrastructure, 

to estimate the potential socio-economic impact of GLOFs (e.g., Shrestha & Nakagawa, 2014; Rounce et al., 2016). Benefiting 85 

from the emergence of new data technologies and the resulting enhancements in data quantity and quality, a spatially explicit 

assessment method has been developed to identify GLOF exposure at an object level and applied to the Tsho Rolpa Lake 

(Chen et al., 2022). Employing a similar strategy, essential socio-economic information is collected and processed from various 

sources, including OpenStreetMap (OSM), Google Earth, global data products, and local archives. The information is used to 

create a spatial exposure dataset that specifies the locations of different objects, such as individual buildings and hydropower 90 

facilities. Subsequently, this spatial exposure data is overlaid with the spatially distributed flood simulation outputs to identify 

potential exposure to GLOFs along their path. 

Overall, this study aims to innovate a framework for object-based exposure and potential impact assessments of GLOFs for 

multiple lakes across a large scale by integrating remote sensing techniques, the developed Bayesian regression models for 

estimating lake volumes and potential peak discharges, a physically based hydrodynamic model supported by parallelized 95 

high-performance computing, and socio-economic information from multiple sources. Nepal has been chosen as the test area 

due to its abundance of glacial lakes, and it has been reported to experience the most significant national-level economic 

consequences from GLOFs globally (Carrivick & Tweed, 2016). 

 2 Methodology and data 

The proposed framework for object-based exposure and impact assessment of GLOFs across multiple lakes comprises several 100 

key components: extraction of glacial lake water surfaces from multi-temporal imagery, estimation of lake volumes and peak 

discharges using well-established Bayesian regression models, utilization of a high-performance hydrodynamic flood model 

accelerated by graphics processing unit (GPU) technology, and the creation of an exposure dataset sourced from open-source 

data (Fig. 1). In particular, leveraging multi-temporal imagery availability, a Random Forest model is developed using a set of 

predictor variables to delineate the maximum extent of glacial lake water surfaces. The plausible range of glacial lake water 105 

depths, volumes, and GLOF-induced peak discharges is estimated through existing Bayesian models. A substantial number of 

GLOF scenarios, encompassing outflow discharge hydrographs through glacial lakes, are sampled based on the plausible range 

of peak discharges. For each scenario, the resulting outflow discharge hydrograph is employed to drive the GPU-accelerated 

hydrodynamic model, efficiently simulating the temporal and spatial dynamics of floods. These flood dynamics are then 

overlaid with the spatial exposure data to identify potential exposure to GLOFs and quantify damage extent by using 110 

established depth-damage curves.  
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Fig. 1. GLOF exposure and impact assessment framework for multiple glacial lakes (key components highlighted in blue) 

2.1 Glacial lake water surface extraction 

With the availability of multi-temporal imagery, a Random Forest model based on a set of predictor variables is used to map 115 

the location and extent of water surfaces of glacial lakes under different hydrological conditions to produce the maximum 

extent of lake water surfaces. 

2.1.1 Acquisition of satellite imagery 

Sentinel-2 is an operational multispectral imaging mission of the European Space Agency for global land observation. The 

Sentinel-2A and -2B satellites were launched in 2015 and 2017, respectively. These satellites capture imagery every 10 days 120 

(every 5 days with the twin satellites together). The spatial resolution for the visible and broad near-infrared (NIR) bands is 

10m, while it is 20m for the red edge, narrow NIR, and short-wave infrared bands. Here, all available Sentinel-2 imagery for 

the case study of glacial lakes is utilized to identify the maximum extent of their water surfaces. The analysis is based on the 

Sentinel-2 level-1C Top-Of-Atmosphere (TOA) products, which are accessible through the Google Earth Engine. Any 

observations affected by clouds are masked using the Sentinel-2 Quality Assurance band flags. Bands originally at a 20-m 125 

resolution are resampled to 10m using the nearest neighbour method before being stacked for subsequent interpretation. All 

available Sentinel-2 datasets are collected and filtered to reserve imagery from the ablation season, reducing the impact of 

frozen water surfaces, as per the empirical period of the local melt season (Shugar et al., 2020). In total, 1,520 Sentinel-2 

images have been collected for this purpose.   

2.1.2 Random Forest model 130 

Mapping water surfaces from multiple images is a complex task that necessitates the consideration and analysis of various 

water-related signals in spectral responses, often influenced by water turbidity and bottom sediments. In this context, a Random 

Forest model is developed based on a set of predictor variables to extract water surfaces. Random Forest modelling is an 

ensemble classification technique (Breiman, 2001) and has been extensively used in the classification of remote sensing data 

(e.g., Yu et al., 2011; Rodriguez-Galiano et al., 2012). Random Forest models excel at recognizing regional variations in 135 

threshold values, surpassing the capabilities of traditional index thresholding methods (Tulbure et al., 2016). Notably, Random 

Forest models do not rely on data distribution assumptions and can yield accurate predictions without overfitting data. 
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Consequently, they have been increasingly used in water surface extraction as a favourable alternative to traditional statistical 

approaches (e.g., Schaffer-Smith et al., 2017; Veh et al., 2018). 

Random Forest model consists of a set of classification trees, each of which grows from a random subset of training samples 140 

and randomly permuted explanatory variables. The classification trees can grow to a specified maximum number without 

pruning, and the final classifications are determined by the majority votes of the trees in the forest. The explanatory variables 

for Sentinel-2 datasets in the Random Forest model include TOA reflectance for every spectral band, brightness temperature, 

vegetation indices, and water indices. TOA reflectance and brightness temperature are obtained by normalizing the target 

imagery, mitigating unwanted effects resulting from variations in sun angle and earth-sun distance. The vegetation indices 145 

include the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). NDVI is sensitive to 

chlorophyll and used to assess terrestrial vegetation conditions (Tucker, 1979), while EVI is developed to optimize the 

vegetation signal in high biomass regions, de-couple canopy background signal, and reduce atmospheric influences (Huete et 

al., 2002). Water indices include the Normalized Difference Water Index (NDWI, McFeeters, 1996), Modified NDWI 

(MNDWI, Xu, 2006), and Normalized Difference Moisture Index (NDMI, Gao, 1996). NDWI enhances the response to open 150 

water features while minimizing soil and terrestrial vegetation influences. MNDWI substitutes the middle infrared band for 

the NIR band used in the NDWI to enhance water features and remove noise from other land types. NDMI is an effective 

indicator of vegetation water content. The training samples are selected via visual interpretation of satellite images to represent 

glacial lake water surfaces, along with various non-water covers, including diverse landscapes and vegetation types. The 

uncertainty in estimating glacial lake area is quantified using a widely used buffer method (Granshaw and Fountain, 2006). A 155 

buffer area of half a pixel (e.g., Zhang et al., 2015; Krause et al., 2019) is adopted to measure the uncertainty in the estimated 

lake area. The misclassified glacial lake water areas resulting from terrain shadows are eliminated during post-processing 

through manual exclusion of inaccurately classified regions. 

2.2 GLOF dynamic inundation process simulation 

Using the maximum extent of glacial lake water surfaces, we employ the established Bayesian models to predict glacial lake 160 

conditions and the dam breaching process. This allows us to estimate the full range of GLOF outflow discharge through the 

breach. Subsequently, various GLOF scenarios featuring a range of outflow discharge hydrographs are then sampled to drive 

the GPU-based hydrodynamic model for the simulation of dynamic flood dynamics resulting from GLOFs. 

