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Abstract. Excess export of reactive nitrogen in the form of nitrate (NO3–) from suburban watersheds is a major source of water 

quality degradation and threatens the health of downstream and coastal waterbodies. Ecosystem restoration and best 

management practices (BMPs) can be introduced to reduce in-stream NO3– loads by promoting vegetation uptake and 

denitrification on uplands. However, accurately evaluating the effectiveness of these practices and setting regulations for 

nitrogen inputs requires an understanding of how human sources of nitrogen interact with ecohydrological systems. We 20 

evaluated how the spatial and temporal distribution of nitrogen sources interacts with ecohydrological transport and 

transformation processes along surface/subsurface flowpaths to nitrogen cycling, and export. Embedding distributed household 

sources of nitrogen and water within hillslope hydrologic systems influences the development of both planned and unplanned 

“hot spots” of nitrogen flux and retention in suburban ecosystems.  We chose a well-monitored low-density suburban 

watershed, Baisman Run in Baltimore County, Maryland, USA, to evaluate patterns of in-stream NO3– concentrations and 25 

upland nitrogen cycling processes in response to three common activities: irrigation, fertilization, and on-site sanitary 

wastewater disposal (septic systems). We used a distributed ecohydrological model, RHESSys, with estimates of these 

additional loads to develop a predictive understanding of the factors generating space/time upland nitrogen cycling, transport 

and stream NO3– concentrations. With the model is calibrated for subsurface hydraulic parameters only and without calibrating 

ecosystem and biogeochemical processes, the model predicted mean NO3– concentrations of 1.43 mg NO3–-N L-1 compared to 30 

observed 1.6 mg NO3–-N L-1 from water year 2013 to 2017. With augmentations considering spatially explicit locations 

receiving irrigation, fertilizer, and septic effluents, estimated denitrification rates in grass lawns, a dominant land cover in 

suburban landscapes, were also in the range of measured values. The highest predicted denitrification rates, or N hot spots, 

were downslope of lawn and septic locations in a constructed wetland, and at a sediment accumulation zone at the base of a 

gully receiving street drainage. These locations illustrate the development of hot spots for nitrogen cycling and export in both 35 



 

2 
 

planned and “accidental” retention features. Appropriate siting of BMPs and the identification of spontaneously developed 

nutrient hot spots should be pursued to retain nutrients and improve water quality. 

1 Introduction 

Nitrogen (N) and carbon (C) are fundamental elements for ecosystem functions and are influenced by multiple factors including 

climate (Campo & Merino, 2016; Crowther et al., 2016), moisture and other soil properties (Pastor & Post, 1986; Wang et al., 40 

2020), plant and microbial community composition (Chen et al., 2003), and human activities (Galloway et al., 2008). They are 

also influenced by the state and pattern of drainage flowpaths as different forms of C and N are mixed and transported to 

distinct edaphic conditions, potentially forming “hot spots” (McClain et al., 2003) that have a disproportionate influence on 

landscape and watershed scale biogeochemical cycling functions. Understanding mechanisms of N and C cycling and 

interactions with hydrologic processes is necessary to design and implement efficient ecosystem service and restoration 45 

strategies. In urban, suburban, and exurban ecosystems, human disturbance to biogeochemical cycling has led to air and water 

quality degradation. Best management practices (BMPs) are popularly deployed to reverse the degradation and improve local 

and downstream water quality, increase C and N retention, and promote ecosystem resilience to prepare for extreme weather 

events with changing climate. BMPs can be both structural (e.g., constructed wetlands) and non-structural (e.g., changing 

fertilization and irrigation regimes). In addition to planned BMPs, spontaneously developed “hot spots” (Palta et al., 2017) 50 

may be responsible for a large share of nutrient retention, and therefore should be identified and protected. Both planned and 

unplanned retention features exist at very localized, sub-hillslope scales. Therefore, gaining a comprehensive understanding 

of the hillslope level ecohydrological behaviors and interactions between i) ecosystems and human derived nitrogen sources 

and ii) flowpath modification can lay the foundation for effectively mitigating these environmental issues through spatially 

well-conceived and sustainable management practices.  55 

In urban ecosystems, human activities introduce additional inputs of water (e.g., lawn irrigation and septic effluent), carbon 

(e.g., mulch, lawn amendments) and nitrogen (e.g., septic system, lawn and garden fertilization, sanitary sewer leakage), 

occurring on discrete land segments and altering watershed mass budgets of water and nutrients. Lawn fertilization can 

contribute more than half of the total N input in urban watersheds, even if it is only applied to 20 – 30% of the landscape (Band 

et al. 2005; Groffman et al., 2004; Hobbie et al. 2017).  In the United States, about 20% of households (26.1 million) are 60 

reported to be served by septic systems in 2007 (U.S. EPA, 2008). Through our work in Baltimore Ecosystem Study, low 

density suburban areas have been shown to produce the highest NO3– load per unit developed land among different land uses, 

degrading local and downstream water quality (Groffman et al., 2004; Zhang et al., 2022). Atmospheric deposition and septic 

system wastewater N can comprise similar input amounts at the watershed scale, but septic input is concentrated over only 1-

2% of the landscape, with a large, localized volume of wastewater sufficient to result in groundwater mounding and effluent 65 

plumes extending towards local streams (Cui et al., 2016). The concentrated inputs over limited areas by septic inputs and 
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lawn fertilization with or without irrigation creates delivery or retention patterns of N hot spots that provide opportunities for 

targeting N mitigation strategies (Groffman et al., 2023). 

With rapid suburban and exurban sprawl, decision makers are facing environmental challenges which requires detailed 

planning for siting BMPs effectively in watersheds to promote N retention, reduce N export in streams, and protect water 70 

quality. These include both constructed and “inadvertent” biogeochemical hot spots at specific hillslope locations (e.g., swales, 

wetlands, riparian areas) on N retention at resolutions required for landscape design. However, commonly used modelling 

frameworks could not couple distributions and interactions of hillslope ecohydrological processes in transporting and 

transforming natural and human-induced N sources to understand or predict local (neighbourhood or hillslope) scale N 

transport and retention. Semi-distributed hydrologic models, such as the Storm Water Management Model (SWMM; Rossman, 75 

2010) and the Soil Water Assessment Tool (SWAT; Arnold et al., 1998), are widely used to simulate nutrients loads at 

subwatershed levels outlets . They simulate water balance based on subcatchment units with similar land cover and soil. Runoff 

from each subunit is based on curve numbers or infiltration excess, and is independently added to streamflow at the watershed 

outlet. However, these models lack hillslope water and nutrient mixing along interacting surface/subsurface hydrologic 

flowpaths which are important to simulate the formation of biogeochemical hot spots, and the potential uptake and retention.   80 

The lack of sub-hillslope flowpath processes may generate significant bias in estimating key hydrologic and biogeochemical 

processes (Band et al., 1993; Fan et al., 2019). Data-driven approaches, such as SPARROW (Ator & Garcia, 2016; Smith et 

al., 1997), are also developed to assess large scale water quality in streams by nonlinear regression from gauged discharge and 

solute concentrations. However, these models also do not investigate hillslope-scale transport and transformation processes. 

In addition, there does not exist the data at hillslope scales to develop sufficient data-based approaches to understand and 85 

predict retention processes (e.g., denitrification, uptake, immobilization).  

