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Abstract. Glacial Lake Outburst Floods (GLOFs) are widely recognized as one of the most devastating natural hazards in the 

Himalayas, which may with catastrophic consequences including substantial loss of liveslife. To effectively mitigate these 

risks and enhance regional resilience, it is imperative to conduct an objective and holistic assessment of GLOFs hazards and 10 

their potential impacts of GLOFs over a large spatial scale. However, this is challenged by the limited availability of data and 

the inaccessibility to most of the glacial lakes in high-altitude areas. The data challenge is exacerbated when dealing with 

multiple lakes across an expansive spatial area. This study aims to exploit remote sensing techniques, well-established 

Bayesian regression models for estimating glacial lake conditions, cutting-edge flood modelling technology, and open data 

from various sources to innovate a framework for assessing the national exposure and impact of GLOFs. In the innovative 15 

framework, multi-temporal imagery is utilized with a Random Forest model to extract glacial lake water surfaces. Bayesian 

models, derived from previous research, are employed to estimate a plausible range of glacial lake water volumes and 

associated GLOF peak discharges, while accounting for the uncertainty stemming from the limited size of available data and 

outliers within the data. A significant amount number of GLOF scenarios is subsequently generated based on this estimated 

plausible range of peak discharges. A Ggraphics processing unit (GPU)--based hydrodynamic model is then adopted to 20 

simulate the resulting flood hydrodynamics in different GLOF scenarios. Necessary socio-economic information is collected 

and processed from multiple sources, including OpenStreetMap, Google Earth, local archives, and global data products, to 

support exposure analysis. Established depth-damage curves are used to assess the GLOF damage extents to different 

exposures. The evaluation framework is applied to 21 glacial lakes identified as potentially dangerous in the Nepal Himalayas. 

The results indicate that Tsho Rolpa Lake, Thulagi Lake, and Lower Barun Lake and Thulagi Lake bear the most serious 25 

impacts of GLOFs on buildings and roads, and influence existing hydropower facilities, while Tsho Rolpa Lake, Lower Barun 

Lake, and Lumding Lake Lower Barun Lake, Tsho Rolpa Lake and Lumding Lake will experience the most impacts of GLOFs 

on agriculture areas. Four Five anonymous lakes (located at 85°37′51″ E, 28°09′44″ N; 87°44′59″ E, 27°48′57″ N; 87°56′05″ 

N, 27°47′26″ E; 86°55′41″ E, 27°51′00″ N; 86°51′29″ E, 27°41′13″ N) have the potential to impact more than 100 200 

buildings, and the first three lakes may even submerge existing hydropower facilities. 30 

1 Introduction 

Glacial Lake Outburst Floods (GLOFs) are recognized as one of the most impactful natural hazards in the Himalayas, where 

these disasters have had the highest death toll worldwide and caused serious economic damages (Veh et al., 2020). GLOFs 

can generate transient discharges that are orders of magnitude greater than the typical annual floods in the receiving rivers 

(Cenderelli and Wohl, 2001) and some of them can travel >200 km downstream (Richardson & Reynolds, 2000). The extreme 35 

discharges, accelerating along the steep mountainous terrains, make GLOFs extremely destructive to downstream communities 

and infrastructure systems. The unpredictable nature of GLOFs, often occurring without warning, has left downstream 

communities and infrastructure ill-prepared, causing the loss of human lives and economic damages. The ongoing impact of 
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climate change has introduced additional uncertainty into GLOF risk. The Himalaya region is observingved extensive glacier 

shrinkage and a proliferation of glacial lakes (Zhang et al., 2015). The potential impacts of GLOFs on downstream communities 40 

are expected to intensify further due to population growth and socio-economic development. Hence, it is crucial to develop 

effective strategies for managing GLOF risks to enhance human safety and support sustainable development. This necessitates 

the requirement for an objective and reproducible assessment of GLOF hazards and their potential impacts arising from these 

glacial lakes. 

Some potentially dangerous lakes have been well-studied individually, such as Tsho Rolpa Lake (e.g., Shrestha & Nakagawa, 45 

2014), Imja Tsho lake Lake (e.g., Somos-Valenzuela  et al., 2015), and Lower Barun Lake (e.g., Sattar et al., 2021). However, 

these studies typically focus on individual glacial lakes, which provide limited insight into the overall danger and potential 

impacts of glacial lakes as a collective whole. While there have been assessments of glacial lake hazards in the Himalayan 

region, certain limitations exist. Previous work by Mool et al., (2011) and Bajracharya et al., (2020) employed remote sensing 

techniques to identify potentially dangerous glacial lakes (PDGLs) in Nepal, considering different hazard factors. Rounce et 50 

al. (2017) undertook a similar study, quantifying the hazard level of 131 glacial lakes with > 0.1 km2 area in Nepal. 

Furthermore, Rounce et al. (2017) evaluated the potential downstream impacts of GLOFs caused by these glacial lakes using 

a simple flood model without any physical basis. This simple flood model has also been also applied to evaluate the overall 

impacts of GLOFs originating from multiple glacial lakes in the Indian Himalayas (Dubey & Goyal, 2020). Zheng et al. (2021) 

extended their analysis to assess the impacts of GLOFs across the Third Pole by using a Geographic Information System (GIS)-55 

based modified single-flow hydrological model. However, the complexity of GLOFs renders simple flood models inadequate 

for capturing their dynamics, thereby making them incapable of supporting detailed assessments of potential impacts on 

downstream communities and infrastructureHowever, the complexity of GLOFs, characterized by complex hydraulic 

dynamics resulting from sudden releases of large water volumes and the rugged, steep terrain downstream, renders simple 

flood models insufficient for capturing the complex dynamics of GLOFs to support a detailed assessment of the potential 60 

impacts on downstream communities and their infrastructure.  

A range of physically based hydrodynamic models has have been developed and applied to predict the spatial-temporal process 

of GLOFs, offering detailed insights into the resulting flood impacts (e.g., Worni et al., 2014; Ancey et al., 2019; Sattar et al., 

2019). Recently, researchers have explored the use of a hydrodynamic model to assess GLOF downstream impacts in the Third 

Pole (Zhang et al., 2023b). However, hydrodynamic models they entail a huge amount of computation and face substantial 65 

demands for computation resource resources when applied at a large scale. What's even more challenging is that the 

computational requirements increase significantly when addressing GLOF simulations involving a large number of multiple 

scenarios, which is necessary for assessing GLOF's potential impact due to the complexity and uncertainty of the glacier lake 

breach process for multiple glacial lakes. Moreover, the application of hydrodynamic models to support GLOF modelling and 

impact assessment necessitates a considerable amount of data, and Ddata availability poses anothera significant challenge.. 70 

Data availability poses a significant challenge. The high-alpine conditions have constrained our ability to acquire detailed 

spatial data for multiple lakes across a large scale. To correctly depict the dynamic inundation process of GLOFs, glacial lake 

conditions and dam breaching process are essential to estimatinge the outflow discharge resulting from a breach. The outflow 

discharge hydrograph serves as input for hydrodynamic models, enabling predictions of spatiotemporal changes in flood 

dynamics. While the distribution and changes of glacial lakes have been extensively mapped from increasingly available 75 

satellite imagery in recent years (e.g., Zhang et al., 2015; Nie et al., 2017; Shugar et al., 2020), accurately determining lake 

volume and reliably predicting dam breaching processes has remained a challenge due to thatbecause. The  high-alpine 

conditions impede detailed fieldwork, leading researchers to delineate glacial lakes from increasingly detailed digital 

topographic data and satellite imagery. Combining satellite imagery these available data with existing lake bathymetry 

measurements offers the possibility of estimating water volumes and peak discharges from outbursts by establishing empirical 80 
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relationships (e.g., Zhang et al., 2023a). However, estimated lake volumes and potential peak discharges derived from these 

empirical relationships can vary by up to an order of magnitude (Cook and Quincey, 2015; Muñoz et al., 2020). To account 

for the uncertainties inherent in conventional empirical relationships, Veh et al. (2020) developed a Bayesian robust regression, 

utilizing data from the bathymetric survey of 24 glacial lakes. This model estimates water volume based on the surface areas 

of glacial lakes. Simultaneously, they created a Bayesian variant of a physical dam-break model originally proposed by Walder 85 

& O'Connor (1997) to predict peak discharge associated with the estimated flood volume. The Bayesian estimates explore the 

parameter space of plausible flood volumes and associated peak discharges, generating approximately a million possible 

outburst scenarios for each lake. These scenarios comprehensively consider all potential conditions of the dam breach process 

for each specific lake and provide a full range of input information for hydrodynamic models, thereby facilitating predictions 

of the GLOF inundation process. Therefore, this study aims to leverage these established Bayesian models to  support GLOF 90 

inundation simulationsgenerate a comprehensive set of outburst scenarios for the glacial lakes of interest. The independent 

variable in these Bayesian models is the glacial lake area, which can be estimated using remote sensing techniques. 

GLOF exposure and impact assessment is are also restricted by data sparsity. Previous studies have typically relied on census 

data at coarse spatial resolutions or aggregated land use data that encompasses various objects like properties and infrastructure, 

to estimate the potential socio-economic impact of GLOFs (e.g., Shrestha & Nakagawa, 2014; Rounce et al., 2016). Benefiting 95 

from the emergence of new data technologies and the resulting enhancements in data quantity and quality, a spatially explicit 

assessment method has been developed to identify GLOF exposure at an object level and applied to the Tsho Rolpa Lake  

(Chen et al., 2022). Employing a similar strategy, essential socio-economic information is collected and processed from various 

sources, including OpenStreetMap (OSM), Google Earth, global data products, and local archives. The information is used to 

create a spatial exposure dataset that specifies the locations of different objects, such as individual buildings and hydropower 100 

facilities. Subsequently, this spatial exposure data is overlaid with the spatially distributed flood simulation outputs to identify 

potential exposure to GLOFs along their path. 

Overall, this study aims to innovate a framework for object-based exposure and potential impact assessments of GLOFs for 

multiple lakes across a large scale, by exploringe the use of remote sensing techniques, the developed Bayesian regression 

models for estimating lake volumes and potential peak discharges, a physically based hydrodynamic model supported by 105 

parallelized high-performance computing, and socio-economic information from multiple sources, to facilitate object-based 

exposure and potential impact assessments of GLOFs for multiple lakes across a large scale. Nepal has been chosen as the test 

area due to its abundance of glacial lakes, and it has been reported to experience the most significant national-level economic 

consequences from GLOFs globally (Carrivick & Tweed, 2016). Section 2 will present the GLOF exposure and impact 

assessment framework for glacial lakes at a national scale. Section 3 introduces the case study, while Section 4 presents the 110 

results. Further discussion will be found in Section 5, and Section 6 will offer concise conclusions drawn from the study. 