2.2.1 Estimating volumes and peak discharge of glacial lakes 

Global samples from glacial lakes have suggested that the water depths for glacial lakes with similar surface areas can vary by 165 

one order of magnitude. To estimate water volumes of glacial lakes, we adopted the model that relates lake areas to their 

maximum depths, which was developed by Veh & Walz (2020). The model was built by compiling the reported lake areas and 

maximum depths obtained from bathymetric surveys conducted on 24 Himalayan glacial lakes. A Bayesian robust linear 

regression with a normally distributed target variable (lake depth d) 𝑑 ~ 𝑁(𝜇𝑑(𝑎), 1 𝜏⁄ ) is adopted to account for possible 

effects of the limited sample size and outliers present in the compiled dataset. The mean 𝜇𝑑(𝑎) is calculated below through a 170 

linear combination of the input lake area a. The precision 𝜏  (the inverse of variance) is gamma-distributed 

𝜏 ~ Γ(0.001, 0.001). 

𝜇𝑑(𝑎) =  𝛼0 + 𝛼1𝑎                                                                                              (1) 

Where a is lake area, intercept 𝛼0 ~ 𝑁(0, 10−12), slope 𝛼1 ~ 𝑁(0, 10−12).   

We obtained 100 posterior estimates for the lake depth (d) from the Bayesian model for each lake. For each lake, samples 175 

inside the 95% highest density interval (HDI) of credible lake depth values are reserved, i.e., 94 lake depth samples for each 
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lake. In this study, we maintained the same assumption regarding the bathymetry of the glacial lakes as outlined by Veh & 

Walz (2020). The delineated lake from satellite imagery is circular, and each lake is assumed to have an ellipsoidal bathymetry. 

Therefore, we obtained 94 estimates of total volume (Vtot) for each glacial lake.  

𝑉𝑡𝑜𝑡 = (2 3)⁄ 𝑑𝑎                                                                                               (2) 180 

With regard to estimating peak discharge during dam failure, Veh & Walz (2020) built a Bayesian piecewise robust model to 

characterize the physically motivated model developed by Walder & O’Connor (1997). The latter model predicts peak 

discharge Qp during natural dam failure. In their study, Walder & O’Connor (1997) compiled data from 63 observed natural 

dam breaks in various settings and identified a constant response of dimensionless peak discharge Qp* when plotted against 

the dimensionless product η of lake volume and breach rate k. They inferred a model that describes the relationship between 185 

peak discharge and lake volume using the dimensionless peak discharge Qp*. 

𝑄𝑝
∗ = 𝑄𝑃𝑔−

1
2ℎ−

5
2                                                                                          (3) 

𝜂 =  𝑉𝑂
∗𝑘∗                                                                                                    (4) 

Where 𝑉𝑂
∗ = 𝑉0ℎ

−3 represents the dimensionless flood volume, 𝑘∗ =  𝑘𝑔−1 2⁄ ℎ−1 2⁄  is the dimensionless breach rate, g is the 

acceleration of gravity, h is breach depth, and 𝑉0  is the released water volume (flood volume). 𝑘 is the breach rate and 190 

subsumes lithologic conditions, the erodibility of the outflow channel, and the breach and downstream valley geometry. h is 

measured from the final lake surface after dam failure to the initial lake surface. V0 is the released water volume and depends 

on h and Vtot.  

Empirical data support a piecewise regression model in the form 𝑄𝑝
∗ = 𝑏0𝜂

𝑏1 (𝑏0 and 𝑏1are the regression parameters) for 

𝜂 <  𝜂𝑐, and 𝑄𝑝
∗ is constant for 𝜂 > 𝜂𝑐. Bayesian piecewise linear regression was developed for predicting peak discharge 195 

𝑄𝑝
∗ from 𝜂, the product of breach rate 𝑘 and released flood volume (Veh & Walz, 2020). The extent of breaching is closely 

linked to the geometry and material composition of the dam. To account for the theoretically most severe GLOFs, the maximum 

breach depth is considered to reach the marine dam's maximum height and extend from the dam crest down to the point where 

the hummocky terrain ends, as determined using high-resolution satellite imagery and DEM data. The dam maximum height 

data were requested from and obtained through Bajracharya et al. (2020) and are presented in Table 1. For each lake, we 200 

predicted peak discharge Qp based on a given value of Vtot and η using the Bayesian piecewise linear regression model. We 

generated 100 estimates of the posterior predicted Qp for each given value of Vtot and η. The values of η for individual lakes 

encompass the assumed flood volumes, and we also considered 100 physically plausible values of the breach rate k based on 

a log-normal fit to reported breach rates. By multiplying the 94 samples of Vtot with the 100 samples of k and 100 samples of 

Qp, we ultimately obtained a total of 940,000 scenarios of Qp per lake. Considering the substantial computational resources 205 

required for GLOF inundation simulations in Section 2.2.2, 100 scenarios are selected from the 940,000 Qp and associated V0 

scenarios per lake using K-means clustering. The K-means algorithm partitions the Qp and V0 data into 100 clusters, optimizing 

intra-cluster homogeneity and inter-cluster heterogeneity. By selecting the data point closest to the centroid of each cluster, 

the selected scenarios ensure a diverse and representative sampling across the full spectrum of the dataset. The weight of each 

selected scenario is determined by its occurrence probability, specifically, the proportion of times its peak discharge does not 210 

exceed that of other scenarios, relative to the total number of scenarios. A smaller proportion indicates a lower likelihood of 

occurrence, while a larger proportion indicates a higher likelihood. The weight of each scenario is calculated by dividing the 

proportion by the total proportion of all possible scenarios. In these simulations, the dam breach hydrograph is assumed to 

have an isosceles triangle shape, simplifying its derivation from Qp and V0. The breach hydrograph then serves as the boundary 

condition for the hydrodynamic modelling. Although there is some uncertainty, the assumption of an isosceles triangle shape 215 

for the dam breach hydrograph aligns with experimental observations (e.g., Morris et al., 2007; Walder et al., 2015; Yang et 
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al., 2015) and is supported by simulation results from commonly used mechanisms and empirical models (e.g., Yang et al., 

2023). Apart from the theoretically most severe scenarios, less severe conditions are also considered, where 10%, 30%, and 

50% of dam heights are breached. 

