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Abstract. Recent advances in differentiable modeling, a genre of physics-informed machine learning that trains neural 

networks (NNs) together with process-based equations, has shown promise in enhancing hydrologic models’ accuracy, 

interpretability, and knowledge-discovery potential. Current differentiable models are efficient for NN-based 

parameter regionalization, but the simple explicit numerical schemes paired with sequential calculations (operator 

splitting) can incur numerical errors whose impacts on models’ representation power and learned parameters are not 20 

clear. Implicit schemes, however, cannot rely on automatic differentiation to calculate gradients due to potential issues 

of gradient vanishing and memory demand. Here we propose a “discretize-then-optimize” adjoint method to enable 

differentiable implicit numerical schemes for the first time for large-scale hydrologic modeling. The adjoint model 

demonstrates comprehensively improved performance, with Kling-Gupta efficiency coefficients, peak-flow and low-

flow metrics, and evapotranspiration that moderately surpass the already-competitive explicit model. Therefore, the 25 

previous sequential-calculation approach had a detrimental impact on the model’s ability to represent hydrologic 

dynamics. Furthermore, with a structural update that describes capillary rise, the adjoint model can better describe 

baseflow in arid regions, and also produce low and peak flows that outperform even pure machine learning methods 

such as long short-term memory networks. The adjoint model rectified some parameter distortions but did not alter 

spatial parameter distributions, demonstrating the robustness of regionalized parameterization. Despite higher 30 

computational expenses and modest improvements, the adjoint model’s success removes the barrier for complex 

implicit schemes to enrich differentiable modeling in hydrology. 

1 Background 

Accurate hydrologic predictions are crucial for effective water resource management around the world under a 

changing climate (Hannah et al., 2011; Sivapalan et al., 2003). In recent years, deep learning models such as long 35 

short-term memory (LSTM) networks have gained traction in hydrology due to their high predictive performance in 

various applications, including streamflow prediction, soil moisture estimation, and the modeling of stream 

temperature and dissolved oxygen (Blöschl et al., 2019; Fang et al., 2017; Feng et al., 2020; Kratzert et al., 2019; 

Ouyang et al., 2021; Rahmani et al., 2021a, 2021b; Zhi et al., 2023). Despite their impressive capabilities, deep 
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learning models are often criticized for their limited interpretability and dependence on extensive observations. 40 

Additionally, they are unable to provide outputs for untrained variables (those not trained using observations as 

targets), e.g., evapotranspiration (ET), water storage, or snow water equivalent, which are of great interest to 

stakeholders but are not extensively observed.  

In response to these limitations, alternative approaches that merge the process-based understanding of hydrologic 

systems with various genres of physics-informed machine learning techniques have been explored. These approaches 45 

include differentiable modeling (DM), interpretable machine learning approaches (Wang et al., 2021), post-processing 

(Frame et al., 2021), and embedding trained networks into existing models (Bennett and Nijssen, 2021). Notably, the 

neural networks must be pretrained using either observations or model simulations as the target. Not many approaches 

allow interpretability, continued updating of the neural networks, and knowledge discovery at the same time.  

Recently, differentiable modeling (DM) (Shen et al., 2023) was proposed as a pathway to train neural networks (NNs) 50 

together with physical equations in an “end-to-end” fashion (Figure 1), where the NNs can provide parameters or 

unknown relationships for the process-based components (Tsai et al., 2021; Feng et al., 2023, 2022; Aboelyazeed et 

al., 2023; Bindas et al., 2024). When the model is “differentiable” (explained in the next paragraph), we have a “credit 

assignment path” (Schmidhuber, 2015) between tunable parameters and the objective function, which enables efficient 

training of massive amounts of weights on big data based on outputs of the combined system. It also removes the need 55 

for direct supervising data for the output of the NN (although such data can be used as additional constraints when 

available), and enables the discovery of knowledge from data. To make the model differentiable, we prefer translating 

physical models onto differentiable platforms, which would guarantee the desired sensitivity as the physics are baked 

into the model, over training an NN as a physical model surrogate. As the models are interpretable, they can be used 

to provide a full narrative of the physical processes and have the potential to discover scientific knowledge and 60 

unrecognized linkages from data. They also extrapolate better in space, especially in data-sparse regions, due to using 

process-based equations as the backbone of calculations and respecting assumed physical laws like conservation of 

mass (Feng et al., 2023). 

Essentially, differentiable models aim to train coupled NNs (by optimizing their weights, w, in Figure 1) using gradient 

descent. In the end-to-end fashion, we must be able to calculate the gradients of model outputs with respect to NN 65 

weights along all the steps (physical equations and NN layers) in the model. Models supporting such gradient 

calculations are called “differentiable” models (Shen et al., 2023). Gradient descent is the only currently-known way 

to train NNs with massive amounts of weights on big data, and such computational infrastructure is very efficient, 

especially when paired with parallel GPU (graphics processing units) processing and automatic differentiation (AD, 

explained further below). Modern machine learning platforms are built to support differentiability and NN training 70 

using AD, but there are other options as well. For example, while not the focus of DM, we can train NNs as surrogate 

models for physical models (minding all the complexities with maintaining the accuracy of a surrogate model as well 

as the fact that we cannot modify the internal functions of a surrogate model) and place it alongside a parameterization 

network (Tsai et al., 2021). As another example, adjoint state methods have been developed to solve an accompanying 

equation to produce gradients of an equation-solving step (Chen et al., 2018). 75 
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While there have been significant advances in differentiable models, certain numerical approximations have been 

introduced to facilitate their easy implementation on machine learning platforms utilizing AD. These approximations 

can result in numerical errors, colloquially termed the "ancient numerical demon" (Clark and Kavetski, 2010; Kavetski 

and Clark, 2010) with implications for the calibrated parameter values. Such approximations encompass, but are not 

limited to, ad-hoc operator splitting (sequential operations), explicit numerical schemes without error control, and the 80 

use of threshold-like functions to avoid negative state variables, all of which can degrade the quality of gradient 

calculations for parameter optimization. Recently published differentiable hydrological models (Feng et al., 2023, 

2022) mostly used these numerical approximations because of their straightforward implementation and a long legacy 

of usage (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergström, 1992, 1976; Seibert and Vis, 2012). The 

numerical errors can be compensated for by pushing the calibrated parameters to a different part of the parameter 85 

space (Clark and Kavetski, 2010; Kavetski and Clark, 2010). With such compensation, the daily streamflow 

performance metrics such as Nash Sutcliffe model efficiency coefficient (NSE) can be kept high, but the interpretation 

of the results and the physical significance of the calibrated parameters are obscured. The implications of numerical 

errors were examined in detail before, where Kavetski and Clark (2010) addressed the issues using implicit schemes. 

However, the issue of explicit vs. implicit solvers has not been examined in the context of a regionalized 90 

parameterization scheme, especially a novel differentiable model relying on regionalized parameter learning with 

NNs, which applies implicit regional constraints. The extent to which numerical schemes can impact regionalized 

parameter distributions is unclear.  

As an underpinning of deep learning, automatic differentiation (AD) decomposes complex calculations into a 

sequence of elementary arithmetic operations, and then applies the chain rule of differentiation to compute the 95 

derivative of the output with respect to its input variables. AD often needs to store some intermediate results or 

instructions, thus consuming memory. AD typically requires very little effort on the modeler’s side besides writing 

the model in a forward mode (no need to provide gradient functions) on a machine learning platform like PyTorch, 

Tensorflow, JAX, or Julia, and is the obvious tool to calculate gradients for explicit models. However, if we want to 

improve a model’s accuracy and stability using implicit solvers that require iterative steps, AD could run into the issue 100 

of having high overhead and excessive memory usage. Memory use is a significant issue for GPUs which are crucial 

to modern machine learning. Furthermore, tracking the gradients of the many iterative steps with AD may lead to the 

dreaded vanishing gradient problem (Hochreiter and Schmidhuber, 1997) facing recurrent neural network training, 

where the gradients become exceedingly small and prevent the NN weights from being effectively updated. These 

issues, unfortunately, make it challenging for differentiable models to employ implicit solvers that encompass a wealth 105 

of powerful and essential tools for solving some equations, e.g., those containing elliptic operators (Groundwater 

equations (Todd and Mays, 2004); Richards’ equation (Richards, 1931); shallow water equations (Sadourny, 1975); 

heat equation (Bergman, 2011)) or systems of nonlinear equations (Aboelyazeed et al., 2023). 

The adjoint method has been widely used for equation-constrained optimization (Cao et al., 2002) in various fields 

such as meteorology, oceanography, and geophysics, but only in recent years has it been applied for neural network 110 

training with differential equations (Rackauckas et al., 2021). Hydrologic modelers have also used the adjoint for data 

assimilation (Fisher and Andersson, 2001; White et al., 2003; Neupauer and Wilson, 2001; Liu and Gupta, 2007; 
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Castaings et al., 2009; Jay-Allemand et al., 2020; Bandai, 2022). Instead of automatically working through the 

elementary operations as AD does, the adjoint solves another accompanying equation (derived by the modeler based 

on the chain rule and the associative property of matrix multiplication) to rapidly produce the gradients of outputs 115 

with respect to inputs --- more precisely, it computes the vector-Jacobian product. However, the adjoint method has 

not yet been extensively explored in the context of large-scale, regionalized hydrologic simulations (White et al., 2003; 

Colleoni et al., 2022), which require mini-batch processing, high data throughput, and a long time for integration. It 

is unclear if the adjoint method is applicable in this scenario.  

Adjoint methods can be defined at different levels. Simply put, the adjoint-state method is defined at the differential 120 

equation level (called “optimize-then-discretize”), involving the solution of a separate differential equation for the 

adjoint (Chen et al., 2018). However, we can also define it at lower functional levels, e.g., solving an adjoint equation 

for a specific operator inside a discretized numerical model (called “discretize-then-optimize”) (Onken and Ruthotto, 

2020). The latter is more naturally implemented along with the numerical algorithms to solve the forward problem. 

In both machine learning and process-based modeling, an important point for consideration is whether the basic 125 

architecture has the expressive power to represent the phenomenon of interest. Deep networks can approximate 

extremely complex functions, due to the enormous amount of weights that can be trained, along with their generic 

architecture (Hornik et al., 1989). For process-based models (or hybrid differentiable models), structural deficiencies 

may lead to problematic behaviors that cannot be remediated (even with the help of highly flexible NNs for 

parameterization). It is unclear whether the difference between implicit and explicit solvers can lead to differences in 130 

representation, and whether differentiable models can help us identify structural deficiencies. 

In this work, we proposed the application of the “discretize-then-optimize” adjoint method to implement implicit 

numerical schemes in differentiable hydrologic models (referred to as implicit adjoint-based models or "adjoint 

models" for brevity, also denoted as δHBV.adj.). We then compared them to the existing differentiable models with 

explicit Euler time stepping and sequential operations (referred to as explicit sequential models or "sequential models" 135 

for brevity and are denoted as δHBV). We investigated the impacts of these methods on hydrologic model performance 

and parameter distributions. Furthermore, we examined the potential for these adjoint-based methods to enhance the 

performance of differentiable models, bringing them closer to or surpassing the performance of state-of-the-art LSTM 

models. We sought answers for the following questions: 

1. Can we support implicit numerical solvers in large-scale differentiable hydrologic modeling, and what are 140 

their implications for performance and computational efficiency? 

2. Do implicit and sequential models have different representation power, i.e., does the sequential-calculation 

approach result in errors that prevent it from accurately representing certain aspects of hydrologic 

dynamics? 

3. Do we get very different parameter distributions with the implicit (adjoint) model than with the sequential 145 

model at the regional and local scales? 

The full version name of the adjoint model is δHBV.adj-CAMELS-hydroDL where “δ” indicates differentiable 

modeling, “adj” represents adjoint, “CAMELS” represents the training dataset, and “hydroDL” stands for software 

implementation. 
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2 Data and Methods 150 

As a high-level summary, the differentiable model couples an LSTM network to a conceptual hydrologic model, 

Hydrologiska Byråns Vattenbalansavdelning (HBV), and trains them together in an end-to-end fashion (from the input 

of LSTM to the output of the HBV) on daily discharge data on 671 basins in the conterminous United States (CONUS). 