 

 2 Methodology and data 

The proposed framework for object-based exposure and impact assessment of GLOFs across multiple lakes comprises several 

key components: extraction of glacial lake water surfaces from multi-temporal imagery, estimation of lake volumes and peak 115 

discharges using well-established Bayesian regression models, utilization of a high-performance hydrodynamic flood model 

accelerated by Ggraphics processing unit (GPU)GPU technology, and the creation of an exposure dataset sourced from open-

source data (Fig. 1). In particular, leveraging multi-temporal imagery availability, a Random Forest model is developed using 

a set of predictor variables to delineate the maximum extent of glacial lake water surfaces. The plausible range of glacial lake 

water depths, volumes, and GLOF-induced peak discharges is estimated through existing Bayesian models. A substantial 120 
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number of GLOF scenarios, encompassing outflow discharge hydrographs through glacial lakes, are sampled and generated 

based on the plausible range of peak discharges. For each scenario, the resulting outflow discharge hydrograph is employed to 

drive the GPU-accelerated hydrodynamic model, efficiently simulating the temporal and spatial dynamics of floods. These 

flood dynamics are then overlaid with the spatial exposure data to identify potential exposure to GLOFs and to quantify damage 

extent by using established depth-damage curves.  125 

 

Fig. 1. GLOF exposure and impact assessment framework for multiple glacial lakes (key components highlighted in blue) 

2.1 Glacial lake water surface extraction 

With the availability of multi-temporal imagery, a Random Forest model based on a set of predictor variables is used to map 

the location and extent of water surfaces of glacial lakes under different hydrological conditions in order to produce the 130 

maximum extent of lake water surfaces. 

2.1.1 Acquisition of satellite imagery 

Sentinel-2 is an operational multispectral imaging mission of the European Space Agency for global land observation. The 

Sentinel-2A and -2B satellites were launched in 2015 and 2017, respectively. These satellites capture imagery every 10 days 

(every 5 days with the twin satellites together). The spatial resolution for the visible and broad Near near-Iinfrared (NIR) bands 135 

is 10 mmeters, while it is 20 meters20m for the red edge, narrow NIR, and Shortshort-wave Infrared infrared (SWIR) bands. 

Here, all available Sentinel-2 imagery for the case study of glacial lakes is utilized to identify the maximum extent of their 

water surfaces.  

The analysis is based on the Sentinel-2 level-1C Top-Of-Atmosphere (TOA) products, which are accessible through the Google 

Earth Engine. Any observations affected by clouds are masked using the Sentinel-2 Quality Assurance (QA) band flags. Bands 140 

originally at a 20-meter m resolution are resampled to 10 m10m using the nearest neighbour method before being stacked for 

subsequent interpretation. All available Sentinel-2 datasets are collected and filtered to reserve imagery from the ablation 

season, reducing the impact of frozen water surfaces, as per the empirical period of the local melt season (Shugar et al., 

2020). In total, 1,520 Sentinel-2 images have been collected for this purpose.   

2.1.2 Random Forest model 145 

Mapping water surfaces from multiple images is a complex task that necessitates the consideration and analysis of various 

water-related signals in spectral responses, often influenced by water turbidity and bottom sediments. In this context, a Random 
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Forest model is developed based on a set of predictor variables to extract water surfaces. Random Forest modelling is an 

ensemble classification technique (Breiman, 2001) and has been extensively used in the classification of remote sensing data 

(e.g., Yu et al., 2011; Rodriguez-Galiano et al., 2012). Random Forest models excel at recognizing regional variations in 150 

threshold values, surpassing the capabilities of traditional index thresholding methods (Tulbure et al., 2016). Notably, Random 

Forest models do not rely on data distribution assumptions and can yield accurate predictions without overfitting data. 

Consequently, they have been increasingly used in water surface extraction as a favourable alternative to the traditional 

statistical approaches (e.g., Schaffer-Smith et al., 2017; Veh et al., 2018). 

Random Forest model consists of a set of classification trees, each of which grows from a random subset of training samples 155 

and randomly permuted explanatory variables. The classification trees can grow to a specified maximum number without 

pruning, and the final classifications are determined by the majority votes of the trees in the forest. The explanatory variables 

for Sentinel-2 datasets in the Random Forest model include TOA reflectance for every spectral band, brightness temperature, 

vegetation indices, and water indices. TOA reflectance and brightness temperature are obtained by normalizing the target 

imagery, mitigating unwanted effects resulting from variations in sun angle and earth-sun distance. The vegetation indices 160 

include the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). NDVI is sensitive to 

chlorophyll and used to assess terrestrial vegetation conditions (Tucker, 1979), while EVI is developed to optimize the 

vegetation signal in high biomass regions, de-couple canopy background signal, and reduce atmospherice influences (Huete 

et al., 2002). Water indices include the Normalized Difference Water Index (NDWI, McFeeters, 1996), Modified NDWI 

(MNDWI, Xu, 2006), and Normalized Difference Moisture Index (NDMI, Gao, 1996). NDWI enhances the response to open 165 

water features while minimizing soil and terrestrial vegetation influences. MNDWI substitutes the middle infrared band for 

the near infrared NIR band used in the NDWI to enhance water features and remove the noises from other land types. 

NDMI is an effective indicator of vegetation water content. The training samples are selected via visual interpretation of 

satellite images to represent glacial lake water surfaces, along with various non-water covers, including diverse landscapes and 

vegetation types. The uncertainty in estimating glacial lake area is quantified using a widely used buffer method (Granshaw 170 

and Fountain, 2006). A buffer area of half a pixel (e.g., Zhang et al., 2015; Krause et al., 2019) is adopted to measure the 

uncertainty in the estimated lake area. The misclassified glacial lake water areas resulting from terrain shadows are eliminated 

during post-processing, through manual exclusion of inaccurately classified regions. 

2.2 GLOF dynamic inundation process simulation 

Using the maximum extent of glacial lake water surfaces, we employ the established Bayesian models to predict glacial lake 175 

conditions and the dam breaching process. This allows us to estimate the full range of GLOF outflow discharge through the 

breach. Subsequently, various GLOF scenarios featuring a range of outflow discharge hydrographs are then sampled to drive 

the GPU-based hydrodynamic model for the simulation of dynamic flood dynamics resulting from GLOFs. 

2.2.1 Estimating volumes and peak discharge of glacial lakes 

Global samples from glacial lakes have suggested that the water depths for glacial lakes with similar surface areas can vary by 180 

one order of magnitude. To estimate water volumes of glacial lakes, we adopted the model that relates lake areas to their 

maximum depths, which was developed by Veh & Walz (2020). The model was built by compiling the reported lake areas and 

maximum depths obtained from bathymetric surveys conducted on 24 Himalayan glacial lakes. A Bayesian robust linear 

regression with a normally distributed target variable (lake depth d) 𝑑 ~ 𝑁(𝜇𝑑(𝑎), 1 𝜏⁄ ) is adopted to account for possible 

effects of the limited sample size and outliers present in the compiled dataset. The mean 𝜇𝑑(𝑎) is caculated calculated below 185 

through a linear combination of the input lake area a. The precision 𝜏  (the inverse of variance) is gamma-distributed 

𝜏 ~ Γ(0.001, 0.001). 
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𝜇𝑑(𝑎) =  𝛼0 + 𝛼1𝑎                                                                                              (1) 

Where a is lake area, intercept 𝛼0 ~ 𝑁(0, 10−12), slope 𝛼1 ~ 𝑁(0, 10−12).   

We obtained 100 posterior estimates for the lake depth (d) from the Bayesian model for each lake. For each lake, samples 190 

inside the 95 % highest density interval (HDI) of credible lake depth values are reserved, i.e., 94 lake depth samples for each 

lake. In this study, we maintained the same assumption regarding the bathymetry of the glacial lakes as outlined by Veh & 

Walz (2020). The delineated lake from satellite imagery is circular, and each lake is assumed to have an ellipsoidal bathymetry. 

Therefore, we obtained 94 estimates of total volume (Vtot) for each glacial lake.  

𝑉𝑡𝑜𝑡 = (2 3)⁄ 𝑑𝑎                                                                                               (2) 195 

With regard to estimating peak discharge during dam failure, Veh & Walz (2020) built a Bayesian piecewise robust model to 

characterize the physically motivated model developed by Walder & O’Connor (1997). The latter model predicts peak 

discharge Qp during natural dam failure. In their study, Walder & O’Connor (1997) compiled data from 63 observed natural 

dam breaks in various settings and identified a constant response of dimensionless peak discharge Qp* when plotted against 

the dimensionless product η of lake volume and breach rate k. They inferred a model that describes the relationship between 200 

peak discharge and lake volume using the dimensionless peak discharge Qp*. 

𝑄𝑝
∗ = 𝑄𝑃𝑔−

1
2ℎ−

5
2                                                                                          (3) 

𝜂 =  𝑉𝑂
∗𝑘∗                                                                                                    (4) 

Where 𝑉𝑂
∗ = 𝑉0ℎ

−3 represents the dimensionless flood volume, 𝑘∗ =  𝑘𝑔−1 2⁄ ℎ−1 2⁄  is the dimensionless breach rate, g is the 

acceleration of gravity, h is breach depth, and 𝑉0 is the released water volume. 𝑘 is the breach rate and subsumes lithologic 205 

conditions, the erodibility of the outflow channel, and the breach and downstream valley geometry. h is measured from the 

final lake surface after dam failure to the initial lake surface. V0 is the released water volume and depends on h and Vtot.  

Empirical data support a piecewise regression model in the form 𝑄𝑝
∗ = 𝑏0𝜂

𝑏1 (𝑏0 and 𝑏1are the regression parameters) for 

𝜂 <  𝜂𝑐, and 𝑄𝑝
∗
 is constant for 𝜂 > 𝜂𝑐. Bayesian piecewise linear regression was developed for predicting peak discharge 

𝑄𝑝
∗
 from 𝜂, the product of breach rate 𝑘 and released flood volume (Veh & Walz, 2020). To account for the most severe 210 

GLOFs, we assume that the entire total lake volume Vtot would be released to create GLOFs. For each lake, we predicted the 

peak discharge Qp based on a given value of Vtot and η using the Bayesian piecewise linear regression model. We generated 

100 estimates of the posterior predicted Qp for each given value of Vtot and η. The values of η for individual lakes encompass 

the assumed flood volumes, and we also considered 100 physically plausible values of the breach rate k based on a log-normal 

fit to reported breach rates. By multiplying the 94 samples of Vtot with the 100 samples of k and 100 samples of Qp, we 215 

ultimately obtained a total of 940,000 scenarios of Qp per lake. Considering the substantial computational resources required 

for GLOF inundation simulations in sSection 2.2.2, 1,000 scenarios are randomly selected from the total of 940,000 Qp 

scenarios per lake. The weight of each scenario is determined by its occurrence probability, specifically, the proportion of 

times its peak discharge does not exceed that of other scenarios, relative to the total number of scenarios. A smaller proportion 

indicates a lower likelihood of occurrence, while a larger proportion indicates a higher likelihood. The weight of each scenario 220 

is calculated by dividing the proportion by the total proportion of all possible scenarios.   

