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Editor
Given that both reviewers have serious concerns about this manuscript, I would like to encourage
the authors to resubmit this manuscript after their major revisions.

We appreciate the opportunity to revise and resubmit our manuscript to HESS. We have
performed thorough revisions (e.g., performing uncertainty analysis to evaluate our
model simulations, improving quality of figures, etc.) to address the insightful
comments/suggestions from the two reviewers. Please refer to our responses to
reviewers’ comments for details.

Reviewer 1

Summary

The work uses a calibrated fully-distributed ecohydrological model to explore the nitrogen
sources, and the transport and transformation processes within a small exurban catchment. The
manuscript seems to contribute to important process understanding, but the current presentation
needs substantial revision to legible contribution to existing literature. My key concerns are: 1)
lack of clarification on research novelty in the context of existing literature; 2) questionable
capacity of the calibrated model to represent key processes, which raise further question on
whether the model is appropriate to infer nitrogen dynamics from. I therefore suggest this
manuscript to be returned to the authors for substantial revision and resubmission.

Thanks for your helpful comments to our manuscript. We addressed your concerns to our
study in novelty and model uncertainty for N dynamics accordingly in responds to your
General Comments:

General Comments

1. What is the novelty of this study? A clear statement of this is needed with respect to the key
knowledge gap in the existing literature: what is missing from current literature, and why are
they important to consider. At present, the review of process-based modelling literature
seems technically comprehensive, but it does not explain why the current study is needed as a
useful addition to literature.

Thanks for the comment. We highlighted the novelty of our study in the abstract and in
the introduction and discussion. Our study addresses the distribution and interaction of
hillslope ecohydrological processes in transporting natural and human sources of



nitrogen in a long term monitored suburban watershed. Understanding processes and
interactions at these scales promotes the design of retention features.

To our knowledge, our model is the first fully distributed hydrologic model that includes
1) spatial and temporal human-induced N and water sources at the household level, ii)
hillslope ecohydrological processes for routing and cycling water, carbon, and nitrogen.
These processes are necessary to identify the space/time distribution of “hot spots” of N
retention at scales amenable to restoration.

A significant aspect of the model is that it is calibrated for hydrologic processes restricted
to soil and subsurface hydraulic parameters. It is not calibrated for biogeochemical
processes which are subject to change with restoration activities. In contrast, the current
set of ecohydrological models typically calibrate patch (grid cells, elements) to stream
transfer, and biogeochemical cycling parameters.

Abstract
Line 21:

We evaluated how the spatial and temporal distribution of nitrogen sources interacts
with ecohydrological transport and transformation processes along surface/subsurface
flowpaths to nitrogen cycling, and export. Embedding distributed household sources of
nitrogen and water within hillslope hydrologic systems influences the development of
both planned and unplanned “hot spots” of nitrogen flux and retention in suburban
ecosystems.

Line 29:

With the model is calibrated for subsurface hydraulic parameters only and without
calibrating ecosystem and biogeochemical processes, the model predicted mean [...]

In the Introduction, we thoroughly reorganized the order of paragraphs and firstly
highlighted why understanding ecohydrological processes at “hillslope level” is required
for planning Best Management Practices and promote N retention.

Line 49:

BMPs can be both structural (e.g., constructed wetlands) and non-structural (e.g.,
changing fertilization and irrigation regimes). In addition to planned BMPs,
spontaneously developed “hot spots” (Palta et al., 2017) may be responsible for a large
share of nutrient retention, and therefore should be identified and protected. Both
planned and unplanned retention features exist at very localized, sub-hillslope scales.
Therefore, gaining a comprehensive understanding of the hillslope level ecohydrological
behaviours and interactions between i) ecosystems and human derived nitrogen sources
and ii) flowpath modification can lay the foundation for effectively mitigating these



environmental issues through spatially well-conceived and sustainable management
practices.

Then, we briefly reviewed how urban water quality is degraded by excessive human-
induced N loads, emphasizing the widely used septic systems in suburban areas.\

Line 60:

In the United States, about 20% of households (26.1 million) are reported to be served
by septic systems in 2007 (U.S. EPA, 2008). Through our work in Baltimore Ecosystem
Study, low density suburban areas have been shown to produce the highest NOs™ load
per unit developed land among different land uses, degrading local and downstream
water quality (Groffman et al., 2004; Zhang et al., 2022).

We then discussed the research gap in current semi-distributed models in aspects of
incapable of including i) household scale human water and N loads contributing the
majority of N inputs in suburban watersheds in distinct landscape positions and ii)
hillslope hydrologic flow paths to meet the planning purposes to design BMPs to reduce
N export. We also discussed data-driven approaches which could include additional N
inputs, but hillslope-level N transport and transformation is still missing.

Line 69:

With rapid suburban and exurban sprawl, decision makers are facing environmental
challenges which requires detailed planning for siting BMPs effectively in watersheds to
promote N retention, reduce N export in streams, and protect water quality. These
include both constructed and “inadvertent” biogeochemical hot spots at specific
hillslope locations (e.g., swales, wetlands, riparian areas) on N retention at resolutions
required for landscape design. However, commonly used modelling frameworks could
not couple distributions and interactions of hillslope ecohydrological processes in
transporting and transforming natural and human-induced N sources to understand or
predict local (neighbourhood or hillslope) scale N transport and retention. Semi-
distributed. Semi [...] lack(s) hillslope water and nutrient mixing along interacting
surface/subsurface hydrologic flowpaths [...]

Line 82:

Data-driven approaches, such as SPARROW (Ator & Garcia, 2016; Smith et al., 1997), are
also developed to assess large scale water quality in streams by nonlinear regression
from gauged discharge and solute concentrations. However, these models also do not
investigate hillslope-scale transport and transformation processes. In addition, there
does not exist the data at hillslope scales to develop sufficient data-based approaches to
understand and predict retention processes (e.g., denitrification, uptake,
immobilization).



Then, we emphasized, though fully distributed hydrologic models, such as MIKE-SHE,
could simulate hillslope hydrology and biogeochemistry, they currently have no modules
to include the household-level N inputs developed.

Line 87:

Fully distributed hydrology models, such as MIKE-SHE (Abbott et al., 1986a, 1986b) and
RTM-PiHM (Bao et al., 2017; Zhi et al., 2022), ParFlow (Maxwell, 2013) and RHESSys
(Tague & Band, 2004) could explicitly couple hillslope hydrologic and biogeochemical
processes that are required to understand transport and transformation of these
human-induced N loads along hydrologic flowpaths from upland to stream.

Lastly, we wanted to highlight that our model is designed to be generalized to watersheds
without long-term water chemistry observations which are quite expensive to acquire. In
other words, we do not calibrate our parameters for N inputs (e.g., fertilization and septic
loads) or processes but only soil hydraulics against streamflow records. If the model
could reasonably estimate NOs", it compromises the generalization of the model.

Line 102:

Lastly, the framework should be capable to be extrapolated to watersheds without
water chemistry data which are less available than discharge records worldwide. It
would be a valuable feature of the framework to estimate nutrient dynamics reasonably
if calibrating only hydrologic parameters could provide reasonable estimation of N
dynamics. Calibrating nutrient dynamics may not allow generalization to watersheds
without chemistry records or extrapolation to conditions in which water quality BMPs
are implemented.

2. The Introduction started discussion different types of models and their pros/cons from an
earlier stage, lots of them are about inclusion of key processes (e.g., L55: hillslope water and
nutrient mixing along hydrologic flowpaths). But for the readers’ benefit, it might be clearer
by adding a separate paragraph before introducing all the models, to discuss the theory about
key processes at the particular spatial/temporal scale that you are interested in? Then you can
start discussing and contrasting models based on their process representation.

Thanks for this suggestion. As in the response to Comment 1, we thoroughly reorganized
the Introduction to improve its flow and readability. After the opening paragraph, we
firstly emphasized the urgency to understand how excessive human N inputs affect water
quality in urban watersheds, and then discussed the research gaps in current frameworks
by comparing the semi- and fully distributed models and their limitations.

Lastly, we highlighted that our RHESSys model could be augmented to fill these research
gaps in other models and advance our understanding to N dynamics of urban watersheds

while recognizing some of the scale (watershed size) limitations.

Line 107:



The Regional Hydro-Ecological Simulator System (RHESSys, Tague & Band, 2004) is
designed to meet all requirements for the framework, which is an ecohydrological
model that simulates mass balances of water, C, and N of a watershed including
hydrologic and biogeochemical stores and cycling. [...]. In this study, we augmented
RHESSys to include household-level transfer of groundwater for lawn irrigation and
domestic water use, with domestic water use routed to septic spreading fields. With
coupling hillslope hydrology and biogeochemistry at spatially connected patches,
RHESSys could estimate spatiotemporal patterns of [...] in spatially explicit manners. In
summary, by adding modules of lawn irrigation, fertilization, and septic releases (see
Sect. 2.3) that are commonly found in suburban areas, RHESSys is designed with the
capacity to simulate the comprehensive ecosystem dynamics and feedbacks of
introduced spatially explicit lawn irrigation, fertilization, and septic releases that are
commonly found in suburban areas, at resolutions commensurate with human
management of the landscape. This facilitates scientific assessment of small-scale
human activity and modification to land cover and infrastructure in expanding suburban
and exurban areas.

3. You have a comprehensive review of process-based water quality models, what about the
data-driven ones? The latter seem very useful to explain processes/changes at larger scales
(e.g.,) — what’s their relevance to your study? I think this comment can be potentially
addressed once you have resolved my Comment #2.

