This paper established the method for quantitative assessment of GLOF risk by combining Random Forest model to extract lake surface area, well-established Bayesian regression models to estimate glacial lake volume and peak discharge of outburst flood, hydrodynamic flood modelling, and damage analysis. Then the framework was applied to assess 21 glacial lakes in the Nepal Himalaya. I enjoy reading the methodology and believe it will contribute greatly to the quantitative assessment of the glacier lakes in the Himalaya with data sparsity. However, several major issues still need to be addressed carefully before further consideration of publication for this manuscript.

Response: Thank you so much for the reviewer's overall positive feedback.

First, an isosceles triangle shape was assumed for the hydrograph of outburst floods (line 376, this information is better to be shown in the methods section by the way). I understand this assumption would simplify the calculation of hydrograph, which acts the key input for 2D hydrodynamic model. But this assumption needs to be justified before it can be used. If the hydrological monitoring data for the hydrograph of GLOF is too scarce, the authors can check the measured hydrographs of outburst floods for glacial lakes or barrier lakes in experimental research and see whether this assumption is close to the observations. The hydrograph shapes affect the interaction between morphology and hydraulics along the river significantly, so the assumption here needs to be made very carefully.

Response: Thank you for your understanding and valuable advice. The assumption of an isosceles triangle shape for the dam breach hydrograph has been validated through experimental observations and simulation results obtained from commonly used mechanisms and empirical models. This information has been relocated to the methodology section. The revised text is presented in the methodology section of the main text and references as follows:

In these simulations, the dam breach hydrograph is assumed to have an isosceles triangle shape, simplifying its derivation from \( Q_p \) and \( V_0 \). The breach hydrograph then serves as the boundary conditions for the hydrodynamic modelling. Although there is some uncertainty, the assumption of an isosceles triangle shape for the dam breach hydrograph aligns with experimental observations (e.g., Morris et al., 2007; Walder et al., 2015; Yang et al., 2015) and is supported by simulation results from commonly used mechanisms and empirical models (e.g., Yang et al., 2023).


Second, I did not find the points in classifying the glacial lakes into three categories (lines 275-277). The classification standards were blurry and the glacier lakes were not analyzed by category (e.g., the volumes, peak discharges, or inundation areas of each class) in the results. I do not think it will make much difference to the clarity of the results if the classification is removed but will help reduce the length of the manuscript, which is already a bit too long.

Response: Great advice. The classification details have been removed from the main text.

Third, the manuscript is verbose in some sections and will benefit a lot if the irrelevant or repeating information is removed. For example, in lines 318 to 322, the lake areas from literature are listed, but these are not the results or findings of this study. So these lines can be shortened into one short sentence indicating the two glacier lakes are expanding rapidly. Another example is the first paragraph in the discussion section. The paragraph adds very little information, mainly repeating what has been done in this work. It is fine to summarize the work in this study as the start of discussion but the summary needs to be concise. The second paragraph in the discussions has the same issue, with repeating information from the introduction and methodology section.

Response: We have shortened lines 318 to 322 into a short sentence as below. We have removed the first and second paragraphs of the discussion section to avoid redundant information with the introduction and methodology, and to shorten the length of the paper.

Remarkably, Lower Barun Lake has undergone significant area growth since its initial appearance, with an area of 0.04 km² in 1987 (Sattar et al., 2021), 0.64 km² in 1989 (Maskey et al., 2020), 1.79 km² in 2017 (Haritashya et al., 2018), 2 km² in 2018 (Maskey et al., 2020), and 2.09 km² in 2019 (Sattar et al., 2021). Imja Tsho Lake, the second largest PDGL, also underwent rapid growth in both area and volume. It did not exist in 1960, but its area in 1963, 1992, 2002, and 2012 measured 0.03, 0.648, 0.868, and 1.257 km², respectively (Budhathoki et al., 2010; Somos-Valenzuela et al., 2014).