Fully distributed hydrology models, such as MIKE-SHE (Abbott et al., 1986a, 1986b) and RTM-PiHM (Bao et al., 2017; Zhi 

et al., 2022), ParFlow (Maxwell, 2013) and RHESSys (Tague & Band, 2004) could explicitly couple hillslope hydrologic and 

biogeochemical processes that are required to understand transport and transformation of these human-induced N loads along 

hydrologic flowpaths from upland to stream. They simulate surface and subsurface hillslope processes with detailed 90 

topographic and soils information to generate distributed surface runoff, recharge, soil moisture, evapotranspiration (ET), and 

other ecohydrological variables. Lateral surface and subsurface drainages redistribute precipitation, resulting in gradients of 

water availability within a watershed from ridge to riparian areas. These models include modules for biogeochemical reaction 

and transport processes, which can interact with the transport and storage patterns of soil water and provide high-resolution 

output for each location within a watershed.  95 

Therefore, a spatially explicit and process-based framework that simulates hillslope hydrology and interactions between C, N, 

vegetation, water, and household-level human activities through flowpaths has important advantages to understand and manage 

non-point source pollutants and hot spots in urban watersheds (Bernhardt et al., 2017; Groffman et al., 2009). The ability to 

represent processes at the scale of human perception can also provide information useful for decision making and 

community/stakeholder involvement. High-resolution simulations and visualization of spatially explicit water, N cycling, and 100 
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transport can facilitate understanding and communication of how human activities can alter terrestrial and aquatic ecosystem 

functions in urban ecosystems and contribute to participatory planning. Lastly, the framework should be capable to be 

extrapolated to watersheds without water chemistry data which are less available than discharge records worldwide. It would 

be a valuable feature of the framework to estimate nutrient dynamics reasonably if calibrating only hydrologic parameters 

could provide reasonable estimation of N dynamics. Calibrating nutrient dynamics may not allow generalization to watersheds 105 

without chemistry records or extrapolation to conditions in which water quality BMPs are implemented.     

The Regional Hydro-Ecological Simulator System (RHESSys, Tague & Band, 2004) is designed to meet all requirements for 

the framework, which is an ecohydrological model that simulates mass balances of water, C, and N of a watershed including 

hydrologic and biogeochemical stores and cycling. The hydrologic component in RHESSys routes water and solutes based 

explicitly on topographic and infrastructure surface water flowpaths, and two-dimensional subsurface flow based on dynamic 110 

groundwater table gradients. Biogeochemical process rates are then estimated with modules modified from Biome-BGC 

(Running & Hunt, 1993) and CENTURYNGAS (Parton et al., 1996) and subsequent models. In this study, we augmented 

RHESSys to include household-level transfer of groundwater for lawn irrigation and domestic water use, with domestic water 

use routed to septic spreading fields. With coupling hillslope hydrology and biogeochemistry at spatially connected patches, 

RHESSys could estimate spatiotemporal patterns of soil moisture, lateral flow distribution, evapotranspiration, groundwater 115 

level, and N transportation, transformation, uptake, and immobilization in spatially explicit manners. In summary, by adding 

modules of lawn irrigation, fertilization, and septic releases (see Sect. 2.3) that are commonly found in suburban areas, 

RHESSys is designed with the capacity to simulate the comprehensive ecosystem dynamics and feedbacks of introduced 

spatially explicit lawn irrigation, fertilization, and septic releases that are commonly found in suburban areas, at resolutions 

commensurate with human management of the landscape. This facilitates scientific assessment of small-scale human activity 120 

and modification to land cover and infrastructure in expanding suburban and exurban areas.  

We developed and used the augmented version of RHESSys to investigate the spatial and temporal distribution of hydrologic 

and biogeochemical N cycling and export in a low-density suburban watershed, Baisman Run (BARN, see Sect. 2.1). BARN 

is in a suburban area of Baltimore County, with all households using septic systems and well water. We ran simulations with 

and without human additions of water and N and compared model results to field observations for streamflow, water chemistry, 125 

and soil N cycling processes to answer the following research questions:  

1) What are the individual and interacting contributions of different watershed N sources to streamwater N export? 

2) How do the spatially nested patterns of water and N inputs from human activities alter spatial patterns of key 

ecohydrological processes including N retention, evapotranspiration, groundwater levels, and flows?  

3) What are the patterns of hot spots for N retention and associated implications to design future BMPs to promote N 130 

retention within suburban watersheds?  
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2 Methods 

2.1 Study Area 

Our study watershed (Fig. 1), Baisman Run (BARN), is in Baltimore County, MD, outside of the urban sanitary sewer service 

boundary. The 3.8 km2 watershed is in the Piedmont physiographic province with a rolling, locally steep landscape. Mean 135 

elevation is 170.5 m, with average slope 7.8°. Meteorological records from 1980 to 2018 were integrated from 

Baltimore/Washington International Airport (BWI) weather station and a local rain gage adjacent to BARN at the Oregon Park 

operated by the Baltimore Ecosystem Study (BES) available after 2013 (Welty & Lagrosa, 2020). The records have mean  

 

 140 

Figure 1. Study watershed Baisman Run (BARN) in suburban Baltimore County, Maryland (from ESRI). The black box highlights 

two N retention “hot spots”: A sediment accumulation zone (upper circle) receiving drainage from roads and a constructed wetland 

(lower circle). These areas have a high capacity to prevent N from upland residential areas from being transported to streams.  

 

annual maximum and minimum temperatures of 18.9 °C and 7.9 °C respectively, and mean annual precipitation of 1,024 mm. 145 

The discharge and gage height records of BARN have been monitored by USGS (Gage ID: 01583580) since 1999.  
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Soils in BARN range from silt clay loam to silt loam in the riparian areas to sandy loam on steeper slopes. Forested areas are 

dominated by approximately 100-year-old Quercus spp. (oaks) and Carya spp. (hickory).  The entire watershed is underlain 

by the medium- to coarse-grained micaceous schist of the Loch Raven Formation, overlain by a weathered saprolite. The 

saprolite thickness is highest on ridges (up to 20m), thins (< 1 m) with some bedrock outcrops at steep midslope positions, and 150 

is 1–2 m in bottomland locations (Cleaves et al. 1970; St. Clair et al., 2015). Hydraulic conductivities of soils generally 

decrease with depth but may locally increase into the saprolite. The saprolite may store substantial amounts of moisture, and 

is drained through underlying bedrock fractures through a set of emergent springs on the valley sidewall-riparian area 

transition, providing a fairly steady baseflow (Putnam, 2018). Dominant land cover includes forest and lawns, covering 81.5% 

and 14.5% of the watershed, respectively. Impervious areas cover 4.0% of the watershed, including roofs of single-family 155 

houses, driveways and roads. Lawns are located in front and backyards of households in headwater areas of BARN. Two 

natural gas supply lines cut through the watershed, creating two strips of herbaceous land.  

BARN is a useful watershed for examining the interactions between human activities and watershed ecohydrological response, 

as the sources and disposal of domestic water are on-site without external piped inputs and outputs. In this suburban watershed 

all households use groundwater wells for water supply and on-site septic systems to process wastewater. Lawn and garden 160 

fertilization is another major source of N input in BARN (Law et al., 2004). Septic and fertilization N and water additions are 

localized on lawns and septic drain fields near houses in the BARN headwaters.  

The availability of several previously collected data sets allowed us to compare simulation results to field observations. Rich 

ecohydrological observations and lawn management surveys (Fraser et al., 2013; Law et al., 2004) from the BES are available 

as are weekly water chemistry concentration data at the BARN USGS gage since 1998 (Groffman et al., 2020; Castiblanco et 165 

al. 2023). In addition, a fully forested subcatchment of BARN, Pond Branch (POBR), is also monitored weekly by the BES 

and USGS (Gauge ID: 01583570). POBR serves as a forest control site without human water and nutrient additions. Finally, 

we have previously estimated N stores and cycling rates, including lawn soil NO3– content and denitrification rates in BARN 

(Suchy et al., 2023), sites on the campus of the University of Maryland Baltimore County (Raciti et al., 2011), and other sites 

in the region (Groffman et al., 2009). Annual atmospheric N deposition was estimated as 11 kg N ha-1 from site MD99 of 170 

National Trends Network from National Atmospheric Deposition Program (NADP, 2022). 

2.2 RHESSys setup and calibration 

2.2.1 Model inputs and settings 

Our study period makes use of observed and simulated watershed processes from water year 2013 to 2017 (i.e., Oct. 1, 2012 

to Sep. 30 2017). BARN had gradual suburban development in the headwater which converted from agricultural land over a 175 

few decades. New development was largely completed in the 1990s, with one last field developed in 2007-2009. Our study 

period could reduce the uncertainty of N inputs due to land cover change during urban development and allow for analysis of 

N dynamics in a stationary condition. We set a 30-year simulation spin-up period to stabilize groundwater levels and C and N 
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pools. Inspection of the spin-up storage of soil C and N showed they were asymptotic with stable C:N ratios. The watershed 

is delineated using 1-m digital elevation data (Baltimore County GIS, 2017) using r.watershed (Ehlschleager et al., 2008) from 180 

GRASS GIS. Streams are identified when accumulated drainage areas are above 10 ha (Fig. 1), which approximates the 

extension of Baltimore County’s hydrology lines dataset (Baltimore County GIS, 2016). Detailed land use information (Fig. 