2.2.2 2-D hydrodynamic modelling 220 

The High-Performance Integrated Hydrodynamic Modelling System (HiPIMS) (Zhao & Liang, 2022) is employed here to 

simulate the breach hydrograph. HiPIMS develops a fully dynamic model based on the 2-D depth-averaged shallow water 

equations. The conservative form of the governing 2-D shallow water equations is expressed as follows: 

𝜕𝐪

𝜕𝑡
+

𝜕𝐟

𝜕𝑥
+

𝜕𝐠

𝜕𝑦
= 𝐬                                                                            (5) 

where t is the time; x and y represent the Cartesian coordinates; q denotes the flow variable vector; f and g are the flux vectors 225 

in the x- and y-direction, respectively; and s is the source term vector. The vector terms are defined as: 

𝐪 = [
ℎ
𝑞𝑥

𝑞𝑦

]           𝐟 = [

𝑞𝑥

𝑢𝑞𝑥 +
1

2
𝑔ℎ2

𝑢𝑞𝑦

] 

𝐠 = [

𝑞𝑦

𝑣𝑞𝑥

𝑣𝑞𝑦 +
1

2
𝑔ℎ2

]          𝐬 =

[
 
 
 

0

−𝐶𝑓𝑢√𝑢2 + 𝑣2 − 𝑔ℎ
𝜕𝑧𝑏

𝜕𝑥

−𝐶𝑓𝑣√𝑢2 + 𝑣2 − 𝑔ℎ
𝜕𝑧𝑏

𝜕𝑦 ]
 
 
 

                                           （6） 

where h is the water depth; qx = uh and qy = vh are the unit-width discharges in the x- and y- directions, respectively; u and v 

denote the depth-averaged velocities in two Cartesian directions; and zb is the bed elevation; and Cf is the bed roughness 230 

coefficient. 

The governing equations outlined above are solved through a shock-capturing finite volume Godunov-type scheme on uniform 

grids (Zhao & Liang, 2022). The numerical scheme introduces a robust Godunov-type model to deliver precise and stable 

predictions of overland flow and flooding processes at the catchment scale. This scheme is implemented through a Python and 

CUDA C hybrid programming framework to achieve multi-GPU and multi-node high-performance computing for large-scale 235 

simulations. It's worth noting that the GPU-accelerated model has demonstrated computational efficiency up to ten times 

greater than its CPU-based counterpart (Smith & Liang, 2013). HiPIMS is set up using the terrain data and roughness data, 

and it is driven by the breach hydrograph for each scenario, as calculated in Section 2.2.1. Subsequently, the runoff is routed 

throughout the flow area. 

2.3 GLOF exposure and impact assessment  240 

Based on the GLOF inundation process predicted by HiPIMS for each scenario, we can estimate potential flood exposure by 

superimposing the exposure datasets onto the flood simulation results. In addition to assessing flood exposure, it is imperative 

to quantify the potential losses and impacts of GLOFs under various conditions to understand the associated risks. Estimating 

the direct damage to buildings and other exposed objects can be achieved by employing appropriate depth-damage curves that 

establish the relationship between flood depth and the potential damage. Typically, the damage is quantified as a percentage 245 

of the cost required for repairs or replacements. In this study, we utilize depth-damage curves from the HAZUS Flood model 

to investigate the impact of GLOFs on buildings (Scawthorn et al., 2006). Beyond buildings, GLOFs can also have a significant 

impact on agricultural lands and roads. We evaluate the damage to agricultural lands and roads caused by GLOFs using the 

damage curves recommended in a technical report published by the Joint Research Centre of the European Commission 
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(Huizinga et al., 2017). The specific water depth-damage curves for buildings, roads, and agricultural lands used in this study 250 

can be referenced in Chen et al. (2022).  

2.4 Data  

HiPIMS is set up using a digital elevation model (DEM) to represent domain topography and land use data to parameterize 

domain roughness. It is driven by the out-of-breach flow discharge estimated in Section 2.2.1. The DEM used in this work is 

Shuttle Radar Topography Mission (SRTM) DEM with a spatial resolution of 30 m (Farr et al., 2007). Land use types are 255 

extracted from the Landsat Thematic Mapper imagery from 2010, provided by the International Centre for Integrated Mountain 

Development (ICIMOD, 2020). The roughness of the flow area is represented by the Manning coefficient (n), which is 

dependent on land use types. The values assigned are 0.15 for forest, 0.035 for arable land, 0.03 for grassland, 0.027 for water 

surface, and 0.016 for construction land. The Manning coefficients 0.016 to 0.15 were specified based on values provided in 

earlier hydraulic textbooks or reports (such as Chow, 1959; Barnes, 1967; Arcement and Schneider, 1984), aligning with 260 

previous studies, for example, 0.035 to 0.17 in Nepal (Sattar et al., 2021) and 0.035 to 0.120 in Bhutan (Rinzin et al., 2023). 

Open-source datasets are used to support the assessment of GLOF exposure and impacts. The OSM is a collaborative user-

generated project initiated in 2004 to provide an openly available geographical database of the world, covering both the natural 

and artificial environments of the Earth's surface (OpenStreetMap contributors, 2015). While primarily built by volunteers, 

OSM also integrates geographical data contributed by governmental and specialized GIS databases for certain areas or entire 265 

countries, e.g., Nepal, providing relatively complete spatial data on buildings and other objects. Hydropower plant data are 

obtained from the Hydro Map project (Nepal Hydropower Portal, 2019). In the Hydro Map project, hydropower plants are 

categorized into three types: operation, generation, and survey. In Nepal, the hydropower licensing regime is divided into two 

stages i.e., a survey license is issued to conduct a feasibility and environmental assessment, and a generation license is granted 

after the project is found to be technically, environmentally, and economically viable.  From the Hydro Map project, Nepal 270 

has a total of 572 hydropower projects. These projects include 81 that are currently operational, 180 with issued generation 

licenses, and 311 with issued survey licenses. Detailed information on each hydropower plant is provided, including capacity, 

commission/issue date, longitude, latitude, etc. Importing hydropower plant data in ArcGIS and comparing it with sub-meter 

imagery from ArcGIS Server and Google Earth, the positions of some hydropower plants are found to be inaccurate. To address 

the inaccuracies in the positions of some hydropower plants, a process has been undertaken to enhance the quality of the 275 

hydropower plant data. Initially, we identified all hydropower stations located within a 2 km buffer zone along the downstream 

rivers of glacier lakes. For licensed hydropower plants that were not situated on the river, we relocated them to the nearest 

river point, ensuring they were accurately placed on the river as indicated by the Hydro Map project. For operational 

hydropower stations, we used high-resolution remote sensing imagery from sources such as Google Maps and Google Earth 

to precisely determine their locations. 280 

3 Study area and glacial lakes  

Nepal is highly vulnerable to GLOFs. A total of 53 GLOF events have been documented in Nepal from 1560 to now (Shrestha 

et al., 2023). Additionally, there have been 37 GLOF events recorded in the Tibetan Autonomous Region, China, that had 

transboundary impacts on Nepal. These historical events have had devastating consequences for the country. For example, 

both the 1985 Dig Tsho GLOF and the 1998 Tam Pokhari GLOF had devastating effects, resulting in significant loss of life, 285 

property and infrastructure damage, and severe disruptions to the livelihoods of those living in downstream areas. 

Approximately 1.56 million people live downstream within 3 km of moraine-dammed lakes in Nepal, putting them at risk of 

GLOFs (Ghimire, 2004).   

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/digital-elevation-model
https://www.sciencedirect.com/science/article/pii/S0048969721063671#s0015
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In Nepal, a total of 2,070 glacial lakes with lake areas equal to or larger than 0.003 km2 have been identified and mapped using 

Landsat images (Bajracharya et al., 2020). These glacial lakes are predominantly situated in northern Nepal, at elevations 290 

ranging from 3400m to 5908m. Notably, 98% of these glacial lakes are positioned above 4000m. Bajracharya et al. (2020) 

assessed GLOF hazard factors related to lake and dam characteristics, glacier activity at the source, and the morphology of the 

lake surroundings for the 2,070 glacial lakes. They identified 21 lakes as PDGLs (Fig 2 and Table 1). Among the 21 PDGLs, 

some lakes have names, while others do not and were designated as 'Unnamed'.  