Thanks for the comment. We addressed this in our response to Comment 1. Our model,
compared to data-driven water quality models, is capable of providing the comprehensive
representation of overall N cycling inside the watershed, which includes interacting
processes (e.g., denitrification, uptake, nitrification, etc.) beyond NO3- concentration at
the outlet. Data-driven water quality models (e.g., SPARROW) may capture the change
of stream N concentrations and loads due to land cover changes from urbanization within
a watershed, but is not designed to estimate the impacts of small scale (below the level of
a catchment) inputs of water and nitrogen and response to retention features. The data
driven methods are useful for estimation of large-scale loads and concentrations of stream
network N, but data to develop methods at the landscape scale we address are lacking.
Therefore, we added a few sentences from line 108 to 112 contrast both approaches:

Line 82:

Data-driven approaches, such as SPARROW (Ator & Garcia, 2016; Smith et al., 1997), are
also developed to assess large scale water quality in streams by nonlinear regression
from gauged discharge and solute concentrations. However, these models also do not
investigate hillslope-scale transport and transformation processes. In addition, there
does not exist the data at hillslope scales to develop sufficient data-based approaches to
understand and predict retention processes (e.g., denitrification, uptake,
immobilization).
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4. The Methods section states that for model calibration ‘the parameter set yielding the highest
NSE was used to simulate ecohydrological processes’ — this does not allow for structural
uncertainty, is there any implication on your results? It might be a more robust practice to
include multiple sets of ‘better performing’ parameters and then compare how they represent
the hydrology; the current calibrated model seems to capture broad seasonality patterns, but
either misses a few high-flow events or is a bit delayed compared to the observation (Figure
3), but it’s difficult to tell as the lines for observations and simulations in Figure 3 are on top
of each other — it would be clearer to use dots and lines in showing the two sets of data

Thanks for the comment. Firstly, our parameters were calibrated against the streamflow
observation only, which is provided by USGS at daily scale. To quantify the uncertainty
of model simulations, we performed another round of calibration in water year 2013
to 2015, with validation period of water 2016 to 2017. We chose 50 behavioral
parameter sets yielding the NSE values ranging from 0.5 to 0.69 in the calibration
period. All these parameter sets were restricted to have the gw2 (% groundwater
loss to stream, Table 1) lower than 0.5 to avoid simulating too flashy groundwater
dynamics. We found these parameter sets all yield similar hydrologic behaviors, and the
uncertainty boundary of NO;™ reasonably captured the majority of our observations,
despite that we do not calibrate any N-related parameters.

We repeat that the goal of calibrating hydrologic parameters (subsurface hydraulic
parameters) only, was to avoid calibrating N cycling dynamics which may compromise
the generalization of the model.

Line 207:

We set the calibration period from water year 2013 to 2015 and validation period from
water year 2016 to 2017. The original parameter values derived from SSURGO were
further calibrated by multipliers to vary their magnitudes but preserve the spatial
patterns of soil hydraulic properties (Fig. A2). Specifically, the simulated streamflow was
used to calibrate against the daily USGS discharge records (Gage ID: 01583580). From
four thousands of parameter set realizations randomly chosen within specified limits,
behavioural sets are chosen as yielding Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe,
1970) greater than 0.5 and fraction of groundwater loss to stream (i.e., gw; in Table 1)
less than 0.5 to estimate the ensemble means and uncertainties of model simulations.
The latter condition was enforced to regulate the flashiness of groundwater dynamics,
as BARN is found to have large saprolite storage to provide steady baseflow (Putnam,
2018). To assess uncertainty, we reported the 95% uncertainty boundaries for simulated
streamflow and NO3™ concentration and load from. Lastly, we noted that no calibration



was performed for N inputs (e.g., fertilization rate and septic load) or N
cycling/transport processes in the model, as an important aim of our methods is to
evaluate the capacity of our model to regionalize to watersheds where no water
chemistry but only streamflow observations were available.
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Figure A2. SSURGO (USDA, 2019) derived (a) soil texture, (b) lateral and vertical saturated hydraulic conductivities at surface
(m day), (c) lateral and vertical decay rates for lateral and vertical hydraulic conductivities, (d) soil depth (m), (e) pore size
index, and (f) air entry pressure (pounds inch-2) for Baisman Run.

We then found 50 behavioral parameter sets meeting the requirements. We were also able
to quantify the uncertainty of our model from these behavioral simulations.

Streamflow uncertainty (Line 333):

The range of calibrated multipliers are listed in Table 1, and the distributions are shown
in Fig. A3. In the calibration period (i.e., water year 2013 to 2015, Fig. 3a), the ensemble
of simulated mean (standard deviation) daily streamflow was 1.24 (70.03) mm day?,
with NSE of 0.63 (between 0.5 and 0.69) compared to the USGS observed 1.38 mm day’
L. In the validation period (Fig. 3b), the simulated ensemble mean (standard deviation)
streamflow was 0.91 (110.03) mm day?, with NSE of 0.58 (between 0.44 to 0.64)
compared to the USGS’s 0.86 mm day™.
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Figure 1. The ensemble mean of daily streamflow from simulations (red) with NSE greater than 0.5 and USGS observations
(blue), with the daily 95% uncertainty range from 50 simulations in grey for the (a) calibration (Oct. 2012 — Sep. 2015) and (b)
validation (Oct. 2015 — Sep. 2017) period. All simulations turned on irrigation, lawn fertilization, and septic processes

We note that we modified our Figure 3 to better contrast of the two lines. We added the 95%
uncertainty range to the streamflow plot. Considering our data are at daily scale, plotting in dots
would still have a lot of overlap and may be noisier than the line plot. To help readers to contrast
the two lines better, we made the lines thinner and increased the transparency of our simulation
line so both lines can be detected.
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Figure A3. Distributions of multipliers to RHESSys parameters based on 50 calibrated behavioral parameter sets.

NOs3™ Concentration (Line 358):

We calculated weekly means of NOs™ load and concentration of behavioural simulations.
In our 5-year study period, the ensemble mean NO3~ concentrations (Fig. 4a) for
scenarios none, septic only, fertilization only, and both were 0.34, 0.77, 0.87, and 1.43
mg NOs™-N L, respectively (Table 4). The mean long-term observed concentration at
the BARN USGS gauge was 1.6 mg NOs™-N L. Thus, the simulated bias of mean NO3~
concentration considering both fertilization and septic loads decreased significantly
from -1.26 mg NOs™-N L in the scenario none to 0.17 mg NOs™-N L in the scenario
both. The 95% uncertainty boundary of weekly NO3~ concentration in scenario both
captured 67% of the weekly sampled observations.

Load (Line 375):

The in-stream NOs~ load (Fig. 4b) followed a similar trend as concentration, and the bias
was reduced substantially from scenario none to both when fertilizer and septic loads
were included. Scenario none underestimated NOs™ load by 6 (-81%) kg NOs™-N ha year
! and the scenario both decreased the bias substantially to -0.77 (-10%) kg NOs™-N ha!
year. The seasonality was also well simulated by our model. The ensemble mean loads
(Table 3) in fall and winter were accurately captured with close-t- zero bias compared to
the observations, and the bias in spring and summer was slightly higher.

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul
2013 2014 2015 2016 2017
—— None —— Both + Observation: POBR
Fertilizer only Uncertainty + Observation: BARN
—— Septic only Boundary (95%)

Figure 4. Ensemble weekly mean (a) NO3~ concentration and (b) load at the outlet of Baisman Run over the entire study
period (water year 2013 to 2017). The 95% uncertainty boundary for scenario both was shown in grey.



Table 1. Mean weekly NOs~ concentration (mg N L1) and load (kg N ha! year?!) from calibrated simulations for BES weekly
observations (BARN and POBR) and RHESSys simulation scenarios in each season and the entire study period from water year
2013 to 2017. Standard deviations from behavioural simulations for all scenarios were included below the mean values.

Observation RHESSys Scenarios

Variables season BARN  POBR Both s;s:;c Feg::;er None
Spring 15 002 (té:iZ) (t%.7068) (¢06.7o75) (106.2073)
Summer 16 0.07 (¢1(5.2163) (266.3) (267.2) (i06.3036)
co?r;:nn:lrf-:;on Fall 157 006 (tlo'flzl3) (i%?175) (ioo.?;) (106%019)
Winter L7500l (¢1(5.6138) (t%iSZ) (269.?) (106.3055)
Mean 16 0.04 (i:t).f‘136) (i%.?l) (268.1) (106.3046)
Spring l0.9s o001 (¢86?663) (ﬁ)‘ifa (J_i)'.7371) (116.6126)
Summer >-88 002 (1%226) (tz().fl295) (J_rchzl3) (11(';?166)
(ke h?la:ear-l) Fall 472 001 (tlt).?329) (¢265276) (J_ro%z7) (116.2136)
Winter 838 001 (tso'flszs) (t%ile) (J_i)'?als) (J_rldils)

Viean o ool 6.68 3.63 3.87 144

(£0.47) (£0.33) (£0.27) (+0.16)

5. 1 think the abovementioned issue in simulating hydrology also brings question on whether
the water quality dynamics are well represented by the model. Besides a consistent lower
bias (i.e., for ‘both’ scenario has an approx. -50% average bias, Figure 5), the simulated
seasonality of NO3 concentrations also seem to differ from the observation too. I’'m not
convinced that this calibrate model is reasonable to further infer on hydrological/water
quality processes. Has any model performance metric been calculated for NO3?

