
 Reviewer #1

 Dear authors, Dear editor,

 Here is my review of the submitted work. I recommend accepting the manuscript after minor
 revisions.

 Kindly

 Ilhan Özgen-Xian

 General comments and questions

 1. The authors convincingly make an argument for implicit time integration. The forward
 Euler time stepping used in this work is indeed at a disadvantage if fixed time steps are
 used. However, it is not clear to me how higher order explicit time integration methods such
 as schemes from the explicit Runge-Kutta family (RK) would perform in comparison to the
 implicit one. If I understood correctly, some of the numerical issues mentioned in the
 manuscript might also be addressed by (adaptive) multistep schemes of this type. The
 advantage of RK-type schemes in this context is that the number of computations per time
 step is known a priori. In contrast, the Newton-Raphson iterative solver may require any
 number of steps until convergence. High order RK schemes, for example the standard
 RK45 or the adaptive RK-Fehlberg method, could also potentially benefit from the adjoint
 method presented in this paper to avoid excessive memory usage. Perhaps the authors can
 comment on this.
 2. The authors mention that the Newton-Raphson solver introduces some overhead to the
 computation. On average, in the results shown in this paper, how many iteration steps were
 necessary for the solver to converge?

 Thanks for your suggestions. We think these two questions can be answered together. The
 Newton-Raphson solver can converge in 3-4 iterations on average (We added this
 information in the main text). Its computational cost actually is less than the high-order
 explicit Runge-Kutta method, such as 4th order Runge–Kutta–Fehlberg method. RK
 methods could require more memory usage during the backpropagation process for
 gradient calculation because every step of the calculation needs to record information and
 store intermediate data. In standard ODE solvers and during our tests on chaotic ODE
 problems, RK methods sometimes run into stiff or stability issues and need to reduce time
 steps or change to lower-order methods, this further increases memory use and challenges
 to parallel efficiency. Thus, while some high-order RK methods can be useful (and we think
 they can be a list of options provided), they also have risks. In addition, the disadvantage of
 the explicit/implicit iterative solvers is not only the memory usage but also the gradient
 vanishing or explosion due to the gradient accumulation over all the time steps and
 iterations in the training instance. The adjoint for the implicit iterative solver can bypass the
 gradient tracking in the iterations of each time step.

 Here, we do not argue that implicit solutions are the only way. We think that explicit
 solutions can in some cases be useful. Nevertheless, implicit methods are well known to
 provide important value for various problems so they must be provided as an option to
 differentiable models. For example, elliptic problems must be handled by implicit schemes
 and stiff ODEs are best handled by them, too. We will add some explanations: “ While this

 1

 paper focuses on enabling implicit solvers in differentiable modeling, we do not suggest that
 explicit solvers are to be discouraged. Runge-Kutta schemes can be well suited for a
 number of cases and may be attempted for the rainfall-runoff case. It has long been
 explored in the numerical algorithm literature that each type of solvers has their advantages
 and disadvantages and is suitable for different problems. For example, implicit solvers are
 not only preferred but also necessary for stiff ODEs, especially those with dynamics on
 vastly different time scales and those resulting from the discretization of elliptic PDEs. Using
 explicit solvers for them could necessitate very small time steps which need to be
 coordinated with the modification of forcing inputs. In the context of differentiable modeling,
 a new dimension of consideration plays an important role --- GPU parallel efficiency at the
 batch level --- because the primary point of differentiable modeling is to learn from big data.
 Either explicit or implicit scheme needs to serve this purpose. This means that
 time-adaptive solvers that may require vastly different time steps amongst batch members
 may have limited applicability when we want to use minibatches. In addition, as discussed
 in the Introduction, all automatic differentiation steps incurs CPU overhead and storage
 burdens --- thresholds and array mutation, especially, often require data storage on the
 GPU. GPU memory may soon run out if we have too many iterations, either with explicit or
 implicit schemes, which could limit the training lengths. If neural network weights participate
 in the calculations of these iterations, it further induces the problem of vanishing gradients.
 We need to put these constraints into consideration and design balanced algorithms . ”

 Minor comments

 1. P.2, L.70: "graphical processing units" should be "graphics processing units"

 Will revise as suggested.

 2. P.3, LL.105ff.: Does "elliptic operator" in this context correspond to the Laplacian? If so,
 some of the examples might require some annotation. The Saint-Venant equation only
 contains Laplacian operators if molecular/turbulent diffusion is accounted for. Many forms
 of the Saint-Venant equation omit these terms, for example (García-Navarro et al., 2019,
 doi:10.1007/s10652-018-09657-7; LeVeque et al., 2011, doi:10.1017/S0962492911000043).

 We will revise it to “shallow water equations”, which is a two-dimensional Saint-Venant
 equation considering turbulent diffusion.

 3. P.3, LL.105ff. (continued) When I looked at the paper by Aboelyazeed et al. (2023) (cited
 by the authors), I couldn't see Laplacians in the Farquhar model equations.

 Aboelyazeed et al. (2023) is an example of systems of nonlinear equations, not an elliptic
 operator.

 4. P6, L.209: "The same forcings ... was used" should be "The same forcings ... were used"

 Will revise as suggested.

 5. P.12, L.335: Should it be Eq. (28) instead of Eq. (27)? May be I am misunderstanding
 something.

 2

 Yes, your understanding is correct. We will fix it.

 6. P.14, L.398: The authors state that the mass balance preservation of the adjoint-driven
 NN-HBV model might be the reason behind the improved model performance. I don't
 understand why the mass conservation should significantly differ from the explicit sequential
 NN-HBV model if the hydrological process representation remains untouched. Is this
 related to the use of thresholds to avoid negative storages? Can the authors elaborate a bit
 more?

 Yes, by avoiding thresholds for negative states, the implicit model can achieve better mass
 conservation. This impact is significant for low flows. For example, the thresholds for lower
 subsurface zone storage in the current HBV model can induce minimal baseflow on dry
 days. More importantly, the adjoint (implicit) model greatly reduces numerical errors, thus
 improving the model's performance. We revised the main text to: “ The advance may be
 attributable to HBV.adj’s reduction of numerical errors, which forces the model to more accurately
 represent extreme values.”

 7. P.24, L.580: The additional computational cost introduced by the implicit solver is quite
 substantial (18 h vs. 133 h), suggesting either poor convergence or large communication
 overhead in the implicit scheme.

 We agree with the reviewer that the computational cost of the implicit solver is substantial
 compared to the sequential model. However, when compared with traditional models that
 require basin-by-basin calibration on a CPU, it is efficient for large-scale modeling. The implicit
 solver can converge in 3-4 iterations, and all training is conducted on a single GPU, no need for
 communication between nodes. The reasons it is slower than the sequential model are twofold:
 1) the HBV model is called 3-4 times in each time step, whereas the sequential model only
 needs to call it once, and 2) the calculation of the Jacobian matrix for multiple basins, depending
 on the batch size, also consumes time. There are additionally some CPU overhead issues to be
 explored down the road.

 3