 295 

Fig 2. Study area and 21 identified dangerous glacial lakes each with a unique lake number, and potentially impacted hydropower 

plants. 

This study focuses on these 21 PDGLs and conducts a comprehensive assessment of their GLOF risk and downstream impacts. 

Each lake is assessed using the proposed evaluation framework in Section 2. The model and evaluation domain for each lake 

are determined based on the maximum potential inundation extent resulting from GLOFs, as well as the topographic features 300 

and river network conditions downstream. Typically, the domain spans more than 100 km and is sufficiently extensive to 

encompass all potential impacts.  
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Table 1 Delineated glacial lake areas under varied water-occurrence frequency from multi-temporal Sentinel-2 imagery 

Lake 

number 
Lake ID Lake name 

Maximum 

height of 

dam (m) 

Longitude 

(E) 

Latitude 

(N) 

Area (km2)  

(> 5%) 

Area (km2) 

(> 25%) 

Area (km2)  

(> 50%) 

1 GL087749E27816N Unnamed 1 221 87°44′59″ 27°48′57″ 0.178 ± 0.011 0.169 ± 0.011 0.161 ± 0.011 

2 GL087934E27790N Unnamed 2 128 87°56′05″ 27°47′26″ 0.148 ± 0.012 0.134 ± 0.012 0.112 ± 0.010 

3 GL087945E27781N Unnamed 3 124 87°56′42″ 27°46′51″ 0.048 ± 0.005 0.040 ± 0.005 0.035 ± 0.004 

4 GL087632E27729N Unnamed 4 63 87°37′55″ 27°43′44″ 0.036 ± 0.004 0.032 ± 0.004 0.016 ± 0.005 

5 GL087596E27705N Unnamed 5 158 87°35′46″ 27°42′18″ 0.026 ± 0.003 0.020 ± 0.003 0.010 ± 0.003 

6 GL087893E27694N Unnamed 6 51 87°53′36″ 27°41′41″ 0.037 ± 0.005 0.028 ± 0.005 0.015 ± 0.004 

7 GL086925E27898N Imja Tsho 55 86°55′30″ 27°53′53″ 1.741 ± 0.047 1.630 ± 0.042 1.561 ± 0.041 

8 GL086476E27861N Tsho Rolpa 159 86°28′34″ 27°51′40″ 1.712 ± 0.043 1.657 ± 0.041 1.610 ± 0.040 

9 GL086928E27850N Unnamed 7 45 86°55′41″ 27°51′00″ 0.553 ± 0.021 0.533 ± 0.021 0.510 ± 0.022 

10 GL086935E27838N Hongu 1 43 86°56′06″ 27°50′17″ 0.322 ± 0.018 0.305 ± 0.018 0.293 ± 0.018 

11 GL086917E27832N Unnamed 8 128 86°55′01″ 27°49′55″ 0.361 ± 0.015 0.342 ± 0.014 0.332 ± 0.014 

12 GL087095E27829N Unnamed 9 61 87°05′42″ 27°49′44″ 0.118 ± 0.008 0.114 ± 0.008 0.037 ± 0.012 

13 GL087092E27798N Lower Barun 128 87°05′31″ 27°47′53″ 2.193 ± 0.048 2.044 ± 0.046 1.900 ± 0.053 

14 GL086957E27783N Hongu 2 382 87°57′25″ 27°46′59″ 0.872 ± 0.030 0.865 ± 0.030 0.843 ± 0.030 

15 GL086612E27779N Lumding 62 86°36′43″ 27°46′44″ 1.475 ± 0.037 1.411 ± 0.034 1.349 ± 0.035 

16 GL086958E27755N Chamlang 212 86°57′29″ 27°45′18″ 0.921 ± 0.027 0.856 ± 0.021 0.700 ± 0.026 

17 GL086977E27711N Unnamed 10 129 86°58′37″ 27°42′40″ 0.085 ± 0.007 0.074 ± 0.007 0.009 ± 0.003 

18 GL086858E27687N Unnamed 11 172 86°51′29″ 27°41′13″ 0.336 ± 0.015 0.324 ± 0.015 0.307 ± 0.014 

19 GL085630E28162N Unnamed 12 223 85°37′51″ 28°09′44″ 0.150 ± 0.009 0.137 ± 0.008 0.124 ± 0.008 

20 GL082673E29802N Unnamed 13 99 82°40′27″ 29°48′09″ 0.047 ± 0.006 0.041 ± 0.005 0.032 ± 0.005 

21 GL084485E28488N Thulagi 192 84°29′06″ 28°29′17″ 0.997 ± 0.032 0.964 ± 0.032 0.921 ± 0.029 
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4 Results 305 

4.1 Glacial Lake Water Surface Extraction 

Water surfaces of glacial lakes are delineated from Sentinel-2 images using the Random Forest model, as previously outlined. 

The Random Forest model is trained with a set of training samples that comprise both water and non-water features. To account 

for seasonal variations in lake water surfaces, the training samples for water features are manually selected from images 

acquired at different times. Various non-water features encompass diverse landscapes and vegetation types. This training 310 

dataset is subsequently employed to drive and train the Random Forest model, which is then employed to delineate water 

surfaces for all the adopted Sentinel-2 images. The subsequent analysis involves the computation of water-occurrence 

frequency based on multi-temporal water surfaces. The outcomes of water-occurrence frequency for specific representative 

lakes are visually presented in Fig. 3. It is noteworthy that lake areas are not consistently characterized by open water 

throughout the year. For instance, lake 'Unnamed 1' (Fig. 3(a)) exhibits an average water-occurrence frequency of 72%, while 315 

lake 'Unnamed 2' (Fig. 3(b)) has an average water-occurrence frequency of 58%. In contrast, for certain lakes, like 'Unnamed 

8' and the Tsho Ropla Lake, lake areas are always covered with water. Hence, the capacity to map glacial lakes to assess the 

associated GLOF risk is influenced by the timing of image acquisition. 

Table 1 presents the determined lake areas based on varying water-occurrence frequencies. To mitigate the effects of 

misinterpretations, such as cloud shadows, a 5% threshold is utilized to exclude areas characterized by low water-occurrence 320 

frequencies. Subsequently, the maximum lake boundary is delineated for each lake, allowing for the straightforward calculation 

of maximum lake areas. Among the 21 lakes, the largest one is Lower Barun Lake, a substantial glacial lake in Nepal known 

for its depth and size. Its area measures 2.193 ± 0.048 km2, while the smallest lake (Unnamed 5) covers only 0.026 ± 0.003 

km2. Lower Barun Lake, along with the second largest PDGL, Imja Tsho Lake, has undergone significant area growth. The 

estimated maximum area of Imja Tsho Lake here is 1.741 ± 0.047 km2. Tsho Rolpa Lake boasts a maximum area estimated at 325 

1.712 ± 0.043 km2. This aligns with previous findings, which reported that the lake had an area of 0.23 km2 in 1957, which 

grew to 1.02 km2 in 1979, 1.65 km2 in 1999, and 1.61 km2 in 2019 (Chen et al., 2021). Lumding Lake, another PDGL with an 

estimated area exceeding 1 km2, displayed notable growth. It had an area of 0.104 km2 in 1963, 0.66 km2 in 1987, 0.8 km2 in 

1996, and 1.18 km2 in 2016 (Khadka et al., 2019). Our assessment indicates that the maximum area of Lumding Lake is 1.475 

± 0.037 km2. In summary, the estimated maximum lake areas derived from multi-temporal satellite images for these extensively 330 

studied lakes are in good agreement with previous research. To establish the maximum lake boundary for potential risk 

assessment, it is imperative to leverage multi-temporal imagery capturing various hydrological conditions of glacial lakes. 