Thanks for the comment. Our apology for put an incorrect figure for Figure 5 (now
Figure 4 in above), which used the wrong low fertilization inputs values from Law et al.
(2004) due to my coding mistakes. Except for this figure, all other results were reported
using the correct fertilization rates. We have corrected this figure as below.

We discussed the details in Discussion that there are uncertainties in hydrologic
behaviors and parameterization which could affect the simulation of NO3™ concentration,
especially during the end of growing season (Fig. 3) when uncertainty of water usage and
vegetation behaviors are not fully understood. Also, the spatial and temporal patterns of
N inputs were assumed uniform for all households in the watershed, but the variations



could significantly affect the N transport and transformation in the watershed. We also
note that our observation samples were all collected under non-storm conditions, which
could be quite different from our simulations which include all weather conditions. In
summary, without calibrating N-related parameters of RHESSys, our model yield quite
reasonable NO3- concentration compared to the observed records.

Line 480:

Considering that no N-related parameters were calibrated, the reasonable NO3~
simulations suggest the model can provide sufficient assessment of the effects of
household water and nutrient management on N transport, transform, and export in
suburban watersheds when only discharge but no NOs~ observations are available. The
uncalibrated parameters of vegetation and domestic water usage introduced
uncertainty in hydrologic and biogeochemical processes of our model, which may cause
bias in streamflow and N cycling especially in the dry periods during the growing season.
In these periods, our model might retain excessive N in the upland through
denitrification and uptake, leaving little transported to streams. In addition, we assumed
identical N inputs for all households in BARN, but the actual fertilization and septic
effluents may have considerable spatial, and temporal variations which could impact the
N cycling and transport significantly. Specifically, we used the annual fertilization rate on
lawns as 84 kg N ha* from Law et al. (2004) in which the reported range of annual
fertilization was from 10.5 to 369.7 kg N ha™. [...] Lastly, we noted that the observations
of weekly NOs™ from BES were collected in conditions without large storm flows, but our
model simulated NOs™ under various weather conditions. Bias between our model
simulation and the observations is unavoidably expected.

There are some key information lacking in the Methods, some examples are listed below but
they highlight need for a substantial improvement of the Methods section:

Section 2.2 on calibration, was the model calibrated to only the streamflow record or with the
water chemistry concentration data as well, and at which gauge? Please specify.

Thanks for the comment. We highlighted in the responses to previous Comments that our
calibration was performed only against the daily USGS discharge records, and no N-
related parameters were calibrated. We added the USGS gage ID (Gage ID: 01583580) at
line 217.

Line 223:

Lastly, we noted that no calibration was performed for N inputs (e.g., fertilization rate
and septic load) or N cycling/transport processes in the model, as an important aim of



our methods is to evaluate the capacity of our model to regionalize to watersheds
where no water chemistry but only streamflow observations were available.

"I In Table 1, what does the column ‘sensitivity parameter’ refers to? Also, for completeness,
the table should also present the original parameter values estimated from SSURGO soils
dataset besides the calibrated multipliers.

Thanks for this comment. We included physical meanings of parameters in Table 1 and
the original SSURGO values in Fig B2. The SSURGO values were estimated for each
type of soils and varies among patches, therefore we could not include a single value for
each parameter but showed the maps of these values in Fig. B2.

We added a sentence for readers to check supplementary for more information about
SSURGO soil at Line 206.

[...] we calibrated eight parameters (Table 1) for subsurface properties (i.e., lateral and
vertical saturated hydraulic conductivities and their decay rates, pore size index, and air
entry pressure) with initial estimates (Fig. A2) from the SSURGO soils dataset (USDA,
2019) and deeper groundwater processes (i.e., bypass seepage from surface and
shallow saturated soil, and drainage rate to stream). [...]
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Figure A2. Soil properties derived from SSURGO dataset. These values are calibrated against USGS observations and
modified by multipliers listed in Table 1.

Table 2. RHESSys parameters being calibrated and their physics (Tague and Band, 2004). Calibrated results shown as ranges
of multipliers to original soil properties (Fig. A2 & A3) and groundwater component generating behavioural simulations with
NSE greater than 0.5 for streamflow.

P E P ipli
arameter RHESSys ‘ar:-‘Jmeter Detail Source Unit Multiplier
Groups Abbreviations Range

D fl | h li
s m ecay ra.tc.e o étera saturated hydraulic USDA ) 031-2.91

Lateral soil conductivity with depth SSURGO

hydraulics L | li ivi !

Ksato1 ateral saturated hydraulic conductivity at 2019 m day! 038-2.93

the soil surface



z Soil depth m 1.65-5.95
ical h li
v m Decay ra.tt.a of v.ertlca saturated hydraulic USDA 0.51—1.98
Vertical soil conductivity with depth SSURGO
hydraulics i i ivi !
y Ksoto v Vertlc:f\l saturated hydraulic conductivity at 2019 m day! 052-1.98
the soil surface
svalt b Pore size index USDA 0.51-1.98
Soil properties SSURGO, g
Pae Air entry pressure 2019 p.oun_zs 0.5-1.05
inch
aw gw: Fraction of bypass from the saturated zone 0-0.13
to groundwater storage
Groundwater Fraction of loss from groundwater storage
. gw:z 0.03-0.5
dynamics to stream
gws Fraction loss from surface to groundwater 0-007

storage

How are rainfall routing and runoff handled by the model? Are there any parameter to
calibrated related to the rainfall-runoff processes?

The rainfall-runoff processes of RHESSys are discussed in detail in Tague and Band
(2004). At patch level, rainfall is intercepted by vegetation and infiltrated into its soil
layers. Surface and subsurface water is then routed to surrounding patches following
hydraulic gradients. In subsurface, water is dynamically routed following gradients
between water table elevations. Soil parameters, especially lateral and vertical soil
hydraulic conductivity (i.e., s and sv in Table 1), affect the rainfall-runoff and drainage
processes directly and are thus calibrated against the runoff observations. The multipliers
will only alter the magnitudes of original SSURGO derived values (Fig. A2) but their
spatial patterns are preserved. Soil hydraulic conductivities are assumed to decay
exponentially, and the lateral and vertical decay rates (i.e., m in Table 1) are also
calibrated to regulate water routing in this study. Surface routing features, including road
and roof drainages, are also considered, as in Smith et al. (2022).

These parameters are commonly calibrated in previous RHESSys studies, and the routing
procedure is detailed in Lin et al. (2021). The routing procedure of RHESSys is complex
and well tested in previous studies (Smith et al., 2022). Therefore, to keep the focus of
this study on N dynamics, we do not include the routing details in the Method, but

provide the reference for readers to check at line 203:

RHESSys requires several subsurface hydraulic parameters to simulate lateral and
vertical water flows and route subsurface lateral flow that are calibrated following the
procedure detailed in Smith et al. (2022).
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"I Figure 2: why is rainfall not considered as a key process? How possible is lawn only irrigated
by groundwater but not rain water?

Rainfall is the most important water input of the watershed, and it included to all
hydrological processes in RHESSys. The Fig. 2, however, is to highlight the new
procedures of our augmentations for hillslope groundwater redistribution via. irrigation
and septic systems, and these pumped waters were distributed to detention storage first
and then follow the original RHESSys hydrological processes. Irrigation amount is
regulated by the water stress in Equation 3.

Line 258:

Figure 2. Groundwater extraction for irrigation and septic systems in the RHESSys model. The source water (green
arrow) is extracted from groundwater storage of drain-in patches (i.e., house centroids) and redistributed (orange
arrow) to surface detention in downstream lawn patches for septic effluents and irrigated lawn patches of a
household. After redistribution of source water, infiltration to soil and percolation to hillslope groundwater (yellow
arrows) would follow the original processing of RHESSys

"1 Equation 3: PET and ET — how are there estimates?

Potential evapotranspiration (PET) are estimated using the Penman-Monteith equation
(Monteith, 1965) assuming no soil water limitations. PET representing the maximal ET
rate at given current meteorological information and land cover, and actual ET is
estimated when the rate is regulated by soil moisture level and stomatal conductivity in
each patch of our model. When water is not limited, PET and ET could be quite close;
During droughts, PET could be much higher than the actual ET due to the low soil
moisture level.

We provided the references to help reader refer for procedures and equations the
RHESSys model uses to estimate PET and ET:

Line 287:

where PET and ET (mm) represent patch level potential and actual ET, which are
estimated daily in RHESSys based on the Penman-Monteith equation (Monteith, 1965)
and procedures in Sect. 5.6 in Tague and Band (2004).

7. The Results section presents a lot of information but there is no direct link of them to the
modelling outputs. I think the Methods section misses a sub-section at the end on which
model outputs are analysed and how, to answer which research question (which links to the
Introduction). This would be very helpful for readers to link the Results section with the rest
of the paper.

Thanks for the suggestion. We have first presented results in the Results section, but link
those results to research questions in the Discussion section. We added a short paragraph
in the end of our Methods Section 2.4 (line 326) to help readers refer to the
corresponding sections in Results.



In the Results section, we presented model calibration results in Section 3.1, in-stream
NOs™ dynamics of scenarios in Section 3.2, and ecohydrological changes and N hot spots
in Section 3.3, accordingly.

Specific Comments

1. Line 21 — the statement seems too long and might be confusing, can you break this into two
sentences, or use labels e.g., 1), 11) if a single sentence is used?