In these simulations, the dam breach hydrograph is assumed to have an isosceles triangle shape, simplifying its derivation from 

Qp and V0. The breach hydrograph then serves as the boundary conditions for the hydrodynamic modelling. Although there is 

some uncertainty, the assumption of an isosceles triangle shape for the dam breach hydrograph aligns with experimental 

observations (e.g., Morris et al., 2007; Walder et al., 2015; Yang et al., 2015) and is supported by simulation results from 225 



7 

 

commonly used mechanisms and empirical models (e.g., Yang et al., 2023). Apart from the most severe scenarios, less severe 

conditions are also considered, where 25%, 50%, and 75% of the lake water volume isare released. 

2.2.2 2-D hydrodynamic modelling 

The High-Performance Integrated Hydrodynamic Modelling System (HiPIMS) (Zhao & Liang, 2022) is employed here to 

simulate the breach hydrograph. HiPIMS develops a fully dynamic model based on the 2-D depth-averaged shallow water 230 

equations. A fully dynamic model based on the 2-D depth-averaged shallow water equations (SWEs) is adopted to route the 

breach hydrograph. The conservative form of the governing 2-D shallow water equations is expressed as follows: 

𝜕𝐪

𝜕𝑡
+

𝜕𝐟

𝜕𝑥
+

𝜕𝐠

𝜕𝑦
= 𝐬                                                                            (5) 

where t is the time; x and y represent the Cartesian coordinates; q denotes the flow variable vector; f and g are the flux vectors 

in the x- and y-direction, respectively; and s is the source term vector. The vector terms are defined as: 235 

𝐪 = [

ℎ
𝑞𝑥

𝑞𝑦

]           𝐟 = [

𝑞𝑥

𝑢𝑞𝑥 +
1

2
𝑔ℎ2

𝑢𝑞𝑦

] 

𝐠 = [

𝑞𝑦

𝑣𝑞𝑥

𝑣𝑞𝑦 +
1

2
𝑔ℎ2

]          𝐬 =

[
 
 
 

0

−𝐶𝑓𝑢√𝑢2 + 𝑣2 − 𝑔ℎ
𝜕𝑧𝑏

𝜕𝑥

−𝐶𝑓𝑣√𝑢2 + 𝑣2 − 𝑔ℎ
𝜕𝑧𝑏

𝜕𝑦 ]
 
 
 
                                           （6） 

where h is the water depth; qx = uh and qy = vh are the unit-width discharges in the x- and y- directions, respectively; u and v 

denote the depth-averaged velocities in two Cartesian directions; and zb is the bed elevation; and Cf is the bed roughness 

coefficient. 240 

The governing equations outlined above are solved through a shock-capturing finite volume Godunov-type scheme on uniform 

grids (Zhao & Liang, 2022). The numerical scheme introduces a robust Godunov-type model to deliver precise and stable 

predictions of overland flow and flooding processes at the catchment scale. This novel scheme is employed to enhance the 

High-Performance Integrated Hydrodynamic Modelling System (HiPIMS) and implemented through a Python and CUDA C 

hybrid programming framework to achieve multi-GPU and multi-node high-performance computing for large-scale 245 

simulations. It's worth noting that the GPU-accelerated model has demonstrated computational efficiency up to ten times 

greater than its CPU-based counterpart (Smith & Liang, 2013). The 2-D hydrodynamic modelHiPIMS is set up using the 

terrain data and roughness data, and it is driven by the breach hydrograph for each scenario, as calculated in Section 2.2.1. 

Subsequently, the runoff is automatically routed throughout the flow area. 

2.3 GLOF exposure and impact assessment  250 

Based on the GLOF inundation process predicted by HiPIMS for each scenario, which includes water depth, flow velocities, 

and flood arrival time, we can estimate potential flood exposure by superimposing the exposure datasets onto the flood 

simulation results. In addition to assessing flood exposure, it is imperative to quantify the potential losses and impacts of 

GLOFs under various conditions to understand the associated risks. Estimating the direct damage to buildings and other 

exposed objects can be achieved by employing appropriate depth-damage curves that establish the relationship between flood 255 

depth and the potential damage. Typically, the damage is quantified as a percentage of the cost required for repairs or 

replacements. In this study, we utilize depth-damage curves from the HAZUS Flood model to investigate the impact of GLOFs 

on buildings (Scawthorn et al., 2006). Beyond buildings, GLOFs can also have a significant impact on agricultural lands and 

roads. We evaluate the damage to agricultural lands and roads caused by GLOFs using the damage curves recommended in a 
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technical report published by the Joint Research Centre of the European Commission (Huizinga et al., 2017). The specific 260 

water depth-damage curves for buildings, roads, and agricultural lands used in this study can be referenced in Chen et al. 

(20232022).  

2.4 Data  

HiPIMS is set up using a digital elevation model (DEM) to represent domain topography and land use data to parameterise 

parameterize domain roughness. It is driven by the out-of-breach flow discharge estimated in Section 2.2.1. The DEM used in 265 

this work is Shuttle Radar Topography Mission (SRTM) DEM with a spatial resolution of 30 m (Farr et al., 2007). Land use 

types are extracted from the Landsat Thematic Mapper TM imagery from the year 2010, provided by the International Centre 

for Integrated Mountain Development (ICIMOD, 2020). Roughness The roughness of the flow area is represented by the 

Manning coefficient (n), which is dependent on land use types. The Manning coefficients are specified according to previous 

hydraulics textbooks or reports (e.g., Chow, 1959, Barnes, 1967, Arcement and Schneider, 1984). The values assigned are 0.15 270 

for forest, 0.035 for arable land, 0.03 for grassland, 0.027 for water surface, and 0.016 for construction land. The Manning 

coefficients 0.016 to 0.15 were specified based on values provided in earlier hydraulic textbooks or reports (such as Chow, 

1959; Barnes, 1967; Arcement and Schneider, 1984), aligning with previous studies, for example, 0.035 to 0.17 in Nepal 

(Sattar et al., 2021) and 0.035 to 0.120 in Bhutan (Rinzin et al., 2023). 

Open-source datasets are used to support the assessment of GLOF exposure and impacts. The OpenStreetMap (OSM) is a 275 

collaborative user-generated project initiated in 2004 to provide an openly available geographical database of the world, 

covering both the natural and artificial environments of the Earth's surface (OpenStreetMap contributors, 2015). While 

primarily built by volunteers, OSM also integrates geographical data contributed by governmental and specialized GIS 

databases for certain areas or entire countries, e.g., Nepal, providing relatively complete spatial data on buildings and other 

objects. Hydropower plant data are obtained from the Hydro Map project (Nepal Hydropower Portal, 2019). In the Hydro Map 280 

project, hydropower plants are categorized into three types: Operationoperation, Generation generation, and Surveysurvey. In 

Nepal, the hydropower licensing regime is divided into two stages i.e., a survey license is issued to conduct a feasibility and 

environmental assessment, and a generation license is granted after the project is found to be technically, environmentally 

friendly, and economically viable. Detailed information on each hydropower plant is provided, including its Provinceprovince, 

Districtdistrict, Local local Government, capacity, commission/issue date, longitude, and latitude, etc. Importing hydropower 285 

plant data in ArcGIS and comparing it with sub-meter imagery from ArcGIS Server and Google Earth, the positions of some 

hydropower plants are found to be inaccurate. To address the inaccuracies in the positions of some hydropower plants, a 

process has been undertaken to enhance the quality of the hydropower plant data. The coordinates of existing hydropower 

plants, including those in operation and under construction, have been collected from Wikipedia. These coordinates are then 

visually inspected and collected against sub-meter imagery obtained from ArcGIS Server and Google Earth, as they are 290 

discernible in sub-meter imagery. The newly collected coordinates will be utilized to update the spatial positions of hydropower 

plants provided by the Hydro Map project. 

3 Study area and glacial lakes  

Nepal is highly vulnerable to GLOFs. A total of 53 GLOF events have been documented in Nepal from 1560 to now (Shrestha 

et al., 2023). Additionally, there have been 37 GLOF events recorded in the Tibetan Autonomous Region, China, which that 295 

had transboundary impacts on Nepal. These historical events have brought had devastating consequences to for the country. 

For example, both the 1985 Dig Tsho GLOF and the 1998 Tam pokhari Pokhari GLOF had devastating effects, resulting in 

significant loss of life, property and , infrastructure damage, and severe disruptions to the livelihoods of those living in 

downstream areas. Approximately 1.56 million people live downstream within 3 km of moraine-dammed lakes in Nepal, 
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putting them at risk of GLOFs (Ghimire, 2004). If climate change continues at its present pace, rates of glacier mass loss and 300 

shrinkage, and the formation and expansion of glacial lakes will increase further, which could escalate the occurrence of 

GLOFs. Exacerbating the situation, GLOF exposure and risk are on the rise due to the expansion of settlements, economic 

activities, and infrastructure construction along riverbanks.  

In Nepal, a total of 2,070 glacial lakes with lake areas equal to or larger than 0.003 km2 have been identified and mapped by 

using Landsat images (Bajracharya et al., 2020). These glacial lakes are predominantly situated in northern Nepal, at elevations 305 

ranging from 3400m to 5908m. Notably, 98% of these glacial lakes are positioned above 4000m. Bajracharya et al. (2020) 

assessed GLOF hazard factors related to lake and dam characteristics, glacier activity at the source, and the morphology of the 

lake surroundings for the 2,070 glacial lakes. They identified 21 lakes as potentially dangerous glacial lakes (PDGLs) (Fig 2 

and Table 1). Among the 21 PDGLs, some lakes have names, while others do not and were designated as 'Anonymous *'. 