The maximum areas of the four large lakes (Lower Barun, Imja Tsho, Tsho Rolpa, and Lumding), each exceeding 1 km2, are 

approximately 1.1 times the extent to which water covers more than 50% of the time. In contrast, for the comparatively smaller 

lakes (Unnamed 3, 4, 5, 6, 10, and 13), the ratio of maximum area to the area covered by water for more than 50% of the time 335 

can be as high as 1.4 to 2.5 times. For instance, 'Unnamed 10' has a maximum area of 0.085 km2, while only 0.009 km2 is 

covered with water for more than 50% of the time. The areas of small PDGLs exhibit more significant variations in space and 

time compared to those of larger PDGLs, making the associated risks more uncertain. 
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 340 

Fig 3 Water surfaces extracted from multi-temporal Sentinel-2 imagery in representative glacial lakes in Nepal (lake numbers and 

other lake details can be found in Table 1) 

4.2 Lake volumes and peak discharges prediction  

We obtained 94 estimates of the total volume Vtot (Fig 4 (a)) and flood volume 𝑉0 under a complete breach of dam height (Fig 

4 (b)) for each lake and a total of 940,000 scenarios of peak discharge Qp per lake (Fig 4 (c)) using the models introduced in 345 

Section 2.2.1. Figure 4 (a) clearly illustrates the variation in total volumes among the 21 PDGLs, with Lower Barun (Number 

13) standing out as the most substantial, possessing a median value of approximately 208.2 × 106 m3. In contrast, Unnamed 5 

(Number 5) is the smallest, with a median volume of approximately 204.0 × 103 m3. The disparity between these two lakes is 

striking, as Lower Barun's median volume is approximately 1000 times greater than that of Unnamed 5. We collected 

geophysical investigation data for named PDGLs and compared them against calculated volumes using field-investigated lake 350 

areas, as shown in Table 2. While there are some inconsistencies, the calculated volumes generally align with the investigated 

values. For example, the water volume of the Lower Barun glacial lake in 2015 was approximately 112.3 × 106 m3, with a lake 

area of 1.52 km2 based on bathymetric measurements. Using the established relationship between lake area and volume, the 

average volume for a lake with a 1.52 km2 area is calculated to be 108.27 × 106 m3, which closely matches the measured 

volume of the Lower Barun glacial lake.  355 
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Figure 4 (b) highlights the substantial variation in potential flood volumes across the lakes under the theoretically most extreme 

scenarios, i.e., a complete breach of dam height, with Lower Barun exhibiting the highest median flood volume, while 

Unnamed 5 has the lowest. Notably, the median flood volume of Lower Barun is approximately 1,160 times greater than that 

of Unnamed 5. According to Figure 4(c) showing the distribution of peak discharges, Lower Barun has the highest median 

peak discharge at 21.3 × 103 m³/s. Following it are Lumding, Imja Tsho and Tsho Rolpa, which have similar peak discharge 360 

magnitudes ranging from 13,000 to 15,000 m³/s. The lake with the lowest peak discharge is Unnamed 6, with a discharge of 

154.1 m³/s. The peak discharge of Lower Barun is approximately 140 times greater than that of Unnamed 6. 
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Fig 4 (a) Estimated total volume, (b) flood volume under the complete breach of dam height, and (c) peak discharge for each glacial 

lake 365 
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Table 2 Comparisons between the lake areas (km2) and volumes (106*m3) derived from bathymetric investigations and those 

calculated in this study for named lakes. 

Lake 

number 

Lake 

name 

Maximu

m areas 

Median 

estimated 

volume 

Investigatio

n year 

Investiga

ted areas 

Investigated 

volume 

Calculated 

volume for the 

investigated areas 

Reference 

7 Imja Tsho 1.741 124.9 2016 1.35 88 87.6 Lala et al., (2017) 

8 Tsho Rolpa 1.712 134.7 1994 1.39 76.45 92.1 Rana et al., (2000) 

13 Lower Barun 2.193 208.2 2015 1.52 112.3 108.3 Haritashya et al., (2018) 

15 Lumding 1.475 106.2 2015 1.13 57.7 65.9 Rounce et al., (2016) 

16 Chamlang 0.921 54.9 2009 0.87 34.9 - 35.6 45.8 Lamsal et al., (2016) 

21 Thulagi 0.997 67.1 2017 0.89 36 47.1 Haritashya et al., (2018) 
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4.3 Flood inundation simulation 

4.3.1 Inundation areas 370 

HiPIMS is used to simulate flood dynamics in 100 scenarios for each lake with maximum dam height breached. The final 

flood inundation probability and maximum water depth are derived from each scenario's results multiplied by their respective 

weight. Herein, we use the simulation results from Imja Tsho Lake and Lower Barun Lake as illustrative examples (Fig. 5). 

The areas with high flood inundation probabilities are predominantly distributed along the downstream valley. The areas with 

flood inundation frequency exceeding 5% can be substantial, reaching 95.6 km2 for Imja Tsho Lake and 200.4 km2 for Lower 375 

Barun Lake. The maximum water depth offers spatial insights into the potential severity of GLOFs in downstream areas (Fig. 

5(c) and 5(d)). It facilitates the identification of areas characterized by both high inundation probability and significant 

maximum water depth. For instance, concerning Lower Barun Lake, there are 127.4 km2 of areas exhibiting both inundation 

frequency exceeding 90% and maximum water depth exceeding 0.5 m. These specific areas should undoubtedly receive 

heightened attention in future flood risk management and mitigation. 380 
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Fig 5 GLOF inundation probability for (a) Imja Tsho Lake and (b) Lower Barun Lake, and maximum water depth for (c) Imja 

Tsho Lake and (d) Lower Barun Lake under respective theoretical worst situation i.e., the complete breach of dam height. (The 

basemaps used were accessed from ArcGIS Online Basemap provided by Esri.) 
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The resulting inundation areas at different levels of inundation probabilities are shown in Fig. 6. The inundation extent resulting 385 

from GLOFs originating from the 21 PDGLs ranges from 3.6 km2 to 200.4 km2. Notably, the largest glacial lake, Lower Barun 

(lake number 13), has an inundation area of 172.4 km2 and 189.5 km2 for inundation probabilities exceeding 75% and 50%, 

respectively. Tsho Rolpa (lake number 8), having a smaller lake area than Lower Barun, projects inundation areas of 106.9 

km2 and 120.3 km2 for probabilities exceeding 75% and 50%, respectively. Imja Tsho Lake (lake number 7), similar in size to 

Tsho Rolpa Lake, anticipates inundation areas of 67.2 km2 and 79.6 km2 for probabilities exceeding 75% and 50%, 390 

respectively. It is worth noting that lakes that have not been extensively studied can potentially cause large inundation areas 

of over 10 km2 for probabilities exceeding 50%, including Unnamed 7, Unnamed 8, Unnamed 11, Unnamed 12, Unnamed 1, 

and Unnamed 2. The smallest lake, Unnamed 5, has an inundation area of 2.7 km2 for probabilities exceeding 50%. 