Thanks for the comment. We broke down the sentence to align with other revisions, and
changed the original sentence to:

Line 20:

We evaluated how the spatial and temporal distribution of nitrogen sources interacts
with ecohydrological transport and transformation processes along surface/subsurface
flowpaths to nitrogen cycling, and export. Embedding distributed household sources of
nitrogen and water within hillslope hydrologic systems influences the development of
both planned and unplanned “hot spots” of nitrogen flux and retention in suburban
ecosystems.

2. Figure 1 can be improved by including more information on the study area, including:
locations of the two monitoring sites mentioned (01583580, 01583570) and the boundary of
the sub-catchment, Pond Branch. The base map would be more informative presented as a
map of key land uses (e.g., forest, urban, exurban) instead of a satellite image — it is a bit hard
to visualize the land use components from the latter.

Thanks for the comment. I have added the USGS gages and the boundary of Pond Branch
in the map as below.

Baisman Run

— Stream Baisman Run
=3 Pond Branch ke USGS Gages

05 sen 1

We agreed the satellite image is a noisy background, and we replaced it with a general
topographic map with hillshades outlined. The land use map contains 12 classes and



could be too noisy for readers to view in the main manuscript, but we also added the land
use map in the Appendix as Fig. A1 for readers who want to check the details of the

watershed.
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Figure Al. 1-m land use and land cover in Baisman Run from the Chesapeake Bay Conservancy.

Relating to my Comment #5, I’'m also confused by your statement in L403 ‘our model
underestimated the mean in-stream NO3 — concentration by 0.1 mg NO3 — -N/L (-7%) with
stronger variability (Fig. 5)’. In Fig. 5, I see an approx. -50% bias comparing the simulated
concentration for the ‘both’ scenario compared with the observation.

Thanks for the comment. Please refer to our response to your Comment 4 and 5 for the
details about the bias in the simulated NOs".



Reviewer 2
General Comments

The manuscript entitled “Simulation of spatially distributed sources, transport, and
transformation of nitrogen from fertilization and septic system in an exurban watershed” presents
and uses an augmented version of the RHESSys Model to evaluate the hydrologic and
biogeochemical N cycling, and transport in a mixed land use watershed characterized by
anthropogenic N inputs from irrigation, fertilization, and on-site sanitary wastewater disposal in
form of septic systems.

The study is motivated by enhancing the understanding of transport, cycling and subsequent
export to streams of N in exurban watersheds. It declares the need to defer appropriate siting for
effective best management practices (BMP) to reduce N export to downstream water bodies. To
my perception, it fits within the thematic scope of HESS. It addresses a highly relevant research
topic and could become a substantial contribution to scientific progress; however, the novelty of
the presented approach remains unclear.

The manuscript promises to address certainly interesting aspects e.g., to evaluate how the spatial
and temporal distribution of human nitrogen sources in exurban watershed controls N export to
downstream water bodies and nitrification rates. However, the conclusions reached in the
manuscript are rather general. At the current state, the concept of the study is limited to compare
the simulated N loads and concentrations and nitrification rates between simulations without and
with one or two human N input types and concludes that including fertilization and septic
systems improves the simulation results when comparing to observations in the case study
watershed. It remains unclear whether the augmented model can be transferred to other
watersheds and how it can support to situate BMPs effectively.

The presentation of the results in the figures and tables does not keep up with the high quality in
other articles published in HESS. Furthermore, to my understanding the methodology lacks
significant steps: 1) the model validation and 11) statistics that substantiate the results. Therefore, |
suggest to reject the manuscript for publication at its current state and encourage the authors to
improve it.

Response:

Thanks for your helpful comments to our manuscript. We addressed your concerns to our study
in novelty and model uncertainty for N dynamics accordingly in responds to your General
Comments:

We highlighted our revisions to the manuscript by using blue and calibri font with shading.

1 Updates are highlighted in blue
"1 Responses in times new roman font



Thanks for all your insightful and helpful suggestions to improve the quality of our manuscript
substantially. We addressed your three major concerns for 1) novelty of current approach, 2) too
general conclusion, and 3) lack of model validation and statistics in methods accordingly.

1. Unclear novelty
We highlighted the novelty of our study in the Abstract and Introduction. Our study
addresses the distribution and interaction of hillslope ecohydrological processes in
transporting natural and human sources of water and nitrogen in a long term monitored
suburban watershed. Understanding processes and interactions at these scales promotes the
design of retention features.

To our knowledge, our model is the first fully distributed hydrologic model that includes 1)
spatial and temporal human-induced N and water sources at the household level, and ii)
hillslope ecohydrological processes for routing and cycling water, carbon, and nitrogen.
These processes are necessary to identify the space/time distribution of “hot spots” of N
retention at scales amenable to restoration and Best Management Practices (BMPs) in the
future.

A significant aspect of the model is that it is calibrated for hydrologic processes restricted to
soil and subsurface hydraulic parameters. It is not calibrated for biogeochemical
processes which are subject to change with restoration activities. In contrast, the current set
of ecohydrological models typically calibrate patch (grid cells, elements) to stream transfer,
and biogeochemical cycling parameters. Therefore, our model could be generalized to other
suburban watersheds with only discharge but no water chemistry observations.

Abstract
Line 21:

We evaluated how the spatial and temporal distribution of nitrogen sources interacts with
ecohydrological transport and transformation processes along surface/subsurface
flowpaths to nitrogen cycling, and export. Embedding distributed household sources of
nitrogen and water within hillslope hydrologic systems influences the development of both
planned and unplanned “hot spots” of nitrogen flux and retention in suburban ecosystems.

Line 29:

With the model is calibrated for subsurface hydraulic parameters only and without
calibrating ecosystem and biogeochemical processes, the model predicted mean [...]

In the Introduction, we thoroughly reorganized the order of paragraphs and firstly highlighted
why understanding ecohydrological processes at “hillslope level” is required for planning
Best Management Practices and promote N retention.

Line 49:



BMPs can be both structural (e.g., constructed wetlands) and non-structural (e.g., changing
fertilization and irrigation regimes). In addition to planned BMPs, spontaneously developed
“hot spots” (Palta et al., 2017) may be responsible for a large share of nutrient retention,
and therefore should be identified and protected. Both planned and unplanned retention
features exist at very localized, sub-hillslope scales. Therefore, gaining a comprehensive
understanding of the hillslope level ecohydrological behaviours and interactions between i)
ecosystems and human derived nitrogen sources and ii) flowpath modification can lay the
foundation for effectively mitigating these environmental issues through spatially well-
conceived and sustainable management practices.

Then, we briefly reviewed how urban water quality is degraded by excessive human-induced
N loads, emphasizing the widely used septic systems in suburban areas.

Line 60:

In the United States, about 20% of households (26.1 million) are reported to be served by
septic systems in 2007 (U.S. EPA, 2008). Through our work in Baltimore Ecosystem Study,
low density suburban areas have been shown to produce the highest NOs™ load per unit
developed land among different land uses, degrading local and downstream water quality
(Groffman et al., 2004; Zhang et al., 2022).

We then discussed the research gap in current semi-distributed models in aspects of
incapable of including i) household scale human water and N loads contributing the majority
of N inputs in suburban watersheds in distinct landscape positions and ii) hillslope
hydrologic flow paths to meet the planning purposes to design BMPs to reduce N export. We
also discussed data-driven approaches which could include additional N inputs, but hillslope-
level N transport and transformation is still missing.

Line 69:

With rapid suburban and exurban sprawl, decision makers are facing environmental
challenges which requires detailed planning for siting BMPs effectively in watersheds to
promote N retention, reduce N export in streams, and protect water quality. These include
both constructed and “inadvertent” biogeochemical hot spots at specific hillslope locations
(e.g., swales, wetlands, riparian areas) on N retention at resolutions required for landscape
design. However, commonly used modelling frameworks could not couple distributions and
interactions of hillslope ecohydrological processes in transporting and transforming natural
and human-induced N sources to understand or predict local (neighbourhood or hillslope)
scale N transport and retention. Semi-distributed. Semi [...] lack(s) hillslope water and
nutrient mixing along interacting surface/subsurface hydrologic flowpaths [...]

Line 82:

Data-driven approaches, such as SPARROW (Ator & Garcia, 2016; Smith et al., 1997), are
also developed to assess large scale water quality in streams by nonlinear regression from
gauged discharge and solute concentrations. However, these models also do not investigate



hillslope-scale transport and transformation processes. In addition, there does not exist the
data at hillslope scales to develop sufficient data-based approaches to understand and
predict retention processes (e.g., denitrification, uptake, immobilization).

Then, we emphasized, though fully distributed hydrologic models, such as MIKE-SHE,
could simulate hillslope hydrology and biogeochemistry, they currently have no modules to
include the household-level N inputs developed.

Line 87:

Fully distributed hydrology models, such as MIKE-SHE (Abbott et al., 1986a, 1986b) and
RTM-PiHM (Bao et al., 2017; Zhi et al., 2022), ParFlow (Maxwell, 2013) and RHESSys (Tague
& Band, 2004) could explicitly couple hillslope hydrologic and biogeochemical processes
that are required to understand transport and transformation of these human-induced N
loads along hydrologic flowpaths from upland to stream.

Lastly, we wanted to highlight that our model is designed to be generalized to watersheds
without long-term water chemistry observations which are quite expensive to acquire. In
other words, we do not calibrate our parameters for N inputs (e.g., fertilization and septic
loads) or processes but only soil hydraulics against streamflow records. If the model could
reasonably estimate NOs", it compromises the generalization of the model.