Apart from being verbose, the discussion section needs to be more focused. In lines 551 to 566, the authors introduced the backgrounds of hydropower projects in Nepal. This may help the readers to understand why the risk of hydropower stations was evaluated in this work, but too many details may become a deviation from discussing how the risk is distributed and varying in Nepal. Such information is more proper to be put into the supplementary materials rather than the main text.

Response: Agreeing with the reviewer's comments, we have removed lines 550-555 and only retained the most crucial information relevant to GLOF risk.

Although the discussions include some comparisons with other studies to show the advantage of the methodology, I suggest the authors work on improving the depth of the discussions. For example, the assessment of inundation, exposure and damage has been presented in the results section, but the spatial distribution pattern, key influencing factors and the reasons or mechanism for the most severely affected glacier lakes can be further discussed. The discussion on the performance of the method used in this study is already enough but the interpretations of the outcomes of the method have not been dealt with in
depth. But the interpretations will provide crucial insight to risk management of the glacier lakes for the study area.

Response: We really appreciate the valuable comments on improving the depth of analysis. However, since our focus was solely on 21 potentially dangerous glacial lakes rather than examining all glacier lakes in Nepal, it is difficult to identify the spatial distribution pattern of GLOF risk. When considering the key influencing factors and underlying mechanisms, we directly investigated the identified potentially dangerous glacial lakes, whose hazard factors have been scrutinized in existing studies. This study expands upon prior research by examining the exposure and impact situation of GLOFs, primarily influenced by downstream topography, community, and building locations. Therefore, we opted not to specifically analyse some specific lakes, avoiding the repetition of existing hazard factors or a simple description of their downstream conditions.

Last, so many abbreviations were used in the manuscript but a list of abbreviations is missing. This creates extra difficulty for the readers to follow the manuscript.

Response: Abbreviations have been checked and all are defined at the first instance in the text, and a corresponding list of abbreviations has been included for reference.

Appendix A: List of abbreviations used in this study.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEM</td>
<td>digital elevation model</td>
</tr>
<tr>
<td>EVI</td>
<td>Enhanced Vegetation Index</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GLOFs</td>
<td>Glacial Lake Outburst Floods</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics processing unit</td>
</tr>
<tr>
<td>HiPIMS</td>
<td>High-Performance Integrated Hydrodynamic Modelling System</td>
</tr>
<tr>
<td>MNDWI</td>
<td>Modified Normalized Difference Water Index</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infrared</td>
</tr>
<tr>
<td>NDMI</td>
<td>Normalized Difference Moisture Index</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NDWI</td>
<td>Normalized Difference Water Index</td>
</tr>
<tr>
<td>OSM</td>
<td>OpenStreetMap</td>
</tr>
<tr>
<td>PDGL</td>
<td>potentially dangerous glacial lake</td>
</tr>
<tr>
<td>SRTM</td>
<td>Shuttle Radar Topography Mission</td>
</tr>
<tr>
<td>TOA</td>
<td>Top-Of-Atmosphere</td>
</tr>
</tbody>
</table>

Also, figures need to be refined. Figures 4, 6, 7 and 8 do not show any ticks on the axes while the flow directions should be marked in figure 5.

Response: Ticks have been added to the axes in Figures 4, 6, and 7, shown below. Figure 8 has been removed due to the new analysis of the GLOF simulation and impact results based on the comments from the other reviewer.
Flow directions have been marked in Figure 5.
Specific comments

Line 38: revise “... has observed...” to “is experiencing”.
Response: Revised according to the comment.

Line 42: change “an objective and reproducible assessment” to “the requirement for reproducible assessment”.
Response: Revised according to the comment.

Line 45: remove “typically focus on individual glacial lakes, which”.
Response: Revised according to the comment.

Lines 54-57: the sentence can be more concise. Please rewrite.
Response: Revised according to the comment, as below.

However, the complexity of GLOFs, characterized by complex hydraulic dynamics resulting from sudden releases of large water volumes and the rugged, steep terrain downstream, renders simple flood models insufficient for capturing the complex dynamics of GLOFs to support a detailed assessment of the potential impacts on downstream communities and their infrastructure. → However, the complexity of GLOFs renders simple flood models inadequate for capturing their dynamics, thereby making them incapable of supporting detailed assessments of potential impacts on downstream communities and infrastructure.