The LSTM, which provides static or dynamic parameters for HBV, is not trained directly with pre-calibrated 

parameters but is jointly trained with HBV using the discharge observations. This joint training, where the LSTM 155 

weights are updated, is supported by either AD for the explicit HBV model or the adjoint method for the implicit HBV 

model. The conceptual frameworks of the two models are similar, and the differences between AD and the adjoint 

only pertains to how the gradients are obtained during backpropagation through the solving of HBV’s equations. 

However, due to gradient vanishing and memory issues arising from the required numerical iterations, the implicit 

model simply cannot be supported by AD for backpropagation. In addition to the implementation of the implicit 160 

scheme, this work also evaluated a structural change (incorporating capillary rise) to HBV, based on insights acquired 

during joint training. We compared the explicit (sequential), implicit, improved explicit (sequential) and improved 

implicit differentiable models and a direct LSTM simulation of streamflow in terms of various streamflow metrics, 

and the differentiable models are also benchmarked in terms of ET and baseflow fraction simulations. In the following, 

we describe the different parts of the framework as well as discuss the differences between AD and the adjoint method 165 

in more detail. 

2.1 Datasets 

We utilized the Catchment Attributes and Meteorology for Large‐sample Studies (CAMELS) data set (Addor et al., 

2017; Newman et al., 2014) for this study. This dataset comprises basin‐averaged hydrometeorological time series, 

catchment attributes, and streamflow observations from the United States Geological Survey (USGS) for 671 170 

catchments across the CONUS. The majority of its daily streamflow observations span from 1980 to 2014. For our 

study, the meteorological forcing data was sourced from Daily Surface Weather Data on a 1-km Grid for North 

America (Daymet) Version 4 (Thornton et al., 2020). From the CAMELS dataset, we incorporated catchment 

attributes such as topography, climate patterns, land cover, soil, and geological characteristics as inputs to our models 

(Table A1).  175 

We compared our model simulation with the streamflow observation, as well as the streamflow simulation from a 

traditional process-based model, SAC-SMA (Sacramento Soil Moisture Accounting), with the model calibrated by 

the National Weather Service. The simulation results of SAC-SMA are provided in CAMELS. To assess the accuracy 

of predicted intermediate variables, we also employed the Baseflow Index (BFI) from the CAMELS dataset and 

evapotranspiration (ET) data from the MOD16A2 dataset (Running et al., 2017). BFI is obtained by applying Lyne 180 

and Hollick filters with warm-up periods to streamflow hydrographs (Ladson et al., 2013). The MOD16A2 Version 6 

Evapotranspiration/Latent Heat Flux product provides 8-day composites at a 500-meter pixel resolution and is 

aggregated to the average values at the basin levels. The algorithm used for the MOD16A2 dataset relies on the 

Penman-Monteith equation logic, incorporating daily meteorological reanalysis data and Moderate Resolution 
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Imaging Spectroradiometer (MODIS) remote sensing inputs like vegetation dynamics, albedo, and land cover 185 

(Monteith, 1965; Mu et al., 2011; Running et al., 2017). 

2.2. Models 

2.2.1 Differentiable, Learnable, Regionalized Process-Based Model 

This study utilized the differentiable regionalized process-based model framework presented in Feng et al. (2022), 

which employs the HBV model as its backbone and utilizes LSTM for parameter regionalization. The motivation for 190 

making the model differentiable is so that it can train connected NNs in an “end-to-end” manner to learn robust and 

complex relationships from big data, which can provide indirect supervision to the NNs. As stated above, the model 

was already made programmatically “differentiable” because it was implemented on the PyTorch ML platform, so 

gradient information can backpropagate through it. However, it previously was only integrated in time using the 

explicit Euler method with no error control. The HBV model is a conceptual model that uses a set of linked storage 195 

components representing processes like snow accumulation and melt, soil moisture dynamics, and river routing to 

forecast river discharge. To summarize the NN-HBV coupling succinctly, the differentiable model based on HBV can 

be written as:   

𝜃 ൌ 𝑔௪ሺ𝑥,𝐴ሻ (1) 

where 𝜃 represents HBV physical parameters, 𝐴 contains 35 static attributes such as topography, climate, soil texture, 

land cover, and geology (Table A1 in Appendix), x represents the meteorological forcings, and 𝑔௪ is a 200 

parameterization neural network that seeks to capture the prevalent relationship between the input data and the HBV 

parameters (𝑤 represents the weights of the neural network). 𝜃 can be formulated as being either static-in-time or 

time-dependent, where new values are obtained for every day of the simulation. More details about the data can be 

found in Feng et al. (2022). The HBV forward simulation is succinctly written as 

𝑄 ൌ 𝐻𝐵𝑉ሺ𝑥,𝜃ሻ 
(2) 

where 𝑄 is the simulated streamflow. The HBV model utilizes three primary forcing variables: precipitation (𝑃), 205 

temperature (𝑇), and potential evapotranspiration (𝐸௉). The Hargreaves (1994) method, which considers mean, 

maximum, and minimum temperatures along with latitudes, is employed to estimate 𝐸௉, representing the total 

evaporative demand. The same forcings, 𝑋 ൌ ሼ𝑃,𝑇,𝐸௉ሽ, were used in 𝑔௪. It should be noted that HBV only serves as 

an example, and other hydrologic models (Knoben et al., 2019) can be similarly employed. 

2.2.2 Hydrologiska Byråns Vattenbalansavdelning model 210 

The HBV model employs a framework that includes five water storages and associated fluxes to encapsulate the 

primary hydrological processes within a catchment. It can simulate hydrologic variables, including soil moisture, 

groundwater storage, evapotranspiration, quick flow, baseflow, streamflow, etc. It consists of four main modules to 

classify all storages and fluxes as shown in Figure. 1: 
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Snow Accumulation and Melt: This module uses a temperature-index method to distinguish between rainfall and 215 

snowfall and to simulate the snow accumulation and melt processes.  

𝑑𝑆௣
𝑑𝑡

ൌ 𝑃௦ ൅ 𝑅௙௭ െ 𝑆௦௠௘௟௧ 
(3) 

𝑃௦ ൌ 𝑃  if 𝑇 ൏ 𝜃்், otherwise 0 (4) 

𝑅௙௭ ൌ ሺ𝜃்் െ 𝑇ሻ𝜃஽஽𝜃௥௙௭ (5) 

𝑠௠௘௟௧ ൌ ሺ𝑇 െ 𝜃்்ሻ 𝜃஽஽ (6) 

where 𝑡 is time;  𝑆௣ is the current snow storage [mm]; 𝑃௦ is the precipitation as snow [mm/day]; 𝑅௙௭ is the refreezing 

of liquid snow [mm/day]; 𝑠௠௘௟௧  is the snowmelt as water equivalent [mm/day];  𝜃்், 𝜃஽஽, and 𝜃௥௙௭ are threshold 

temperature for snowfall [°C], degree-day factor [mm°C-1day-1], and refreezing coefficient [-], respectively. 

𝑑𝑆௟௜௤
𝑑𝑡

ൌ  𝑠௠௘௟௧ െ 𝑅௙௭ െ 𝐼௦௡௢௪ 
(7) 

𝐼௦௡௢௪ ൌ 𝑠௟௜௤ െ 𝜃஼ௐு𝑆௣ (8) 

where 𝐼௦௡௢௪ is the snowmelt infiltration to soil moisture [mm/day]; 𝑆௟௜௤ is the liquid water content in the snowpack 220 

[mm]; and 𝜃஼ௐு is the water holding capacity as a fraction of the current snowpack [-]. 

Soil Moisture and Evapotranspiration: The model features a simple soil moisture accounting scheme where 

precipitation and snowmelt infiltration can either contribute to evapotranspiration or runoff. Potential 

evapotranspiration, typically calculated externally (e.g., using the Hargreaves method (Hargreaves, 1994)), limits the 

actual evapotranspiration from the soil storage. 225 

𝑑𝑆ௌ
𝑑𝑡

ൌ  𝐼௦௡௢௪ ൅ 𝑃௥ െ 𝑃௘௙௙ െ 𝐸௫ െ 𝐸்ሺ൅𝐶௥ሻ 
(9) 

𝑃௥ ൌ 𝑃  if  𝑇 ൐ 𝜃்்    otherwise    0 
(10) 

𝑃௘௙௙ ൌ min ሺ൬
𝑆ௌ
𝜃ி஼

൰
ఉ

, 1ሻሺ𝑃௥ ൅ 𝐼௦௡௢௪ሻ 

(11) 

𝐸௫ ൌ ሺ𝑆ௌ െ 𝜃ி஼ሻ/𝑑𝑡 
(12) 

𝐸் ൌ  min ሺ൬
𝑆ௌ

𝜃ி஼𝜃௅௉
൰
ఊ

, 1ሻ𝐸௉ 
(13) 

𝐶௥  ൌ  𝜃஼ ∗ 𝑆௅௓ ∗ ሺ1 െ
𝑆ௌ

𝜃ே஽஼ ∗ 𝜃ி஼
ሻ 

(14) 
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where 𝑆ௌ is the current storage in soil moisture [mm]; 𝑆௅௓ is the current storage in the lower subsurface zone [mm/day]; 

𝑃௥ is the precipitation as rain [mm/day]; 𝑃௘௙௙ is the effective flow to the upper subsurface zone [mm/day]; 𝐸௫ is the 

rainfall excess [mm/day]; 𝐸் is the actual evapotranspiration [mm/day]; 𝐶௥ is the capillary rise from the lower 

subsurface zone; 𝜃஼ is a time parameter [day-1]; 𝜃ி஼ is the maximum soil moisture (field capacity) [mm]; 𝜃ே஽஼ is the 

fraction ratio of the field capacity [-] and is set to a constant value of 1 in the discrete model to prevent gradient 230 

explosion, while in the adjoint model, it is treated as a static parameter to be learned;  𝜃௅௉ is the vegetation wilting 

point [-]; 𝛽 is a parameter influencing the shape of the soil moisture function [-]; 𝛾 is a parameter influencing the 

shape of the evapotranspiration function [-]. 

Runoff Generation: Runoff in the HBV model is represented by three components - two quick flows (near surface 

flow and interflow), and delayed runoff (or baseflow). 235 

𝑑𝑆௎௓
𝑑𝑡

ൌ  𝑃௘௙௙  ൅  𝐸௫ െ 𝑝𝑒𝑟𝑐 െ 𝑄଴ െ 𝑄ଵ 
(15) 

𝑃𝑒𝑟𝑐 ൌ min ሺ𝜃௣௘௥௖, 𝑆௎௓/𝑑𝑡ሻ 
(16) 

𝑄଴ ൌ 𝜃௄బሺ𝑆௎௓ െ 𝜃௎௓௅ሻ 
(17) 

𝑄ଵ ൌ 𝜃௄భ𝑆௎௓ 
(18) 

𝑑𝑆௅௓
𝑑𝑡

ൌ  𝑃𝑒𝑟𝑐 െ  𝑄ଶሺെ𝐶௥ሻ 
(19) 

𝑄ଶ  ൌ  𝜃௄బ𝑆௅௓ 
(20) 

where 𝑆௎௓ is the current storage in the upper subsurface zone [mm]; 𝑝𝑒𝑟𝑐 is the percolation to the lower subsurface  

zone [mm/day]; 𝑄଴, 𝑄ଵ, and 𝑄ଶ are the near surface flow [mm/day], interflow [mm/day], and baseflow [mm/day], 

respectively; 𝜃௣௘௥௖ is the percolation flow rate [mm/day]; 𝜃௄బ, 𝜃௄భ, and 𝜃௄మ are the recession coefficients [day-1]. 