Line 102:

Lastly, the framework should be capable to be extrapolated to watersheds without water
chemistry data which are less available than discharge records worldwide. It would be a
valuable feature of the framework to estimate nutrient dynamics reasonably if calibrating
only hydrologic parameters could provide reasonable estimation of N dynamics. Calibrating
nutrient dynamics may not allow generalization to watersheds without chemistry records or
extrapolation to conditions in which water quality BMPs are implemented.

Too general conclusion and model’s ability to be transferred to other watersheds

We emphasized the major results of reasonable NOs3™ concentration simulations, and the
spatially explicit feature of our model allows assessments of BMPs’ effects on promoting N
retention when they are sited at areas accumulating both high water and N loads from
upstream households in a watershed.

Also, by performing uncertainty analysis, our NO3™ simulations include a reasonable range of
biogeochemical outcomes while restricting calibration to subsurface hydraulic parameters.
The model therefore can be applied to other sub/exurban watersheds which also use septic
systems and fertilizers. In other words, with reasonable survey estimating human inputs and
domestic water usage, our model could provide reasonable NOs3™ export of watershed by
calibrating against streamflow records which are much more available than the water
chemistry data. For numerous suburban watersheds, our model could reasonably help
decision makers understand the current N levels and upland dynamics without water
chemistry data.



We thoroughly revised our Conclusion section:
Line 578:

Our analysis provides important insights into how different sources of N input interact with
ecohydrological processes to control N export from suburban and exurban watersheds
where single-family households use individual groundwater wells for domestic water
discharged to septic systems and lawn irrigation, and add additional nitrogen in the form of
sanitary effluent and lawn fertilization. While atmospheric deposition is ubiquitous, the
input of lawn fertilization and irrigation water, and septic effluent volume and N load are
concentrated in limited areas of the watershed at much higher per unit area rates. These
differences cascade through the watershed producing hot spots of N export and retention.
Calibrating hydrologic parameters against streamflow observations only, our model yielded
satisfactory simulations of in-stream NOs™ concentration and upland N retention processes.
Specifically, our model estimated the mean NOs™ concentration as 1.43 mg L%, which is only
less than 0.2 mg L lower than the weekly observations from Baltimore Ecosystem Study for
our study period. The simulated denitrification rates at fertilized lawns are also comparable
to measurements in the study area and nearby watersheds in Baltimore, and rates at
wetlands and riparian areas are similar to reported measurements in other studies.

Our results strongly support the basis for small watershed-scale analysis and planning to
address watershed N exports and are particularly relevant in areas such as the Chesapeake
Bay that are highly sensitive to N-induced eutrophication. The spatially explicit, high-
resolution simulations from our model could help local decision makers to identify existing
and potential new hot spots of N retention processes (e.g., denitrification). Specifically, we
found locations accumulating both high N loads and water from upstream are ideal
locations for siting future BMPs (e.g., detention ponds, constructed wetlands) to promote N
retention and improve water quality for local and downstream waterbodies. In summary,
the improved RHESSys simulations with augmentations for more complete, spatially nested
inputs of water and N and subsequent feedbacks between transport and retention highlight
the importance of the structured spatial heterogeneity of human impacts to fully
understand ecohydrological processes at hillslope level in developed watersheds. Existing
models often miss the patterns and feedbacks water and N inputs at household levels and
within hillslope hydrologic flowpaths. The spatially distributed inputs and our augmented
RHESSys model structure may provide a reliable framework to comprehensively evaluate
current coupled water, C and N cycles, and also understand and predict effectiveness of
ecosystem restorations to improve water quality and ecosystem health in developed
watersheds.

Methods

We appreciate your valuable suggestions to improve our Method section. We revised our
approach to evaluate model outputs, expanded our discussion on the model calibration and
validation, and statistics we used to quantify our model simulations in Results. Specifically,
instead of showing the results from the simulation with highest NSE, we included more



simulations from parameter sets yielding NSE greater than 0.5 for our calibrating period with
gw> parameter less than 0.5. We also note that no parameters for N inputs and related
processes were calibrated in the study, aiming to evaluate whether the model could
reasonably estimate NOs™ level by calibrating hydrologic parameters only. Please refer to our
response to Specific Comment #3 for details.

From those behavioral simulations, we performed uncertainty analysis for streamflow and
NOs" concentrations, which strengthened the argument that our model is capable of
simulating NO3~ dynamics without calibrating N related but only hydrologic parameters.
With the updated method quantifying the uncertainty of our model, we updated our Results
section substantially. Specifically, we composited simulations from 50 parameter sets with
the mean streamflow NSE from all simulations as 0.63 in the calibration period and 0.58
in the validation period. For NO;™ concentration and loads, we showed that we resampled
the daily simulation to weekly means, as our sample were collected only once a week under
conditions without large storm flows. Without calibrating N processes, our ensemble mean
from 50 parameter sets estimates the daily mean concentration of 1.43 mg NOs-N L-!, which
is only 0.17 mg NOs™-N L ! lower than the observations in the study period.

We also thanks for your spotting of missing units in several equations, and we added units
throughout all variables there.

Lastly, the detailed revisions are listed in our point-to-point responses to your suggestions in
your attached PDF file (see Technical Corrections).

Specific comments

1. The motivation behind the study and the relevance of the research are well elaborated.
However, the current state of the knowledge in regarding to the research questions is not
elaborated. Are there no prior studies that have addressed similar research questions?

Response:

Thanks for the comment. To our knowledge, this is the first attempt to incorporate 1) spatial and
temporal patterns of water and N inputs from irrigation, fertilizer, and septic systems in
sub/exurban ecosystems and 2) evaluate their interactions with hillslope hydrologic and
biogeochemical processes related to N retention. We reviewed several hydrologic and water
quality models in the Introduction (in our response above, 1. Unclear novelty), but found none
include hillslope hydrology (i.e., explicit routing of water and nutrients within topography) and
spatial and temporal patterns of N inputs from fertilizer and septic effluents simultaneously into
one framework. Therefore, our augmented RHESSys model is by far the first fully distributed
ecohydrological model that could meet the need to evaluate the current conditions of a watershed
and designs of BMPs on forming hot spots for N retention.

2. The methodology should be written clearer and more structured. Given the fact that the study
uses a rich base of data, for the reader it would be beneficial to have an overview of the data



used for setting up the model e.g., in the form of a Table providing specifications on each
dataset and how it was employed in the study.

Response:

Thanks for the suggestion. We added a subsection to elaborate our calibration processes, and we
also added a table in Appendix A to list all datasets we used for the study. We also changed our
citation format thoroughly thanking to your suggestions.

Table A1. List of data in Baisman Run used to set up model and analyze water chemistry

Data Detail Source

Topography Bare Earth DEM 2014 Baltimore County GIS, 2017

Land Use Chesapeake Bay 1-m Land Use Claggett et al., 2018

Discharge United States Geological Survey Gage ID: 01583580 (Baisman Run); 01583570
(Pond Branch)

Water Chemistry Baltimore Ecosystem Study Groffman et al., 2020; Castiblanco et al., 2023

Household Parcel Baltimore County Parcels Baltimore County GIS, 2019

Hydrologic Network County Hydrolines Baltimore County GIS, 2016

3. The model validation needs to be provided as well as the statistical methods for evaluating
the simulation results.

Response:

Thanks for the suggestion. By summarizing your major comments to the Method section in the
PDF file, we 1) reperformed model calibration and validation, 2) addressed why we chose the
water year after 2010 to be evaluated in our study, 3) provided maps for initial values of soil
properties from SSURGO in Supplementary (Fig. A2), which are further calibrated by
multipliers to modify SSURGO properties’ magnitudes but retain their spatial patterns.

Model validation:

We performed model calibration and validation again for our study, with the calibration period
from water year 2013 to 2015 (Oct. 1, 2012 — Sep. 30, 2015) and validation period from water
year 2016 to 2017 (Oct. 1, 2015 — Sep. 30, 2017). After calibration, we chose 50 behavioral
parameter sets yielding highest NSE of streamflow to quantify uncertainty of model simulations
using a 95% uncertainty boundary (i.e., 2.5" and 97.5" quantiles of simulations). The mean NSE
of streamflow from the calibration period is 0.63 (range from 0.5 to 0.69), and 0.58 (range from
0.44 to 0.64) in the validation period. We noted that our calibration is only applied to hydrologic
parameters of RHESSys, and no N-related parameters were calibrated.

Line 207:
We set the calibration period from water year 2013 to 2015 and validation period from water
year 2016 to 2017. The original parameter values derived from SSURGO were further calibrated



by multipliers to vary their magnitudes but preserve the spatial patterns of soil hydraulic
properties (Fig. A2). Specifically, the simulated streamflow was used to calibrate against the
daily USGS discharge records (Gage ID: 01583580). From four thousands of parameter set
realizations randomly chosen within specified limits, behavioural sets are chosen as yielding
Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) greater than 0.5 and fraction of
groundwater loss to stream (i.e., gw2 in Table 1) less than 0.5 to estimate the ensemble means
and uncertainties of model simulations. The latter condition was enforced to regulate the
flashiness of groundwater dynamics, as BARN is found to have large saprolite storage to provide
steady baseflow (Putnam, 2018). To assess uncertainty, we reported the 95% uncertainty
boundaries for simulated streamflow and NO3- concentration and load from. Lastly, we noted
that no calibration was performed for N inputs (e.g., fertilization rate and septic load) or N
cycling/transport processes in the model, as an important aim of our methods is to evaluate the
capacity of our model to regionalize to watersheds where no water chemistry but only
streamflow observations were available.

Why resample simulations from daily to weekly means?

