
 Reviewer #2 

 First of all, I acknowledge the work of the authors to further merge data- and physics-based 
 approaches to modeling by showing how models using implicit solvers can be integrated 
 into a typical machine-learning workflow with backpropagation at its core. This is a valuable 
 contribution to the hydrological modeling sciences, but unfortunately the authors do not 
 convincingly prove in their paper the immediate benefit thereof, and they obscure their point 
 by adding aspects to the study that are not related to the main message. I will explain this in 
 the following: 

 A) The authors are correct that mainstream conceptual hydrological models like HBV have 
 traditionally - and often without much reflection – been used with simple explicit numerical 
 schemes, and a pre-set order of process execution, and that this may cause substantial 
 problems (see Clark and Kavetski, 2010 as cited by the authors), and that implicit schemes 
 can solve these problems. Therefore, in this manuscript, in addition to the description of 
 how to include implicit schemes in MLworkflows, I was expecting a demonstration of how 
 this actually solves a problem. That is, showing that for a particular hydrological modeling 
 task (here: modeling streamflow in daily resolution of the CAMELS-US basins) i) the 
 standard explicit scheme introduces problems and ii) that an implicit scheme solves them. 
 The authors mention this point in the paper (line 324-326), but unfortunately do not address 
 it. For example, one could operate HBV models for some of the CAMELS catchments with 
 various execution orders and extremely fine-grained time-stepping, thus effectively 
 removing the detrimental effect of the explicit scheme, and then compare to a standard time 
 stepping and execution order, and to a model using an implicit scheme. The authors 
 conclude in their study that the (small) model improvements between the HVB-hybrid 
 variants using explicit and implicit schemes are due to problems introduced by the explicit 
 scheme (lines 412-415), but because they do not provide a proof for a cause, the 
 conclusion based on an effect is not convincing. In this context, it might also be interesting 
 to analyze if decreasing negative effects of explicit schemes by higher time stepping (or 
 other changes to the model computational setup) might be more efficient than shifting to 
 implicit schemes. The authors mention that computational costs for the latter increased by a 
 factor of 5-10 (line 581). Increasing the time stepping of the explicit scheme from daily to 6 
 hours would only mean a factor of 4, but would already resolve diurnal cycles, which might 
 be relevant additional information for the model. 

 Thank  you  for  your  suggestions.  The  reviewer’s  main  point  is  that  one  can  use  adaptive  or 
 much  smaller  time  steps  with  explicit  schemes  so  that  implicit  schemes  no  longer  have  an 
 advantage. Well, yes and No. We have several points of response: 

 (1)  Yes,  you  can  reduce  time  steps,  but  with  automatic  differentiation  (AD),  each  step 
 (especially  those  with  thresholds)  incur  memory  usage,  CPU  overhead  and  add  to  the 
 length  of  the  gradient  chain,  in  addition  to  adding  to  the  computational  expenses  during 
 forward.  Many  times  we  need  threshold  functions  even  with  a  small  time  step  because 
 some  operations  like  logarithm  cannot  admit  zero  or  the  smallest  negative  values.  Using  a 
 small time step will incur more memory use. 

 (2)  We  agree  that  explicit  schemes  are  valuable  can  be  used  in  many  cases,  but  it  has  been 
 studied  extensively  in  numerical  algorithms  that  stiff  ODEs  are  best  handled  by  implicit 
 schemes  (  Sundnes,  2023,  https://en.wikipedia.org/wiki/Stiff_equation  ).  These  numerics  are 
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 documented  in  many  decades  of  literature  and  we  believe  it  no  longer  requires  us  to  prove 
 it.  Here  we  are  saying  we  must  enable  implicit  solvers,  not  saying  explicit  solvers  cannot  be 
 used. They both have their advantages and disadvantages. 

 (3)  Batch-dimension  parallelism  is  absolutely  crucial  because  the  point  of  differentiable 
 modeling  is  to  support  big-data  learning.  Batch  enables  learning  across  many  basins  or 
 instances,  but  the  solver  may  also  run  into  different  numerical  characteristics  and 
 time-stepping  requirements,  rather  than  the  uniform  operations  preferred  by  the  GPU.  This 
 is  why  adaptive  time  stepping  is  tricky  for  running  differentiable  models  with  minibatch  and 
 the  adjoint  solves  an  important  problem.  In  fact,  we  have  tried  adaptive  explicit  ODE 
 solvers,  and  while  they  work  beautifully  for  one  problem,  they  do  not  work  well  for  parallel 
 simulations  with  a  batch.  Furthermore,  to  use  small  time  steps  rigorously,  in  theory  you 
 need  to  match  forcing  inputs  to  those  tiny  steps,  which  requires  interpolation  schemes  and 
 potentially adds lots of complexity. 