These 21 PDGLs are further categorized into three ranks based on the level of danger associated with GLOF hazards, with 310 

Rank I representing the highest level of risk. Among the 21 PDGLs, 15 lakes were classified as Rank I, 3 as Rank II, and 3 

lakes as Rank III. Lakes are classified as Rank I due to high-risk factors, such as large lake size, the potential for expansion 

caused by glacier calving, steep outlet slopes, and the likelihood of snow and/or ice avalanches and landslides in the 

surrounding areas. For example, Tsho Rolpa Lake, classified as Rank I, is a typical example of moraine-dammed lakes that 

have formed from supraglacial lakes. It is bordered by steep-slope lateral moraine (25-80°) and dammed by a partially ice-315 

cored end moraine (8.5-16.7°). The end moraine is composed of unconsolidated sediments comprising boulders, gravel, sand, 

and silt. Over time, its area and volume have exhibited an increasing trend, while the lake bed has progressively deepened with 

the retreat of the calving source glacier. These factors collectively classify Tsho Rolpa Lake as one of the Rank I PDGLs in 

Nepal. 

 320 

Fig 2. Study area, and 21 identified dangerous glacial lakes and their danger level rank of GLOF hazards with Rank I being the 

highest. 

In this study, the focus is on these 21 PDGLs, and a comprehensive assessment of their GLOF risk and downstream impacts 

is conducted. Each lake is assessed by using the proposed evaluation framework in section Section 2. The model and evaluation 

domain for each lake are determined based on the maximum potential inundation extent resulting from GLOFs, as well as the 325 

topographic features and river network conditions downstream. Typically, the domain spans more than 100 km and is 

sufficiently extensive to encompass all potential impacts.  
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Table 1 Delineated glacial lake areas under varied water-occurrence frequency from multi-temporal Sentinel-2 imagery 

Lake 

number 
Lake ID Lake name 

Longitude 

(E) 
Latitude (N) Rank 

Area (km2)  

(> 5%) 

Area (km2) 

(> 25%) 

Area (km2)  

(> 50%) 

1 GL087749E27816N Anonymous 1 87°44′59″ 27°48′57″ I 0.178 ± 0.011 0.169 ± 0.011 0.161 ± 0.011 

2 GL087934E27790N Anonymous 2 87°56′05″ 27°47′26″ III 0.148 ± 0.012 0.134 ± 0.012 0.112 ± 0.010 

3 GL087945E27781N Anonymous 3 87°56′42″ 27°46′51″ I 0.048 ± 0.005 0.040 ± 0.005 0.035 ± 0.004 

4 GL087632E27729N Anonymous 4 87°37′55″ 27°43′44″ III 0.036 ± 0.004 0.032 ± 0.004 0.016 ± 0.005 

5 GL087596E27705N Anonymous 5 87°35′46″ 27°42′18″ I 0.026 ± 0.003 0.020 ± 0.003 0.010 ± 0.003 

6 GL087893E27694N Anonymous 6 87°53′36″ 27°41′41″ III 0.037 ± 0.005 0.028 ± 0.005 0.015 ± 0.004 

7 GL086925E27898N Imja Tsho 86°55′30″ 27°53′53″ I 1.741 ± 0.047 1.630 ± 0.042 1.561 ± 0.041 

8 GL086476E27861N Tsho Rolpa 86°28′34″ 27°51′40″ I 1.712 ± 0.043 1.657 ± 0.041 1.610 ± 0.040 

9 GL086928E27850N Anonymous 7 86°55′41″ 27°51′00″ I 0.553 ± 0.021 0.533 ± 0.021 0.510 ± 0.022 

10 GL086935E27838N Hongu 1 86°56′06″ 27°50′17″ I 0.322 ± 0.018 0.305 ± 0.018 0.293 ± 0.018 

11 GL086917E27832N Anonymous 8 86°55′01″ 27°49′55″ I 0.361 ± 0.015 0.342 ± 0.014 0.332 ± 0.014 

12 GL087095E27829N Anonymous 9 87°05′42″ 27°49′44″ II 0.118 ± 0.008 0.114 ± 0.008 0.037 ± 0.012 

13 GL087092E27798N Lower Barun 87°05′31″ 27°47′53″ I 2.193 ± 0.048 2.044 ± 0.046 1.900 ± 0.053 

14 GL086957E27783N Hongu 2 87°57′25″ 27°46′59″ I 0.872 ± 0.030 0.865 ± 0.030 0.843 ± 0.030 

15 GL086612E27779N Lumding 86°36′43″ 27°46′44″ I 1.475 ± 0.037 1.411 ± 0.034 1.349 ± 0.035 

16 GL086958E27755N Chamlang 86°57′29″ 27°45′18″ II 0.921 ± 0.027 0.856 ± 0.021 0.700 ± 0.026 

17 GL086977E27711N Anonymous 10 86°58′37″ 27°42′40″ I 0.085 ± 0.007 0.074 ± 0.007 0.009 ± 0.003 

18 GL086858E27687N Anonymous 11 86°51′29″ 27°41′13″ I 0.336 ± 0.015 0.324 ± 0.015 0.307 ± 0.014 

19 GL085630E28162N Anonymous 12 85°37′51″ 28°09′44″ I 0.150 ± 0.009 0.137 ± 0.008 0.124 ± 0.008 

20 GL082673E29802N Anonymous 13 82°40′27″ 29°48′09″ II 0.047 ± 0.006 0.041 ± 0.005 0.032 ± 0.005 

21 GL084485E28488N Thulagi 84°29′06″ 28°29′17″ I 0.997 ± 0.032 0.964 ± 0.032 0.921 ± 0.029 

Formatted: Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li

Formatted: Space After:  0 pt, Line spacing:  Multiple 1.18 li



11 

 

4 Results 330 

4.1 Glacial Lake Water Surface Extraction 

Water surfaces of glacial lakes are delineated from Sentinel-2 images using the Random Forest model, as previously outlined. 

The Random Forest model is trained with a set of training samples that comprise both water and non-water features. To account 

for seasonal variations in lake water surfaces, the training samples for water features are manually selected from images 

acquired at different times. Various non-water features encompass diverse landscapes and vegetation types. The data collected 335 

from each training pixel includes TOA reflectance values for individual spectral bands and various band combinations. This 

training dataset is subsequently employed to drive and train the Random Forest model, which is then employed to delineate 

water surfaces for all the adopted Sentinel-2 images. . The classification is executed on Google Earth Engine, providing not 

only access to remote sensing data on a global scale but also harnessing the substantial computing power of Google's cloud 

infrastructure. The subsequent analysis involves the computation of water-occurrence frequency based on multi-temporal water 340 

surfaces. The outcomes of water-occurrence frequency for specific representative lakes are visually presented in Fig. 3. It is 

noteworthy that lake areas are not consistently characterized by open water throughout the year. For instance, lake 'Anonymous 

1' (87°44′59″ E, 27°48′57″ N) (Fig. 3(b)) exhibits an average water-occurrence frequency of 72%, while lake 'Anonymous 2' 

(87°56′05″ E, 27°47′26″ N) (Fig. 3(d)) has an average water-occurrence frequency of 58%. In contrast, for certain lakes, like 

'Anonymous 8' (86°55′01″ E, 27°49′55″ N) and the Tsho Ropla Lake, lake areas are always covered with water. Hence, the 345 

capacity to map glacial lakes to assess the associated GLOF risk is influenced by the timing of image acquisition. 

Table 1 presents the determined lake areas based on varying water-occurrence frequencies. To mitigate the effects of 

misinterpretations, such as cloud shadows, a 5% threshold is utilized to exclude areas characterized by low water-occurrence 

frequencies. Subsequently, the maximum lake boundary is delineated for each lake, allowing for the straightforward calculation 

of maximum lake areas in ArcGIS. Among the 21 lakes, the largest one is Lower Barun Lake (Fig 3 (a)), a substantial glacial 350 

lake in Nepal known for its depth and size. Its area measures 2.193 ± 0.048 km2, while the smallest lake (Anonymous 5; 

87°35′46″ E, 27°42′18″ N) covers only 0.026 ± 0.003 km2. Remarkably, Lower Barun Lake has undergone significant area 

growth since its initial appearance, with an area of 0.04 km2 in 1987 (Sattar et al., 2021), 0.64 km2 in 1989 (Maskey et al., 

2020), 1.79 km2 in 2017 (Haritashya et al., 2018), 2 km2 in 2018 (Maskey et al., 2020), and 2.09 km2 in 2019 (Sattar et al., 

2021). Imja Tsho Lake, the second largest PDGL, also underwent rapid growth in both area and volume. It did not exist in 355 

1960, but its area in 1963, 1992, 2002, and 2012 measured 0.03, 0.648, 0.868, and 1.257 km2, respectively (Budhathoki et al., 

2010; Somos-Valenzuela et al., 2014). Lower Barun Lake, along with the second largest PDGL, Imja Tsho Lake, has 

undergone significant area growth. The estimated maximum area of Imja Tsho Lake here is 1.741 ± 0.047 km2. Tsho Rolpa 

Lake boasts a maximum area estimated at 1.712 ± 0.043 km2. This aligns with previous findings, which reported that the lake 

had an area of 0.23 km2 in 1957, which grew to 1.02 km2 in 1979, 1.65 km2 in 1999, and 1.61 km2 in 2019 (Chen et al., 2021). 360 

Lumding Lake, another PDGL with an estimated area exceeding 1 km2, displayed notable growth. It had an area of 0.104 km2 

in 1963, 0.66 km2 in 1987, 0.8 km2 in 1996, and 1.18 km2 in 2016 (Khadka et al., 2019). Our assessment indicates that the 

maximum area of Lumding Lake is 1.475 ± 0.037 km2. In summary, the estimated maximum lake areas derived from multi-

temporal satellite images for these extensively studied lakes are in good agreement with previous research. To establish the 

maximum lake boundary for potential risk assessment, it is imperative to leverage multi-temporal imagery capturing various 365 

hydrological conditions of glacial lakes. 

The maximum areas of the four large lakes (Lower Barun, Imja Tsho, Tsho Rolpa, and Lumding), each exceeding 1 km2, are 

approximately 1.1 times the extents extent where to which water covers more than 50% of the time. In contrast, for the 

comparatively smaller lakes (Anonymous 3, 4, 5, 6, 10, and 13), the ratio of maximum area to the area covered by water for 

more than 50% of the time can be as high as 1.4 to 2.5 times. For instance, 'Anonymous 10' (86°58′37″ E, 27°42′40″ N) has a 370 
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maximum area of 0.085 km2, while only 0.009 km2 is covered with water for more than 50% of the time. The areas of small 

PDGLs exhibit more significant variations in space and time compared to those of larger PDGLs, making the associated risks 

more uncertain. Additionally, the ratio of maximum area to the area covered by water for more than 50% of the time is 

predominantly in the range of 1.1 to 1.5 for PDGLs with high hazard level I. However, for PDGLs with lower hazard levels II 

and III, this ratio varies from 1.3 to 3.2. This indicates that the areas of PDGLs with a high hazard level exhibit more stability 375 

in terms of space and time compared to those with lower hazard levels. 