 

Fig 6 Inundation area (km2) at different levels of inundation probabilities and maximum lake area (km2) 395 

To comprehensively evaluate all potential glacial lake outburst scenarios, we also consider less severe conditions, specifically 

where 10%, 30%, and 50% of dam heights are breached. In each of these scenarios, 100 representative cases are selected from 

a total of 940,000 samples using K-means clustering. The outcomes of these less severe scenarios are then compared to the 

conditions of 100% of the dam height breached. Figure 7 illustrates the inundation areas for probabilities exceeding 5% due 

to GLOFs. For Lower Barun Lake, breaches reaching 10% and 30% of the dam height result in inundation of 25.5 km² and 400 

131.0 km² of downstream areas, respectively. When 100% of the dam height is breached, the inundation areas are 7.87 and 

1.53 times larger than those observed in the 10% and 30% scenarios, respectively. Following Lower Barun Lake, Tsho Rolpa 

Lake and Lumding Lake also present substantial inundation risks. Even at 10% of the dam height breached, Tsho Rolpa Lake 

has the potential to inundate approximately 40 km² of areas with inundation probabilities exceeding 5%. 
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 405 

Fig 7 Inundation area (km2) for inundation probabilities exceeding 5% under 10%, 30%, 50% and 100% of dam height breached  
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Table 3 GLOF induced inundation areas and damage extents to buildings, roads, and agricultural lands under 100% of dam height 

breached 

Lake 

name 

Area for 

inundation 

probabilities 

> 5% (km2) 

Building number Building area (m2) Road (km) Agriculture land (km2) 

Slight Moderate Substantial Slight Moderate Substantial Slight Moderate Substantial Slight Moderate Substantial 

Unnamed 1 24.3 37 184 89 1632 11398 4155 8 4 59 1.0 1.1 7.4 

Unnamed 2 21.3 46 135 56 2416 8237 3338 10 5 52 0.8 0.9 5.4 

Unnamed 3 8.8 9 30 15 818 1990 984 11 3 22 0.7 0.2 0.2 

Unnamed 4 4.8 0 8 12 0 360 564 2 1 13 0 0 0 

Unnamed 5 3.6 0 14 4 0 685 151 1 0 3 0 0 0 

Unnamed 6 5.0 8 5 2 487 246 58 6 1 15 0.5 0.1 0.2 

Imja Tsho 95.6 84 418 1165 3827 27148 73595 13 9 194 1.2 1.3 26.4 

Tsho Rolpa 142.2 94 1155 7394 3988 63149 407551 17 25 605 1.1 3.3 67.4 

Unnamed 7 44.2 19 86 178 699 3778 9956 4 2 49 0.5 0.5 9.9 

Hongu 1 28.9 15 76 34 484 4533 1019 2 2 27 0.5 0.4 6.4 

Unnamed 8 39.0 37 141 95 1339 6783 6062 6 4 43 0.7 0.8 9.0 

Unnamed 9 11.5 2 3 6 60 111 339 4 2 19 0.3 0.1 0.3 

Lower Barun 200.4 149 1685 3194 8189 168565 185868 8 8 336 0.6 1.0 70.9 

Hongu 2 76.3 60 394 612 2533 15081 26779 14 12 144 1.1 2.3 25.0 

Lumding 130.0 26 292 1167 1022 11977 54413 7 7 195 0.7 1.8 34.9 

Chamling 78.5 41 412 658 1395 16213 28405 11 12 151 0.7 2.5 26.6 

Unnamed 10 10.8 1 0 10 61 0 177 1 1 2 0.6 0.6 0.8 

Unnamed 11 32.7 37 135 108 1215 6364 6930 5 4 37 0.7 0.8 9.5 

Unnamed 12 27.2 320 964 375 29096 97711 32754 26 13 89 1.7 1.8 6.9 

Unnamed 13 8.7 9 20 0 470 1168 0 15 6 12 0.1 0 0 

Thulagi 94.2 530 5340 6520 34873 335010 529555 45 44 450 2.4 4.2 46.8 
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4.3.2 Exposure assessment 410 

The exposure of objects can be spatially determined by overlaying the predicted flood inundation maps with relevant datasets 

detailing buildings, roads, and agricultural land (Table 3). Here, we focus on areas with flood probabilities greater than 5%. 

The number of inundated buildings varies from 11 to 34,715. Out of the 21 PDGLs, 14 lakes have a number of inundated 

buildings exceeding 100, while 8 of them inundate at least 1,000 buildings. The three lakes with the highest number of 

inundated buildings are Thulagi, Tsho Rolpa, and Lower Barun, each of which could inundate more than 5,000 buildings and 415 

cover an area of 3.7 × 105 m² of building areas. The number of buildings inundated by Tsho Rolpa and Thulagi is 1.7 and 2.5 

times that of Lower Barun Lake, respectively. Overall, these well-studied lakes could impact more buildings than unnamed 

lakes. These 13 unnamed lakes typically affect fewer than 300 buildings, with the exceptions being Unnamed 1 and Unnamed 

12, which can influence 310 and 1,659 buildings, respectively. Six unnamed lakes including Unnamed 12, 1, 7, 11, 8 and 2 

have the potential to impact more than 200 buildings. Further investigation and research are required for the six unnamed 420 

lakes. Conversely, three lakes, including Unnamed 10, Unnamed 6, and Unnamed 9, pose lower risks, with a number of 15 or 

fewer buildings affected. 

Regarding inundated roads, the value ranges from 4 to 646 km. Tsho Rolpa, Thulagi Lake, and Lower Barun still hold the top 

three positions with the largest lengths of inundated roads, each exceeding 350 km. To illustrate, Tsho Rolpa Lake, the top one 

in this category, inundates a 646 km long road. Following closely is Thulagi Lake, which has inundated roads with a length of 425 

539 km. Agriculture is a cornerstone of the Nepalese economy, and it is susceptible to the impacts of GLOFs. It is anticipated 

that twelve lakes have more than 10 km² of inundated agricultural land, while three lakes have a negligible impact on 

agriculture. Lower Barun, Tsho Rolpa, and Thulagi are still the most perilous lakes concerning the inundation of agricultural 

lands. 

In addition to the high potential for human settlements to be exposed to GLOFs, hydropower projects are increasingly 430 

vulnerable to these events. A total of 49 hydropower plants (as shown in Figure 2, with detailed information provided in the 

supporting document Table S1) have been identified as being in close proximity to GLOF flow channels, thereby rendering 

them potentially vulnerable to GLOFs associated with the 21 PDGLs. Among these, 5 plants are currently operational. 