A1) is derived from the 1-m high-resolution land use and land cover (LULC) data from the Chesapeake Conservancy (Claggett 

et al., 2018). The dataset contains “roof” as a LULC class, from which we identified 249 spatially isolated clusters of roofs 

within BARN. Comparison with the Baltimore County parcel dataset (Baltimore County GIS, 2019) and latest Google Earth 185 

satellite data allow us to filter out detached garages and sheds and to identify the main building in each parcel. We identified 

181 households, although 13 homes are located on the watershed divide, providing some uncertainty to the effective number 

of septic systems.  

We set up RHESSys in BARN at 10-m resolution. Patches in centroids of the 181 main buildings were identified as “drain-in” 

patches, receiving pumped groundwater. For simulation in a groundwater well served watershed, we added routines to transfer 190 

deeper groundwater stores to household use as either domestic water use routed to septic spreading fields and to lawns for 

irrigation. Drain-in patches (homes) were paired with “drain-to” patches (septic spreading fields and lawn) to receive domestic 

water release, which are discussed in detail in Sect. 2.3. The methods can also draw water from ponds, but there is only one 

pond in the watershed that has occasionally been used for irrigation, and our simulations relied fully on groundwater supplies.  

The riparian areas in RHESSys were defined as areas with height above nearest drainage (HAND) below 1.5 meters (Nobre et 195 

al., 2011). This is an approximation of riparian extent based on local inspection, and can be improved with more detailed 

riparian delineation. These areas were set to receive additional drainage from the deep groundwater system, which can set a 

feedback between greater household groundwater use and lower groundwater inputs to riparian areas. The start and end of the 

growing season are hardcoded in RHESSys based on local observations and vary for lawn and forest. Deciduous trees grow 

from May 5th to Oct 22nd, and grass is set as a perennial, identical to parameters in Lin et al. (2015 & 2019).There is limited 200 

conifer cover in BARN, and some Mountain Laurel (Kalmia sp.) understory on hillslopes . 

2.2.2 Parameter calibration 

RHESSys requires several subsurface hydraulic parameters to simulate lateral and vertical water flows and route subsurface 

lateral flow that are calibrated following the procedure detailed in Smith et al. (2022). In this study, we calibrated eight 

parameters (Table 1) for subsurface properties (i.e., lateral and vertical saturated hydraulic conductivities and their decay rates, 205 

pore size index, and air entry pressure) with initial estimates (Fig. A2) from the SSURGO soils dataset (USDA, 2019) and 

deeper groundwater processes (i.e., bypass seepage from surface and shallow saturated soil, and drainage rate to stream). We 

set the calibration period from water  
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Table 1. RHESSys parameters being calibrated and their physics (Tague and Band, 2004). Calibrated results shown as ranges of 210 
multipliers to original soil properties (Fig. A2 & A3) and groundwater component generating behavioral simulations with NSE 

greater than 0.5 for streamflow. 
 

 

year 2013 to 2015 and validation period from water year 2016 to 2017. The original parameter values derived from SSURGO 215 

were further calibrated by multipliers to vary their magnitudes but preserve the spatial patterns of soil hydraulic properties 

(Fig. A2). Specifically, the simulated streamflow was used to calibrate against the daily USGS discharge records (Gage ID: 

01583580). From four thousands of parameter set realizations randomly chosen within specified limits, behavioral sets are 

chosen as yielding Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) greater than 0.5 and fraction of groundwater loss 

to stream (i.e., gw2 in Table 1) less than 0.5 to estimate the ensemble means and uncertainties of model simulations. The latter 220 

condition was enforced to regulate the flashiness of groundwater dynamics, as BARN is found to have large saprolite storage 

to provide steady baseflow (Putnam, 2018). To assess uncertainty, we reported the 95% uncertainty boundaries for simulated 

streamflow and NO3– concentration and load from. Lastly, we noted that no calibration was performed for N inputs (e.g., 

fertilization rate and septic load) or N cycling/transport processes in the model, as an important aim of our methods is to 

evaluate the capacity of our model to regionalize to watersheds where no water chemistry but only streamflow observations 225 

were available. 

 

Parameter 
Groups 

RHESSys Parameter 
Abbreviations Detail Source Unit Multiplier 

Range 

Lateral soil 
hydraulics 

s ml Decay rate of lateral saturated 
hydraulic conductivity with depth USDA 

SSURGO, 
2019 

- 0.31–2.91 

 
Ksat0_l Lateral saturated hydraulic 

conductivity at the soil surface m day-1 0.38–2.93 

z Soil depth m 1.65–5.95 

Vertical soil 
hydraulics 

sv mv Decay rate of vertical saturated 
hydraulic conductivity with depth USDA 

SSURGO, 
2019 

- 0.51–1.98 

 Ksat0_v Vertical saturated hydraulic 
conductivity at the soil surface m day-1 0.52–1.98 

Soil 
properties 

svalt b Pore size index USDA 
SSURGO, 

2019 

- 0.51–1.98 

 φae Air entry pressure pounds 
inch-2 0.5–1.05 

Groundwater 
dynamics 

gw gw1 Fraction of bypass from the saturated 
zone to groundwater storage 

 - 0–0.13 

 
gw2 

Fraction of loss from groundwater 
storage to stream - 0.03–0.5 

gw3 Fraction loss from surface to 
groundwater storage - 0–0.07 
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2.3 Household additions of water and N 

We included estimates of fertilization, onsite wastewater disposal from septic systems, and irrigation, as input to RHESSys to 

incorporate water and N management decisions and capture how such activities affect water and N cycling and export within 230 

the study watershed.  

2.3.1 Fertilization 

The lawn fertilization module in RHESSys specifies the amount, location and timing of fertilization rates applied to lawns. 

Law et al. (2004) and Fraser et al. (2013) conducted in-person household surveys in a set of neighbourhoods in the Baltimore 

area, including BARN, and found that approximately 50% of homeowners apply fertilizer to their lawns, with a mean annual 235 

total fertilization rate ranging from 3.7 to 13.6 g N m-2.  Both surveys were conducted during significant drought conditions 

(2002 and 2008) when lawncare was reduced due to groundwater supply concerns. Hence, we consider the survey results to 

be on the lower end of actual rates. In this study, we used the intermediate lawn fertilization rates consistent with estimates of 

Law et al. (2004) surveyed in 2002, 8.4 g N m-2 (12.4 kg N ha-1 year-1 at watershed scale, accounting for lawns that are not 

fertilized), for a denser suburban site. We assumed all lawns in BARN were fertilized three times with a 60-day interval 240 

between applications beginning April 1. This fertilization frequency is consistent with our prior household surveys and similar 

to results of surveys conducted in other suburban communities (Carrico et al., 2013; Martini et al., 2015). The model distributed 

the estimated total fertilization amount uniformly to all lawns in the watershed, at rates modulated by the proportion of lawns 

fertilized estimated by Law et al. (2004) and Fraser et al. (2013). 

In the model, applied fertilizer is stored in an independent pool of each lawn patch, and each day we assumed a fixed fraction 245 

of available nutrients in the fertilizer pool leached to other pools, of which 80% is dissolved to detention storage and 20% to 

soil. The daily leaching fraction (𝐿𝐹) is determined by the fertilization interval (𝐹𝐼), following Eq. (1): 

𝐿𝐹 =   − !"# %.'
()

,                                                                                  (1) 

In our case study, our 60-day fertilization interval results in 3.8% of nutrients in the fertilization pool transported to other pools 

per day and then stored, consumed by vegetation, immobilized, denitrified or further transported to groundwater and 250 

downslope. In this study, we considered fertilizer input only contains NO3–, following sensitivity analysis that found varying 

NO3– and NH4+ proportion in fertilizer had negligible impacts on model outputs. Phosphorous fertilizer, which is increasingly 

uncommon in many lawn fertilizer formulations, is not considered as RHESSys currently does not simulate the phosphorous 

cycle.  