Basin-scale routing: We employ a gamma function to simulate the flow routing through rivers and lakes within the 

catchment, leading to the simulated discharge at the catchment outlet. 240 

𝑄ሺ𝑡ሻ  ൌ න 𝜉ሺ𝑠ሻ𝑄′ሺ𝑡 െ 𝑠ሻ𝑑𝑠
௧

଴
  

(21) 

𝜉ሺ𝑠ሻ  ൌ  
1

𝛤ሺ𝜃௔ሻ𝜃௕
ఏೌ
𝑠ఏೌିଵ𝑒

ି
ଵ
ఏ್ 

(22) 

where 𝑄′ ൌ  𝑄଴ ൅  𝑄ଵ ൅ 𝑄ଶ; 𝑄 is the simulated streamflow at the catchment outlet; 𝜃௔ [-] and 𝜃௕[-] are two routing 

parameters. 
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Figure 1:  𝐀 schematic view of the HBV model.  𝐠𝐰  is a parameterization neural network that seeks to capture the prevalent 245 
relationship between raw input data and the HBV parameters (𝐰 represents the weights of the neural network). 𝛉 and 𝛉𝐭 
are the static and dynamic HBV parameters, respectively. 𝐈𝐬𝐧𝐨𝐰 is the snowmelt infiltration to soil moisture, 𝐑𝐟𝐳 is the 
refreezing of liquid snow, and 𝐬𝐦𝐞𝐥𝐭  is the snowmelt as water equivalent. 𝐄𝐓 is the actual evapotranspiration, 𝐏𝐞𝐟𝐟 is the 
effective flow to the upper subsurface zone, and 𝐄𝐱 is the rainfall excess. 𝐐𝟎, 𝐐𝟏, and 𝐐𝟐 are the near surface flow, interflow, 
and baseflow, respectively.  𝐐 is the simulated streamflow at the catchment outlet.  250 

 

In this work, we investigated two distinct HBV structures. The first structure replicates the structure employed in Feng 

et al. (2022) adapted from the HBV structure used in Beck et al. (2020). A primary limitation of this structure is its 

inability to represent the depletion of storages and the occurrence of zero flow. In scenarios where precipitation events 

are minimal and soil moisture is not entirely depleted, there always exists a recharge flow directed into the groundwater 255 

compartments, consequently producing a baseflow. To alleviate this limitation, according to previous experiences 

(Knoben et al., 2019), various strategies can be employed: (1) applying a threshold-based function to Q1 and Q2, (2) 

constraining the effective rainfall and excess volume, (3) adapting the ET functions, (4) introducing a sink flux in the 

lower subsurface zone to directly remove water, and (5) incorporating a capillary flux to redistribute water among soil 

zones. Among these strategies, we chose to incorporate a capillary flux from the lower subsurface zone to the surface 260 

soil, as illustrated by the dashed arrow in Figure 1, in order to avoid introducing threshold-like functions, which would 

complicate gradient calculations. Notably, this is not the typical capillary flux from the upper subsurface zone. 

Similarly, the reciprocal flux between different soil zones is profoundly influenced by the operation order, making it 

more susceptible to numerical errors in the sequential models. The capillary flux can increase the evapotranspiration, 

especially when surface soil moisture is at a diminished level, thereby moderating the baseflow. This flux (Equation 265 
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14) is mathematically accounted for by additional terms in brackets of Equations 9 and 19, whereby it is subtracted 

from the lower subsurface soil zone and added to the upper soil zone. The sequential and adjoint model incorporating 

the capillary flux are referred to as “the sequential improved model (𝛿HBV improved model)” and “the adjoint 

improved model (𝛿HBV.adj improved model)”, respectively. 

2.2.3 Long short-term memory network 270 

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) designed for identifying patterns in long time 

series. While traditional RNNs face challenges like vanishing or exploding gradients (Hochreiter and Schmidhuber, 

1997), LSTM alleviates these issues using a distinct cell architecture with input, forget, and output gates. These gates 

modulate information flow, rendering LSTM especially effective for tasks like time series forecasting and sequence-

to-sequence modeling. Given LSTM's proficiency in capturing temporal dynamics, it serves two primary functions in 275 

this study:  direct streamflow prediction, and regionalized parameterization. 

Direct streamflow prediction using LSTM: 

𝑄 ൌ  𝐿𝑆𝑇𝑀ሺ𝑥,𝐴,𝑤ሻ 
(23) 

This model serves as a benchmark. The meteorological forcings, 𝑥, used in the pure LSTM includes precipitation, 

solar radiation, max and min temperature, and vapor pressure. Attributes, 𝐴, includes topography, climate, soil texture, 

land cover, and geology. 𝑤 are the LSTM weights to be trained for streamflow prediction. More details about the pure 280 

LSTM streamflow model can be found in Kratzert et al. (2019) and it is referred to here as the LSTM model. We used 

the code from Kratzert et al. (2019) and ran the model in the same training and testing periods as the HBV models. 

Although we have a separate implementation that generated similar performance (Feng et al., 2020; 2021), here we 

include just one LSTM model from a third party for cross comparability.  While LSTM offers exceptional accuracy 

in streamflow prediction, its application in hydrologic modeling presents interpretability challenges and it does not 285 

produce intermediate physical states or fluxes.  

Regionalized parameterization using LSTM: 

LSTM can also serve as a parameter learning function, referred to as 𝑔௪ in the DM framework: 

𝜃 𝑜𝑟 𝜃௧  ൌ  𝐿𝑆𝑇𝑀ሺ𝑥,𝐴,𝑤ሻ 
(24) 

where the parameters learned can be either static (𝜃) or  time-dynamic (𝜃௧). The forcings, 𝑥, only include precipitation, 

temperature, and potential evapotranspiration used in HBV (same as Feng et al. (2022)). A includes the same 35 static 290 

attributes used in the pure LSTM model, listed in Table A1. 𝑤 represents the LSTM weights to be trained for HBV 

parameter estimation. 

When employed for regionalized parameterization (in this context, this means all available training sites are employed 

to train one network), LSTM establishes a correlation between input data and HBV parameters. By learning from a 

dataset with 671 basins, it tries to learn the implications of basin characteristics, making it applicable to ungauged 295 

basins. The HBV parameters used in Eq. 3 - Eq. 22 can be treated as static (𝜃) or dynamic parameters (𝜃௧). When 

treated as static, the same parameter value is used throughout the HBV simulation, whereas dynamic parameterization 
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(DP) provides a time series of parameters that differ for each basin and each day. In Feng et al. (2022), the DP approach 

was adopted for parameter 𝛾, which was intended to reflect the impacts of vegetation on ET. Additionally, the shape 

coefficient, 𝛽, was set to be dynamic to account for the nonlinear relationship between surface soil moisture and 300 

effective rainfall. In the adjoint model, besides 𝛾 and 𝛽, the field capacity, 𝜃ி஼ is also treated as dynamic to enhance 

the adaptability of the model. 

2.2.4 Backpropagation with a coupled NN and process-based model 

Within the framework of the differentiable model, the HBV model's parameterization is achieved by optimizing the 

weights, 𝑤௜, of the LSTM. This process learns the relationship between the input big data and the optimal 305 

parameterization using gradient descent: 

𝑤௡ାଵ ൌ 𝑤௡ െ  𝛼
𝑑𝐿
𝑑𝑤௡ 

(25) 

where 𝛼 is the learning rate (a model hyperparameter) and can be updated automatically by the optimizer, AdaDelta 

(Zeiler, 2012); 𝐿 is the loss function that evaluates the discrepancy between the simulated and observed streamflow 

based on root-mean-square error (RMSE), conducted on a mini-batch of basins during the training process; n is the 

iteration number. 310 

The gradient  
ௗ௅

ௗ௪
 can be decomposed into multiple terms using the chain rule: 

𝑑𝐿
𝑑𝑤

ൌ  
𝜕𝐿
𝜕𝑤

൅
𝜕𝐿
𝜕𝜃

𝑑𝜃
𝑑𝑤

 ൌ
𝜕𝐿
𝜕𝑤

൅  ሺ
𝜕𝐿
𝜕𝑄

𝜕𝑄
𝜕𝑆

𝑑𝑆
𝑑𝜃
ሻ
𝑑𝜃
𝑑𝑤

 
(26) 

where 
డ௅

డ௪
 represents the gradient of regularization terms applied to the weights in the loss function and 

డ௅

డఏ
 represents 

the gradient of the loss function with respect to the HBV parameters (𝜃), which encompasses the backpropagation 

steps through the loss function associated with the streamflow (
డ௅

డொ
) and HBV functions (

డொ

డௌ

ௗௌ

ௗఏ
). 

ௗఏ

ௗ௪
 represents the 

gradient of the HBV parameters with respect to the LSTM weights. During backpropagation, we automatically obtain 315 

the gradient vector 
ௗ௅

ௗ௪
 as the program tracks through each function and resolves the gradients from left to right of the 

chain rule terms in Equation 26. 

2.2.5 Adjoint-based implicit scheme 

The HBV model, like many hydrological models, relies on a set of ordinary differential equations (ODEs) to simulate 

processes. Following many previous hydrologic modeling studies, Feng et al. (2022) solved the HBV model by 320 

describing each process in a sequential manner with a daily time step (sequential model). They managed the fluxes by 

sequentially adding to or subtracting from the water storages, limiting the depletion or saturation of storages with 

threshold functions, and ensuring that the storages were updated following each individual process. It remains unclear 

how the explicit and sequential approach to solving ODEs influences the parameter estimation and internal fluxes, 

subsequently altering the prediction of streamflow. 325 
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To enhance numerical accuracy, this study utilized an adjoint-based implicit numerical scheme to solve the ODEs 

simultaneously and implicitly. The gradient components, 
డ௅

డொ
,
డொ

డௌ
, and 

ௗఏ

ௗ௪
, in Eq. 26 can be easily handled by AD. The 

other gradient component, 
ௗௌ

ௗఏ
, is challenging for an implicit solver due to the numerous iterations and matrix solving 

required (Eq. 2).  330 

Consistent with the approach adopted in MARRMoT (Knoben et al., 2019), in one time step, the time derivatives of 

all ODEs are discretized using a first-order backward Euler implicit scheme: 

𝑆௧ െ 𝑆௧ିଵ

𝛥𝑡
ൌ 𝑓ሺ𝑆௧ ,𝜃௧ሻ 

(27) 

This can be reformulated as a nonlinear equation: 

𝐹ሺ𝑆௧ ,𝜃௧ሻ ൌ 𝑓ሺ𝑆௧ ,𝜃௧ሻ െ
𝑆௧ െ 𝑆௧ିଵ

𝛥𝑡
ൌ 0 

(28) 

The Newton-Raphson method is used to solve Eq. (28): 

𝑆௧,௡ ൌ 𝑆௧,௡ିଵ െ
𝐹ሺ𝑆௧,௡ିଵ,𝜃௧,௡ିଵሻ
𝐹′ௌሺ𝑆௧,௡ିଵ,𝜃௧,௡ିଵሻ

 
(29) 

where 𝑛 is the iteration number and 𝑆 simply refers to a generic storage. Typically, Equation 29 is computed for many 335 

iterations until convergence, but the number of iterations poses a challenge to AD (due to gradient vanishing) and 

GPU memory as discussed above. To avoid applying AD throughout the iterations, we differentiate 𝐹ሺ𝑆,𝜃ሻ  ൌ  0 with 

respect to 𝜃: 

𝜕𝐹
𝜕𝜃

൅
𝜕𝐹
𝜕𝑆

𝑑𝑆
𝑑𝜃

ൌ 0 
(30) 

Thus, we obtain the following equation. 

𝑑𝑆
𝑑𝜃

ൌ െሺ
𝜕𝐹
𝜕𝑆
ሻିଵ

𝜕𝐹
𝜕𝜃

 
(31) 

Substituting Eq. 31 into Eq. 26, the gradient of weights of LSTM becomes: 340 

𝑑𝐿
𝑑𝑤

ൌ
𝜕𝐿
𝜕𝑤

൅
𝑑𝐿
𝑑𝜃

𝑑𝜃
𝑑𝑤

 ൌ
𝜕𝐿
𝜕𝑤

െ  ሺ
𝜕𝐿
𝜕𝑆

ሺ
𝜕𝐹
𝜕𝑆
ሻିଵ

𝜕𝐹
𝜕𝜃
ሻ
𝑑𝜃
𝑑𝑤

 
(32) 

We seek to solve for the “adjoint”, 𝜆, which satisfies: 

ሺ
𝜕𝐹
𝜕𝑆
ሻ்𝜆 ൌ െሺ

𝜕𝐿
𝜕𝑆
ሻ் 

(33) 

Here the adjoint is a so-called “vector-Jacobian product”, where ሺ
డ௅

డௌ
ሻ்is the vector and ሺሺ

డி

డௌ
ሻ்ሻିଵ is the Jacobian 

matrix.  