We compared the mean NO;™~ concentration between the observations and model’s weekly
means. We resampled our concentration simulations because the direct comparison of daily
model simulation and observation is difficult. RHESSys simulates the daily mean NO3~ under
both low-flow and storm conditions, but our weekly grabbing samples were collected only in
conditions with no large storm flows. Therefore, the weekly observations reflecting the average
NOs level of the week, which is better compared to our model’s weekly means, though the bias
would be unavoidable in this way. Also, since no calibration was performed for N-related
parameters, we reported results for the whole study period.

Line 313:

To better compare our NOs™ concentration results with the sampled weekly water chemistry
from BES for BARN, we resampled the daily simulated concentration from RHESSys to weekly
averages, expressed in unit of mg NOs™-N L. The weekly NOs™ load was then estimated by the
product of weekly mean NOs~concentration and streamflow, expressed in unit of kg N ha! year
!, Note this approach may introduce bias for load as the once-a-week samples, typically not
during major storms, and the observed daily mean discharges may not reflect the average load
of the whole week.

Updated results for the validation period are shown in Table 3 with standard deviation reported
from the means of NOs~ concentration and load from 50 simulations for each scenario.

Table 3. Mean weekly NOs~ concentration (mg N L1) and load (kg N ha! year?) and corresponding standard deviation from
calibrated simulations for BES weekly observations (BARN and POBR) and RHESSys simulation scenarios in each season and
the entire study period from water year 2013 to 2017

Observation RHESSys Scenarios

Variables Season Septic Fertilizer

Only Only None

BARN POBR Both




1.4 7 77 .27
Spring 1.5 0.02 0.76 0 0

(£0.12)  (£0.08)  (£0.05)  (+0.03)
Summer 16 0.07 (116?53) (E gj) (: 'o7.i) (iot-)?(?G)

Ny Fall 17006 N hors  woan  (oos)
Winter 175 0.01 (116(.5138) (1065.3;) (: 'g.i) (iot-)?OSS)

Mean 16 0.04 (116‘.1136) (106?171) (: .g.7l) (iot-)?(é)lG)

Spring 10.53 0.01 (1865.353) (1465.3:2) (146?3? 1) (i16(.5126)

Summer >-88 0.02 (14(.)?3?6) (126‘.135) (126?213) (ilé(.)fs)

(ke h?la:ear-l) Fall 4.72 0.01 (146?3?9) (12(.)?276) (+ 03.27) (116.2136)
Winter 8.38 0.01 (isél.lezs) (146(.5:6) (14(.)?3:.18) (i1(f118)

Mean 7:44 0.01 (166(.54?7) (136(.5333) (136?277) (iléé.lfs)

Why water year after 2010?

The carbon and nitrogen cycling in RHESSys generally required a long spin-up period to
stabilize. In BARN, the developed areas in headwaters of used to be farmlands before 2000.
After about 10 years of slow transformation on the farmland, no major development was found,
and the land cover has been stable as the form when the land cover data was collected in 2013.
To reduce the uncertainty of N inputs due to changes of number of households, land cover, and
fertilization practices, we chose water year 2012 to 2017 to assess our model in a stationary
condition. We discussed this at line 175:

BARN had gradual suburban development in the headwater which converted from agricultural
land over a few decades. New development was largely completed in the 1990s, with one last
field developed in 2007-2009. Our study period could reduce the uncertainty of N inputs due to
land cover change during urban development and allow for analysis of N dynamics in a
stationary condition.

4. The results need to include estimates of errors and indication of deviation between the
analyzed years.

Response:
Thanks for your suggestions. We thoroughly revised our Results section to update our simulation
results from the 50 behavioral simulations.

For streamflow, we updated our multipliers values in Table 1, and showed the standard deviation
from all our simulations at Line 334:



In the calibration period (i.e., water year 2013 to 2015, Fig. 3a), the ensemble of simulated
mean (standard deviation) daily streamflow was 1.24 (10.03) mm day, with NSE of 0.63
(between 0.5 and 0.69) compared to the USGS observed 1.38 mm day™. In the validation period
(Fig. 3b), the simulated ensemble mean (standard deviation) streamflow was 0.91 (C10.03) mm
day?, with NSE of 0.58 (between 0.44 to 0.64) compared to the USGS’s 0.86 mm day.

For NOs~ concentration/load, we reported the results of the ensembled mean value from 50
behavioral simulations in Table 3 (see above). Note we no longer reported the streamflow-
weighted NOs3~ concentration in the revised version, as the reported ensemble results could 1)
better assess the uncertainty of our model simulations and 2) be directly compared with results in
Figure 3. We updated our contents in Sect. 3.2, Line 358:

We calculated weekly means of NOs™ load and concentration of behavioural simulations. In our
5-year study period, the ensemble mean NOs~ concentrations (Fig. 4a) for scenarios none, septic
only, fertilization only, and both were 0.34, 0.77, 0.87, and 1.43 mg NOs™-N L}, respectively
(Table 4). The mean long-term observed concentration at the BARN USGS gauge was 1.6 mg
NO5™-N L. Thus, the simulated bias of mean NOs;~ concentration considering both fertilization
and septic loads decreased significantly from -1.26 mg NO3s™-N L in the scenario none to 0.17
mg NOs™-N L? in the scenario both. The 95% uncertainty boundary of weekly NO3~
concentration in scenario both captured 67% of the weekly sampled observations. The
seasonality of NOs™ concentration is also well captured, except for the growing season (e.g., Jul.
to Oct. in 2013 and 2016) when the model underestimated low flows (Sect. 3.1).

At line 390, we updated the ensemble results for water table depth, with a standard deviation of
1.1 m from 50 behavioral simulations. We also refined our results for the residential hillslopes
(Fig. A6, hillslope 11 to 16) with urban development in BARN to see how human activities
affect the ecohydrological behaviors.

The ensemble mean of water table depth (Fig. A4) from all behavioural simulations under
scenario none was 4.52 m during the study period. Fertilization had overall negligible effects on
watershed mean soil moisture or water table depth compared to the base (none) scenario (Fig.
6a — 6¢), but minor increase of water table depth was detected in the residential areas, likely
due to higher ET in lawns after fertilization. Septic processes decreased mean water table depth
to 4.47 m by groundwater mounding, which increases shallow groundwater flow to surrounding
patches along connected flowpaths. Specifically in septic drainage field patches, the mean
water table depth decreased to 3.69 m (-0.66 m, -15%) in scenarios both and 3.72 m (-0.63 m, -
14%) in septic only compared to the mean depth of 4.35 m, in scenarios none and fertilization
only. With setting hillslope groundwater as the only source for septic process, we found
groundwater withdrawal resulted in drier conditions (i.e., increase of water table depth) in
riparian areas of these residential hillslopes (Fig. A6, hillslopes 11 to 16), where the mean water
table depth increased by 5 (2%) and 8 (3.4%) mm in scenarios septic only and both compared to
219 mm depth in scenarios none and fertilization only. Though the standard deviation of each
scenario from the 50 behavioural simulations was 1.1 m, the spatial distribution of soil moisture
is consistent among all behavioural simulations.



We did the same for ET at line 402:

The watershed-scale mean ET was 43.9 mm month™ in scenario none and 44.0 mm month?in
scenario fertilizer only. The standard deviation from 50 behavioral parameter sets was 0.8 mm
month™ for each scenario. With septic processes activated, mean ET increased to 44.1 and 44.2
mm month™ in scenarios septic only and both in the residential hillslopes. [...]. With septic
processes activated, mean ET increased to 44.1 and 44.2 mm montht in scenarios septic only
and both in the residential hillslopes, which could be contributed by the additional water
extracted from groundwater to surface soil at the upland areas (in Fig. 6). When fertilization is
activated in scenario fertilization only, ET in riparian areas of residential hillslopes decreased to
(by) 54.7 (-0.1, -0.3%) mm month! compared to scenario none, while the upland of these
hillslopes increased by 0.1 mm month1. This showed that fertilization in the upland residential
lawns could support higher growth rate of vegetation but preventing water from draining
towards downstream areas of a hillslope (in Fig. 6).

As a respond to the soil moisture condition, the ensemble watershed mean denitrification rate
dropped compared to our previous simulation using only one parameter set. We reported the new
results thoroughly at line 420:

Compared to scenario none (Fig. A5), the ensemble mean annual rates of denitrification at the
watershed scale were 7.2, 7.8, and 9.1 kg N ha! year™ in scenarios fertilization only, septic only,
and both, respectively, increasing by 33%, 44%, and 68% (Fig. 6d — 6f & Table 4). The standard
deviation from the 50 behavioural simulations was 1.5 kg N ha! year for scenario none and
fertilization only and 1.6 kg N ha™ year for scenario septic only and both. When fertilization
and septic processes were activated, the denitrification rates increased at the residential
hillslopes and their riparian areas. The only exception was found in scenario septic only, where
7 patches experiencing minor reduced denitrification (-1.4% in average). All these patches were
found in riparian areas of residential hillslopes where the water table drops by 9 mm in average
after the septic processes extracting groundwater in the upstream.