 We will add these points into the following paragraph to the revised paper: 

 “  While this paper focuses on enabling implicit solvers in differentiable modeling, we do not 
 suggest that explicit solvers are to be discouraged. Runge-Kutta schemes can be well 
 suited for a number of cases and may be attempted for the rainfall-runoff case. It has long 
 been explored in the numerical algorithm literature that each type of solvers has their 
 advantages and disadvantages and is suitable for different problems. For example, implicit 
 solvers are not only preferred but also necessary for stiff ODEs, especially those with 
 dynamics on vastly different time scales and those resulting from the discretization of elliptic 
 PDEs. Using explicit solvers for them could necessitate very small time steps which need to 
 be coordinated with the modification of forcing inputs. In the context of differentiable 
 modeling, a new dimension of consideration plays an important role --- GPU parallel 
 efficiency at the batch level --- because the primary point of differentiable modeling is to 
 learn from big data. Either explicit or implicit scheme needs to serve this purpose. This 
 means that time-adaptive solvers that may require vastly different time steps amongst batch 
 members may have limited applicability when we want to use minibatches. In addition, as 
 discussed in the Introduction, all automatic differentiation steps incurs CPU overhead and 
 storage burdens --- thresholds and array mutation, especially, often require data storage on 
 the GPU. GPU memory may soon run out if we have too many iterations, either with explicit 
 or implicit schemes, which could limit the training lengths. If neural network weights 
 participate in the calculations of these iterations, it further induces the problem of vanishing 
 gradients. We need to put these constraints into consideration and design balanced 
 algorithms  .  ” 

 We  appreciate  the  suggestion,  given  our  above  suggested  revision  that  we  are  here  to 
 enable  implicit  solvers  but  this  should  not  discourage  explicit  solvers  ,  we  believe  it  is 
 unnecessary  for  us  to  run  the  model  at  extremely  small  time  steps  to  prove  the  point.  In  fact, 
 we  continue  to  use  our  sequential  code  with  the  understanding  that  it  gives  us  a  bit  higher 
 efficiency  but  a  bit  lower  numerical  performance.  If  we  run  many  many  small  time  steps,  we 
 gain back numerical performance but then lose back efficiency. 

 In  fact,  as  explained  immediately  above,  running  the  model  at  extremely  small  time  steps 
 with  AD,  especially  when  you  have  operations  that  require  data  storage  (you  need  this 
 nonetheless  as  you  cannot  allow  negative  values  in  some  operations  and  explicit  algorithms 
 cannot  guarantee  nonnegativeness),  is  impractical  for  explicit  solvers  due  to  GPU  memory 
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 usage,  for  the  same  reason  many  iterations  pose  problems  for  implicit  schemes.  It  has  also 
 been  shown  before  differentiable  modeling  that  fixed-step  explicit  schemes  with  shorter  time 
 steps only provide a poor balance between accuracy and efficiency (Clark et al. 2010). 

 Running  this  model  on  a  fine  time  step  also  seems  not  to  make  much  sense  ----  if  you  run 
 on  hourly  or  minute  time  scale,  you  are  supposed  to  also  need  at  least  hourly  inputs  which 
 requires  more  data  preprocessing  work,  and  will  most  likely  run  out  of  GPU  memory  before 
 running  the  model  for  a  year.  It  also  seems  that  it  should  not  be  our  group’s  responsibility  to 
 provide  something  like  a  parallel  adaptive  explicit  solver  ---  in  fact  this  could  be  quite  hard  to 
 do:  running  time-adaptive  solvers  may  also  run  into  challenges  to  batch-level  GPU  parallel 
 efficiency  for  the  purpose  of  learning  from  big  data.  Some  adaptive  schemes  that  work  well 
 for  individual  basins  may  not  work  for  the  batch  on  the  GPU.  Running  on  CPU  in  MPI  could 
 work,  but  it  is  substantially  more  involved  in  coding  and  comes  at  2-3  orders  of  sacrifice  in 
 energy cost, which most people in machine learning do not want to do. 