Upon obtaining the adjoint 𝜆, we substitute it into Eq. 32 : 
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𝑑𝐿
𝑑𝑤

ൌ
𝜕𝐿
𝜕𝑤

൅
𝑑𝐿
𝑑𝜃

𝑑𝜃
𝑑𝑤

 ൌ
𝜕𝐿
𝜕𝑤

൅  ሺ𝜆்
𝜕𝐹
𝜕𝜃
ሻ
𝑑𝜃
𝑑𝑤

 
(34) 

While solving for the adjoint requires solving a matrix, the adjoint method bypasses the need for direct AD through 345 

all Newton iterations. Only after the Newton iteration converges and the solution is obtained do we need to compute 

the vector and the Jacobian and solve the Jacobian matrix, thus greatly reducing the amount of information that 

requires AD. Furthermore, in our implementation, the adjoints for all the basins in the minibatch are computed in 

parallel to permit rapid training on the GPU. The forward processes and the backward processes via backpropagation 

are summarized in Figure 2. In the backward mode, we only need to customize the backward function of the Newton 350 

solver and pass ௗ௅
ௗఏ

 for backpropagation to the subsequent steps. The other parts are automatically supported by PyTorch 

with AD. 

 

Figure 2: Schematic view of the forward code for streamflow prediction and backward code for gradient backpropagation. 

In the backpropagation process, the steps utilizing automatic differentiation (AD) can be automatically executed by 355 

PyTorch. We only need to address the adjoint calculation and pass 
𝒅𝑳

𝒅𝜽
 for backpropagation to the subsequent step. The 

bolded derivatives represent the outputs of each step in the backward mode.  

2.2.6 Metrics, Model Training, and Hyperparameters 

The training phase employed data spanning 15 years, from 1 October 1980 to 30 September 1995, while the 

performance evaluation was conducted on data spanning another 15 years, from 1 October 1995 to 30 September 360 

2010. In all cases, one neural network was trained on all the training basins with all training data. The hyperparameters 

of the LSTM unit were inherited from Feng et al. (2022). A hidden state of 256, a mini-batch size of 100, and a time 

series length of 365 days were used to train the models. The model was trained to minimize an objective function (loss 

function) based on root-mean-square error (RMSE) across all basins in a mini-batch: 

𝐿𝑜𝑠𝑠 ൌ  ሺ1.0 െ  𝛼௟ሻඨ
∑ ∑ ሺ𝑄 െ 𝑄 ∗ሻଶ்

௧ୀଵ
஻
௕ୀଵ

𝐵 ∗ 𝑇
൅ 𝛼௟ඨ

∑ ∑ ሺ𝑄෠ െ 𝑄 ∗෢ ሻଶ்
௧ୀଵ

஻
௕ୀଵ

𝐵 ∗ 𝑇
 

(35) 

𝑄෠ ൌ 𝑙𝑜𝑔ଵ଴ሺඥ𝑄 ൅ 𝜖 ൅ 0.1ሻ 
(36) 

where 𝐵 is the number of basins (mini-batch size), 𝑇 is the number of days involved in the training (time series length), 365 

and 𝑄෠  is the log-transformed streamflow (transformation done to better represent the low flows in the training data). 

𝜖  is a small value (1 ∗ 10ି଺) to stabilize the gradient calculation. 𝛼௟ is a weight parameter to balance the model’s 
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performance between high flow and low flow, where a large value of 𝛼௟ intends to improve the low flow performance. 

Here we set 𝛼௟ to 0.25, which was manually tuned in Feng et al. (2022). 

To evaluate model performance, the Nash-Sutcliffe model efficiency coefficient (NSE; Nash & Sutcliffe (1970)), the 370 

Kling-Gupta model efficiency coefficient (KGE; Gupta et al., (2009)), and the low flow and peak flow related 

hydrological signatures were computed for streamflow as well as metrics for other hydrological variables such as ET 

and baseflow. The metrics used to evaluate all model performance were: 

 NSE: The NSE metric was derived from the ratio of the error variance of the modeled time series to the 

variance of the observed time series, with a value of 1 indicating a perfect model and 0 indicating performance 375 

equivalent to using the long-term mean value as the prediction.  

 KGE: The KGE metric considers correlation, bias, and flow variability error, with a perfect simulation having 

a value of 1.  

 Low flow RMSE: The low flow RMSE represents the RMSE of the bottom 30% of the streamflow range. 

 Peak flow RMSE: The peak flow RMSE represents the RMSE of the top 2% of the streamflow range. 380 

 Absolute FLV: The percent of absolute bias of the bottom 30% (“low”) flow range. That is, the sum of the 

absolute bias of the low flow divided by the sum of the low flow values.  

 Absolute FHV: The percent of absolute bias of the top 2% (“peak”) flow range. That is, the sum of the 

absolute bias of peak flow divided by the sum of peak flow values.  

 Baseflow index spatial correlation: The correlation between simulated BFI (𝑄ଶ/𝑄) and BFI from the 385 

CAMELS derived from Ladson et al. (2013) across all basins in a spatial context. 

 Temporal ET simulation NSE: NSE of the ET time series from the models compared against ET data from 

the MODIS satellite mission.  

3. Results and Discussion 

In this section, we first examine the overall performance of the adjoint model in comparison with the sequential model 390 

and direct LSTM simulation. Then, we examine the impact of a structural change (adding capillary rise to improve 

baseflow performance) on the sequential and adjoint models. Finally, we examine how using an explicit sequential 

solution or implicit solutions impacts the spatial distribution of parameters produced by the regionalized 

parameterization network. 

3.1. Adjoint model 395 

Before making any structural changes, the adjoint model already demonstrated a highly competitive streamflow 

prediction performance overall --- its KGE, high-flow, and low-flow metrics are all modestly better than those of the 

sequential model (Table 1). For KGE, the adjoint model (0.75) is higher than the sequential model (0.73) but lower 

than LSTM (0.77). In terms of peak-flow RMSE (lower is better), the adjoint model scored 2.47 mm/day, lower (and 

thus better) than the 2.56 mm/day scored by both the sequential model and LSTM, which was in turn noticeably lower 400 
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than SAC-SMA’s 3.19 mm/day. In terms of low-flow RMSE, the adjoint model’s performance (0.048 mm/day) was 

lower than that of the sequential model (0.074 mm/day) and LSTM (0.055 mm/day). 

Surprisingly, the adjoint model (𝛿HBV.adj) even slightly surpassed the LSTM in peak-flow accuracy, reducing the 

median high-flow RMSE by 0.1 mm/day and the median FHV by 0.2%. While this difference is small, we remind the 

readers that the metrics are extremely difficult to improve at this level and we have not noticed better high-flow metrics 405 

elsewhere for this benchmark. The advance may be attributable to 𝛿HBV.adj’s mass balance preservation (achieved 

by avoiding the thresholds for negative state values) and reduction of numerical errors, which forces the model to 

more accurately represent extreme values. It’s worthwhile to mention that while 𝛿HBV.adj is competitive with LSTM 

at the median on CAMELS basins, as illustrated earlier, it was outperformed by LSTM for the low-KGE basins (lower 

part in Figure 3 where NSE or KGE is in [0,0.5]). One possibility is that rainfall data have significant predictable bias 410 

and errors for these basins (see more discussion in Section 4). On a side note, this comparison also highlights that a 

single metric like median KGE or NSE may not tell the full story. 

The adjoint model improved predictions for other hydrological variables not employed as training targets (and thus 

cannot be directly simulated by LSTM), including baseflow and ET. The spatial correlation of the simulated Base 

Flow Index (BFI) (𝑄ଶ/𝑄) was enhanced to 0.83 in comparison with the sequential model’s correlation of 0.76 (Table 415 

2). This improvement is consistent with the adjoint model's superior ability to capture low flows. The correlation of 

simulated ET to the MODIS product was increased from 0.59 with the sequential model to 0.61 with the implicit 

(adjoint) model. Both BFI and MODIS products are only alternative estimates, but they are derived using different 

methods and MODIS utilizes independent information, and thus a better agreement is nonetheless an indication of 

better model behavior. 420 

As the implicit model comprehensively improved the streamflow simulation (high and low flows, uncalibrated 

variables), we conclude that the numerical errors of the sequential model, introduced by the dependence on the order 

of calculations, have a negative impact on the model’s ability to represent hydrologic dynamics and fit observations. 

The differences are admittedly small, but one should not expect major gaps here because the sequential model was 

already highly competitive and did not leave too much room for improvement (Feng et al., 2022; 2023). It is also 425 

worthwhile mentioning that the small differences in the median metrics could manifest as larger differences in 

capturing some peak events (Figure 6). 

Probing further into the low-flow issue, the sequential model seemed to have significant structural deficiencies in 

representing low flows, which were remediated by using the implicit solver. The sequential model’s FLV values were 

much larger than LSTM’s  (Figures 4a & 4c). With the implicit solver, the adjoint model reduced FLV for a number 430 

of regions: (i) on the Great Plains; (ii) in Indiana/Ohio (south of Lake Michigan); and (iii) some basins in the southeast 

including Florida (Figure 4e). Therefore, the numerical errors with the sequential model exerted a substantial negative 

impact on the model’s ability to accurately represent baseflow. The adjoint model mitigated the overestimation of zero 

and near-zero flows in arid areas (as seen in Figure 6, site i) and also corrected the underestimation of the recession 

limb (refer to Figure 6, site ii).  435 

We suspect the above-highlighted regions are where effective flow strongly competes with runoff and ET, and thus 

the order of calculations has large impacts on the separation of fluxes. On the Great Plains, the precipitation tended to 
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be in sync with potential ET, and both were high in summer months (Fang and Shen, 2017) --- when the sequential 

HBV calculates ET before effective flow, there can be significantly less effective flow than if effective flow was 

computed first. The belt of Indiana/Ohio has compacted soil with high bulk density and difficulty with drainage and 440 

thus a shallow water table, which also exists for Florida due to the low relief. In all of these cases, there is competition 

between effective flow and other processes (ET or excess rainfall): calculating excess first could generate more excess 

volume than would be if ET is calculated first. In the arid southwest, the competition between effective flow and ET 

is also important. The implicit scheme mitigates this problem by solving two operators simultaneously while avoiding 

overshooting fluxes or stability issues, which enables a better fit to the data.  445 
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Table 1: Summary of statistical streamflow metrics for all models in the testing period using Daymet meteorological forcing 
data. We used the code from Kratzert et al. (2019) for cross-group comparability.   

Model Median 
NSE 

Median 
KGE 

 Median  
absolute 
(non-
absolute) 
FLV (%) 

 Median  
absolute 
(non-
absolute) 
FHV (%) 

Median low 
flow RMSE 
(mm/day) 

Median 
peak flow 

RMSE 
(mm/day) 

Dynamic  
parameters 

LSTM  
0.73 0.77 

40.59 
(29.70) 

13.46 
 (-4.19) 

0.055 2.56  

SAC-SMA 
0.66 0.73 

59.40 
(46.96) 

17.55 
 (-9.79) 

0.081 3.19 - 

𝛿HBV 
0.73 0.73 

56.53 
(50.93) 

15.29 
 (-8.89) 

0.074 2.56 𝛾,𝛽 

𝛿HBV.adj 
0.72 0.75 

43.29 
(37.61) 

13.25 
 (-4.33) 

0.048 2.47 𝛾,𝛽, 𝜃ி஼ 

𝛿HBV 
improved 

0.73 0.75 
35.69 

(21.09) 
15.45 

 (-10.61) 
0.049 2.72 𝛾,𝛽 

𝛿HBV.adj 
improved 

0.73 0.76 
37.63 

(28.63) 
14.36 

 (-6.04) 
0.047 2.59 𝛾,𝛽, 𝜃ி஼ 

 450 
Table 2: Summary of the statistical hydrological signatures of all models in the testing period 

 
Methods 

Baseflow index  
spatial correlation 

Median NSE 
of temporal ET 

simulation 

LSTM - - 

SAC-SMA - - 

𝛿HBV 0.76 0.59 

𝛿HBV.adj  0.83 0.61 

𝛿HBV 
improved 

0.80 0.54 

𝛿HBV.adj 
improved   

0.86 0.6 

 



18 
 

 
Figure 3:  Empirical cumulative distribution function of test performance metrics for all models: Nash-Sutcliffe Efficiency 
(NSE, left) and Kling-Gupta Efficiency (KGE, right). LSTM represents a fully data-driven deep learning model previously 455 
used in Kratzert et al. (2019), and SAC-SMA is a purely process-based model and the simulation results are provided in 
CAMELS. 𝜹HBV represents the original differentiable explicit “sequential” HBV model, and 𝜹HBV.adj is the implicit 
adjoint-based HBV model. “Improved” indicates models where a capillary flux was added from the lower subsurface zone 
to the surface soil to mitigate issues with zero and low flows.  
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 460 
Figure 4. Maps of percent of absolute bias of the bottom 30% (“low”) flow range (absolute FLV, %) of (a) the LSTM model, 
(b) the sequential model (c) the adjoint model, and (d) the adjoint improved model; and maps of differences in FLV between 
(e) the adjoint model and the sequential model, (f) the adjoint improved model and the adjoint model, (g)the sequential 
improved model and the LSTM model, and (h) the adjoint improved model and the LSTM model. In (e), (f), (g), and (h), 
dark color indicates an improvement in baseflow representation. The sites annotated in the maps represented by star-465 
shaped points (and labeled with i, ii, and iii in (a)), represent the locations for the plots in Figure 6. 