Lastly, according to your suggestions to improve our maps, we integrated the previous figures
for water table depth and denitrification by only showing the differences from our scenarios (Fig.
6), and move the original maps as supplementary (Fig. A)
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Figure 6. Ensemble mean differences of water table depth (top panel) and denitrification (lower panel) between scenario
none and scenario fertilizer only (a & d), septic only (b & e), and both (c & f). The two hot spots of denitrification (i.e.,
wetlands in Fig. 1) were circled in (f).
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Figure A4. Spatial pattern of ensemble mean water table depth (meter) of Baisman Run during the entire study period (water
year 2013 to 2017) from the 50 behavioral simulations. Map in projection NAD83 UTM 18N (EPSG: 26918).
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Figure A5. Spatial pattern of ensemble mean denitrification (kg N ha! year) of Baisman Run during the entire study period
(water year 2013 to 2017) from the 50 behavioral simulations. Map in projection NAD83 UTM 18N (EPSG: 26918).
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Figure A6. Hillslope indices of Baisman Run. Map in projection NAD83 UTM 18N (EPSG: 26918).

5. Some figures (maps) are obsolete as to my opinion the difference between them can not be
spotted. Some figures have confusing axis labeling, lack titles for the legends and some have
unclear captions (see technical corrections file for more details).

Response:

Thanks for your suggestions to improve our figures. According to your suggestions, the labels,
legends, and captions of all figures are rephrased/fixed. Please refer to the end of this documents



to see the updated figures. We made a new figure (Fig. 6, see above) to highlight the differences
of water table depth and denitrification between scenario none and other three human N
scenarios, since we agreed that the maps in the left panels showing absolute values are difficult
to be differentiated. The spatial patterns of water table depth of scenario none were provided in
Fig. A4 and A5 (see above). Other updated figures are shown here:
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Figure 3. Study watershed Baisman Run (BARN) in suburban Baltimore County, Maryland (from ESRI). The black box highlights
two N retention “hot spots”: A sediment accumulation zone (upper circle) receiving drainage from roads and a constructed

wetland (lower circle). These areas have a high capacity to prevent N from upland residential areas from being transported to
streams.
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Figure 4. Groundwater extraction for irrigation and septic systems in the RHESSys model. The source water (green arrow) is
extracted from groundwater storage of drain-in patches (i.e., house centroids) and redistributed (orange arrow) to surface
detention in downstream lawn patches for septic effluents and irrigated lawn patches of a household. After redistribution of
source water, infiltration to soil and percolation to hillslope groundwater (yellow arrows) would follow the original processing
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6. The manuscript needs to be reviewed 1) to comply with the HESS requirements for
manuscript composition, ii) for unit formatting as required by the submission guidelines, 1i1)
for correct referencing of used data sets and software

Response:

Thanks for the comment. We have fixed our unit format. The hyperlinks for datasets have been
fixed using the correct reference style according to HESS guidelines.

Technical corrections

Please find all technical corrections and suggestions for improvement of the figures as comments
in the attached manuscript.

Response:
Thanks for all the corrections and suggestions your made to your manuscript. We listed

major/important comments you have here for your reference. Corrections to typos are made in
the manuscripts accordingly.
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o Line 16: consistent terminology in abstract. Here you chose exurban and later in the abstract
suburban.

Thanks for the suggestion. We think suburban is the more general terminology for the
study. Though BARN is not a typical suburban watershed, we noted it could be treated as
a low-density suburban watershed, which is exchangeable with "exurban" for Baisman
Run in the abstract.

Excess export of reactive nitrogen in the form of nitrate (NOs~) from suburban
watersheds is a major source of water quality [...]. These processes in turn control the
development of “hot spots” of nitrogen flux and retention in suburban ecosystems. We
chose a well-monitored low-density suburban or exurban watershed, Baisman Run in
Baltimore County [...]

We also changed our title to “[...] in a suburban watershed” to be consistent with the
rest of the manuscript.

o Line 47: is this about the spatial distribution of them?

Thanks for the question. Yes, this is about the spatial planning of the management
practices. We rewrote here as:

Line 54:
Therefore, [...] for effectively mitigating these environmental issues through spatially
well-conceived and sustainable management practices.

o Line 93: because of the biogeochemical modules?
Thanks for the question. RHESSys could simulate these detailed ecohydrological
processes because it simulates fully distributed hillslope hydrology and coupled C and N
dynamics in soil interacting with water and vegetations. We revised this sentence as at
line 112:

In this study, we augmented RHESSys to include household-level transfer of
groundwater for lawn irrigation and domestic water use, with domestic water use
routed to septic spreading fields. With coupling hillslope hydrology and biogeochemistry
at spatially connected patches, RHESSys could estimate spatiotemporal patterns of soil
moisture, lateral flow distribution, evapotranspiration, groundwater level, and N
transportation, transformation, uptake, and immobilization in spatially explicit manners.

o Line 107: (The third research question) It’s not very clear.

Thanks for the comment. We agree the third research question could be further clarified
as below at Line 130:

What are the patterns of hot spots for N retention and associated implications to design
future BMPs to promote N retention within suburban watersheds?



o Line 140: This sentence contains redundant information from L130, you can combine it.
Thanks for the suggestion. We have removed this sentence.
o Line 149: at which basis?

Thanks for the comment. The atmospheric deposition of N was observation records from
the National Atmospheric Deposition Program (NDAP) site MD99
(https://nadp.slh.wisc.edu/sites/ntn-MD99/). We added the reference at Line 170:

Annual atmospheric N deposition was estimated as 11 kg N ha™ from site MD99 of
National Trends Network from National Atmospheric Deposition Program (NADP, 2022).

o Line 151: Could you elaborate why you chose this 5 year period out of the available data
(that I understood to cover 2000-2018)?

Thanks for the question. This is because there was continuous urban development before
2012 in BARN. The land use data were also acquired in 2013 and would not
berepresentative to the conditions before it. We therefore chose study period after 2012 to
make sure the stationarity of land over and excluded N loads uncertainties. We answered
this in detail in the response to Specific Comment #3.

Line 175:

BARN had gradual suburban development in the headwater which converted from
agricultural land over a few decades. New development was largely completed in the
1990s, with one last field developed in 2007-2009. Our study period could reduce the
uncertainty of N inputs due to land cover change during urban development and allow
for analysis of N dynamics in a stationary condition.

o Line 163: could you provide the number of houses this to quantify the stated uncertainty
Thanks for the suggestion. We added this number and rewrote the sentence at Line 187:

We identified 181 households, although 13 homes are located on the watershed divide,
providing some uncertainty to the effective number of septic systems.

o Line 170: Did you perform this sensitivity analyses?

Thanks for the question. We did test to set the starting date early and late (i.e., 35 days
ahead and backward) for grass (the LAI would stay high for longer period), but found
negligible changes in water and N dynamics for BARN. As this is beyond the scope of
this study, we removed this sentence to avoid confusion for readers.



o Line 174: The initial estimated should be listed together with the calibrated multipliers in
Table 1

Thanks for the suggestion. The maps of initial values of SSURGO soil properties are

added as Fig. A2.
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Figure A2. Soil types (a) based on SSURGO classification (USDA, 2019) and associated (b) lateral and vertical saturated
hydraulic conductivities at surface (m day), (c) lateral and vertical decay rates for lateral and vertical hydraulic
conductivities, (d) soil depth (m), (e) pore size index, and (f) air entry pressure (pounds inch-2).

We also updated our Table 1 to show ranges of calibrated multipliers applied on original
SSURGO values.

Table 4. RHESSys parameters being calibrated and their physics (Tague and Band, 2004). Calibrated results shown as ranges
of multipliers to original soil properties (Fig. A2 & A3) and groundwater component generating behavioural simulations with
NSE greater than 0.5 for streamflow.

Par RHE P ipli
arameter SSys ‘arz-‘zmeter Detail Source Unit Multiplier
Groups Abbreviations Range

D fl | h li
s m ecay rate of lateral saturated hydraulic ) 031-2.91

conductivity with depth

USDA
L. I soil i ivi
atera s.0| Ksato1 Latera.l saturated hydraulic conductivity at SSURGO, m day! 0.38-2.93
hydraulics the soil surface
2019
z Soil depth m 1.65-5.95
s m Decay ra.tc.a of v.ertlcal saturated hydraulic USDA ) 051—1.98
Vertical soil conductivity with depth
hydraulics i i i SSURGO,
Y/ Ksoto v Vertical saturated hydraulic conductivity at 2019 m day! 052-1.98

the soil surface

Soil properties svalt b Pore size index - 0.51-1.98



USDA

Pac Air entry pressure SSURGO, ”i‘;ﬂ:_‘js 0.5-1.05
2019
aw gws Fraction of bypass from the saturated zone 0-0.13
to groundwater storage
Fracti f loss f
Gr;)undV\{ater gw: raction of loss from groundwater storage ) 0.03-05
ynamics to stream
gws Fraction loss from surface to groundwater ) 0-0.07

storage

o Line 179: How was the calibrated model validated?

Thanks for the question. Please refer to our response to Specific Comment #3: Model
calibration and validation.

o Line 180: The initial parameters and their units should be included in the table and the
readers would profit from stating the Nash-Sutcliffe value here in the caption. Further,
provide the meaning/names of the sensitivity parameters: s, sv, svalt, gw

Thanks for your suggestions. We added a supplementary Fig. A2 (as above) to show the
initial SSURGO values for each location of BARN, and improved our Table 1 as above.

o Line 212: Please add a (septic) reference if published.

Thanks for the comment. We used data from Gold et al. (1990) and Lowe et al. (2009) to
estimate the septic water and N load. The revised sentence at Line 264 is:

We estimated the N load from septic systems as 7.7 kg N capita™ year?! and water input
as 110.5 m?3 capita™ year? (~80 gal™ capita® day™), resulting in a NOs~ concentration of
70 mg N L estimated from results of Gold et al. (1990), Lowe et al. (2009), and other
sources for per capita water use and septic nitrogen concentrations.

o Line 248: Is this the local practice in the study area?