2.3.2 Septic systems 255 

All households within BARN use septic systems to dispose domestic wastewater. Wastewater from a house is released first to 

septic tanks for settling, then to drain fields which are typically placed downslope of the house. Therefore, soils in specified, 
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Figure 2. Groundwater extraction for irrigation and septic systems in the RHESSys model. The source water (green arrow) is 

extracted from groundwater storage of drain-in patches (i.e., house centroids) and redistributed (orange arrow) to surface detention 260 
in downstream lawn patches for septic effluents and irrigated lawn patches of a household. After redistribution of source water, 

infiltration to soil and percolation to hillslope groundwater (yellow arrows) would follow the original processing of RHESSys 

 

downslope areas receive additional water and N input from septic effluents and may become hot spots sources of NO3– in the 

watershed. We estimated the N load from septic systems as 7.7 kg N capita-1 year-1 and water input as 110.5 m3 capita-1 year-1 265 

(~80 gal-1 capita-1 day-1), resulting in a NO3– concentration of 70 mg N L-1 estimated from results of Gold et al. (1990), Lowe 

et al. (2009), and other sources for per capita water use and septic nitrogen concentrations. We set the average number of 

people per household as 3.3 for these single-family houses based on survey results from Law et al. (2004) and census 

information. Applying these water and NO3– loads for 181 houses in BARN results in 4,599 kg N year-1 (12.0 kg N ha-1 year-

1) of NO3– input to the watershed. The demand for septic source water (SS𝑊*+,-.*) is 66,001 m3 year-1 (17 mm year-1 at the 270 

full watershed scale or 3,647 mm year-1 normalized to the estimated total areas of septic fields) of water extracted from deep 

groundwater. Septic water and N loads are currently set to be evenly distributed every day.  

Septic source water is drawn from drain-in patches (i.e., centroid patches of main buildings) and transported to storage in septic 

drain-to patches (Fig. 2) which are the locations of drain fields of septic systems and defined as the closest downslope lawn 

patches to drain-in patches. We regulated actual withdrawal of septic source water (SS𝑊-/01-!) to not exceed the available 275 

water in groundwater storage, as in Eq. (2): 

𝑆𝑆𝑊-/01-! = 𝑚in-𝑆𝑆𝑊*+,-.* , 𝐺𝑊20"3-#+0,                                                          (2) 

where G𝑊20"3-#+ is available water in surface detention and deep groundwater storage of the hillslope at drain-in patches (Fig. 

2). The extracted source water is added to septic drain-to patches (orange arrow in Fig. 2), where it is subject to hydrological 

Groundwater
Storage

Detention
Storage

Drain-in Drain-to
Patch Patch

Hillslope

Source
Water
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and biogeochemical processes. Nutrients are also added to the drain-to patches’ storage, depending on concentrations and 280 

quantity of source water from the groundwater of drain-in patches. 

2.3.3 Irrigation 

Although irrigation practices and quantities vary significantly among households, irrigation is commonly applied during the 

growing season, and especially during dry and hot conditions. Therefore, we designed a mechanism to determine the total 

irrigation amount based on water stress of grass. Specifically, the amount of irrigation applied on lawns is determined by a 285 

water stress factor (WSF) in Eq. (3): 

𝑊𝑆𝐹 = 456756
456

,                                                                                 (3) 

where PET and ET represent patch level potential and actual ET, which are estimated daily in RHESSys based on the Penman-

Monteith equation (Monteith, 1965) and procedures in Section 5.6 in Tague & Band (2004). During continuously hot and dry 

days, WSF would increase due to lower soil water content (lower ET) and high atmospheric demand for water (higher PET). 290 

Our model then activates the irrigation function and calculates the demand of irrigation for patches modulated by water 

shortage. This function effectively modulates soil water conditions by the addition of groundwater sourced irrigation. 

Unlike the septic source water (SS𝑊*+,-.*) which is fixed each day, the daily demand for irrigation source water (𝐼𝑆𝑊*+,-.*) 

in Eq. (4) for a lawn patch is further controlled by the water stress factor as: 

𝐼𝑆𝑊*+,-.* = 𝐼𝑅,-8 ⋅ 𝑊SF ⋅ 𝑙awn%,                                                            (4) 295 

where 𝐼𝑅,-8 is the user-defined maximum daily irrigation rate, WSF is the water stress factor in Eq. (3), and lawn% is the 

fraction of grass in an irrigated patch. We defined the maximum irrigation rate (𝐼𝑅,-8) in BARN as 4 mm day-1 in the current 

model, which can be modified based on the local practices or for sensitivity analysis. Like septic source water, withdrawal of 

irrigation source water cannot exceed available water in groundwater storage. The actual irrigation source water is calculated 

following the same rule in Eq. (1). The irrigation amount is pumped from deep groundwater storage to drain-in patches (i.e., 300 

centroids of houses, Fig. 2) to water lawns around houses. Irrigated lawns are limited to 50 m from houses, covering 33.7 ha 

(60.6%) out of 55.7 ha of lawns in BARN. We note that many households in this area are on programmed sprinkler systems, 

and our “smart” irrigation estimates may underestimate actual water use in non-drought conditions, but overestimate irrigation 

during droughts when homeowners reduce water use, contributing to input uncertainty.  Dynamic water use is the subject of 

ongoing research in this watershed. 305 

2.4 Scenarios and N hot spots 

We focus on evaluating changes in NO3– dynamics in stream and upland areas when additional NO3– is added from fertilization 

and/or septic systems, which resulted in four scenarios (Table 2) – none (no fertilization or septic inputs), fertilizer only, septic 

only, and both (fertilization and septic inputs) – for our study watershed. Irrigation is activated in all scenarios, including 

our reference control scenario none to emphasize NO3– dynamics without residential N inputs. Scenario both receives a total 310 
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Table 2. Scenarios evaluated in BARN and corresponding combinations of augmented RHESSys features 

Scenario Name Irrigation Fertilizer Septic Processes 

None ✓   

Fertilizer Only ✓ ✓  

Septic Only ✓  ✓ 

Both ✓ ✓ ✓ 

 

of 35 kg N ha-1 year-1 of N input, with 11 (31.4%), 12 (34.3%), and 12 (34.3%) kg N ha-1 year-1 from atmospheric deposition, 

fertilization, and septic effluents, respectively, expressed at the watershed level. To better compare our NO3– concentration 

results with the sampled weekly water chemistry from BES for BARN, we resampled the daily simulated concentration from 315 

RHESSys to weekly averages, expressed in unit of mg NO3–-N L-1. The weekly NO3– load was then estimated by the product 

of weekly mean NO3– concentration and streamflow, expressed in unit of kg N ha-1 year-1. Note this approach may introduce 

bias for load as the once-a-week samples, typically not during major storms, and the observed daily mean discharges may not 

reflect the average load of the whole week.  

We further evaluated changes in ecohydrological processes at potential on-site hot spots (e.g., residential lawns and septic 320 

drainage fields) receiving direct household water and N inputs as well as off-site potential hot spots located in downslope areas 

that receive  water and N inputs added upslope (e.g., riparian areas, wetlands, septic fields). Specifically, lawns are identified 

as patches with more than 50% of grass, and downstream forests are patches with more than 50% of forest downslope of 

residential area of BARN. One off-site location is a constructed wetland (lower red circle in Fig. 1), while the other is a 

spontaneously developed “accidental wetland” (Palta et al., 2017) in an area receiving road drainage and gully sedimentation, 325 

and is referred to as a “sedimentation accumulation zone” (lower red circle in Fig. 1).  