Additionally, 44 hydropower plants, for which generation or survey licenses have been issued, are also exposed to the risk of 

GLOFs from these 21 PDGLs. When examining the potential impact of lakes on operational hydropower plants and those 435 

holding generation licenses, it is observed that Thulagi and Tsho Rolpa pose a risk of inundating 5 plants (3 operational and 2 

licensed) and 3 plants (all licensed), respectively. Moreover, it is noteworthy that lakes Unnamed 12, Unnamed 1, and 

Unnamed 2 have the potential to inundate 7 plants (2 operational and 6 licensed), 2 plants (both licensed), and 2 plants (both 

licensed), respectively. 

4.3.3 Damage Assessment 440 

GLOF damage assessment relies on spatial inundation maps of water depth and depth-damage curves. The inundation maps, 

depicting water depth, are represented by maximum water depths, for areas with flood probabilities greater than 5%. Following 

the technical manual of the HAZUS Flood model (FEMA, 2009), damage extents of 1% to 10%, 11% to 50%, and 50% to 

100% are defined as slight, moderate, and substantial damage, respectively. Figure 8 uses Lake Unnamed 12 as an example to 

illustrate the spatial distribution of damage to buildings, roads, and agricultural land caused by GLOFs. Table 3 provides 445 

estimates of damage to buildings, roads, and agricultural lands for each lake. In the case of Tsho Rolpa, 7,394 buildings are 

projected to suffer substantial damage from GLOFs. Thulagi Lake and Lower Barun Lake are expected to cause substantial 

damage to 6,520 and 3,194 buildings, respectively. Other lakes, such as Imja Tsho Lake and Lumding Lake, are estimated to 

impact roughly 1,160 buildings with substantial damage. Notably, Unnamed 12 has the potential to affect 1,659 buildings, 

with 964 experiencing moderate impact and 375 facing substantial damage. Situated in the Trishuli River Basin, Unnamed 12 450 
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faces high exposure. On the other hand, another unnamed lake (Unnamed 13) is not projected to cause any substantial damage 

to buildings due to GLOFs. For PDGLs with a high number of impacted buildings (more than 1,000), except for Unnamed 12, 

more than 50% of the impacted buildings are expected to incur substantial damage. In all PDGLs, most affected buildings 

(over 60%) are predicted to experience moderate or substantial damage. Likewise, over 60% of roads and agricultural lands 

are anticipated to undergo moderate or substantial damage due to high levels of maximum water depth. 455 

 

Fig 8 Damage to buildings, roads, and agricultural land caused by the theoretical most serious GLOF due to Lake Unnamed 12 

(Basemap sources: Earthstar Geographics and Maxar) 

5 Discussion 

We evaluate GLOF scenarios involving breaches of 10%, 30%, 50%, and 100% of dam heights. It is recognized that for certain 460 

lakes, a complete (100%) breach may be improbable and represents only a theoretical worst-case scenario. In practical terms, 

the most severe realistic scenario should consider the unique lithology, composition, and structural characteristics of each 

moraine dam; however, conducting such detailed filed investigation to gather this information across multiple lakes at a large 

scale remains challenging. For large-scale GLOF risk assessments, Zhang et al. (2023) applied an empirical relationship 

between lake volume and flood volume, derived from historical GLOFs, to estimate flood volumes, capping the maximum 465 

flood volume at 20 × 106 m³ due to limited data on large glacial lakes. Fujita et al. (2013) estimated potential flood volume by 

analysing the depression angle from lake shorelines using DEM data, noting that potential flood volume is helpful for 

preliminarily identifying and prioritising lakes for further investigation but does not directly quantify GLOF risk. As no 

straightforward and reliable method currently exists for accurately predicting flood volumes across multiple lakes, we analysed 

scenarios assuming breaches at 10%, 30%, 50%, and 100% of dam heights for consistency. When interpreting these impact 470 
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results, the inherent limitations in predicting flood volume and the realistic likelihood of each scenario should be carefully 

considered. 

GLOFs can have a significant impact due to the large volume of water stored in glacial lakes, resulting in rapid breaches, high 

outflow peaks, and high total discharges. While there is a positive correlation between inundation extent and lake area (Fig 6), 

it's important to note that inundation propagation and extent also depend on dam breach processes as well as the underlying 475 

topography and land surface conditions of downstream areas (Worni et al., 2012; Ancey et al., 2019). Particularly, steep and 

narrow valley gorges can influence flood waves, causing them to rapidly spread over long distances, often accompanied by 

significant physical processes such as erosion and the transport of ice, sediment, and debris. Among the 21 PDGLs in Nepal, 

Tsho Rolpa Lake, Thulagi Lake, and Lower Barun Lake are expected to experience the most severe impacts of GLOFs on 

buildings, roads and agricultural areas. Rounce et al. (2016, 2017) also assessed the downstream impacts of GLOFs from 480 

glacial lakes in the Nepal Himalayas. They likewise identified Tsho Rolpa Lake, Lower Barun Lake, and Thulagi Lake as 

having the most affected buildings, while two unnamed lakes and Thulagi Lake were anticipated to experience the most 

significant impacts on agricultural areas. However, it's important to note that Rounce et al. (2016, 2017) employed the Monte 

Carlo least-cost path model (Watson et al., 2015) to estimate the extent of GLOFs for each lake. While the model is 

computationally efficient and suitable for large-scale applications, it lacks a physical basis and relies solely on the terrain 485 

conditions downstream along the river channel, without considering variations in lake release volumes and peak discharges. 

As a result, flood extents for lakes with differing potential flood volumes may be indistinguishable. Another limitation is that 

the threshold for the cut-off distance in MC-LCP needs to be artificially set, while the realistic cutoff distance downstream for 

each lake varies, sometimes extending over 200 km downstream (Richardson & Reynolds, 2000). This study takes a different 

approach by employing a physics-based hydrodynamic model that predicts not only the inundation extent but also the spatial 490 

characteristics of flood features, including inundation probabilities and water depth while considering various outburst 

scenarios. This information can be used to identify potential exposures and assess the extent of damage to which exposures 

may be subject. 

In addition to the growing vulnerability of human settlements in mountainous regions, there is an increasing exposure of 

infrastructure related to energy security and commerce to GLOFs. Therefore, an objective assessment of the risk to 495 

infrastructure posed by PDGLs is crucial. This study considers hydropower plants, given their critical importance and rapid 

development in Nepal. Nepal is at the heart of a modern resurgence in hydropower development in the Himalayas (Lord et al., 

2016). The country boasts abundant hydropower resources thanks to its ample river water, steep gradients, and mountainous 

terrain. At present, a considerable number of hydropower projects are in the planning and construction stages (46 projects 

exceeding 100 gigawatts) to enhance the country's overall generating capacity. These planned hydropower projects are 500 

primarily situated along rivers connected to glaciers located in the northern region of Nepal (Shakti et al., 2021). While a few 

existing hydropower plants have experienced direct impacts from recorded GLOFs, such as the Namche hydroelectric power 

plant destroyed by the 1985 Dig Tsho GLOF (Vuichard & Zimmermann, 1987) and the Bhotekoshi hydropower plant affected 

by the 2016 GLOF (Cook et al., 2018), GLOFs can be highly destructive and unpredictable, posing a significant threat to 

hydropower facilities. Furthermore, the expansion of hydropower plants into the upstream regions of watersheds substantially 505 

increases the vulnerability of infrastructure to GLOFs (Nie et al., 2021). Schwanghart et al. (2016) estimated that two-thirds 

of the existing and planned hydropower projects in the Himalayas are located in areas potentially affected by GLOFs, and up 

to one-third of these projects could face GLOF discharges exceeding their local design flood capacities. In this study, we have 

identified 49 existing and planned hydropower projects that could potentially be impacted by GLOFs originating from the 21 