 

Fig 3 Water surfaces extracted from multi-temporal Sentinel-2 imagery in representative glacial lakes in Nepal (lake numbers and 

other lake details can be found in Table 1) 
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4.2 Lake volumes and peak discharges prediction  380 

After deriving the lake area for each PDGL, we determined the posterior predicted lake depth d for each lake using the Bayesian 

robust linear regression model developed by Veh & Walz (2020), which establishes the relationship between lake areas and 

maximum depths. In this process, we obtained 100 estimates of the posterior predicted d, and we considered estimates falling 

within the 95% HDI of credible lake depth values, resulting in 94 samples of d for each lake. The delineated glacial lakes from 

satellite imagery are assumed to have a circular shape, and we assume each glacial lake has an ellipsoidal bathymetry. 385 

WConsequently, we obtained 94 estimates of the total volume Vtot for each lake (as shown in Fig 4 (a)) and.  a total of 940,000 

scenarios of peak discharge Qp per lake (Fig 4 (b)) using the models introduced in sSection 2.2.1. To account for the most 

severe GLOFs, we assume that the entire total lake volume Vtot would be released to create GLOFs. For each of the 21 PDGLs, 

we predicted the peak discharge Qp based on a given value of Vtot and η using the Bayesian piecewise linear regression model 

developed by Veh & Walz (2020). We generated 100 estimates of the posterior predicted Qp for each given value of Vtot and 390 

η. The values of η for individual lakes encompass the assumed flood volumes, and we also considered 100 physically plausible 

values of the breach rate k based on a log-normal fit to reported breach rates. By multiplying the 94 samples of Vtot with the 

100 samples of k and 100 samples of Qp, we ultimately obtained a total of 940,000 scenarios of Qp per lake (as depicted in Fig 

4 (b)). 

The average lake volumes and peak discharges of the 21 PDGLs span more than 2 and 3 orders of magnitude. We collected 395 

geophysical investigation data for named PDGLs and compared them against calculated volumes using field-investigated lake 

areas, as shown in Table 2. While there are some inconsistencies, the calculated volumes generally align with the investigated 

values. For example, the Lower Barun glacial lake has an average estimated flood volume of 238.9 × 106 m3 and an average 

estimated peak discharge of 18,240 m3/s. The water volume of the Lower Barun glacial lake in 2015 is was approximately 

112.3 × 106 m3, with a lake area of 1.52 km2 based on bathymetric measurements. Using the established relationship between 400 

lake area and volume, the average volume for a lake with a 1.52 km2 area is calculated to be 108.27 × 106 m3, which closely 

matches the measured volume of the Lower Barun glacial lake. For the smallest lake (Anonymous 5) among these 21 PDGLs, 

its average volume and peak discharge are 0.22 × 106 m3 and 167 m3/s, respectively. This means that the average volume and 

peak discharge of the Lower Barun glacial lake are 1,041 and 108 times greater than those of the smallest lake, respectively. 

 405 

 

Fig 4 (a) Estimated lake volumes and (b) estimated peak discharges for each glacial lake 
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Table 2 Comparisons between the lake areas (km2) and volumes (106*m3) derived from bathymetric investigations and those calculated in this study for named lakes. 

Lake 

number 

Lake 

name 

Maximum 

areas 

Estimated 

volume 

Investigation 

year 

Investigated 

areas 

Investigated 

volume 

Calculated 

volume for the 

investigated areas 

Reference 

7 Imja Tsho 1.741 131.16 2016 1.35 88 87.57 Lala et al., (2017) 

8 Tsho Rolpa 1.712 138.39 1994 1.39 76.45 92.11 Rana et al., (2000) 

13 Lower Barun 2.193 238.86 2015 1.52 112.3 108.27 Haritashya et al., (2018) 

15 Lumding 1.475 103.16 2015 1.13 57.7 65.93 Rounce et al., (2016) 

16 Chamlang 0.921 49.53 2009 0.87 34.9 - 35.6 45.75 Lamsal et al., (2016) 

21 Thulagi 0.997 59.69 2017 0.89 36 47.12 Haritashya et al., (2018) 
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4.3 Flood inundation simulation 410 

4.3.1 Inundation areas 

HiPIMS is used to simulate flood dynamics in 1,000 scenarios for each lake with 100% ofall the lake water volume released. 

The final flood inundation probability and maximum water depth are derived from each scenario's results multiplied by their 

respective weight. Herein, we use the simulation results from Imja Tsho Lake and Tsho Rolpa Lower Barun Lake as illustrative 

examples to demonstrate the information obtained from the simulation results of the 1,000 GLOF scenarios. (Fig. 5). Fig. 5 415 

reveals the flood inundation frequency possibility (inundication * weight) and median of maximum water depth (maiximm of 

) in areas with flood inundation frequency exceeding 10%. The areas with high flood inundation probabilities frequency are 

predominantly distributed along the downstream valley. The areas with flood inundation frequency exceedingsurpassing 50% 

can be substantial, reaching 81.2951.2 km2 for Lower Barun lake Lake and 185.0865.3 km2 for Lower Barun Tsho Rolpa 

lakeLake. The median of maximum water depth offers spatial insights into the potential severity of GLOFs on in downstream 420 

areas (Fig. 5(c) and 5(d)). It facilitates the identification of areas characterized by both high inundation probability frequency 

and significant maximum water depth. For instance, concerning the Lower Barun lakeLake, there are 146.551 km2 of areas 

exhibiting both inundation frequency exceeding 90% and maximum water depth exceedingsurpassing 1 meterm. These specific 

areas should undoubtedly receive heightened attention in future flood risk management and mitigation. 
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Fig 5 GLOF inundation probability frequency for (a) Imja Tsho Lake and (b) Lower Barun Lake, and median of maximum water 

depth for (c) Imja Tsho Lake and (d) Lower Barun Lake under respective worst situation i.e., all lake water will be released. (The 

basemaps used were accessed from ArcGIS Online Basemap provided by Esri.) 

The resulting inundation areas at different levels of inundation probabilities are summarizedshown in Fig. 6 and Table 3. The 430 

median inundation extent resulting from GLOFs originating from the 21 PDGLs ranges from 2.8 km2 to 190.3 km2. Notably, 
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the largest glacial lake, Lower Barun (lake IDnumber 13), has an inundation area of 18.2 km2 and 65.3 km2 for inundation 

probabilities exceeding 75% and 50%, respectively. Tsho Rolpa Lake (lake IDnumber 8), despite having a smaller lake area 

than Lower Barun, projects inundation areas of 27.6 km2 and 78.3 km2 for probabilities exceeding 75% and 50%, respectively. 

Imja Tsho Lake (lake number ID 7), similar in size to Tsho Rolpa Lake, anticipates inundation areas of 15.8 km2 and 51.2 km2 435 

for probabilities exceeding 75% and 50%, respectively. Notably, the largest, Lower Barun glacial lake, has a median inundation 

area of 190.3 km2, with a 95% confidence interval (CI) spanning from 3.4 km2 to 315.9 km2. Following closely is Tsho Rolpa 

glacial lake, which faces a median inundation area of 122.0 km2 (95% CI 3.8 - 231.5 km2), whereas the Imja Tsho Lake, despite 

having a similar lake area, anticipates a median inundation extent of 85.2 km2 (95% CI 2.2 - 180.2 km2). It's worth noting that 

lakes that have not been extensively studied can potentially cause large inundation areas of over 10 km2 for probabilities 440 

exceeding 50%, , including Anonymous 7 (86°55′41″ E, 27°51′00″ N), Anonymous 11 (86°51′29″ E, 27°41′13″ N), 

Anonymous 12 (85°37′51″ E, 28°09′44″ N), Anonymous 1 (87°44′59″ E, 27°48′57″ N), and Anonymous 2 (87°56′05″ E, 

27°47′26″ N). The smallest lake, Anonymous 5 (87°35′46″ E, 27°42′18″ N), has ana median inundation area of 2.8 5 km2 for 

probabilities exceeding 50%.(95% CI 1.6 - 5.3 km2). While tThere is a positive correlation between inundation extent and lake 

area (Fig 6(b))., it's important to note that inundation propagation and extent also depend on dam breach processes, as well as 445 

the underlying topography and land surface conditions of downstream areas (Worni et al., 2012; Ancey et al., 2019). 

Particularly, steep and narrow valley gorges can influence flood waves, causing them to rapidly spread over long distances, 

often accompanied by significant physical processes such as erosion and the transport of ice, sediment, and debris. 
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450 

 

Fig 6 Inundation area (km2) at different levels of inundation probabilitiesy and maximum lake area (km2) 

To account for all possible glacial lake outburst scenarios, less severe conditions are also considered, where 25%, 50%, and 

75% of the lake water volume is released. In each of these less severe scenarios, 100 cases are randomly selected from a total 

of 940,000 samples. The outcomes of these scenarios will be compared to the worst-case conditions. Fig 7 illustrates the 455 

inundation area for inundation probabilities exceeding 50% resulting from GLOFs. In the case of Lower Barun Lake, the 

release of 25% and 50% of the lake water leads to the inundation of 50.2 km² and 60.6 km² of downstream areas, respectively. 

When 100% of the lake water is released, the inundation areas are 1.29 and 1.08 times larger than those under the 25% and 

50% lake water release scenarios, respectively.  