In the Results section, we presented model calibration results in Sect. 3.1, in-stream NO3– dynamics of scenarios in Sect. 3.2, 

and ecohydrological changes and N retention hot spots in Sect. 3.3, accordingly. Since no calibration was performed for N 

dynamics, NO3– concentration and N retention processes were reported for the entire study period (i.e., water year 2013 to 

2017). 330 

3. Results 

3.1 Model calibration and validation on streamflow 

After performing calibration on soil hydraulic and groundwater parameters, we found 50 behavioral parameter sets that 

provided simulations meeting the requirement in Sect. 2.2.2. The range of calibrated multipliers are listed in Table 1, and the 

distributions are shown in Fig. A3. In the calibration period (i.e., water year 2013 to 2015, Fig. 3a), the ensemble of simulated  335 
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Figure 3. The ensemble mean of daily streamflow from simulations (red) with NSE greater than 0.5 and USGS observations (blue), 

with the daily 95% uncertainty range from 50 simulations in grey for the (a) calibration (Oct. 2012–Sep. 2015) and (b) validation 

(Oct. 2015–Sep. 2017) period. All simulations turned on irrigation, lawn fertilization, and septic processes 340 
 

mean (standard deviation) daily streamflow was 1.24 (±0.03) mm day-1, with NSE of 0.63 (between 0.5 and 0.69) compared 

to the USGS observed 1.38 mm day-1. In the validation period (Fig. 3b), the simulated ensemble mean (standard deviation) 

streamflow was 0.91 (±0.03) mm day-1, with NSE of 0.58 (between 0.44 to 0.64) compared to the USGS’s 0.86 mm day-1. 

Negligible difference was detected after activating lawn fertilization or septic processes in the watershed. The small drop of 345 

NSE in the validation period compared to the calibration period indicated that our calibrated parameters reasonably captured 

the hydrologic behaviors of BARN.  The 95% uncertainty boundary encompassed the majority of observed moderate flows. 

Our model was able to simulate the seasonality of streamflow and water balance well compared to the observation records, 

but tended to underestimate the lowest flows in the growing season (from May to September) when streamflow is lowest and 

dominated by baseflow. During the entire study period, the mean simulated growing season streamflow was 0.95 mm per day 350 

which is 0.13 (-12%) mm per day lower than the 1.08 mm per day in the USGS records. The uncertainty boundary also became 

wider during these low flow periods.  
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Table 3. Mean weekly NO3
– concentration (mg N L-1) and load (kg N ha-1 year-1) from calibrated simulations for BES weekly 

observations (BARN and POBR) and RHESSys simulation scenarios in each season and the entire study period from water year 

2013 to 2017. Standard deviations from behavioral simulations for all scenarios were included below the mean values. 355 

Variables Season 
Observation RHESSys Scenarios 

BARN POBR Both Septic 
Only 

Fertilizer 
Only None 

Concentration 

(mg N L-1) 

Spring 1.5 0.02 1.4  
(±0.12) 

0.76  
(±0.08) 

0.77  
(±0.05) 

0.27  
(±0.03) 

Summer 1.6 0.07 1.26  
(±0.13) 

0.68  
(±0.1) 

0.79  
(±0.1) 

0.33  
(±0.06) 

Fall 1.57 0.06 1.41  
(±0.23) 

0.77  
(±0.15) 

0.94  
(±0.17) 

0.41  
(±0.09) 

Winter 1.75 0.01 1.63  
(±0.18) 

0.88  
(±0.12) 

0.96  
(±0.1) 

0.35  
(±0.05) 

Mean 1.6 0.04 1.43  
(±0.16) 

0.77  
(±0.11) 

0.87  
(±0.1) 

0.34  
(±0.06) 

        

Load 

(kg ha-1 year-1) 

Spring 10.93 0.01 8.86  
(±0.63) 

4.84  
(±0.42) 

4.77  
(±0.31) 

1.62  
(±0.16) 

Summer 5.88 0.02 4.72  
(±0.36) 

2.49  
(±0.25) 

2.81  
(±0.23) 

1.06  
(±0.16) 

Fall 4.72 0.01 4.72  
(±0.39) 

2.57  
(±0.26) 

3  
(±0.27) 

1.23  
(±0.16) 

Winter 8.38 0.01 8.42  
(±0.68) 

4.61  
(±0.46) 

4.91  
(±0.38) 

1.81  
(±0.18) 

Mean 7.44 0.01 6.68  
(±0.47) 

3.63  
(±0.33) 

3.87  
(±0.27) 

1.44  
(±0.16) 

 

3.2 Improved prediction of NO3– export 

Turning fertilization and septic processes on and off in the model produced variation in in-stream NO3– concentration and load 

simulations. We calculated weekly means of NO3– load and concentration of behavioral simulations. In our 5-year study period, 

the ensemble mean NO3– concentrations (Fig. 4a) for scenarios none, septic only, fertilizer only, and both were 0.34, 0.77, 360 

0.87, and 1.43 mg NO3–-N L-1, respectively (Table 4). The mean long-term observed concentration at the BARN USGS gauge 

was 1.6 mg NO3–-N L-1. Thus, the simulated bias of mean NO3– concentration considering both fertilization and septic loads 

decreased significantly from -1.26 mg NO3–-N L-1 in the scenario none to 0.17 mg NO3–-N L-1 in the scenario both. The 95% 

uncertainty boundary of weekly NO3– concentration in scenario both captured 67% of the weekly sampled observations. The 

seasonality of NO3– concentration is also well captured, except for the growing season (e.g., Jul. to Oct. in 2013 and 2016) 365 

when the model underestimated low flows (Sect. 3.1). At seasonal scales (Table 3), the weekly mean NO3– concentrations of 

scenario both from spring to winter were underestimated compared to the BES observations by small amounts (0.1 (-7%), 
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 370 
Figure 4. Ensemble weekly mean (a) NO3

– concentration and (b) load at the outlet of Baisman Run over the entire study period 

(water year 2013 to 2017). The 95% uncertainty boundary for scenario both was shown in grey.  

 

0.34 (-21%), 0.16 (-7%), and 0.12 (-10%) mg NO3–-N L-1). The highest underestimation of NO3– concentration in summer was 

aligned with the period that our model underestimated the lowest flows in the growing season (Sect. 3.1).  375 

The in-stream NO3– load (Fig. 4b) followed a similar trend as concentration, and the bias was reduced substantially from 

scenario none to both when fertilizer and septic loads were included. Scenario none underestimated NO3– load by 6 (-81%) kg 

NO3–-N ha-1 year-1, and the scenario both decreased the bias substantially to -0.77 (-10%) kg NO3–-N ha-1 year-1. The seasonality 

was also well simulated by our model. The ensemble mean loads (Table 3) in fall and winter were accurately captured with 

close-t- zero bias compared to the observations, and the bias in spring and summer was slightly higher. The differences were 380 

due to lower simulations than observed discharges (Fig. 3) during the growing season. Lastly, the NO3– retention rate (i.e., % 

of N input not exported in streamflow) varied across different scenarios ranging from a high of 87% in scenario none 
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(atmospheric deposition only) to a low of 81% in scenario both. In scenarios septic only and fertilizer only, retention rates were 

84% and 83%, respectively.  

3.3 Ecohydrological and biogeochemical responses of hot spots 385 

In our simulations, fertilizer is slowly released to soil and surface detention and transported downslope. This transport is 

augmented by irrigation and septic fields. As a result, water and NO3– are redistributed through other patches along subsurface 

hydrological flowpaths, providing “off-site” ecohydrological and biogeochemical responses downslope and across the whole 

watershed.     

3.3.1 Soil moisture and ET 390 

The ensemble mean of water table depth (Fig. A4) from all behavioral simulations under scenario none was 4.52 m during the 

study period. Fertilization had overall negligible effects on watershed mean soil moisture or water table depth compared to the 

base (none) scenario (Fig. 6a–6c), but minor increase of water table depth was detected in the residential areas, likely due to 

higher ET in lawns after fertilization. Septic processes decreased mean water table depth to 4.47 m by groundwater mounding, 

which increases shallow groundwater flow to surrounding patches along connected flowpaths. Specifically in septic drainage 395 

field patches, the mean water table depth decreased to 3.69 m (-0.66 m, -15%) in scenarios both and 3.72 m (-0.63 m, -14%) 

in septic only compared to the mean depth of 4.35 m, in scenarios none and fertilizer only. With setting hillslope groundwater 

as the only source for septic process, we found groundwater withdrawal resulted in drier conditions (i.e., increase of water 

table depth) in riparian areas of these residential hillslopes (Fig. A6, hillslopes 11 to 16), where the mean water table depth 

increased by 5 (2%) and 8 (3.4%) mm in scenarios septic only and both compared to 219 mm depth in scenarios none and 400 

fertilizer only. Though the standard deviation of each scenario from the 50 behavioral simulations was 1.1 m, the spatial 

distribution of soil moisture is consistent among all behavioral simulations. 