Thanks for the question. This 4 mm day! threshold was set arbitrarily to constrain the
groundwater extraction for septic or irrigation no more than this limit. Though we do not
know the exact water extractions from each household, this limit allows abundant water
usage that meets domestic water demand every day, and we did not see irrigation is
beyond this limit during our study period assuming each house has 3.3 persons in
average.

o Line 255: The survey by Law et al. (2004) and Fraser et al. (2013)?
Thanks for the comment. We removed the sentence here to say it is consistent with

survey results. We tried to include the maximal distance that people might irrigate their
lawns, but there could be a quite large variations of this practice household by household.



o Line 257: Which method to you use to determine the differences between the scenarios?

Thanks for the question. We compared the difference between the ensemble mean of
NOs™ concentrations from 50 simulations for each scenario (Fig. 4). As discussed above,
the direct comparison from our simulated daily average NO3™ concentration and weekly
samples is difficult, we do not use traditional approaches (e.g., RMSE or R?) in this
study.

o Line 262: Could you elaborate on the method (resample daily to weekly)?
Thanks for the question. We answered this in our response to Specific Comment #3.

Section 2.4, Line 313

To better compare our NOs~ concentration results with the sampled weekly water
chemistry from BES for BARN, we resampled the daily simulated concentration from
RHESSys to weekly averages, expressed in unit of mg N L'L. The weekly NOs~ load was
then estimated by the product of weekly mean NOs™ concentration and streamflow,
expressed in unit of kg N ha year™. Note this approach may introduce bias for load as
the once-a-week samples and the observed discharges at collecting days may not reflect
the average load of the whole week.

o Line 273: I assume this subsection should be entitled Model calibration

Thanks for the suggestion. We changed this heading to “Model calibration and validation
on streamflow”. We also modified the axis titles in Figure 3.
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Figure 6. The ensemble mean of daily streamflow from simulations (red) with NSE greater than 0.5 and USGS observations
(blue), with the daily 95% uncertainty range from 50 simulations in grey for the (a) calibration (Oct. 2012 — Sep. 2015) and (b)
validation (Oct. 2015 - Sep. 2017) period. All simulations turned on irrigation, lawn fertilization, and septic processes.



o Line 282: Was this (underestimation of streamflow in growing season) the same in every
modelled year? Please provide at least a standard deviation and consider elaborating on the
results for every year.

Thanks for the suggestion. With the uncertainty analysis, our 95% uncertainty range in
Fig. 3 showed, most behavioral simulations would underestimate low flows in growing
season (e.g., in 2013, 2016, and 2017). This is also found in previous studies in Baltimore
(Miles, 2014). We discussed this at line 463:

This may be due to local increases in septic water and nutrients increasing ET during the
growing season, reducing groundwater recharge, lowering groundwater storage, and
reducing watershed baseflow. We also noted that our model tended to underestimate
the lowest streamflows during the growing season, which was also found in another
suburban watershed, Dead Run, in Baltimore by Miles (2014).

Reference

Miles, B. C. (2014). Small-scale residential stormwater management in urbanized watersheds. A
geoinformatics-driven ecohydrology modeling approach (Doctoral dissertation, The University of North
Carolina at Chapel Hill).

o Line 313: Please provide the standard deviations for NO3- concentration and load

Thanks for the comment. We included the standard deviations of NO3™ concentration and
load in Table 3 (included in Specific Comment #3).

o Line 341: Please provide deviations with mean values

Thanks for the suggestion. We added the standard deviation of annual mean
denitrification among water years of our study period for each scenario.

Line 420:

Compared to scenario none (Fig. A5), the ensemble mean annual rates of denitrification
at the watershed scale were 7.2, 7.8, and 9.1 kg N ha* year? in scenarios fertilization
only, septic only, and both, respectively, increasing by 33%, 44%, and 68% (Fig. 6d — 6f &
Table 4). The standard deviation from the 50 behavioral simulations was 1.5 kg N ha™*
year for scenario none and fertilization only and 1.6 kg N ha year for scenario septic
only and both.

o Line 381: Discussions and conclusion should be separate sections.

Thanks for the suggestion. We have split out Discussion and Conclusion into two
sections.



o Line 402: Please substantiate your discussion points with references. Do other studies using
RHESSys encounter similar issues?

Thanks for the question. The underestimation of low flows during growing season was
also detected in previous RHESSys studies for another suburban watershed, Dead Run, in
Baltimore by Miles (2014) at line 471.

We also noted that our model tended to underestimate the lowest streamflows during
the growing season, which was also found in another suburban watershed, Dead Run, in
Baltimore by Miles (2014).

o Line 405: Please quantify the uncertainties (septic and fertilization)

Thanks for the suggestions. We rephrased the sentence, emphasizing that each household
has different fertilization or septic release rates and the spatial variation of N inputs could
affect the N transport and transform and our model simulations. However, the actual rates
of N inputs from fertilization and septic systems for all households is quite challenging to
estimate at this point. We therefore, reported the range of surveyed fertilization rate from
Law et al. (2004) to show the input variations.

Line 487:

In addition, we assumed identical N inputs acquired from Law et al. (2004) for all
households in BARN, but the actual fertilization and septic effluents may have
considerable spatial, and temporal variations which could impact the N cycling and
transport significantly. Specifically, we used the annual fertilization rate on lawns as 84
kg N ha! from Law et al. (2004) in which the reported range of annual fertilization was
from 10.5 to 369.7 kg N ha™.

o Line 408: Please substantiate with references. How many spin up years were used in other
studies?

Thanks for your suggestion. We added other studies for RHSSys, which used 500-year
(Lin et al., 2015), 82-year (Son et al., 2019), or 47-years (Tague et al., 2013) spin-up
periods to stabilize the model.

Line 492:

Compared to other RHESSys studies (e.g., Lin et al., 2015; Son et al., 2019; Tague et al.,
2013), spinning up the model for 30 years may be insufficient to account for the export
of this N from groundwater, which possibly caused the lower simulated mean NO3~
concentration compared to BES measurements.

References

Lin, L., Webster, J. R., Hwang, T., & Band, L. E. (2015). Effects of lateral nitrate flux and instream
processes on dissolved inorganic nitrogen export in a forested catchment: A model sensitivity
analysis. Water Resources Research, 51(4), 2680-2695.



Son, K., Lin, L., Band, L., & Owens, E. M. (2019). Modelling the interaction of climate, forest ecosystem,
and hydrology to estimate catchment dissolved organic carbon export. Hydrological Processes, 33(10),
1448-1464.

Tague, C. L., Choate, J. S., & Grant, G. (2013). Parameterizing sub-surface drainage with geology to
improve modeling streamflow responses to climate in data limited environments. Hydrology and Earth
System Sciences, 17(1), 341-354.

o Line 423: Please compare the rates to the specific rates from the references like done for the
hot spots in the following paragraph

Thanks for the suggestion. The denitrification rate at lawn was measured in lab with fixed
environment settings (in Line 443, the Result section).

Assuming 210 days (~7 months) that denitrification would occur, Raciti et al. (2011)
reported a denitrification rate of 204 kg N ha™ year? at 20 °C for saturated soil samples
from fertilized lawns at the University of Maryland Baltimore County. At the same
temperature, Suchy et al. (2023) reported a higher rate, 744 kg N ha* year?, when lawn
soil samples collected from BARN lawns were saturated.

However, direct conversion of lab measured rates to the field measurements is impossible
as the environment variables change all the time. We used Raciti et al.’s (2011) approach,
the estimated denitrification rates were 13 and 40 kg/ha/year, respectively, using
measurements from Raciti et al. and Suchy et al. These values were reported at Line 450.
We added the cross reference to let readers to check the estimated rates.

Line 452:

The mean 25 and 85 percentiles of annual denitrification rate for lawns from all
simulations in scenario both were 2.8 to 30.8 kg N ha year?, respectively, which are
quite comparable with the range of empirical measurements from low to high soil
moisture conditions and various fertilization rates.

o Line 467: What does unaffected mean?

Thanks for your question. Our updated results suggested there was negligible change of
water table depth at riparian areas at the whole watershed scale, but the drop of
groundwater due to septic extraction is significant at hillslopes with dense residential
development. We revised this sentence to explain this at line 560:

These results occur because while the septic effluent is depleted by evapotranspiration,
the deeper groundwater that emerges in riparian areas is also affected at hillslopes with
residential development. Thus, extraction of water for domestic use lowers riparian
water tables even when this water is ultimately discharged back into the environment
via a septic system.



o Line 478: Please specify where BMPs are sited effectively in a watershed. It would be
interesting to run simulations with additional BMPs or BMPs in different locations
throughout the watershed and compare those.

Thanks for the comments. We mentioned that areas accumulating both upstream water
and N inputs are ideal sites for BMPs. Running scenarios of siting BMPs in suitable areas
would be the future research we will keep exploring.

Line 573:

These results suggest that effective siting of BMPs and a careful assessment of
spontaneously existing (accidental) retention zones that accumulate both water and N
loads from upstream can be used to achieve environmental goals for developed
watersheds, by leveraging naturally occurring and built features providing ecosystem
services.

o Line 481: The conclusion is very general. It needs to refer to your specific results presented
before. Please elaborate whether the framework is applicable for other watersheds.

Thanks for your suggestion. We elaborated our Conclusion with referring to our results of
simulated NO3™ concentration. We also specified our model can be applied to other
suburban watersheds relying mainly on septic systems. Please refer to our response to
your General Comment #2: Too general conclusion.