Following Lower Barun Lake, Tsho Rolpa Lake, and LumdingImja Tsho Lake have the potential to cause significant 460 

inundation areas. Even with just 25% of the lake water being released, Tsho Rolpa Lake and Imja Tsho Lake can potentially 

submerge approximately 5030 km² of areas withfor inundation probabilities exceeding 50%. In terms of the potential impacts 

on buildings and roads, Tsho Rolpa Lake, Lower Barun Lake, and Thulagi Lake are the top three lakes that could experience 

the most significant damages. Especially for Tsho Rolpa Lake, the most severely affected, a 25% lake water release could 

impact 4,061 buildings and 271 km of roads, while a 50% lake water release could inundate 7,096 buildings and 494 km of 465 

roads. When it comes to agricultural areas, Tsho Rolpa Lake, Lower Barun Lake, and Lumding Lake are likely to sustain the 

most damage. 
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 470 

Fig 7 Inundation area (km2) for inundation probabilities exceeding 50% under 25%, 50%, 75% and 100% of lake water volume 

released   

 

 

 475 

(a) Simulated median inundation areas for each glacial lake (b) Relationship between the median inundation areas and lake areas 
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Table 3 GLOF induced inundation areas and damage extents to buildings, roads, and agricultural lands 

Lake 

name 

Inundation 

aArea for 

inundation 

probabilities 

>exceeding 

50%  (km2) 

Building number Building area (m2) Road (km) Agriculture land (km2) 

Slight Moderate Substantial Slight Moderate Substantial Slight Moderate Substantial Slight Moderate Substantial 

Anonymous 1 12.815.38 676 17486 4157 4024342 101965145 19562558 101.9 61.8 5147.6 0.70.14 0.80.22 6.35.04 

Anonymous 2 11.813.92 455 12776 4654 2667276 74514123 28263298 102.1 51.9 4744.0 0.80.15 0.80.23 4.93.39 

Anonymous 3 4.34.82 73 2216 1313 568243 16591208 850850 101.5 41.4 1715.9 0.50.00 0.10.00 0.10.02 

Anonymous 4 2.33.54 20 148 49 880 685383 151404 31.4 11.1 1010.8 0.00.00 0.00.00 0.00.00 

Anonymous 5 2.52.83 40 128 24 1770 553383 107151 20.8 10.4 22.2 0.00.00 0.00.00 0.00.00 

Anonymous 6 2.32.78 40 42 22 3760 18671 5858 71.6 21.4 1212.3 0.40.01 0.10.01 0.20.05 

Imja Tsho 51.285.16 2316 1065202 12121295 15151067 6048512359 7088779789 83.1 252.5 260196.8 0.10.22 3.80.34 40.026.52 

Tsho Rolpa 78.4122.01 2641 2236432 71267193 12562160 11800222463 395563401593 94.8 373.9 675548.0 0.20.38 4.90.52 77.559.97 

Anonymous 7 28.635.52 663 42052 179193 2651129 162722323 1008210685 131.6 131.1 6746.4 0.90.10 2.50.16 13.09.36 

Hongu 1 15.821.79 111 17840 1428 32634 101691387 304737 51.1 50.8 3320.0 0.60.09 1.10.15 7.14.65 

Anonymous 8 18.723.66 131 17138 1725 54930 96701305 527655 51.1 40.8 3320.4 0.70.09 0.90.15 7.14.55 

Anonymous 9 6.68.06 20 53 15 720 273113 66287 51.9 21.0 1717.0 0.20.00 0.10.00 0.30.00 

Lower Barun 65.3190.32 24729 3760828 13382770 131541752 29475547187 71193166658 173.5 223.1 362323.0 0.40.28 3.90.43 76.568.02 

Hongu 2 26.944.51 477 53794 300307 1582237 197043527 1537215628 121.4 181.2 10958.0 0.60.13 3.20.20 20.712.46 

Lumding 51.388.13 211 1141123 986984 65398 465234847 4110542101 61.8 191.7 237170.0 0.10.22 3.90.34 45.430.40 

Chamling 33.850.57 128 653112 443450 368307 248154135 2070620874 81.7 211.3 14172.5 0.30.17 3.40.23 25.714.91 

Anonymous 10 4.45.35 00 53 57 00 9447 82108 10.1 00.0 11.0 0.30.00 0.20.01 0.40.13 

Anonymous 11 14.319.54 341 17046 2842 143446 104051839 10862681 50.6 40.5 3118.5 0.60.09 1.00.15 8.26.30 

Anonymous 12 12.616.21 37961 829462 174315 446354573 7160136751 1551629973 274.9 153.8 6761.8 1.90.26 1.80.31 4.73.73 

Anonymous 13 4.85.1 60 180 00 2680 10760 00 121.3 40.7 96.3 0.00.00 0.00.00 0.00.00 

Thulagi 27.744.5 324100 62031216 27142421 232757040 48801089333 216987191230 396.6 525.8 328202.0 1.80.45 5.60.66 37.121.54 
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4.3.2 Exposure assessment 

The exposure of objects can be spatially determined by overlaying the predicted flood inundation maps with relevant datasets 480 

detailing buildings, roads, and agricultural land (Fig 7Table 3). Here, we focus on areas with flood probabilities greater than 

50%. The median number of inundated buildings varies from 0 to 79,792388. Out of the 21 PDGLs, 12 14 lakes have a median 

number of inundated buildings exceeding 100, while 6 7 of them inundate at least 1,000 buildings. The three lakes with the 

highest median number of inundated buildings are Tsho Rolpa, Lower Barun, and Thulagi, and Lower Barun, each of which 

could inundate more than 35,000 buildings and cover an area of 2.53.7 * 105 m² of building areas. The number of buildings 485 

inundated by Tsho Rolpa Lake and Thulagi each is almost twice that of Lower Barun Lake and Thulagi Lake, and the affected 

areas are approximately 1.5 times larger. Overall, these well-studyied lakes could impact more buildings than anonymous 

lakes. These 13 anonymous lakes typically affect fewer than 200 300 buildings, with the exceptions being Anonymous 7 

(86°55′41″ E, 27°51′00″ N) and Anonymous 12 (85°37′51″ E, 28°09′44″ N), which can influence 246 665 and 834 1382 

buildings, respectively. Further investigation and research are required for the two anonymous lakes. Conversely, three lakes, 490 

including Anonymous 13 10 (86°58′37″82°40′27″ E, 27°42′40″29°48′09″ N), Anonymous 6 (87°53′36″ E, 27°41′41″ N), and 

Anonymous 9 (87°05′42″ E, 27°49′44″ N), pose lower risks, with a mediana number of less than 10 or fewer buildings affected. 

Regarding inundated roads, the median value ranges from 1.12 to 556.8721 km. Tsho Rolpa Lake, Thulagi Lake, and Lower 

Barun Lake, and Thulagi Lake still hold the top three positions with the largest lengths of inundated roads, each exceeding 200 

400 km. To illustrate, Tsho Rolpa Lake, the top one in this category, inundates, has a median of 556.8 km with a 95% CI 495 

ranging from 17.0 to a 876.2721 km long road. Following closely is Lower BarunThulagi Lake, which has inundated roads 

with a median length of 333.9419 km and a 95% CI of 9.6 to 469.4 km. Agriculture is a cornerstone of the Nepalese economy, 

and it is susceptible to the impacts of GLOFs. It is anticipated that eight lakes have a median of more than 10 km² of inundated 

agricultural land, while threefour lakes have a negligible impact on agriculture. Lower Barun Lake, Tsho Rolpa Lake, Lower 

Barun Lake, and Chamlang Lumding Lake are the most perilous lakes concerning the inundation of agricultural lands. 500 

In addition to the high potential for human settlements to be exposed to GLOFs, hydropower projects are increasingly 

vulnerable to these events. Hydropower development in Nepal has grown rapidly but unevenly. This development trend 

involves projects moving upstream, bringing hydropower plants closer to glacial lakes. According to the hydropower 

development data collected in the Hydro Map project (Niti Foundation, n.d.), Nepal has a total of 572 hydropower projects. 

These projects include 81 that are currently operational, 180 with issued generation licenses, and 311 with issued survey 505 

licenses. Among these, 12 existing hydropower plants (including those in operation and under construction,; Table 4) are 

situated close to GLOF flow channels and are potentially at risk from GLOFs due to 21 PDGLs. The 12 hydropower plants 

facing such risks are Khimti I, Upper Tamakoshi, Chatara, Devighat, Trishuli, Marsyangdi, Middle Marsyangdi, Upper 

Marsyangdi A, Tallo Khare Khola, Arun III, Upper Trishuli-1, and Middle Tamor. Additionally, 38 hydropower plants, for 

which generation or survey licenses have been issued, are also exposed to the risk of GLOFs from these 21 PDGLs. These 510 

hydropower plants deserve increased attention in future GLOF risk management due to their significant importance and high 

vulnerability. Specifically focusing on certain lakes, Tsho Rolpa, Thulagi, and Lower Barun are responsible for potentially 

inundating 6 plants (3 existing and 3 with licenses), 6 plants (3 existing and 3 with licenses), and 5 plants (2 existing and 3 

with licenses), respectively. Furthermore, Lumding and Imja Tsho can each impact 4 hydropower plants with licenses. 

Surprisingly, lakes Anonymous 12 (85°37′51″ E, 28°09′44″ N), Anonymous 1 (87°44′59″ E, 27°48′57″ N), and Anonymous 515 

2 (87°56′05″ E, 27°47′26″ N) have the potential to cause the inundation of 10 plants (3 existing and 7 with licenses), 8 plants 

(1 existing and 7 with licenses), and 6 plants (1 existing and 5 with licenses), respectively. 
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Fig 7 Exposure objects for each glacial lake 

Table 4 GLOF induced inundation hydropower plants 520 

Hydropower plant State Lake name 

Khimti I  Operation Tsho Rolpa 

Upper Tamakoshi  Operation Tsho Rolpa 

Chatara  Operation Lower Barun 

Devighat  Operation Anonymous 12 

Trishuli  Operation Anonymous 12 

Marsyangdi Operation Thulagi 

Middle Marsyangdi  Operation Thulagi 

Upper Marsyangdi A  Operation Thulagi 

Tallo Khare khola  Under construction Tsho Rolpa 

Arun III Under construction Lower Barun 

Upper Trishuli-1 Under construction Anonymous 12 

Middle Tamor Under construction Anonymous 1 & 2 

Lower Khare Generation Tsho Rolpa 

Tamakoshi V Generation Tsho Rolpa 

Langtang Khola Small  Generation Anonymous 12 

Upper Trishuli 3A Generation Anonymous 12 

Upper Trishuli 3B Generation Anonymous 12 

Marsyangdi Besi Generation Thulagi 

Upper Tamor Generation Anonymous 1 & 2 

Upper Tamor A Survey Anonymous 1 

Dudhkoshi 10 Survey Imja Tsho 

Dudhkoshi-9  Survey Imja Tsho 

Rolwaling Khola  Survey Tsho Rolpa 

Lower Isuwa Khola Survey Lower Barun 

Lower Bom Khola Survey Lumding 

Luja Khola  Survey Lumding 

Super Inkhu Khola Survey Anonymous 11 

Upper Inkhu Khola  Survey Anonymous 11 
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Bhotekoshi Khola Survey Anonymous 12 

