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Abstract. Estimating the flow velocity and discharge in rivers is of particular interest for monitoring, modelling, and research 

purposes. Instruments for measuring water level and surface velocity are generally mounted on bridge decks, and this poses a 10 

challenge because the bridge structure (e.g., piers and abutments) can lead to perturbated flow fields. The current research 

aims to investigate the applicability of the entropy theory to estimate the velocity distribution and the discharge in the vicinity 

of river bridges. To this purpose, a Computational Fluid Dynamics (CFD) model is used to obtain three-dimensional flow 

fields along a stretch of the Paglia River (central Italy), where a historical multi-arch bridge strongly affects flood flows. The 

input data for the entropy model include the cross-sectional bathymetry and the surface velocity provided by the numerical 15 

simulations. A total of 12 samples, including three different flow conditions for four cross-sections, one upstream and three 

downstream of the bridge, are considered. It is found that the entropy model can be reliably applied upstream of the bridge, 

also when forced with a single (i.e., the maximum) value of the surface velocity, with errors on total discharge below 13% in 

the considered case. On the contrary, downstream the bridge, the wakes generated by the bridge piers strongly affect the 

velocity distribution, both in the spanwise and in the vertical directions, and for very long distances. Here, notwithstanding the 20 

complex and multimodal spanwise distribution of flow velocity, the entropy model estimates the discharge with error lower 

than 8% if forced with the river-wide distribution of the surface velocity. The present study has important implications for the 

optimal positioning of sensors and suggest the potential of using CFD modelling and entropy theory jointly to foster the 

knowledge of river systems. 

1 Introduction 25 

Velocity and discharge measurements in rivers are fundamental for monitoring, modelling, and research purposes (Depetris, 

2021; Di Baldassarre and Montanari, 2009; Dottori et al., 2013; Gore and Banning, 2017; Herschy, 2009). Unfortunately, 

measuring river discharge can be very challenging due to different reasons, for example in the case of intermittent rivers typical 

of semi-arid regions, of flash floods in mountain areas, of flood flows involving wide floodplains, of freshwater flows affected 
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by saline tidal intrusions in estuaries, etc. While monitoring river discharge on the ground has definite advantages (Fekete et 30 

al., 2012), the use of traditional methods such as current meters and ADCPs is generally expensive, time-consuming, and risky 

for operators, mainly during severe flow conditions, and such methods are not feasible in remote and inaccessible locations.  

Different techniques can be used to measure the surface velocity, also during severe flood conditions, including Large-Scale 

Particle Image Velocimetry (LSPIV) (Le Coz et al., 2010; Jodeau et al., 2008; Muste et al., 2011, 2014; Eltner et al., 2020), 

Space-Time Image Velocimetry (STIV) (Fujita et al., 2007, 2019), Infrared Quantitative Image Velocimetry (Schweitzer and 35 

Cowen, 2021), and other methods based on the use of either terrestrial or Unmanned Aerial System sensors (Bandini et al., 

2020, 2021; Herschy, 2009).  

Indirect methods have then been proposed to estimate the flow discharge using this kind of remote sensed data (Bogning et 

al., 2018; Fekete and Vörösmarty, 2002; Spada et al., 2017; Vandaele et al., 2023; Zhang et al., 2019). The flowrate is generally 

obtained by applying suitable velocity coefficients to estimate the depth-averaged velocity or by integration of a hypothetical 40 

flow velocity distribution in the cross-sectional area. The key point is thus estimating the depth-averaged velocity, or its full 

cross-sectional distribution, starting from surface velocity data, a process whose reliability depends on the (un)evenness of the 

actual velocity distribution. 

In natural rivers with large cross-sections, the streamwise velocity typically shows a logarithmic vertical distribution, mainly 

determined by the bottom roughness. According to field data, the maximum velocity is found just below the free surface and 45 

gradually decreases towards the bed (Franca et al., 2008; Guo, 2014). However, plenty of factors contributes in making the 

velocity distribution irregular. For instance, channel bends and deformed bathymetry produce large-scale secondary currents 

(Constantinescu et al., 2011; Lazzarin and Viero, 2023; Yang et al., 2012), and the presence of banks and of discontinuities of 

bed elevation in the spanwise directions can generate secondary currents of the second kind because of turbulence 

heterogeneity (Nikora and Roy, 2011; Proust and Nikora, 2020), which all increase the three-dimensionality of the flow field 50 

and alter the vertical and spanwise distribution of the flow velocity. 