3.2 The impact of structure changes of HBV 
Although the implicit scheme improved the simulations, all models, including the LSTM, exhibited significant 

underperformance within the geographical expanse of the Great Plains (Figure 5), particularly pronounced in areas 

marked by low, or even zero, baseflow conditions (Figure A1d in Appendix). In particular, the original HBV model 470 

encountered challenges in accurately simulating instances of zero flow due to its structural limitations, resulting in 
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high FLV values (Figure 4b&c). Specifically, even a minimal precipitation event leads to the creation of a recharge 

flow in HBV from the soil moisture zone to the subsurface soil zone, which subsequently contributes to the base flow.  

   
Figure 5. Maps of Kling-Gupta Efficiency (KGE) for (a) LSTM, (b) SAC-SMA, (c) The sequential model (d) the adjoint 475 
model, (e) the sequential improved model, and (f) the adjoint improved model.  The sites annotated in the maps represented 
by star-shaped points labeled with (i), (ii), and (iii) represent the locations for the plots in Figure 6.                                                                         
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Figure 6: The time series of streamflow simulations from models and observation at locations annotated in Figure 4 and 
Figure 5. KGE values of models in the whole testing period are listed in the subfigures. 480 

As we enhanced the HBV model by adding a capillary rise from the lower subsurface zone to the soil zone, the 

baseflow simulations were improved for both the sequential and adjoint models (Table 1 and Figure 4c&d), with 

improvements over the default adjoint model in both absolute FLV (from 43.29 to 37.63 mm/day) and baseflow index 

(from 0.83 to 0.86). This means a decent description of baseflow in arid regions needs a mechanism to help the model 

produce zero or near-zero baseflow, such as returning water from the lower zones to the upper zone (though multiple 485 

other structural changes may have similar effects - see Section 2.2.2). The structural change mostly continued to 

improve FLV, substantially reducing FLV within the western coastal regions, the southwestern region, the Great 

Plains, and the Gulf Coastal Plain, characterized by relatively flat topography and where groundwater-driven flow 

contributes proportionally less to the overall streamflow dynamics, as evident from the associated low baseflow index 

(Figure 4f and Figure A1d).  490 
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The improvements with baseflows comes with a penalty in the high flows. The best adjoint improved model has a 

low-flow RMSE of 0.047 mm/day, better than the sequential model, the adjoint model without capillary rise, or LSTM 

(Table 1). However, the high-flow RMSE did see a slight increase from 2.47 to 2.59 mm/day, but still better than the 

sequential models (Table 1 & Figure 6, site iii). A critical divergence in absolute FLV of 𝛿HBV improved models and 

LSTM appears in the center US (Figure 4g&h), where accurate flow predictions depend significantly on the fidelity 495 

of actual ET simulations.  

3.3 Analysis of impacts on parameterization 

The adjoint and sequential models achieved optimal performance with different dynamic parameterizations in this 

temporal test (trained and tested on the same basins but in different periods). The sequential model used 𝛾 and 𝛽 as 

dynamic parameters while the adjoint model used dynamic 𝛾, 𝛽 and field capacity, 𝜃ி஼.  𝜃ி஼ plays a significant role 500 

in computing effective rainfall, excess, evapotranspiration (ET), and capillary rise, exerting substantial influence over 

infiltration and recharge mechanisms. Implicit schemes, involving more intricate computations like solving nonlinear 

equations, enables greater adaptability to data. Adapting 𝜃ி஼ dynamically can improve the model's ability to represent 

real-world hydrological behavior, such as soil shrink and swell, frozen ground, soil surface sealing and expansion of 

the saturation excess areas (or variable source area) (Schneiderman et al., 2007) which are not directly considered in 505 

the default HBV.  

The spatial patterns of the regionalized HBV parameter values demonstrate moderate differences but still a significant 

level of consistency between the sequential and adjoint models, suggesting that our regionalization is robust. These 

patterns also exhibit similarities to the parameter values estimated by Beck et al. (2016) (Figure A2 in the Appendix, 

reprinted) and also conform well with large-scale climate patterns on CONUS (Figure 7a&b). It was known previously 510 

that explicit and implicit schemes arrive at very different optimal parameters (Kavetski and Clark, 2010) so we had 

expected larger discrepancies, but the results show only moderate shifts. Such consistency is likely due to the strong 

implicit constraints imposed by parameter regionalization using data from the whole CONUS. Since all basins are 

served by the same neural network for the mapping, 𝜃 ൌ 𝑔௪ሺ𝑥,𝐴ሻ, it ensures autocorrelation in the parameter fields 

due to autocorrelation in the used predictors, and thus suppresses overfitting to local noise and numerical errors. As a 515 

result, the existence of numerical errors alone did not lead to noisy metric surface for even the explicit model (as 

shown in (Kavetski and Clark, 2010)). Previously, it was difficult to efficiently impose such strong constraints and 

nearly optimally learn the parameters, but the differentiable modeling framework can enable regionalization at low 

cost and high parallel efficiency. 

Delving deeper into the parameter field changes due to employing the implicit solver, we found that the adjoint model 520 

seems to have tampered down some large (close-to-bound) parameter values, which suggests that parameter 

compensation for numerical error is mitigated. The shape coefficient, 𝛽, exhibits larger values (>4) within warm 

climate regions, while lower values (<3) characterize cold and mountainous regions (Figure 7 & Figure A1a). In the 

North Dakota, Gulf Coastal Plain, and Florida, the adjoint model predicts a reduced  𝛽 compared to the sequential 

model. 𝛽 can influence the flashiness of the peaks and a larger 𝛽 tends to cause more threshold-like behaviors. Since 525 

the sequential model calculates ET after effective rainoff and excess, the available water for runoff is more than that 
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for the adjoint model which solves the equation implicitly, and thus needs such a large 𝛽 to generate the same amount 

of effective flow. A similar pattern is observed for the field capacity, 𝜃ி஼, of the sequential model. However, the 

adjoint model's field capacity estimation for the northeastern US is notably reduced compared to the sequential model, 

attributed to smaller clay fraction and forest fraction (Figure A1b&c), crudely aligning with estimated 𝜃ி஼ reported 530 

by Beck et al. (2016).  

The adjoint model provided a reasonable estimation for other key parameters, including the recession coefficient of 

the lower subsurface zone (𝜃௄మ) and the wilting point (𝜃௅௉). 𝜃௄మ usually exhibits a correlated pattern to the baseflow 

index (BFI) (Figure A1d). Higher BFI indicates greater groundwater-based base flow, corresponding to a lower 𝜃௄మ 

value that leads to diminished groundwater discharge during low-flow periods. Both the sequential and adjoint models 535 

exhibited a consistent 𝜃௄మ pattern that contrasts with the baseflow index (BFI) pattern (Figure 7 & Figure A1d).  

Overall, the estimated wilting point, 𝜃௅௉, of the sequential model is lower than that of the adjoint model, leading to 

increased ET. As mentioned, ET being underestimated arises from the sequential solving approach of the sequential 

model, a smaller 𝜃௅௉ compensate for such numerical errors. 

 540 
Figure 7: Map of the optimized parameter 𝛃, field capacity, 𝛉𝐅𝐂, the recession coefficient of lower subsurface zone, 𝛉𝐊𝟐 , and 
the wilting point, 𝛉𝐋𝐏 , from (a) sequential model and (b) adjoint model. The sites annotated in the maps represented by 
star-shaped points labeled with letters A-D, represent the locations for the plots in Figure 8. 
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The sequential and adjoint models exhibit similar sensitivity patterns across varying HBV parameters in high-545 

performance basins (as illustrated in Figure 8A&B, and geographical locations in Figure 7). This consistency again 

highlights the stability of the regionalization scheme, in contrast to the noisy metric surface shown in Kavetski and 

Clark (2010) for single basins. For these two basins, we see a smooth contour where the NN-predicted values 

(annotated by the symbol “o”) were not too far from the optimal value. However, in basins exhibiting poor 

performance (as depicted in Figure 8C&D), their differences enlarged and apparently numerical errors shifted the 550 

parameter distributions. Although the overall contour patterns stay similar, the values of the contours have changed 

quite significantly, due to the dependence on the calculation order. 

The process of parameter regionalization introduces a trade-off between performance and spatial coherence, leading 

to parameters that might not be optimal for each specific basin; when this gap is too large, it suggests there might be 

some structural issues or missing information. Take basin (D) (Figure 8D) as an example, where the optimal values 555 

for 𝜃ி஼ and 𝛽 fall within the ranges of 100 - 200 mm and 1.0 - 4.0, respectively, but the NN-predicted parameter 

values (centers of the KGE contours in Figure 8) deviate significantly from these optimal ranges. The regionalized 

parameters thus produced a rather low KGE of -0.3. This trade-off could mean that some key processes are not well 

represented and the parameters could potentially compensate for these processes, but the compensation was prevented 

by regionalization. A notable example is the absence of topographic information and subbasin-scale spatial 560 

heterogeneity, which are crucial for modeling arid basins but were not fully considered by the present parameterization 

network. These parameter gaps give us hints for the next stage of model improvements. 

 

Figure 8: Impact of numerical schemes on the KGE surface of HBV model: The contour of KGE calculated from the (I) 
sequential model and (II) adjoint model on the 2D slice of field capacity (𝛉𝐅𝐂) and parameter 𝛃. The predicted parameter 565 
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values are positioned at the central point of the contours delineated by circles. The locations of selected sites are annotated 
in Figure 7. 

4. Further discussion 

While this work focuses on enabling implicit solvers in differentiable modeling, we do not suggest that explicit solvers 

are to be discouraged. It has long been explored in the numerical algorithm literature that each type of solver has 570 

advantages and disadvantages and is suitable for different problems. For example, implicit solvers are not only 

preferred but also necessary for stiff ODEs, especially those with dynamics on vastly different time scales and those 

resulting from the discretization of elliptic PDEs. Using explicit solvers for them could necessitate very small time 

steps.  