The watershed-scale mean ET was 43.9 mm month-1 in scenario none and 44.0 mm month-1 in scenario fertilizer only. The 

standard deviation from 50 behavioral parameter sets was 0.8 mm month-1 for each scenario. As the result of higher soil 

moisture levels after activating septic processes in scenario both, ET in lawn patches and septic drainage fields increased to 405 

(by) 42.3 (+0.4, 1.0%) and 40.8 (+6.5, 18.9%) mm month-1, compared to the levels in scenarios none, respectively. With septic 

processes activated, mean ET increased to 44.1 and 44.2 mm month-1 in scenarios septic only and both in the residential 

hillslopes, which could be contributed by the additional water extracted from groundwater to surface soil at the upland areas 

(in Fig. 6). When fertilization is activated in scenario fertilizer only, ET in riparian areas of residential hillslopes decreased to 

(by) 54.7 (-0.1, -0.3%) mm month-1 compared to scenario none, while the upland of these hillslopes increased by 0.1 mm 410 

month-1. This showed that fertilization in the upland residential lawns could support higher growth rate of vegetation but 

preventing water from draining towards downstream areas of a hillslope (in Fig. 6).  
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Figure 6. Ensemble mean differences of water table depth (top panel) and denitrification (lower panel) between scenario none and 415 
scenario fertilizer only (a & d), septic only (b & e), and both (c & f). The two hot spots of denitrification (i.e., wetlands in Fig. 1) were 

circled in (f).   

 

3.3.2 Denitrification 

Our model suggested significant changes in denitrification after including additional NO3– inputs from fertilization and septic 420 

processes. Compared to scenario none (Fig. A5), the ensemble mean annual rates of denitrification at the watershed scale were 

7.2, 7.8, and 9.1 kg N ha-1 year-1 in scenarios fertilizer only, septic only, and both, respectively, increasing by 33%, 44%, and 

68% (Fig. 6d–6f & Table 4). The standard deviation from the 50 behavioral simulations was 1.5 kg N ha-1 year-1 for scenario 

none and fertilizer only and 1.6 kg N ha-1 year-1 for scenario septic only and both. When fertilization and septic processes were 

activated, the denitrification rates increased at the residential hillslopes and their riparian areas. The only exception was found 425 

in scenario septic only, where 7 patches experiencing minor reduced denitrification (-1.4% in average). All these patches were 

found in riparian areas of residential hillslopes where the water table drops by 9 mm in average after the septic processes 

extracting groundwater in the upstream.    

 

Compared to scenario none, denitrification rates increased significantly in hot spots – lawn, septic drainage field, and riparian 430 

areas (Table 4) in response to NO3– inputs from fertilization and septic processes. Scenario fertilizer had higher denitrification 

rates than scenario septic only in lawns. Septic drainage patches (i.e., scenario septic only) was almost 5-fold higher (+368%) 

than the reference scenario none. Fertilization and septic processes added more than 20 kg N ha-1 year-1 load at the watershed 
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level concentrated in upland residential areas. These additions increased mean denitrification rates in forest patches in and 

below residential areas (i.e., excluding patches in Pond Branch) by 72.7% (Table 4). The annual denitrification rates in the 435 

sedimentation accumulation zone (upper red circle in Fig. 6) showed a significant increase after activating fertilization and 

septic processes, from 76.9 kg N ha-1 year-1 before to 95.6 (+18.7, 24.3%) kg N ha-1 year-1 after activation. Similarly, 

denitrification rates in the constructed wetland (lower red circle in Fig. 1) increased from 81.5 kg N ha-1 year-1 before to 102.7 

(+21.2, 26%) kg N ha-1 year-1 after activation.  

Changes in denitrification varied among seasons (Table 4). At the watershed scale and in all hot spots, the highest rates were 440 

generally found in spring and summer, followed by fall, and lowest in winter. The greatest increases (%) in denitrification at 

all locations were in spring when fertilizer is applied to lawns and soil moisture is generally higher. Riparian areas had 

significant increases in denitrification in winter when the watershed receives sustained NO3– input from septic effluents.  

Our modelled denitrification rates are consistent with measurements from field studies in Baltimore. Assuming 210 days (~7 

months) that denitrification would occur, Raciti et al. (2011) reported a denitrification rate of 204 kg N ha-1 year-1 at 20 ℃ for 445 

saturated soil samples from fertilized lawns at the University of Maryland Baltimore County. At the same temperature, Suchy 

et al. (2023) reported a higher rate, 744 kg N ha-1 year-1, when lawn soil samples collected from BARN lawns were saturated. 

We interpolated the two rates based on the method from Raciti et al. (2011), assuming 5% storm (i.e., saturated soil) and 95% 

dry (i.e., low-soil-moisture) days (with a denitrification rate of 2.95 kg N ha-1 year-1) rate in a year. The projected climate-

adjusted mean denitrification rates were 13 and 40 kg N ha-1 year-1 from Raciti et al. and Suchy et al, which are very similar 450 

to estimates of annual denitrification from our simulated scenarios (Table 4). The mean 25 and 85 percentiles of annual 

denitrification rate for lawns from all simulations in scenario both were 2.8 to 30.8 kg N ha-1 year-1, respectively, which are 

quite comparable with the range of empirical measurements from low to high soil moisture conditions and various fertilization 

rates. 

4 Discussion and Conclusions 455 

4.1 Hydrologic processes 

In BARN, household water use from wells transports roughly 0.05 mm day-1 of water from groundwater to septic systems at 

the watershed level (10 mm day-1 on septic fields). However, the conversion of groundwater to septic usage produced only 

negligible changes in streamflow, while locally changing soil moisture and groundwater levels. Specifically, simulated 

streamflow was slightly decreased compared to the condition without septic water input. Inspecting growing season phenology, 460 

we found both ET and net photosynthesis were elevated with septic input (Fig. A7). This may be due to local increases in  

septic water and nutrients increasing ET during the growing season, reducing groundwater recharge, in addition to the reduced 

groundwater storage, and contribution to watershed baseflow. We also noted that our model tended to underestimate the lowest 

streamflows during the growing season, which was also found in another suburban watershed, Dead Run, in Baltimore by 

Miles (2014). Several potential reasons could cause this discrepancy: 1) Higher transpiration estimates caused by uncertainties 465 
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Table 4. Ensemble mean denitrification rates (kg N ha-1 year-1) in different locations under four scenarios and all seasons. Absolute 

and relative changes between others and scenario none are included below denitrification rates. Rates for forest excluded Pond 

Branch patches where no fertilizer or septic inputs are added. 

Location Season 

Scenario 

None Fertilizer 
Only 

Septic 
Only Both 

Lawn 

Spring 9.4 
13.3 11.7 15.0 

(3.9, 41.8%) (2.3, 24.7%) (5.6, 59.4%) 

Summer 11.6 
16.0 13.9 17.6 

(4.4, 38%) (2.3, 19.8%) (6, 51.6%) 

Fall 9 
11.3 10.9 12.7 

(2.3, 25.7%) (1.9, 20.9%) (3.7, 41.4%) 

Winter 6.6 
8.1 8.3 9.4 

(1.5, 22.7%) (1.7, 26.4%) (2.8, 42.4%) 

Annual 9.2 
12.3 11.3 13.8 

(3.1, 33.4%) (2.1, 22.4%) (4.6, 49.7%) 
 

     

Septic Fields 

Spring 3.8 
5.8 18.7 18.7 

(2, 52.4%) (14.9, 392.6%) (14.9, 391.6%) 

Summer 4.7 
6.1 19.8 19.7 

(1.4, 30.6%) (15.1, 321.1%) (15, 319.4%) 

Fall 4 
4.8 19.4 19.3 

(0.8, 19.5%) (15.4, 385.8%) (15.3, 383%) 

Winter 3.2 
4.0 15.0 15.0 

(0.8, 24.7%) (11.8, 368.4%) (11.8, 367.8%) 

Annual 3.9 
5.2 18.3 18.2 

(1.3, 33.3%) (14.4, 367.9%) (14.3, 366.2%) 
      

Riparian Areas 

Spring 13.2 
20.9 23.4 28.3 

(7.7, 58.3%) (10.2, 76.9%) (15.1, 114.2%) 