PDGLs; however, we did not assess the specific impacts of GLOFs on these hydropower projects. To our knowledge, there 510 

are no readily available damage curves that correlate the potential impact on hydropower plants with flood depth and other 

flood characteristics. Furthermore, hydropower plants typically comprise multiple components, including the dam and 
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reservoir, powerhouse and auxiliary facilities, among others. The spatial extent of a hydropower plant can vary significantly, 

ranging from a few square kilometres to several hundred square kilometres. Accurate assessment would require detailed spatial 

information and mapping of hydropower plants, which is currently lacking. Consequently, this study focuses exclusively on 515 

identifying whether a hydropower plant is potentially at risk from GLOFs, without engaging in a detailed assessment of the 

specific damages that may be incurred. Still, we urge stakeholders responsible for planning, designing, constructing, and 

managing infrastructure to consider these potential GLOF risks. 

In addition to well-studied PDGLs like Tsho Rolpa Lake, Thulagi Lake, and Lower Barun Lake, some unnamed lakes also 

present a significant risk of GLOFs. For instance, Unnamed 12, 1, 7, 11, 8, and 2 pose high GLOF risks. GLOFs from any of 520 

these six lakes have the potential to impact more than 200 buildings, and GLOFs resulting from Lake Unnamed 12 may 

submerge existing hydropower facilities. Unfortunately, there is limited information available about these unnamed lakes in 

comparison to well-studied PDGLs. To gain a better understanding of their conditions, a comprehensive research strategy is 

needed, which includes fieldwork investigations, remote sensing techniques, and modelling approaches. This study has 

leveraged remote sensing techniques and modelling approaches to preliminarily identify PDGLs with a high level of exposure 525 

and potential impacts from GLOFs. However, it is imperative to conduct fieldwork investigations, including in situ 

measurements, to obtain the essential information required to comprehend the actual state of these unnamed lakes at the local 

scale. These field investigations will also serve as ground truth to calibrate remote sensing-based data and model outputs. 

Moreover, considering the challenging nature of fieldwork in glacial lake areas, the cost of expeditions, and the high level of 

fitness and expertise required by monitoring teams, the preliminary identification of PDGLs with high exposure and potential 530 

impacts can offer valuable evidence to support decision-making in the allocation of financial and human resources. 

We acknowledge the importance of validating the proposed framework for estimating the impact of GLOFs while recognizing 

the inherent challenges associated with validation due to the limited availability of historical data. Although Nie et al. (2018), 

Veh et al. (2019), and Shrestha et al. (2023) have provided valuable inventories of historical GLOFs in the Himalayas, these 

primarily provide information on the date and location of outbursts, offering limited or no information on the actual impacts 535 

resulting from historical GLOFs. Even when impact data is available, it often comprises only generalized descriptions, 

encompassing metrics like the overall number of casualties, infrastructure damage, and affected villages, lacking specific 

spatial information. Consequently, obtaining adequate data for validating our proposed impact estimation framework for 

GLOFs proves challenging. It is noteworthy that our proposed framework employs the fully physically based hydrodynamic 

model HiPIMS, intricately designed to capture the highly transient and complex hydrodynamic processes induced by events 540 

such as dam breaks and flash floods. HiPIMS has been successfully validated for these extreme flow conditions (e.g., Smith 

and Liang, 2013; Liang et al., 2016). The adoption of this model enhances our confidence in simulating the spatial-temporal 

processes of GLOF inundation, ultimately contributing to improved hazard evaluation results. Furthermore, we employ 

Bayesian approaches to derive plausible value ranges for lake volumes and peak discharges. These approaches facilitate the 

creation of multiple GLOF scenarios for each glacial lake, ensuring comprehensive coverage of all potential glacial lake 545 

outburst scenarios. The incorporation of Bayesian methods allows us to account for uncertainties, thereby enhancing the 

robustness of our impact evaluation for potentially devastating GLOFs. 

6 Conclusion 

Exposure and damage estimations are integral components of GLOF risk assessment. Having sufficient information about the 

potential impacts of GLOFs originating from PDGLs is essential to facilitate GLOF risk management. In this study, we 550 

harnessed multi-temporal satellite imagery, Bayesian regression models that establish relationships between lake areas and 

depths, as well as between flood volume and peak discharge, and a high-performance hydrodynamic flood model to support 
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GLOF exposure and damage assessments for multiple lakes. We applied this assessment framework to 21 PDGLs identified 

in the Nepal Himalaya, and the key findings of this study are summarized as follows: 

• Utilizing multi-temporal imagery capturing different hydrological conditions of glacial lakes enables the derivation of 555 

the full or maximum glacial lake boundaries for potential risk assessment. 

• The Bayesian regression model, which establishes relationships between lake areas and depths, as well as between flood 

volume and peak discharge, can produce predictive posterior distributions for lake depths and peak discharges for each 

lake. These distributions offer a plausible range of values for lake volumes and peak discharges for each PDGL, 

facilitating subsequent objective flood modelling and impact analysis. 560 

• The hydrodynamic model (HiPIMS), supported by parallelized high-performance GPU computation, is capable of 

predicting the resulting GLOFs in terms of temporally and spatially varying flood frequency and water depths to reflect 

the highly transient flood dynamics under various scenarios for multiple glacial lakes on a large scale. 

• Among the 21 PDGLs identified in the Nepal Himalayas, in the scenario of a complete breach of dam height, Tsho Rolpa 

Lake, Thulagi Lake, and Lower Barun Lake are poised to bear the most severe impacts of GLOFs on buildings, roads, 565 

and agricultural areas. Six unnamed lakes, specifically, Unnamed 12 in the Trishuli River Basin, Unnamed 1 and 

Unnamed 2 in the Tamor River Basin, and Unnamed 7, 8, and 11 in the Dudh River Basin, have the potential to impact 

more than 200 buildings. The GLOFs from these 21 PDGLs can also impact the 5 existing hydropower plants and the 44 

hydropower projects that have been granted generation or survey licenses. Notably, Unnamed 12 in the Trishuli River 

Basin may even submerge existing hydropower facilities.  570 

Appendix: List of abbreviations used in this study. 

CI confidence interval 

DEM digital elevation model 

EVI Enhanced Vegetation Index  

GIS Geographic Information System  

GLOFs Glacial Lake Outburst Floods  

GPU Graphics processing unit  

HDI highest density interval 

HiPIMS High-Performance Integrated Hydrodynamic Modelling 

System 

MNDWI Modified Normalized Difference Water Index 

NIR Near Infrared 

NDMI Normalized Difference Moisture Index 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

OSM OpenStreetMap 

PDGL potentially dangerous glacial lake 

SRTM Shuttle Radar Topography Mission  

TOA Top-Of-Atmosphere  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/digital-elevation-model
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2010, which can be accessed at http://rds.icimod.org/Home/DataDetail?metadataId=9224.The OpenStreetMap (OSM) data 
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