Further complications of using explicit schemes with small time steps include computational expenses, parallel 575 

efficiency, and matching forcing functions. Even though hourly data are now publicly available, directly training an 

hourly model with ML techniques remains computationally expensive and may also cause the problem of gradient 

vanishing if the training time steps are too numerous (Gauch et al., 2021; Greff et al., 2017). The numerical schemes 

employed in the physical models within the differentiable modeling framework need to maintain stability for 

simultaneous large-scale simulations in each minibatch while also allowing for gradient tracking. Batched learning 580 

and parallel efficiency may prefer uniform operations across basins and challenge the application of adaptive time-

stepping algorithms. We conducted tests on the differentiable HBV model with various numerical schemes and fixed 

smaller time steps (Table A2 & Figure A3 in Appendix). The sequential model and implicit adjoint model with a 1-

day time step presented higher performance than the explicit Euler schemes with smaller time steps or the fourth-order 

Runge-Kutta scheme. The main reason may be that the daily forcing inputs and daily physical parameters from the 585 

neural network do not match the smaller time steps within a day. Thus, explicit schemes with smaller time steps may 

be complicated by the need for matching forcing functions as well. Some multi-time-scale ML techniques have been 

used to predict hourly flood hydrographs using daily flow data to avoid gradient vanishing issues in the direct hourly 

training (Gauch et al., 2021; Sarıgöl and Katipoğlu, 2023). These approaches present possible solutions for future 

investigations. 590 

The parameterization function (the neural network) embedded in the differentiable models demonstrates robustness, 

as evidenced by the similarity of parameter patterns and metric surfaces derived from various numerical schemes in 

Figure 7 and Figure A3. We did not observe a notable macroscale roughness in the metric surface (Figure A3) as 

shown in Kavetski and Clark (2010) when using explicit schemes. Moderate distortions and roughness were present 

on the KGE surface in models employing the RK scheme (sites A and D). As we reduced the time steps and 595 

transitioned to implicit schemes, these distortions seem to have alleviated and converged toward the metric surface, 

consistent with the better numerical solution. That is, the 4-hourly and hourly patterns are more similar to the implicit 

results than that of the RK scheme. The convergence toward the implicit scheme suggests that the implicit scheme 

results are more reliable. 

The adjoint method was used in this work to support the implicit numerical scheme in differentiable models, which 600 

allows for the efficient joint training of the neural networks with physical models using gradient descent. Such joint 
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and “online” training on big data is not possible without the process-based model being differentiable, because the 

only presently known way to train such a large number of weights is via backpropagation. While we utilized a coupled 

neural network in this work for regional parameterization, it can also be used to replace any component of the physical 

model for knowledge discovery. For example, the runoff module in the HBV model could be replaced with a neural 605 

network. Thanks to their ability to train on big data, differentiable models can be trained on all basins and constrain a 

common neural network to learn a universal relationship between the inputs and the physical parameters. Such 

relationships can be used for interpolation and extrapolation at sites lacking observations.  

While the differentiable implicit model outperforms the sequential one and offers state-of-the-art performance, it 

incurs a substantially larger computational cost. Newton's method to solve the implicit equation requires a number of 610 

iterations (~3 to 4 iterations to solve Eq. 29) and, for the sake of the adjoint, we need to solve a matrix (Eq. 33). The 

calculation of the Jacobian matrix for multiple basins, depending on the batch size, also consumes time. In addition, 

the more complicated computational instructions of the adjoint procedure may encounter higher CPU overhead and 

thus lower GPU utilization rate compared to the forward simulations. Due to all these reasons, the computational cost 

is almost 5-10 times that of the sequential model. For context, compared to running traditional models on CPUs, our 615 

implementation is already orders of magnitude more efficient due to parallel efficiency. Nonetheless, the increased 

computational demand for the implicit solver still creates challenges for training at large scales as it requires thousands 

of forward simulations. As a potential solution, based on the parameter consistency between the sequential and the 

implicit models, it seems we can use the inexpensive sequential model as an “explorer model” for model structure 

identification, hyperparameter tuning, and neural network pretraining. Then we can fine-tune the network using the 620 

adjoint model. Hence, both models offer utility for global-scale applications. Although the adjoint model already 

outperformed LSTM in terms of low-flow and high-flow RMSE, which is an astounding result, they still slightly fell 

behind LSTM at certain basins with poor performance in the central and western US (arid regions). In the future, we 

can assess multiple hypotheses that may explain why the adjoint model’s performance in these regions is not as good 

as that of LSTM: (A) the differentiable model is more hampered by precipitation bias in these regions than LSTM, 625 

which can internally account for predictable bias; (B) HBV’s baseflow inadequacy arises due to not fully utilizing 

forcing information. LSTM can fully utilize information in the inputs, e.g., solar radiation and vapor pressure, while 

the present HBV model only uses temperature in determining PET, apart from precipitation. The difference in solar 

radiation and vapor pressure could have impacted long-term water balance and baseflow. Future work could use the 

Penman-Monteith equation for PET, which considers vapor pressure, or learn better PET equations from data (Zhao 630 

et al., 2019). (C) HBV faces a larger tradeoff between matching the high and low flow portions of the observed 

hydrographs, and the adjoint models sacrificed low-flow performance to some extent in favor of better overall 

performance; (D) the model backbone, HBV, is unable to represent some groundwater dynamics, e.g., lateral 

redistribution of moisture from hillslope to valley (Clark et al., 2015; Fan et al., 2019). While LSTM could internally 

form a cascade of neurons that transfers mass akin to lateral groundwater movements, the two-layer groundwater 635 

structure in HBV is too simple to represent such impacts. These hypotheses will lead us to improved model structures 

with the help of data. An unprecedented advantage with differentiable modeling is that we can simultaneously learn 
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robust relationships from large data and find nearly optimal parameterization schemes. This reduces the complex, 

iterative testing between different model structures and parameter optimization. 

In future research, it would be valuable to evaluate the advantages and disadvantages of "optimize-then-discrete" 640 

versus "discretize-then-optimize" adjoint methods in hydrological differentiable models. Generally, the "optimize-

then-discrete" approach tends to be less accurate because of gradient inaccuracies when the adjoint state differential 

equations aren't sufficiently resolved. On the other hand, the adjoint in the "discretize-then-optimize" method is solved 

from the Jacobian matrix using automatic differentiation, offering greater efficiency and accuracy compared to 

numerically solving the adjoint differential equation (Onken and Ruthotto, 2020). Nevertheless, it requires more work 645 

to compare the two options. 

The adjoint used in this work is derived for the gradient of the Newton solver, such that it can theoretically support 

any model that can be solved with the Newton solver—not only bucket models governed by ODEs but also distributed 

models governed by PDEs. However, the challenge may still exist in calculating the Jacobian matrix for a batch of 

basins for PDEs, as the distributed parameters in PDEs are significantly greater in number than those in ODEs, and 650 

can slow down the efficiency of the model in both forward and backward modes. 

AD is a tool that we seldom used prior to the prevalence of deep learning. Neither did we have modern GPUs or the 

software to maximize its utilization. The past few years saw substantial software and hardware investments from the 

artificial intelligence community that have made these tools orders-of-magnitude more efficient. Utilizing these tools 

and running hydrologic models on such platforms means the water community can leverage these investments and 655 

can grow with the AI community at little cost. For example, the model can automatically become even faster with 

slight effort to embrace just-in-time compilation of torch 2.0 (Wu, 2023). 

5. Conclusions 

Our comparisons show that the numerical errors associated with the sequential model, and especially its dependence 

on the order of computation, had detrimental impact on its representation power -- it cannot provide high-quality low 660 

flow, high flow, and groundwater simulations and can introduce parameter compensations. The adjoint method for 

gradient calculation enables the use of implicit solvers in differentiable modeling, partially mitigating the numerical 

errors. While not explicitly demonstrated, other hydrologic problems that require implicit solvers can similarly benefit 

from the adjoint method. With the implicit solver and with a structural change (capillary rise), our model 

comprehensively improved the simulations of low flow, and an uncalibrated variable, baseflow fraction. While some 665 

of the differences in metrics may not seem large, they are already significant and could result in flood peaks being 

more accurately predicted. The comparison of baseflow simulations also implies that the same numerical issue may 

hamper other models so that, in order to achieve top-of-the-line performance with differentiable models, numerical 

errors have to be examined and the implicit model and adjoint will be needed. 

The capacity of differentiable models to outperform the LSTM in low-flow and high-flow metrics at the median of 670 

CAMELS basins proves that structural priors (and physical interpretability) and state-of-the-art performance are not 

mutually exclusive, and pure deep networks are not necessarily the performance ceiling of environmental models 

(although we do expect them to be close to optimal). In fact, for rarely-observed events or spatial extrapolation, 
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structural priors may potentially overcome data limitations. The fact that modifying the structure can result in better 

physical representations hints that we can make further improvements to baseflow and peak flow, and identify better 675 

structure from data.  

The regionalization scheme produced overall stable parameter fields that, on first look, have similar patterns between 

sequential and implicit models, but a deeper investigation shows that the implicit scheme reduced large, near-bound 

parameter values where competition between fluxes is likely to occur. This is visual evidence that parameter 

compensation occurs more strongly with the sequential model and it can be mitigated. Since it is preferable to remove 680 

the interference of numerical errors prior to interpreting the parameter fields, the implicit model would be favored 

when the interest is in the intermediate parameters or internal fluxes. The ancient demon of numerical errors remains 

relevant in the new era of big data, but may be mitigated by the adaptive capability of deep networks.  
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Appendix 

Table A1 are the forcing and attribute variables used in the LSTM models. 

 
Table A1: Summary of the forcing and attribute variables used in all Models 
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 Variable name Unit 

Forcings 

PRCP Precipitation mm/day 

Ep Potential evapotranspiration mm/day 

T Temperature °C 

Attributes 

p_mean Mean daily precipitation mm/day 

pet_mean Mean daily PET mm/day 

p_seasonality 
Seasonality and timing of 

precipitation 
- 

frac_snow 
Fraction of precipitation 

falling as snow 
- 

Aridity PET/P - 

high_prec_freq 
Frequency of high 
precipitation days 

days/year 

high_prec_dur 
Average duration of high 

precipitation events 
days 

low_prec_freq Frequency of dry days days/year 

low_prec_dur 
Average duration of dry 

periods 
days 

elev_mean Catchment mean elevation m 

slope_mean Catchment mean slope m/km 

area_gages2 
Catchment area (GAGESII 

estimate) 
km2 

frac_forest Forest fraction - 

lai_max 
Maximum monthly mean of 

the leaf area index 
- 

lai_diff 

Difference between the 
maximum and minimum 

monthly 
mean of the leaf area index 

- 

gvf_max 
Maximum monthly mean of 

the green vegetation 
- 

gvf_diff Difference between the - 
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maximum and minimum 
monthly mean of the green 

vegetation fraction 

dom_land_cover_frac 
Fraction of the catchment 

area associated with 
the dominant land cover 

- 

dom_land_cover Dominant land cover type - 

root_depth_50 

Root depth at 50th 
percentile, extracted from a 

root depth 
distribution based on the 
International Geosphere‐
Biosphere Programme 

(IGBP) land cover 

m 

soil_depth_pelletier Depth to bedrock - 

soil_depth_statgso Soil depth m 

soil_porosity 
Volumetric soil porosity 

soil_conductivity 
- 

soil_conductivity 
Saturated hydraulic 

conductivity 
cm/hr 

max_water_content Maximum water content m 

sand_frac Sand fraction - 

silt_frac Silt fraction - 

clay_frac Clay fraction - 

geol_class_1st 
Most common geologic 

class in the catchment basin 
- 

geol_class_1st_frac 

Fraction of the catchment 
area associated with its 
most common geologic 

class 

- 

geol_class_2nd 
Second most common 
geologic class in the 

catchment basin 
- 

geol_class_2nd_frac 
Fraction of the catchment 

area associated with its 2nd 
most common geologic 

- 
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class 

carbonate_rocks_frac 
Fraction of the catchment 

area as carbonate 
sedimentary rocks 

- 

geol_porosity Subsurface porosity - 

geol_permeability Subsurface permeability m2 

 705 
We provided the maps four attributes, aridity, forest fraction, caly fraction, and the baseflow index, used in the 

differential models to support our analysis. 

 
Figure A1: Map of the static attributes: (a) Aridity, (b) Forest Fraction, (c) Caly Fraction, and (d) Baseflow index from 
CAMELS dataset.  710 

 
We reprint the Figure 4 in Beck et al. (2016) to facilitate a comprehensive parameter comparison. 
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Figure A2: For HBV, mean values of the regionalized parameters based on the 10 most similar donor catchments for: (a) 
the maximum water storage in the unsaturated-zone store (FC); (b) the soil moisture value above which actual evaporation 715 
reaches potential evaporation (LP); (c) the shape coefficient of recharge function (BETA); and (d) the recession coefficient 
of lower groundwater store (K2). Reprinted with permission from Beck et al. (2016). 