 Given  these  considerations,  we  did  not  implement  adaptive  time  stepping  methods  initially 
 (we  actually  tried  this  with  another  package  in  Julia  but  such  algorithms  did  not  support  high 
 GPU  parallelism  across  the  batch  members,  so  we  settled  for  pytorch  and  implementing  our 
 own  solvers).  But  if  not  adaptive,  how  small  a  time  step  is  enough?  Tiny  time  steps  kill  the 
 GPU  ram.  We  shouldn’t  be  micromanaging  the  time  step  for  each  different  case  we  run. 
 The  PI  here  admits  that  the  choice  of  these  solvers  and  algorithms  in  fact  resulted  from 
 quite  some  elaborate  exploration  and  messing  around  with  various  alternative  Scientific 
 Machine  (SciML)  packages  and  since  2021  during  his  sabbatical  time,  and  there  are  many 
 reasons why we settled on our choices. 

 If  the  editor  insists  that  we  try  small  time  steps,  we  could  give  it  an  earnest  attempt,  but  we 
 think  it  would  be  a  little  bit  unfair  to  put  this  responsibility  on  us  ,  while  delaying  us  from 
 working  on  other  important  problems  we  think  that  need  to  be  addressed  in  this  new 
 domain.  We  very  much  welcome  the  community  to  contribute  to  the  comparisons,  as  there 
 is  enormous  space  here  for  the  next  developments.  Hence,  while  we  very  much  appreciate 
 the  constructive  opinions,  we  respectfully  disagree  with  the  reject  recommendation.  We 
 suggest  that  the  above  two  issues  raised  by  Dr.  Ehret  could  be  addressed  by  revising  the 
 manuscript, making clarifications and stating limitations, as the paragraph proposed above. 

 Unfortunately  over  the  AGU  and  winter  break  time  frame  the  interactive  discussion  has 
 ended, we wonder if we could discuss more about this. 

 Reference: 

 Clark, Martyn P., and Dmitri Kavetski. "Ancient numerical daemons of conceptual hydrological modeling: 
 1. Fidelity and efficiency of time stepping schemes."  Water Resources Research  46, no. 10 (2010). 

 Kavetski, D. and Clark, M.P., 2010. Ancient numerical daemons of conceptual hydrological modeling: 2. 
 Impact of time stepping schemes on model analysis and prediction.  Water Resources Research  ,  46  (10). 

 Sundnes, J., 2023. Solving Ordinary Differential Equations in Python (Vol. 15). Springer Nature. 

 Here are our response to the detailed comments in part A from  Dr. Ehret: 
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 “Therefore, in this manuscript, in addition to the description of how to include implicit 
 schemes in MLworkflows, I was expecting a demonstration of how this actually solves a 
 problem.” 

 In  Section  2.2.4,  'Backpropagation  with  a  Coupled  Neural  Network  and  Process-Based 
 Model',  and  Section  2.2.5,  'Adjoint-Based  Implicit  Scheme',  we  demonstrate  step-by-step 
 how  implicit  schemes  are  derived  and  function  within  differentiable  models.  This 
 functionality  is  primarily  numerical  and  can  only  be  evidenced  through  changes  in  model 
 performance, in contrast to model structures that have physical meanings. 

 “The authors conclude in their study that the (small) model improvements between the 
 HVB-hybrid variants using explicit and implicit schemes are due to problems introduced by 
 the explicit scheme (lines 412-415), but because they do not provide a proof for a cause, 
 the conclusion based on an effect is not convincing.” 

 In  this  study,  we  conducted  a  rigorous  comparison  between  implicit  and  explicit  schemes. 
 The  structure  of  the  HBV  model,  the  hyperparameters  used  in  the  embedded  neural 
 network,  and  the  datasets  remained  consistent  across  both  approaches.  The  only  variable 
 was  the  numerical  approximation.  If  there  is  an  improvement  in  model  performance,  we 
 believe it can be attributed to the reduction of numerical errors. 

 “The authors mention that computational costs for the latter increased by a factor of 5-10 
 (line 581). Increasing the time stepping of the explicit scheme from daily to 6 hours would 
 only mean a factor of 4, but would already resolve diurnal cycles, which might be relevant 
 additional information for the model.” 

 The computational costs are not solely due to the iteration steps in Newton's iteration but 
 also because of the calculation of the Jacobian matrix in backpropagation. The 
 Newton-Raphson solver can converge within an average of 3-4 iterations. Its forward 
 computational cost is comparable to a 6-hour time-stepping scheme. However, the issue 
 extends beyond computation cost and memory usage for storing gradients of each 
 operation. More critically, it involves the potential for gradient vanishing or explosion – a 
 well-known problem in machine learning – due to the accumulation of gradients with AD 
 over all time steps and iterations in a training instance. The adjoint method for the implicit 
 iterative solver can bypass gradient tracking in the iterations of each time step, which helps 
 mitigate this problem. 