Summer 14.5 
19.1 19.9 23.8 

(4.6, 31.9%) (5.4, 37.2%) (9.3, 63.9%) 

Fall 11.1 
15.7 16.0 19.7 

(4.6, 41.7%) (4.9, 43.9%) (8.6, 77.3%) 
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Winter 10.1 
15.4 16.7 19.8 

(5.3, 52.8%) (6.6, 65.1%) (9.7, 95.5%) 

Annual 12.3 
17.9 19.1 23.0 

(5.6, 45.4%) (6.8, 55.3%) (10.7, 87.1%) 
      

Forest 

Spring 6.5 
8.7 10.4 11.7 

(2.2, 34.5%) (3.9, 59.7%) (5.2, 80.2%) 

Summer 3.8 
5.0 5.5 6.7 

(1.2, 30.8%) (1.7, 45.5%) (2.9, 75%) 

Fall 3.8 
5.0 5.4 6.4 

(1.2, 30.8%) (1.6, 41.8%) (2.6, 68.4%) 

Winter 4.9 
6.3 7.4 8.2 

(1.4, 29.4%) (2.5, 50.8%) (3.3, 67.1%) 

Annual 4.8 
6.3 7.2 8.3 

(1.5, 31%) (2.4, 50.4%) (3.5, 72.7%) 
      

Watershed 

Spring 7 
9.5 10.4 12.1 

(2.5, 35.3%) (3.4, 48.1%) (5.1, 72.4%) 

Summer 5.1 
6.9 7.0 8.5 

(1.8, 34.3%) (1.9, 36.3%) (3.4, 65.9%) 

Fall 4.7 
6.1 6.4 7.5 

(1.4, 29.4%) (1.7, 35.7%) (2.8, 59.1%) 

Winter 5.2 
6.6 7.4 8.2 

(1.4, 26%) (2.2, 42.7%) (3, 58.5%) 

Annual 5.4 
7.2 7.8 9.1 

(1.8, 32.9%) (2.4, 43.6%) (3.7, 67.6%) 
 

 470 

in vegetation ecophysiological parameters in RHESSys controlling vegetation water use or phenology; 2) Underestimation of 

groundwater recharge and release to streams during the growing season; and 3) A lack of household modulation of groundwater 

use during dry periods. During our prior surveys (Law et al., 2004; Fraser et al., 2013) residents stated they had reduced their 

water use during droughts. While the model underestimation was negligible, additional empirical data about water flux, 

groundwater processes, and household water management would enhance model prediction accuracy of hydrological 475 

processes, especially during the growing season. 
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4.2 N dynamics and uncertainties 

4.2.1 Nitrogen concentrations and loads 

Not surprisingly, adding fertilization and septic modules in RHESSys improved the simulations of in-stream NO3– 

concentration and load dynamics. Compared to the weekly BES observations, our model underestimated  mean in-stream NO3– 480 

concentration by less than 0.2 mg NO3–-N L-1 (-10%) and with similar seasonality (Fig. 5). Considering that no N-related 

parameters were calibrated, the reasonable NO3– simulations suggest the model can provide sufficient assessment of the effects 

of household water and nutrient management on N transport, transform, and export in suburban watersheds when only 

discharge but no NO3– observations are available. The bias of mean NO3– concentration could be attributed to uncertainties in 

both water usage and N inputs. The uncalibrated parameters of vegetation and domestic water usage introduced uncertainty in 485 

hydrologic and biogeochemical processes of our model, which may cause bias in streamflow and N cycling especially in the 

dry periods during the growing season. In these periods, our model might retain excessive N in the upland through 

denitrification and uptake, leaving little transported to streams. In addition, we assumed identical N inputs for all households 

in BARN, but the actual fertilization and septic effluents may have considerable spatial, and temporal variations which could 

impact the N cycling and transport significantly. Specifically, we used the annual fertilization rate on lawns as 84 kg N ha-1 490 

from Law et al. (2004) in which the reported range of annual fertilization was from 10.5 to 369.7 kg N ha-1. It is also important 

to note that BARN did have extensive agricultural activities for up to two centuries which may have resulted in accumulation 

of legacy N in the groundwater. Compared to other RHESSys studies (e.g., Lin et al., 2015; Son et al., 2019; Tague et al., 

2013), spinning up the model for 30 years may be insufficient to account for the export of this N from groundwater, which 

possibly caused the lower simulated mean NO3– concentration compared to BES measurements. Furthermore, we found the 495 

model yielded a stronger seasonality of N export, with simulated concentrations with fertilization and septic processes lower 

during the growing season but spiking right at the end of growing season. Uncertainty in RHESSys vegetation parameters and 

phenology may contribute to these differences, where the sudden ending of the growing season caused quick mobilization of 

NO3– into streams. The lower estimation of streamflow during the growing season could also increase residence time and 

retention, and reduce N export from uplands and groundwater to streams, causing the underestimation of NO3– concentration 500 

and load in these periods. Lastly, we noted that the observations of weekly NO3– from BES were collected in conditions without 

large storm flows, but our model simulated NO3– under various weather conditions. Bias between our model simulation and 

the observations is unavoidably expected.      

Another interesting finding is that the simulated mean NO3– concentration from scenario none was significantly greater than 

the observed concentrations at POBR (Table 3) which is a reference of forest and pre-urbanization conditions of watersheds 505 

in the region. The higher estimated NO3– concentrations in BARN could be explained by the land use difference between the 

two watersheds. Specifically, there are more impervious areas and lawns in the upland of BARN than in POBR which is fully 

forested (with the exception of a regional natural gas line cut with herbaceous vegetation), resulting in lower N uptake and 

higher N concentration (Table 3, scenario none vs. POBR). This result implies that, even in the absence of additional NO3– 
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input from human activities, the water quality in urban watersheds is unlikely to fully recover to pre-urbanization levels due 510 

to altered hydrology and differences in vegetation and land covers.  

4.2.2 Denitrification and N retention hot spots 

In addition to improving predictions of in-stream NO3– concentration, the simulated denitrification rates (Sect. 3.3.2 & Table 

4) in lawns fell in the range of empirically estimated rates at BARN (Suchy et al., 2023) and other areas in Baltimore (Raciti 

et al., 2011). Among all hot spots, the constructed wetland and sediment accumulation zone at the base of the gully exhibited 515 

the highest denitrification rates within the entire watershed, both before and after considering fertilization and septic processes 

(Fig. A5). These rates were comparable to other wetland denitrification measurements: Groffman and Hanson (1997) estimated 

denitrification rates from 1 to >130 kg N ha-1 year-1 at several wetlands in Rhode Island; Poe et al. (2003) reported rates ranging 

between 19 to 191 kg N ha-1 year-1 at a constructed wetland receiving agricultural runoff; Harrison et al. (2011) found rates of 

89 and 158 kg N ha-1 year-1 at two wetlands adjacent to Minebank Run in Baltimore. In BARN, these wetlands were located 520 

in low-slope downstream areas and advertently or inadvertently treat runoff originating from roads and upstream households. 

Unlike lawns which may not maintain high soil moisture levels, these areas remain consistently wet throughout most of the 

year. These features create ideal conditions for promoting denitrification and effectively retaining N loads that would otherwise 

be transported to streams. Specifically, these two wetlands covering only 0.09% of the watershed contributed to 0.39% of the 

total denitrification during the study period. This discovery highlights the significance of strategically selecting locations for 525 

water quality improvement projects in future watershed restoration efforts, and assessing the ecosystem services of 

spontaneously generated features.  

4.3 Future model improvements 

The analyses here highlight several challenges in modelling ecohydrology of mixed land use watersheds such as BARN. Our 

current setup assumed a uniform daily NO3– input and wastewater volume of septic effluents for all households and fixed 530 

fertilization amounts for lawns adjusted by application interval (Eq. 1). These parameters could be further adjusted when more 

observations are available. For fertilization, our model distributed the estimated total fertilization amount uniformly to all 

lawns in the watershed, at rates modulated by the proportion of lawns fertilized estimated by Law et al. (2004) and Fraser et 

al. (2013). In reality, fertilization rate and frequency vary significantly in different lawns. Variable space and time patterns of 

fertilization rates could result in N hot spots that exceed retention capacity relative to variable transport rates. For irrigation, 535 

our model applies irrigation close to its maximum (4 mm day-1) when water stress is high, but residents may not irrigate their 

lawns at these rates during drought to conserve groundwater, and may continue to irrigate lawns during wet periods with 

automated sprinkler systems. Current settings of our model could introduce excessive depletion of groundwater during 

droughts, and lead to underestimation of baseflow and in-stream NO3– concentrations, or increased recharge during wet 

growing seasons. More detailed information about water usage habits and observations of relationships between 540 
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meteorological factors and groundwater storage are needed to improve simulation of the dynamics of water withdrawal in 

RHESSys. 