Lantang Khola Reservoir  Survey Anonymous 12 

Mathillo Langtang  Survey Anonymous 12 

Upper Trishuli-I Cascade  Survey Anonymous 12 

Rigdi Khola  Survey Thulagi 

Dana Khola  Survey Thulagi 

Tamor Mewa Survey Anonymous 1 & 2 

Tamor Khola-5  Survey Anonymous 1 & 2 & 3 & 6 

Ghunsa-Tamor  Survey Anonymous 1 & 6 

Super Tamor Survey Anonymous 1 & 6 

Upper Tamor HEP Survey Anonymous 1 & 6 

Lower Barun Khola Survey Lower Barun & Anonymous 9 

Upper Barunkhola Survey Lower Barun & Anonymous 9 

Ghunsa Khola  Survey Anonymous 2 & 3 

Ghunsa Khola  Survey Anonymous 2 & 3 

Chujung Khola  Survey Anonymous 4 & 5 

Dudhkoshi-6  Survey Imja Tsho, Lumding 

Surke Dudhkoshi Survey Imja Tsho, Lumding 

Hongu Khola I Survey Hongu 1& 2, Chamlang, Anonymous 7, 8 & 10 

Middle Hongu Khola B  Survey Hongu 1& 2, Chamlang, Anonymous 7, 8 & 10 

Middle Hongukhola A  Survey Hongu 1& 2, Chamlang, Anonymous 7, 8 & 10 

Hongu Khola  Survey Hongu 1& 2, Chamlang, Anonymous 7, 8 & 10 

4.3.3 Damage Assessment 

GLOF damage assessment relies on spatial inundation maps of water depth and depth-damage curves. The inundation maps, 

depicting water depth, are represented by maximum water depths, for areas with flood probabilities greater than 50%. the 

median of maximum water depths under various scenarios. In accordance withFollowing the technical manual of the HAZUS 

Flood model (FEMA, 2009), damage extents of 1% to 10%, 11% to 50%, and 50% to 100% are defined as slight, moderate, 525 

and substantial damage, respectively. Table 3 provides estimates of damage for to buildings, roads, and agricultural lands for 

each lake. In the case of Tsho Rolpa Lake, approximately 7,193 126 buildings are projected to suffer substantial damage from 

GLOFs. Similarly, Lower Barun Lake and Thulagi Lake and Lower Barun Lake are expected to cause substantial damage to 

approximately 2,500 714 and 1,338 buildings, eachrespectively. Other lakes, such as Imja Tsho Lake and Lumding Lake, are 

estimated to impact roughly 1,000 buildings with substantial damage. Notably, Anonymous 12 (85°37′51″ E, 28°09′44″ N) 530 

has the potential to affect 838 1382 buildings, with 462 829 experiencing moderate impact and 315 174 facing substantial 

damage. Situated in the Trishuli River Basin, Anonymous 12 not only faces a high hazard level (Rank I) but also high exposure. 

On the other hand, another anonymous lake (Anonymous 13, at 82°40′27″ E, 29°48′09″ N) faces a relatively high hazard level 

(Rank II) but is not projected to cause any substantial damage to inundate any buildings due to GLOFs. For PDGLs with a 

high number of impacted buildings (more than 1,000), except for Anonymous 12Thulagi Lake, more than 7525% of the 535 

impacted buildings are expected to incur substantial damage. In all PDGLs, most affected buildings (over 9060%) are predicted 

to experience moderate or substantial damage. Likewise, nearly over 60% of all exposed roads and agricultural lands are 

anticipated to undergo moderate or substantial damage due to high levels of maximum water depths. 

4.3.4 Sensitivity analysis  

To account for all possible glacial lake outburst scenarios, less severe conditions are also considered, where 25% and 50% of 540 

the lake water volume is released. In each of these less severe scenarios, 100 cases are randomly selected from a total of 

940,000 samples. The outcomes of these scenarios will be compared to the worst-case condition, which has been presented 
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earlier. Fig 8 illustrates the median values for inundation area, the number of inundated buildings, the length of inundated 

roads, and inundated agricultural areas resulting from GLOFs. In the case of Lower Barun Lake, the release of 25% and 50% 

of the lake water leads to the inundation of 74 km² and 159 km² of downstream areas, respectively. When 100% of the lake 545 

water is released, the inundation areas are 2.06 and 1.11 times larger than those under the 25% and 50% lake water release 

scenarios, respectively. Following Lower Barun Lake, Tsho Rolpa Lake and Imja Tsho Lake have the potential to cause 

significant inundation areas. Even with just 25% of the lake water being released, Tsho Rolpa Lake and Imja Tsho Lake can 

potentially submerge approximately 50 km² of areas. In terms of the potential impacts on buildings and roads, Tsho Rolpa 

Lake, Lower Barun Lake, and Thulagi Lake are the top three lakes that could experience the most significant damages. 550 

Especially for Tsho Rolpa Lake, the most severely affected, a 25% lake water release could impact 4,061 buildings and 271 

km of roads, while a 50% lake water release could inundate 7,096 buildings and 494 km of roads. When it comes to agricultural 

areas, Tsho Rolpa Lake, Lower Barun Lake, and Lumding Lake are likely to sustain the most damage. 

 

Fig 8 Median values of inundation area, inundated building number, inundated road length and inundated agricultural areas 555 

due to GLOFs under 25% and 50% of lake water volume released  

5 Discussion 

The results of this study showcase how object-based GLOF exposure and impact assessments can be carried out for multiple 

glacial lakes across the data-scarce Himalayan region on a national scale, leveraging established techniques and methods. In 

doing so, this study relies on several key components, including remote sensing techniques for accurate glacial lake area 560 

delineation, Bayesian regression models for deriving lake water depth and peak discharge relationships (Veh & Walz, 2020), 

state-of-the-art flood modelling technology supported by parallelized high-performance computing (Zhao et al., 2022), and 

object-based GLOF exposure and impact evaluation using open-source data (Chen et al., 2022). Open data and images from 

various sources are harnessed to generate input data for flood modelling and object-based exposure datasets, addressing the 

challenges posed by limited data availability and the inaccessibility of many glacial lakes in high-altitude regions. Recognizing 565 

the potential impact of small sample sizes and outliers in developing relationships between glacial lake volumes and peak 

discharges, a Bayesian approach is employed to derive plausible value ranges for lake volumes and peak discharges. This 

approach allows for the creation of multiple possible GLOF scenarios for each glacial lake. High-resolution inundation 

simulations for various GLOF scenarios are conducted using flood modelling technology, supported by parallelized high-
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performance computing, facilitating subsequent object-based assessments of GLOF exposures and impacts. This 570 

comprehensive methodology framework is applied to assess hazardous glacial lakes in Nepal, identified as having a high 

likelihood of outburst floods. The results offer a complete, clear, and detailed understanding of potential exposures and impacts 

stemming from these PDGLs. While much of the prior work has concentrated on the initial step of GLOF risk evaluation, 

specifically hazard assessment for glacial lakes, this study advances the field by addressing the second stage, which involves 

exposure and impact evaluation. The insights gained from this study can empower authorities with not only knowledge of 575 

where threats exist but also an understanding of the expected magnitude of impacts. This study aligns with and contributes to 

Nepal's national strategy in disaster risk reduction. For instance, it supports objectives such as "increasing understanding of 

disaster risk and ensuring access to related information at all levels," as highlighted in the National Policy for Disaster Risk 

Reduction. Additionally, it aligns with strategic activity of "assessing geo-referenced flood exposure and vulnerability for 

flood-prone infrastructure," as highlighted in the Disaster Risk Reduction National Strategic Action Plan 2018-2030. 580 

Glacial lakes are mostly situated in remote, hard-to-reach areas, which makes conducting detailed bathymetric surveys 

challenging. As a result, unmeasured lakes often require estimates of their depths and volumes using empirical relationships 

derived from bathymetric datasets (e.g., Huggel et al., 2002; Kapitsa et al., 2017). Similarly, potential peak discharges of 

outburst floods from these glacial lakes are usually estimated using either empirical relationships (e.g., Huggel et al., 2002) or 

physics-based models (e.g., Walder & O'Connor, 1997). However, it's worth noting that the estimated lake volumes and 585 

potential peak discharges derived from existing empirical relationships can vary significantly, sometimes by up to an order of 

magnitude (Cook and Quincey, 2015; Muñoz et al., 2020). To account for the uncertainty associated with these estimated lake 

volumes and potential peak discharges, we have employed Bayesian regression models that establish relationships between 

lake areas and depths, as well as between flood volume and peak discharge (Veh & Walz, 2020). The Bayesian approach 

allows us to quantify uncertainties related to models and parameters by simultaneously evaluating the variability and 590 

uncertainty within the observational data, going beyond classical frequentist methods (Ellison, 2004). This Bayesian treatment 

enables us to make predictions by integrating over the distribution of model parameters, rather than relying on specific 

estimated parameters (Bishop & Tipping, 2003). Consequently, predictive posteriors of lake depths and peak discharges for 

each lake are generated and curtailed within the 95% HDI. This provides a plausible range of values for lake volumes and peak 

discharges for each glacial lake, as opposed to offering a single value estimate, thus enabling a more objective and detailed 595 

assessment of downstream impacts of PDGLs in Nepal. 

GLOFs can have a significant impact due to the large volume of water stored in glacial lakes, resulting in rapid breaches, and 

high outflow peaks, and high total discharges. While there is a positive correlation between inundation extent and lake area 

(Fig 6(b)), it's important to note that inundation propagation and extent also depend on dam breach processes, as well as the 

underlying topography and land surface conditions of downstream areas (Worni et al., 2012; Ancey et al., 2019). Particularly, 600 

steep and narrow valley gorges can influence flood waves, causing them to rapidly spread over long distances, often 

accompanied by significant physical processes such as erosion and the transport of ice, sediment, and debris. Among the 21 

PDGLs in Nepal, Tsho Rolpa Lake, Lower Barun Lake, and Thulagi Lake, and Lower Barun Lake are expected to experience 

the most severe impacts of GLOFs on buildings and roads, while Lower Barun Lake, Tsho Rolpa Lake, Lower Barun Lake, 

and Lumding Lake are anticipated to be the most impacted in terms of GLOFs on agricultural areas. Rounce et al. (2016, 2017) 605 

also assessed the downstream impacts of GLOFs from glacial lakes in the Nepal Himalayas. They likewise identified Tsho 

Rolpa Lake, Lower Barun Lake, and Thulagi Lake as having the most affected buildings, while two anonymous lakes and 

Thulagi Lake were anticipated to experience the most significant impacts on agricultural areas. However, it's important to note 

that Rounce et al. (2016, 2017) employed the Monte Carlo Least Cost Pleast-cost path model (MC-LCP, Watson et al., 2015) 

to estimate the extent of GLOFs for each lake. While the MC-LCP model is computationally efficient and suitable for large-610 

scale applications, it lacks a physical basis and relies solely on the terrain conditions downstream along the river channel, 
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without considering variations in lake release volumes and peak discharges. As a result, flood extents for lakes with differing 

potential flood volumes may be indistinguishable. Another limitation is that the threshold for the cut-off distance in MC-LCP 

needs to be artificially set, while the realistic cutoff distance downstream for each lake varies, sometimes extending over 200 

km downstream (Richardson & Reynolds, 2000). This study takes a different approach by employing a physics-based 615 

hydrodynamic model, whichthat predicts not only the inundation extent but also the spatial characteristics of flood features, 

including inundation frequency probabilities and water depths, while considering various outburst scenarios. This information 

can be used to identify potentialpotential exposures and assess the extent of damages to which exposures may be subject. 