 B) Motivated by problems of the HBV model to simulate (near-)zero base flow during 
 extended dry spells, the authors integrate a detailed study about the effect of adding an 
 additional capillary rise process to the HBV model. This is a valid question and analysis, but 
 it does not at all support the main argument of the paper about how and why implicit 
 schemes can be integrated into modern hybrid modeling workflows. I therefore suggest 
 presenting this analysis in another paper, and removing it from this one. In this context, it is 
 interesting that the authors provide a range of possible adjustments to the HBV model to 
 help it achieve (near-)zero flow (strategies 1-5 in lines 258-261; and lines 479-482). These 
 adjustments touch very different physical subdomains and processes of the model, and one 
 may wonder about the limitations of a supposed key advantage of physics-based models – 
 realism and interpretability – if it remains mainly up to the user's preference which one is 
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 chosen. In particular, I wonder why capillary rise from the lower subsurface should bypass 
 the upper surface and directly connect to the surface soil moisture storage, and why the 
 authors chose it this way. Based on the above points, my overall recommendation is that 
 the key topic of the paper is worth publication, but also that the required changes will 
 require time. Therefore I recommend rejecting the paper in present form, but strongly 
 encourage a resubmission. 

 Yours sincerely, 

 Uwe Ehret 

 (B)  Again,  while  we  respect  the  opinion  of  Dr.  Ehret,  we  doubt  if  deleting  the  change  is  the 
 correct  course  of  action.  Many  article  carry  more  than  one  stories  and  this  is  a  beneficial 
 (although  not  that  major)  improvements  to  the  model.  We  do  not  want  to  write  another 
 article  for  this  change.  Also,  the  differences  between  these  models  are  very  well 
 documented  ----  that  is,  the  performance  differences  only  from  sequential  to  adjoint,  and 
 then  from  adjoint  to  the  adjoint  model  with  improvement  structure  are  clearly  provided  in 
 clear  detail.  The  readers  need  to  know  what  is  the  impact  of  solution  accuracy,  and  this 
 second  story  put  things  into  context  regarding  how  that  impact  compares  to  a  change  in  the 
 structure.  After  fixing  the  parameter  and  numerical  errors,  the  model  is  now  ready  to 
 understand  the  defects  in  its  structure.  Previously,  numerical  errors,  parameter  errors,  and 
 model  structure  errors  were  intertwined.  Now,  we  are  able  to  separate  them  and  learn  new 
 physics  and  compare  their  effects.  Hence,  we  think  this  is  quite  a  useful  comparison  and 
 should be retained. 

 We  used  the  additional  capillary  rise  process  as  an  example  to  show  how  the  differentiable 
 model  can  be  further  improved  with  structural  modifications.  The  current  structure  of 
 capillary  rise  is  learned  from  the  GSFB  model,  which  represents  the  recharge  from  deep 
 groundwater.  We  think  it  is  more  appropriate  to  term  it  ‘capillary  rise’  (Ye  et  al.  1997,  Model 
 20  in  Knoben  et  al.  2019).  The  fact  that  this  component  connects  back  to  the  surface 
 reduces  the  complexity  and  reflects  that  some  shallow  subsurface  flow  (like  lateral  soil 
 interflow)  can  indeed  bypass  the  upper  subsurface  by  following  preferential  flow  paths. 
 These  are  conceptual  models  that  cannot  fully  take  into  account  the  spatial  heterogeneity 
 so some effective representation is needed. 

 Ye,  W.,  Bates,  B.C.,  Viney,  N.R.,  Sivapalan,  M.  and  Jakeman,  A.J.,  1997.  Performance  of  conceptual 
 rainfall‐runoff  models  in  low‐yielding  ephemeral  catchments.  Water  Resources  Research  ,  33  (1), 
 pp.153-166. 

 Knoben,  W.J.,  Freer,  J.E.,  Fowler,  K.J.,  Peel,  M.C.  and  Woods,  R.A.,  2019.  Modular  Assessment  of 
 Rainfall–Runoff  Models  Toolbox  (MARRMoT)  v1.  2:  An  open-source,  extendable  framework  providing 
 implementations  of  46  conceptual  hydrologic  models  as  continuous  state-space  formulations. 
 Geoscientific Model Development  ,  12  (6), pp.2463-2480. 
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