We conducted tests on the differentiable HBV model with various numerical schemes and time steps (Table A2 & 
Figure A3). The forcing and physical parameters estimated by the neural network (LSTM) remain constant within a 
day. In theory, with smaller time steps, we were supposed to configure the forcing function and LSTM to provide 720 
hourly inputs and physical parameters that match the progression of time within a day, i.e., the inputs should reflect 
diurnal changes in forcing. However, this configuration would greatly increase the memory usage and complexity and 
is thus out of the scope of this study (Gauch et al., 2021). Here we distinguish between explicit scheme and sequential 
scheme with operator splitting: the explicit scheme solves the right-hand side of the ODE simultaneously while the 
sequential scheme applies an order to the operations, generally from surface to subsurface, as directed in the original 725 
HBV. The fixed-step explicit Euler scheme with one-day time step caused divergence in the large-scale simulation 
due to its instability. However, with 4-hour and 1-hour time steps, the explicit Euler schemes exhibited better 
performance than the 4th-order Runge-Kutta (RK) explicit scheme but still lagged behind the daily sequential scheme 
that employed ad-hoc operation splitting or the implicit adjoint scheme. The regional parameters learned through 
various numerical schemes exhibit similarity, indicating the robustness of the parameterization function (the neural 730 
network) embedded within the differentiable models (Figure A3). However, parameter distortion and surface 
roughness in the KGE models employing explicit schemes, particularly the RK scheme, were still observed.   
 

Table A2: Summary of streamflow metrics for models using different numerical schemes and time steps. Timing was 
obtained on a Nvidia Tesla V100 GPU. 735 

Model Numerical 
scheme 

Time 
step 

Memory 
Usage per 

batch 

Computational 
time per batch 

Median 
NSE 

Median 
KGE 

Median 
low flow 
RMSE 

(mm/day) 

Median 
peak 
flow 

RMSE 
(mm/day) 

𝛿HBV Fixed-step 
explicit 1 day 2274M 1.6s - - - - 
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𝛿HBV 
The fourth-

order Runge-
Kutta explicit 

1 day 2532M 3.9s 0.69 0.70 0.061 3.25 

𝛿HBV Fixed-step 
explicit 4 hours 2706M 6.3s 0.72 0.71 0.09 2.50 

𝛿HBV Fixed-step 
explicit 1 hours 4146M 18.1s 0.72 0.71 0.08 2.63 

𝛿HBV Sequential  1 day 2266M 1.5s 0.73 0.73 0.074 2.56 

𝛿HBV.adj Implicit 
adjoint 1 day 2788M 19.5s 0.72 0.75 0.048 2.47 
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Figure A3: Impact of numerical schemes on the KGE surface of the HBV model: The contour of KGE calculated from the 
(I) 4th order Runge-Kutta explicit scheme, (II) Fixed-step Euler explicit with 4 hour time step with 4 hour time step, (III) 
Fixed-step Euler explicit with 1 hour time step, (IV) sequential scheme, and (V) implicit adjoint scheme on the 2D slice of 
field capacity (FC) and parameter. The predicted parameter values are positioned at the central point of the contours 740 
delineated by circles. The locations of selected sites are annotated in Figure 7. 



35 
 

References 

Aboelyazeed, D., Xu, C., Hoffman, F.M., Liu, J., Jones, A.W., Rackauckas, C., Lawson, K., 
Shen, C., 2023. A differentiable, physics-informed ecosystem modeling and learning 
framework for large-scale inverse problems: demonstration with photosynthesis 745 
simulations. Biogeosciences 20, 2671–2692. https://doi.org/10.5194/bg-20-2671-2023 

Addor, N., Newman, A.J., Mizukami, N., Clark, M.P., 2017. Catchment Attributes and 
MEteorology for Large-Sample studies (CAMELS) version 2.0. 
https://doi.org/10.5065/D6G73C3Q 

Aghakouchak, A., Habib, E., 2010. Application of a Conceptual Hydrologic Model in Teaching 750 
Hydrologic Processes. Int. J. Eng. Educ. 26. 

Bandai, T., 2022. Inverse Modeling of Soil Moisture Dynamics: Estimation of Soil Hydraulic 
Properties and Surface Water Flux (Ph.D.). University of California, Merced, United 
States -- California. 

Beck, H.E., Pan, M., Lin, P., Seibert, J., Dijk, A.I.J.M. van, Wood, E.F., 2020. Global fully 755 
distributed parameter regionalization based on observed streamflow from 4,229 
headwater catchments. J. Geophys. Res. Atmospheres 125, e2019JD031485. 
https://doi.org/10.1029/2019JD031485 

Beck, H.E., van Dijk, A.I.J.M., de Roo, A., Miralles, D.G., McVicar, T.R., Schellekens, J., 
Bruijnzeel, L.A., 2016. Global-scale regionalization of hydrologic model parameters. 760 
Water Resour. Res. 52, 3599–3622. https://doi.org/10.1002/2015WR018247 

Bennett, A., Nijssen, B., 2021. Deep learned process parameterizations provide better 
representations of turbulent heat fluxes in hydrologic models. Water Resour. Res. 57, 
e2020WR029328. https://doi.org/10.1029/2020WR029328 

Bergman, T.L. (Ed.), 2011. Introduction to heat transfer, 6th ed. ed. Wiley, Hoboken, NJ. 765 
Bergström, S., 1992. The HBV model - its structure and applications (No. RH No. 4), SMHI 

Reports. Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, 
Sweden. 

Bergström, S., 1976. Development and application of a conceptual runoff model for 
Scandinavian catchments (PhD Thesis). Swedish Meteorological and Hydrological 770 
Institute (SMHI), Norköping, Sweden. 

Bindas, T., Tsai, W.-P., Liu, J., Rahmani, F., Feng, D., Bian, Y., Lawson, K., Shen, C., 2024. 
Improving river routing using a differentiable Muskingum-Cunge model and physics-
informed machine learning. Water Resour. Res. 60, e2023WR035337. 
https://doi.org/10.1029/2023WR035337 775 

Blöschl, G., Bierkens, M.F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, 
J.W., McDonnell, J.J., Savenije, H.H.G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., 
Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., Allen, S.T., Amin, A., 
Andréassian, V., Arheimer, B., Aryal, S.K., Baker, V., Bardsley, E., Barendrecht, M.H., 
Bartosova, A., Batelaan, O., Berghuijs, W.R., Beven, K., Blume, T., Bogaard, T., 780 
Amorim, P.B. de, Böttcher, M.E., Boulet, G., Breinl, K., Brilly, M., Brocca, L., Buytaert, 
W., Castellarin, A., Castelletti, A., Chen, X., Chen, Yangbo, Chen, Yuanfang, Chifflard, 
P., Claps, P., Clark, M.P., Collins, A.L., Croke, B., Dathe, A., David, P.C., Barros, F.P.J. 
de, Rooij, G. de, Baldassarre, G.D., Driscoll, J.M., Duethmann, D., Dwivedi, R., Eris, E., 
Farmer, W.H., Feiccabrino, J., Ferguson, G., Ferrari, E., Ferraris, S., Fersch, B., Finger, 785 
D., Foglia, L., Fowler, K., Gartsman, B., Gascoin, S., Gaume, E., Gelfan, A., Geris, J., 
Gharari, S., Gleeson, T., Glendell, M., Bevacqua, A.G., González-Dugo, M.P., Grimaldi, 
S., Gupta, A.B., Guse, B., Han, D., Hannah, D., Harpold, A., Haun, S., Heal, K., 
Helfricht, K., Herrnegger, M., Hipsey, M., Hlaváčiková, H., Hohmann, C., Holko, L., 
Hopkinson, C., Hrachowitz, M., Illangasekare, T.H., Inam, A., Innocente, C., 790 
Istanbulluoglu, E., Jarihani, B., Kalantari, Z., Kalvans, A., Khanal, S., Khatami, S., Kiesel, 



36 
 

J., Kirkby, M., Knoben, W., Kochanek, K., Kohnová, S., Kolechkina, A., Krause, S., 
Kreamer, D., Kreibich, H., Kunstmann, H., Lange, H., Liberato, M.L.R., Lindquist, E., 
Link, T., Liu, J., Loucks, D.P., Luce, C., Mahé, G., Makarieva, O., Malard, J., 
Mashtayeva, S., Maskey, S., Mas-Pla, J., Mavrova-Guirguinova, M., Mazzoleni, M., 795 
Mernild, S., Misstear, B.D., Montanari, A., Müller-Thomy, H., Nabizadeh, A., Nardi, F., 
Neale, C., Nesterova, N., Nurtaev, B., Odongo, V.O., Panda, S., Pande, S., Pang, Z., 
Papacharalampous, G., Perrin, C., Pfister, L., Pimentel, R., Polo, M.J., Post, D., Sierra, 
C.P., Ramos, M.-H., Renner, M., Reynolds, J.E., Ridolfi, E., Rigon, R., Riva, M., 
Robertson, D.E., Rosso, R., Roy, T., Sá, J.H.M., Salvadori, G., Sandells, M., Schaefli, 800 
B., Schumann, A., Scolobig, A., Seibert, J., Servat, E., Shafiei, M., Sharma, A., Sidibe, 
M., Sidle, R.C., Skaugen, T., Smith, H., Spiessl, S.M., Stein, L., Steinsland, I., Strasser, 
U., Su, B., Szolgay, J., Tarboton, D., Tauro, F., Thirel, G., Tian, F., Tong, R., Tussupova, 
K., Tyralis, H., Uijlenhoet, R., Beek, R. van, Ent, R.J. van der, Ploeg, M. van der, Loon, 
A.F.V., Meerveld, I. van, Nooijen, R. van, Oel, P.R. van, Vidal, J.-P., Freyberg, J. von, 805 
Vorogushyn, S., Wachniew, P., Wade, A.J., Ward, P., Westerberg, I.K., White, C., 
Wood, E.F., Woods, R., Xu, Z., Yilmaz, K.K., Zhang, Y., 2019. Twenty-three unsolved 
problems in hydrology (UPH) – a community perspective. Hydrol. Sci. J. 64, 1141–1158. 
https://doi.org/10.1080/02626667.2019.1620507 

Cao, Y., Li, S., Petzold, L., 2002. Adjoint sensitivity analysis for differential-algebraic equations: 810 
algorithms and software. J. Comput. Appl. Math., Scientific and Engineering 
Computations for the 21st Century - Me thodologies and Applications Proceedings of the 
15th Toyota Conference 149, 171–191. https://doi.org/10.1016/S0377-0427(02)00528-9 

Castaings, W., Dartus, D., Le Dimet, F.-X., Saulnier, G.-M., 2009. Sensitivity analysis and 
parameter estimation for distributed hydrological modeling: potential of variational 815 
methods. Hydrol. Earth Syst. Sci. 13, 503–517. https://doi.org/10.5194/hess-13-503-
2009 

Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D., 2018. Neural ordinary differential 
equations, in: Proceedings of the 32nd International Conference on Neural Information 
Processing Systems, NIPS’18. Curran Associates Inc., Montreal, Canada, pp. 6572–820 
6583. 