4.4 Synthesis of results 

Lastly, our study addressed three overarching questions: 

1) What are the individual and interacting contributions of different watershed N sources to streamwater N export?  545 

Calibrating hydrologic parameter only, our model reduced the bias of NO3– load (Table 3) significantly after including N loads 

fertilization and septic effluents in BARN. Compared to the 7.4 kg NO3–-N ha-1 year-1 observed export, the RHESSys estimated 

1.44 kg NO3–-N ha-1 year-1 in scenario none (atmospheric deposition only). Simulations with solely septic or fertilization inputs 

increased NO3– export to 3.63 and 3.87 kg NO3–-N ha-1 year-1 individually, while including both sources increased export to 

6.68 kg NO3–-N ha-1 year-1. The reduced bias after adding human inputs showed our model could reasonably estimate the N 550 

export once the quantity and spatial patterns of N inputs are known. For BARN, the drop of retention rate in scenario both 

compared to scenario fertilizer or septic only suggested the watershed is saturated in its retention capacity, and there is a 

potential to promote N retention through new BMPs such as detention ponds and wetlands to reduce N export to streams 

through on- and off-site effects of hillslope hydrology and biogeochemistry.  

 555 

2) How do the spatially nested patterns of water and N inputs from human activities alter spatial patterns of a set of key 

ecohydrological processes including N retention, evapotranspiration, soil and groundwater levels and flows?   

Simulation results indicate septic systems using deep groundwater as the water source, transport that water to shallow soils, 

resulting in systematic shallow water table increases within upland residential areas and small drops in water table levels in 

riparian areas of residential subcatchments. Results show how on-site extraction of water could alter the hydrological 560 

conditions of both “on-site” locations where septic effluent is directly disposed, as well as in “off-site” locations. These results 

occur because while the septic effluent is depleted by evapotranspiration, the deeper groundwater that emerges in riparian 

areas is also affected at hillslopes with residential development. Thus, extraction of water for domestic use lowers riparian 

water tables even when this water is ultimately discharged back into the environment via a septic system.  Likewise, the spatial 

pattern of denitrification showed increases not only in sites receiving N inputs directly (i.e., lawns and septic drainage fields) 565 

but also in “off-site” downstream areas (i.e., wetlands and riparian areas) receiving transported NO3– from upland zones. 

 

3) What are the patterns of hot spots for N retention and associated implications to design future BMPs to promote N retention 

within suburban watersheds? 

In the residential subcatchments of the watershed, riparian zones, constructed and accidental wetlands were found to be hot 570 

spots of denitrification (Zhang et al., 2023). These areas have the combination of subsidized supplies of water and NO3–, 

providing mixing zones with conditions promoting denitrification that are more consistent than fertilized lawn areas with 

variable soil moisture. Temporal patterns of denitrification were generally climate-driven with highest rates occurring in spring 
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and summer in both hot spots and other areas in the watershed. These results suggest that effective siting of BMPs and a careful 

assessment of spontaneously existing (accidental) retention zones that accumulate both water and N loads from upstream can 575 

be used to achieve environmental goals for developed watersheds, by leveraging naturally occurring and built features 

providing ecosystem services.  

4.5 Conclusions 

Our analysis provides important insights into how different sources of N input interact with ecohydrological processes to 

control N export from suburban and exurban watersheds where single-family households use individual groundwater wells for 580 

domestic water discharged to septic systems and lawn irrigation, and add additional nitrogen in the form of sanitary effluent 

and lawn fertilization. While atmospheric deposition is ubiquitous, the input of lawn fertilization and irrigation water, and 

septic effluent volume and N load are concentrated in limited areas of the watershed at much higher per unit area rates. These 

differences cascade through the watershed producing hot spots of N export and retention. Calibrating hydrologic parameters 

against streamflow observations only, our model yielded satisfactory simulations of in-stream NO3– concentration and upland 585 

N retention processes. Specifically, our model estimated the mean NO3– concentration as 1.43 mg L-1, which is only less than 

0.2 mg L-1 lower than the weekly observations from Baltimore Ecosystem Study for our study period. The simulated 

denitrification rates at fertilized lawns are also comparable to measurements in the study area and nearby watersheds in 

Baltimore, and rates at wetlands and riparian areas are similar to reported measurements in other studies.  

Our results strongly support the basis for small watershed-scale analysis and planning to address watershed N exports and are 590 

particularly relevant in areas such as the Chesapeake Bay that are highly sensitive to N-induced eutrophication. The spatially 

explicit, high-resolution simulations from our model could help local decision makers to identify existing and potential new 

hot spots of N retention processes (e.g., denitrification). Specifically, we found locations accumulating both high N loads and 

water from upstream are ideal locations for siting future BMPs (e.g., detention ponds, constructed wetlands) to promote N 

retention and improve water quality for local and downstream waterbodies. In summary, the improved RHESSys simulations 595 

with augmentations for more complete, spatially nested inputs of water and N and subsequent feedbacks between transport 

and retention highlight the importance of the structured spatial heterogeneity of human impacts to fully understand 

ecohydrological processes at hillslope level in developed watersheds. Existing models often miss the patterns and feedbacks  

water and N inputs at household levels and within hillslope hydrologic flowpaths. The spatially distributed inputs and our 

augmented RHESSys model structure may provide a reliable framework to comprehensively evaluate current coupled water, 600 

C and N cycles, and also understand and predict effectiveness of ecosystem restorations to improve water quality and 

ecosystem health in developed watersheds.  
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Appendix A. Supplementary figures and tables 

Figure A1. 1-m land use and land cover in Baisman Run from the Chesapeake Bay Conservancy.  
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Table A1. List of data sources used to set up, calibrate, and evalute RHESSys model for Baisman Run 610 

Data Detail Source 

Topography Bare Earth DEM 2014 Baltimore County GIS, 2017 

Land Use Chesapeake Bay 1-m Land Use  Claggett et al., 2018 

Discharge United States Geological Survey   Gage ID: 01583580 (Baisman Run); 01583570 (Pond 

Branch) 

Water Chemistry Baltimore Ecosystem Study Groffman et al., 2020; Castiblanco et al., 2023 

Household Parcel Baltimore County Parcels Baltimore County GIS, 2019 

Hydrologic Network County Hydrolines Baltimore County GIS, 2016 

 

 

Figure A2. SSURGO (USDA, 2019) derived (a) soil texture, (b) lateral and vertical saturated hydraulic conductivities at surface (m 

day-1), (c) lateral and vertical decay rates for lateral and vertical hydraulic conductivities, (d) soil depth (m), (e) pore size index, and 

(f) air entry pressure (pounds inch-2) for Baisman Run.  615 
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Figure A3. Distributions of multipliers to RHESSys parameters based on 50 calibrated behavioral parameter sets.  

 

 620 

Figure A4. Spatial pattern of ensemble mean water table depth (meter) of Baisman Run during the entire study period (water year 
2013 to 2017) from the 50 behavioral simulations. Map in projection NAD83 UTM 18N (EPSG: 26918). 
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Figure A5. Spatial pattern of ensemble mean denitrification (kg N ha-1 year-1) of Baisman Run during the entire study period 625 
(water year 2013 to 2017) from the 50 behavioral simulations. Map in projection NAD83 UTM 18N (EPSG: 26918). 

 

 

Figure A6. Hillslope indices of Baisman Run. Map in projection NAD83 UTM 18N (EPSG: 26918). 

 630 
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Figure A7. Monthly differences of evapotranspiration (upper) and net photosynthesis (lower) between scenario none and scenarios 
fertilizer only and septic only.    
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