Line 85: reference(s) are needed after “impact of GLOFs”.
Response: Revised according to the comment, as below.

Previous studies have typically relied on census data at coarse spatial resolutions or aggregated land use data that encompass various objects like properties and infrastructure, to estimate the potential socio-economic impact of GLOFs (e.g., Shrestha & Nakagawa, 2014; Rounce et al., 2016).


Line 216: reference(s) are needed after “CPU-based counterpart”.
Response: Revised according to the comment, as below.

It’s worth noting that the GPU-accelerated model has demonstrated computational efficiency up to ten times greater than its CPU-based counterpart (Smith & Liang, 2013).

Line 231: the year seems to be 2022 from the reference list.
Response: The error has been rectified.

Line 239: are the values of Manning coefficients appropriate for Nepal? Please justify this setting.
Response: The Manning coefficients 0.016 to 0.15 were specified based on values provided in earlier hydraulic textbooks or reports (such as Chow, 1959; Barnes, 1967; Arcement and Schneider, 1984), aligning with previous studies, for example, 0.035 to 0.17 in Nepal (Sattar et al., 2021) and 0.035 to 0.120 in Bhutan (Rinzin et al., 2023).


Lines 345-357: most of the paragraph should be moved to the methods part. Please consider.
Response: The paragraph has been moved to Section 2.2.1 within the methodology, as below.

To account for the most severe GLOFs, we assume that the entire total lake volume \( V_{\text{tot}} \) would be released to create GLOFs. For each lake, we predicted the peak discharge \( Q_p \) based on a given value of \( V_{\text{tot}} \) and \( \eta \) using the Bayesian piecewise linear regression model. We generated 100 estimates of the posterior predicted \( Q_p \) for each given value of \( V_{\text{tot}} \) and \( \eta \). The values of \( \eta \) for individual lakes encompass the assumed flood volumes, and we also considered 100 physically plausible values of the breach rate \( k \) based on a log-normal fit to reported breach rates. By multiplying the 94 samples of \( V_{\text{tot}} \) with the 100 samples of \( k \) and 100 samples of \( Q_p \), we ultimately obtained a total of 940,000 scenarios of \( Q_p \) per lake. Considering the substantial computational resources required for GLOF inundation simulations in section 2.2.2, 1,000 scenarios are randomly selected from the total of 940,000 \( Q_p \) scenarios per lake.

Figure 5: The locations of inset plots in the big map need to be marked.
Response: The locations of inset plots have been marked as below.
Lines 402-405: The sentence should be moved to discussions.
Response: Yes, this has been moved to discussions.

Figure 8: It may be clearer if the results for the scenario when 100% lake water is released are presented together with the less severe scenarios.

Response: We have addressed this comment by incorporating the less severe scenarios alongside the 100% lake water scenarios as shown below.

To account for all possible glacial lake outburst scenarios, less severe conditions are also considered, where 25%, 50% and 75% of the lake water volume is released. In each of these less severe scenarios, 100 cases are randomly selected from a total of 940,000 samples. The outcomes of these scenarios will be compared to the worst-case conditions. Fig 7 illustrates the inundation area for inundation probabilities exceeding 50% resulting from GLOFs. In the case of Lower Barun Lake, the release of 25% and 50% of the lake water leads to the inundation of 50.2 km² and 60.6 km² of downstream areas, respectively. When 100% of the lake water is released, the inundation areas are 1.29 and 1.08 times larger than those under the 25% and 50% lake water release scenarios, respectively. Following Lower Barun Lake, Tsho Rolpa Lake and Lumding Lake have the potential to cause significant inundation areas. Even with just 25% of the lake water being released, Tsho Rolpa Lake and Imja Tsho Lake can potentially submerge approximately 30 km² of areas for inundation probabilities exceeding 50%.