Clark, M.P., Fan, Y., Lawrence, D.M., Adam, J.C., Bolster, D., Gochis, D.J., Hooper, R.P., 
Kumar, M., Leung, L.R., Mackay, D.S., Maxwell, R.M., Shen, C., Swenson, S.C., Zeng, 
X., 2015. Improving the representation of hydrologic processes in Earth System Models. 
Water Resour. Res. 51, 5929–5956. https://doi.org/10/f7wc44 825 

Clark, M.P., Kavetski, D., 2010. Ancient numerical daemons of conceptual hydrological 
modeling: 1. Fidelity and efficiency of time stepping schemes. Water Resour. Res. 46, 
W10510. https://doi.org/10.1029/2009WR008894 

Colleoni, F., Garambois, P.-A., Javelle, P., Jay-Allemand, M., Arnaud, P., 2022. Adjoint-based 
spatially distributed calibration of a grid GR-based parsimonious hydrological model over 830 
312 French catchments with SMASH platform. EGUsphere 1–37. 
https://doi.org/10.5194/egusphere-2022-506 

Fan, Y., Clark, M., Lawrence, D.M., Swenson, S., Band, L.E., Brantley, S.L., Brooks, P.D., 
Dietrich, W.E., Flores, A., Grant, G., Kirchner, J.W., Mackay, D.S., McDonnell, J.J., Milly, 
P.C.D., Sullivan, P.L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., 835 
McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, 
X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B.P., Nijssen, B., Safeeq, 
M., Shen, C., Verseveld, W., Volk, J., Yamazaki, D., 2019. Hillslope hydrology in global 
change research and earth system modeling. Water Resour. Res. 55, 1737–1772. 
https://doi.org/10.1029/2018WR023903 840 



37 
 

Fang, K., Shen, C., 2017. Full-flow-regime storage-streamflow correlation patterns provide 
insights into hydrologic functioning over the continental US. Water Resour. Res. 53, 
8064–8083. https://doi.org/10.1002/2016WR020283 

Fang, K., Shen, C., Kifer, D., Yang, X., 2017. Prolongation of SMAP to spatiotemporally 
seamless coverage of continental U.S. using a deep learning neural network. Geophys. 845 
Res. Lett. 44, 11,030-11,039. https://doi.org/10.1002/2017gl075619 

Feng, D., Beck, H., Lawson, K., Shen, C., 2023. The suitability of differentiable, physics-
informed machine learning hydrologic models for ungauged regions and climate change 
impact assessment. Hydrol. Earth Syst. Sci. 27, 2357–2373. 
https://doi.org/10.5194/hess-27-2357-2023 850 

Feng, D., Fang, K., Shen, C., 2020. Enhancing streamflow forecast and extracting insights using 
long-short term memory networks with data integration at continental scales. Water 
Resour. Res. 56, e2019WR026793. https://doi.org/10.1029/2019WR026793 

Feng, D., Liu, J., Lawson, K., Shen, C., 2022. Differentiable, learnable, regionalized process-
based models with multiphysical outputs can approach state-of-the-art hydrologic 855 
prediction accuracy. Water Resour. Res. 58, e2022WR032404. 
https://doi.org/10.1029/2022WR032404 

Fisher, M., Andersson, E., 2001. Developments in 4D-Var and Kalman Filtering (Technical 
Memorandum No. 347), ECMWF Technical Memoranda. European Centre for Medium 
Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, England. 860 

Frame, J.M., Kratzert, F., Raney II, A., Rahman, M., Salas, F.R., Nearing, G.S., 2021. Post-
Processing the National Water Model with Long Short-Term Memory Networks for 
Streamflow Predictions and Model Diagnostics. JAWRA J. Am. Water Resour. Assoc. 
57, 885–905. https://doi.org/10.1111/1752-1688.12964 

Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., Hochreiter, S., 2021. Rainfall–runoff 865 
prediction at multiple timescales with a single Long Short-Term Memory network. Hydrol. 
Earth Syst. Sci. 25, 2045–2062. https://doi.org/10.5194/hess-25-2045-2021 

Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J., 2017. LSTM: A 
Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28, 2222–2232. 
https://doi.org/10.1109/TNNLS.2016.2582924 870 

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared 
error and NSE performance criteria: Implications for improving hydrological modelling. J. 
Hydrol. 377, 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003 

Hannah, D.M., Demuth, S., van Lanen, H.A.J., Looser, U., Prudhomme, C., Rees, G., Stahl, K., 
Tallaksen, L.M., 2011. Large-scale river flow archives: importance, current status and 875 
future needs. Hydrol. Process. 25, 1191–1200. https://doi.org/10.1002/hyp.7794 

Hargreaves, G.H., 1994. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 
120, 1132–1139. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132) 

Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Comput. 9, 1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735 880 

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal 
approximators. Neural Netw. 2, 359–366. https://doi.org/10.1016/0893-6080(89)90020-8 

Jay-Allemand, M., Javelle, P., Gejadze, I., Arnaud, P., Malaterre, P.-O., Fine, J.-A., Organde, 
D., 2020. On the potential of variational calibration for a fully distributed hydrological 
model: application on a Mediterranean catchment. Hydrol. Earth Syst. Sci. 24, 5519–885 
5538. https://doi.org/10.5194/hess-24-5519-2020 

Kavetski, D., Clark, M.P., 2010. Ancient numerical daemons of conceptual hydrological 
modeling: 2. Impact of time stepping schemes on model analysis and prediction. Water 
Resour. Res. 46, W10511. https://doi.org/10.1029/2009WR008896 

Knoben, W.J.M., Freer, J.E., Fowler, K.J.A., Peel, M.C., Woods, R.A., 2019. Modular 890 
Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, 



38 
 

extendable framework providing implementations of 46 conceptual hydrologic models as 
continuous state-space formulations. Geosci. Model Dev. 12, 2463–2480. 
https://doi.org/10.5194/gmd-12-2463-2019 

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., Nearing, G., 2019. 895 
Benchmarking a catchment-aware Long Short-Term Memory network (LSTM) for large-
scale hydrological modeling. Hydrol. Earth Syst. Sci. Discuss. 1–32. 
https://doi.org/10/ggj67p 

Ladson, A.R., Brown, R., Neal, B., Nathan, R., 2013. A standard approach to baseflow 
separation using the Lyne and Hollick filter. Australas. J. Water Resour. 17, 25–34. 900 
https://doi.org/10.7158/13241583.2013.11465417 

Liu, Y., Gupta, H.V., 2007. Uncertainty in hydrologic modeling: Toward an integrated data 
assimilation framework. Water Resour. Res. 43. https://doi.org/10.1029/2006WR005756 

Monteith, J.L., 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–234. 
Mu, Q., Zhao, M., Running, S.W., 2011. Improvements to a MODIS global terrestrial 905 

evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. 
https://doi.org/10.1016/j.rse.2011.02.019 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A 
discussion of principles. J. Hydrol. 10, 282–290. https://doi.org/10.1016/0022-
1694(70)90255-6 910 

Neupauer, R.M., Wilson, J.L., 2001. Adjoint-derived location and travel time probabilities for a 
multidimensional groundwater system. Water Resour. Res. 37, 1657–1668. 
https://doi.org/10.1029/2000WR900388 

Newman, A.J., Sampson, K., Clark, M.P., Bock, A., Viger, R.J., Blodgett, D., 2014. A large-
sample watershed-scale hydrometeorological dataset for the contiguous USA. Boulder. 915 
https://doi.org/10.5065/D6MW2F4D 

Onken, D., Ruthotto, L., 2020. Discretize-Optimize vs. Optimize-Discretize for Time-Series 
Regression and Continuous Normalizing Flows. 
https://doi.org/10.48550/arXiv.2005.13420 

Ouyang, W., Lawson, K., Feng, D., Ye, L., Zhang, C., Shen, C., 2021. Continental-scale 920 
streamflow modeling of basins with reservoirs: Towards a coherent deep-learning-based 
strategy. J. Hydrol. 599, 126455. https://doi.org/10.1016/j.jhydrol.2021.126455 

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., 
Ramadhan, A., Edelman, A., 2021. Universal Differential Equations for Scientific 
Machine Learning. https://doi.org/10.48550/arXiv.2001.04385 925 

Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., Shen, C., 2021a. Exploring the 
exceptional performance of a deep learning stream temperature model and the value of 
streamflow data. Environ. Res. Lett. 16, 024025. https://doi.org/10.1088/1748-
9326/abd501 

Rahmani, F., Shen, C., Oliver, S., Lawson, K., Appling, A., 2021b. Deep learning approaches for 930 
improving prediction of daily stream temperature in data-scarce, unmonitored, and 
dammed basins. Hydrol. Process. 35, e14400. https://doi.org/10.1002/hyp.14400 

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Physics 1, 318–
333. https://doi.org/10/ccmx4x 

Running, S., Mu, Q., Zhao, M., 2017. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 935 
Global 500m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD16A2.006 

Sadourny, R., 1975. The dynamics of finite-difference models of the shallow-water equations. J. 
Atmospheric Sci. 32, 680–689. https://doi.org/10.1175/1520-
0469(1975)032<0680:TDOFDM>2.0.CO;2 

Sarıgöl, M., Katipoğlu, O.M., 2023. Estimation of hourly flood hydrograph from daily flows using 940 
machine learning techniques in the Büyük Menderes River. Nat. Hazards 119, 1461–
1477. https://doi.org/10.1007/s11069-023-06156-x 



39 
 

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural Netw. 61, 85–
117. https://doi.org/10/f6v78n 

Schneiderman, E.M., Steenhuis, T.S., Thongs, D.J., Easton, Z.M., Zion, M.S., Neal, A.L., 945 
Mendoza, G.F., Todd Walter, M., 2007. Incorporating variable source area hydrology 
into a curve-number-based watershed model. Hydrol. Process. 21, 3420–3430. 
https://doi.org/10.1002/hyp.6556 

Seibert, J., Vis, M.J.P., 2012. Teaching hydrological modeling with a user-friendly catchment-
runoff-model software package. Hydrol. Earth Syst. Sci. 16, 3315–3325. 950 
https://doi.org/10/f22r5x 

Shen, C., Appling, A.P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., Baity-Jesi, M., 
Fenicia, F., Kifer, D., Li, L., Liu, X., Ren, W., Zheng, Y., Harman, C.J., Clark, M., 
Farthing, M., Feng, D., Kumar, P., Aboelyazeed, D., Rahmani, F., Song, Y., Beck, H.E., 
Bindas, T., Dwivedi, D., Fang, K., Höge, M., Rackauckas, C., Mohanty, B., Roy, T., Xu, 955 
C., Lawson, K., 2023. Differentiable modelling to unify machine learning and physical 
models for geosciences. Nat. Rev. Earth Environ. 4, 552–567. 
https://doi.org/10.1038/s43017-023-00450-9 

Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H., Lakshmi, V., Liang, X., 
McDONNELL, J.J., Mendiondo, E.M., O’Connell, P.E., Oki, T., Pomeroy, J.W., 960 
Schertzer, D., Uhlenbrook, S., Zehe, E., 2003. IAHS Decade on Predictions in 
Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological 
sciences. Hydrol. Sci. J. 48, 857–880. https://doi.org/10.1623/hysj.48.6.857.51421 

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S.-C., Wilson, B.E., 2020. Daymet: 
Daily Surface Weather Data on a 1-km Grid for North America, Version 4. 965 
https://doi.org/10.3334/ORNLDAAC/1840 

Todd, D.K., Mays, L.W., 2004. Groundwater Hydrology. John Wiley & Sons. 
Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., Shen, C., 2021. From 

calibration to parameter learning: Harnessing the scaling effects of big data in 
geoscientific modeling. Nat. Commun. 12, 5988. https://doi.org/10.1038/s41467-021-970 
26107-z 

Wang, R., Kim, J.-H., Li, M.-H., 2021. Predicting stream water quality under different urban 
development pattern scenarios with an interpretable machine learning approach. Sci. 
Total Environ. 761, 144057. https://doi.org/10.1016/j.scitotenv.2020.144057 

White, L.W., Vieux, B., Armand, D., LeDimet, F.X., 2003. Estimation of optimal parameters for a 975 
surface hydrology model. Adv. Water Resour. 26, 337–348. 
https://doi.org/10.1016/S0309-1708(02)00189-6 

Wu, P., 2023. PyTorch 2.0: The Journey to Bringing Compiler Technologies to the Core of 
PyTorch (Keynote), in: Proceedings of the 21st ACM/IEEE International Symposium on 
Code Generation and Optimization, CGO 2023. Association for Computing Machinery, 980 
New York, NY, USA, p. 1. https://doi.org/10.1145/3579990.3583093 

Zeiler, M.D., 2012. ADADELTA: An adaptive learning rate method. ArXiv Prepr. ArXiv12125701 
1–6. http://arxiv.org/abs/1212.5701 

Zhao, W.L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin, C., Li, X., Qiu, G.Y., 
2019. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 985 
46, 14496–14507. https://doi.org/10.1029/2019gl085291 

Zhi, W., Ouyang, W., Shen, C., Li, L., 2023. Temperature outweighs light and flow as the 
predominant driver of dissolved oxygen in US rivers. Nat. Water 1, 249–260. 
https://doi.org/10.1038/s44221-023-00038-z 

 990 

 