In addition to the growing vulnerability of human settlements in mountainous regions, there is an increasing exposure of 

infrastructure related to energy security and commerce to GLOFs. Therefore, an objective assessment of the risk to 620 

infrastructure posed by PDGLs is crucial. This study considers hydropower plants, given their critical importance and rapid 

development in Nepal. Nepal is at the heart of a modern resurgence in hydropower development in the Himalayas (Lord et al., 

2016). The country boasts abundant hydropower resources thanks to its ample river water, steep gradients, and mountainous 

terrain. In fact, Nepal has the potential to generate over 90,000 megawatts of hydropower, with at least 42,000 megawatts 

considered technically and economically feasible from its three major river systems and their smaller tributaries (Alam et al., 625 

2017). Despite this rich hydropower potential, Nepal currently generates only around 847 megawatts from its hydropower 

resources. This is coupled with a significant energy scarcity issue, with nearly half of Nepal's population lacking access to 

grid-connected power. Nepal is driven by a strong ambition to become a 'hydropower nation', as evidenced by ongoing and 

intensifying efforts in hydropower development. At present, a considerable number of hydropower projects are in the planning 

and construction stages (46 projects exceeding 100 gigawatts) to enhance the country's overall generating capacity. These 630 

planned hydropower projects are primarily situated along rivers connected to glaciers located in the northern region of Nepal 

(Shakti et al., 2021). While a few existing hydropower plants have experienced direct impacts from recorded GLOFs, such as 

the Namche hydroelectric power plant destroyed by the 1985 Dig Tsho GLOF (Vuichard & Zimmermann, 1987) and the 

Bhotekoshi hydropower plant affected by the 2016 GLOF (Cook et al., 2018), GLOFs can be highly destructive and 

unpredictable, posing a significant threat to hydropower facilities. Furthermore, the expansion of hydropower plants into the 635 

upstream regions of watersheds substantially increases the vulnerability of infrastructure to GLOFs (Nie et al., 2021). 

Schwanghart et al. (2016) estimated that two-thirds of the existing and planned hydropower projects in the Himalayas are 

located in areas potentially affected by GLOFs, and up to one-third of these projects could face GLOF discharges exceeding 

their local design flood capacities. In this study, we have identified that 50 existing and planned hydropower projects could 

potentially be impacted by GLOFs originating from 21 PDGLs. We strongly urge stakeholders responsible for planning, 640 

designing, constructing, and managing infrastructure to take these GLOF risks into considerationconsider these GLOF risks. 

It is crucial to develop proactive adaptation measures and adopt sustainable solutions to minimize the negative impacts of 

GLOFs on infrastructure. 

In addition to well-studied PDGLs like Tsho Rolpa Lake, Thulagi Lake, and Lower Barun Lake, some anonymous lakes also 

present a significant risk of GLOFs. For instance, Anonymous 12, 7, 1, 11, and 2 pose high GLOF risks. Anonymous 12 645 

(85°37′51″ E, 28°09′44″ N; 4990m above sea level), Anonymous 7 (86°55′41″ E, 27°51′00″ N; 5406m above sea level), and 

Anonymous 1 (87°44′59″ E, 27°48′57″ N; 4880m above sea level), and   Anonymous 11 (86°51′29″ E, 27°41′13″ N) are 

categorized as Rank I PDGLs, while Anonymous 2 (87°56′05″ N, 27°47′26″ E; 4950m above sea level) falls into the Rank III 

category. GLOFs from any of these four five lakes have the potential to impact more than 100 200 buildings, and GLOFs 

resulting from Lakes Anonymous 12, 1, and 2 may submerge existing hydropower facilities. Unfortunately, there is limited 650 

information available about these anonymous lakes in comparison to well-studied PDGLs. To gain a better understanding of 

their conditions, a comprehensive research strategy is needed, which includes fieldwork investigations, remote sensing 

techniques, and modelling approaches. This study has leveraged remote sensing techniques and modelling approaches to 
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preliminarily identify PDGLs with a high level of exposure and potential impacts from GLOFs. However, it is imperative to 

conduct fieldwork investigations, including in situ measurements, to obtain the essential information required to comprehend 655 

the actual state of these anonymous lakes at the local scale. These field investigations will also serve as ground truthing to 

calibrate remote sensing-based data and model outputs. Moreover, considering the challenging nature of fieldwork in glacial 

lake areas, the cost of expeditions, and the high level of fitness and expertise required by monitoring teams, the preliminary 

identification of PDGLs with high exposure and potential impacts can offer valuable evidence to support decision-making in 

the allocation of financial and human resources. 660 

We acknowledge the importance of validating the proposed framework for estimating the impact of GLOFs while recognizing 

the inherent challenges associated with validation due to the limited availability of historical data. Although Nie et al. (2018), 

Veh et al. (2019), and Shrestha et al. (2023) have provided valuable inventories of historical GLOFs in the Himalayas, these 

primarily provide information on the date and location of outbursts, offering limited or no information on the actual impacts 

resulting from historical GLOFs. Even when impact data is available, it often comprises only generalized descriptions, 665 

encompassing metrics like the overall number of casualties, infrastructure damage, and affected villages, lacking specific 

spatial information. Consequently, obtaining adequate data for validating our proposed impact estimation framework for 

GLOFs proves challenging. It is noteworthy that our proposed framework employs the fully physically based hydrodynamic 

model HiPIMS, intricately designed to capture the highly transient and complex hydrodynamic processes induced by events 

such as dam breaks and flash floods. HiPIMS has been successfully validated for these extreme flow conditions (e.g., Luke 670 

and Liang, 2013; Liang et al., 2016). The adoption of this model enhances our confidence in simulating the spatial-temporal 

processes of GLOF inundation, ultimately contributing to improved hazard evaluation results. Furthermore, we employ 

Bayesian approaches to derive plausible value ranges for lake volumes and peak discharges. These approaches facilitate the 

creation of multiple GLOF scenarios for each glacial lake, ensuring comprehensive coverage of all potential glacial lake 

outburst scenarios. The incorporation of Bayesian methods allows us to account for uncertainties, thereby enhancing the 675 

robustness of our impact evaluation for potentially devastating GLOFs. 

6 Conclusion 

Exposure and damage estimations are integral components of GLOF risk assessment. Having sufficient information about the 

potential impacts of GLOFs originating from PDGLs is essential to facilitate GLOF risk management. In this study, we 

harnessed multi-temporal satellite imagery, Bayesian regression models that establishes establish relationships between lake 680 

areas and depths, as well as between flood volume and peak discharge, and a high-performance hydrodynamic flood model to 

support GLOF exposure and damage assessments for multiple lakes. We applied this assessment framework to 21 PDGLs 

identified in the Nepal Himalaya, and the key findings of this study are summarized as follows: 

• Utilizing multi-temporal imagery capturing different hydrological conditions of glacial lakes enables the derivation of 

the full or maximum glacial lake boundaries for potential risk assessment. 685 

• The Bayesian regression model, which establishes relationships between lake areas and depths, as well as between flood 

volume and peak discharge, can produce predictive posterior distributions for lake depths and peak discharges for each 

lake. These distributions offer a plausible range of values for lake volumes and peak discharges for each PDGL, 

facilitating subsequent objective flood modelling and impact analysis. 

• The hydrodynamic model (HiPIMS), supported by parallelized high-performance GPU computation, is capable of 690 

predicting the resulting GLOFs in terms of temporally and spatially varying flood frequency and water depths to reflect 

the highly transient flood dynamics under various scenarios for multiple glacial lakes on a large scale. 
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• Among the 21 PDGLs identified in the Nepal Himalayas, Tsho Rolpa Lake, Lower Barun Lake, and Thulagi Lake, and 

Lower Barun Lake are poised to bear the most severe impacts of GLOFs on buildings and roads. Meanwhile, Tsho Rolpa 

Lake, Lower Barun Lake, Tsho Rolpa Lake, and Lumding Lake will encounter the most significant GLOF impacts on 695 

agricultural areas. Four anonymous lakes, specifically Anonymous 12 (85°37′51″ E, 28°09′44″ N; 4990m above sea 

level), Anonymous 7 (86°55′41″ E, 27°51′00″ N; 5406m above sea level), Anonymous 1 (87°44′59″ E, 27°48′57″ N; 

4880m above sea level), Anonymous 11 (86°51′29″ E, 27°41′13″ N), and Anonymous 2 (87°56′05″ N, 27°47′26″ E; 

4950m above sea level), have the potential to impact more than 100 200 buildings. Notably, Anonymous 12, 1, and 2 

may even submerge existing hydropower facilities. The GLOFs from these 21 PDGLs also can also impact the 12 existing 700 

hydropower plants and the 38 hydropower projects that have been granted generation or survey licenses. 

Appendix A: List of abbreviations used in this study. 

CI confidence interval 

DEM digital elevation model 

EVI Enhanced Vegetation Index  

GIS Geographic Information System  

GLOFs Glacial Lake Outburst Floods  

GPU Graphics processing unit  

HDI highest density interval 

HiPIMS High-Performance Integrated Hydrodynamic Modelling 

System 

MNDWI Modified Normalized Difference Water Index 

NIR Near Infrared 

NDMI Normalized Difference Moisture Index 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

OSM OpenStreetMap 

PDGL potentially dangerous glacial lake 

SRTM Shuttle Radar Topography Mission  

TOA Top-Of-Atmosphere  
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The DEM used in this work is the Shuttle Radar Topography Mission (SRTM) DEM. Land use types are extracted from the 870 

Landsat TM imagery from the year 2010, which can be accessed at 

http://rds.icimod.org/Home/DataDetail?metadataId=9224.The OpenStreetMap (OSM) data can be accessed via the link 

http://download.geofabrik.de/asia/nepal.html. Hydropower plant data are obtained from the Hydro Map project through the 

link https://hydro.naxa.com.np/core/about.  

Code availability  875 

The flood model can be accessed through the link https://github.com/HEMLab/HiPIMS-CUDA. 
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