The presence of in-stream structures, such as bridges characterized by the presence of piers and/or of lateral abutments, can 

induce further alterations on the flow field (Laursen, 1963, 1960), producing complex and rapidly varying flow patterns, with 

the formation of strong three dimensional flow structures (Ataie-Ashtiani and Aslani-Kordkandi, 2012; Chang et al., 2013; 

Salaheldin et al., 2004). Secondary currents in the cross-section transport low momentum fluid from lateral region to the center 55 

of the channel, and high-momentum fluids from the free surface toward the bed (Bonakdari et al., 2008; Nezu and Nakagawa, 

1993; Yang et al., 2004). This creates systems of vortices with horizontal (horseshoe vortex) or vertical axes (wake vortex) 

that in turn modify the velocity distribution (Kirkil and Constantinescu, 2015; Sumer et al., 1997). The wakes generated by in-

stream obstacles and contractions can produce uneven spatial distributions of the water surface elevations close to the bridge, 

and can propagate downstream of bridges thus altering the cross-sectional velocity distribution for quite long distances (Briaud 60 

et al., 2009; Yang et al., 2021). Furthermore, because of particular bridge shape (e.g., arch-piers) and of irregular cross-sections 

(e.g., compound sections), the flow field may show a marked dependence on the water depth and the flowrate.  
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Even though the above factors complicate inferring the cross-sectional velocity distribution (and thus the flow discharge) based 

on surface velocity data in the vicinity of in-stream structures, it has to be observed that measuring instruments such as 

hydrometers, as well as radar sensors or cameras for estimating the surface velocity, are often mounted on bridge decks for 65 

convenience reasons. Notwithstanding the recommendation of installing height gage at the upstream side of bridges (Meals 

and Dressing, 2008), measuring instruments are often located downstream of bridges, where the flow field unevenness is 

expected to further complicate the discharge estimation (Kästner et al., 2018). Besides the measurement of the flow discharge, 

the knowledge of flow field nearby bridges has additional practical implications; the flow velocity is the dominant parameter 

to study the local scour at a bridge pier, which may result in being responsible for the bridge collapse in some extreme 70 

conditions (Barbetta et al., 2017; Federico et al., 2003; Lu et al., 2022). The formation of scours at piers and abutments can be 

attributed to a significant extent to the flow patterns produced at their immediate vicinity, such as the flow contraction and the 

large-scale turbulent structures (Cheng et al., 2018; Khosronejad et al., 2012). 

One of the most promising methods to estimate the cross-sectional velocity distribution from joint measures of water level and 

surface velocity is based on the entropy concept. Researchers have widely applied this concept to predict velocity distributions, 75 

the flow discharge, and other relevant parameters in open channels (Bonakdari et al., 2015; Chiu, 1989; Chiu and Said, 1995; 

Chiu et al., 2005; Ebtehaj et al., 2018; Moramarco and Singh, 2010; Singh et al., 2017; Sterling and Knight, 2002; Termini 

and Moramarco, 2017; Moramarco et al., 2019; Chahrour et al., 2021; Vyas et al., 2021; Bahmanpouri et al., 2022b). Recent 

applications of the entropic velocity distribution include the case of large meandering channels (Termini and Moramarco, 

2020), the estimation of the depth-averaged velocity as a function of the aspect ratio (Abdolvandi et al., 2021), the confluence 80 

of the large Negro and Solimões rivers (Bahmanpouri et al. 2022a), and the regionalizing of the entropy parameter (Ammari 

et al., 2022). One advantage of the entropy approach is providing the complete cross-sectional distribution of velocity, whereas 

other indirect methods for estimating flow discharge only compute the depth-averaged value from the surface velocities at 

subsections using a fixed reduction coefficient (e.g., Le Coz et al., 2010). Previous studies demonstrated the accuracy of the 

entropy method referring to undisturbed flow conditions, and also to cases like confluences or low curvature bends 85 

characterized by large-scale three-dimensional effects and secondary currents.  

The present research is meant to investigate the predictive ability of the entropy theory in estimating the velocity distribution, 

and hence the streamflow discharge, in the case of complex flow fields generated by the presence of bridges. It is of particular 

relevance because, as already noted, water levels and free-surface velocities are often measured by instruments mounted on 

bridges, where the flow-structure interaction can significantly disturb the flow field. 90 

Considering that measuring the cross-sectional velocity distribution in the vicinity of bridges is practically unfeasible in flood 

conditions, in the present study a three-dimensional Computational Fluid Dynamics (3D-CFD) model is used to obtain physics-

based and high-resolution descriptions of the real flow field, for a sufficiently long river segment and for different values of 

the flow discharge. The CFD-computed surface velocity (either a single value or its river-wide distribution) are used as input 

for the entropy model, thus simulating the availability of suitable remote sense instruments. Then, the cross-sectional velocity 95 

distributions provided by the entropic model are benchmarked against those computed by the CFD model, which allows 
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assessing the reliability of the entropy model. The exercise is repeated for different cross-sections, both upstream and 

downstream of the bridge, to investigate the pros and cons of different locations where estimating the discharge, thus to provide 

applicative guidelines. A reach of the Paglia River, in the central Italy, is chosen as a relevant case study; here, a level gauge 

and a radar sensor for measuring the surface velocity are mounted on a historical multi-arch bridge, which produces strong 100 

flow-structure interactions.  

The present analysis allows providing guidelines for the proper application of the entropy theory and the optimal choice and 

positioning of measuring instruments, aimed at the reliable estimation of flow discharge in the vicinity of river bridges. 

 

Figure 1. a) Location of the field site; b) downstream view of the Adunata bridge on the Paglia River during normal flow condition 105 
(11.11.2021); c) Digital Terrain Model (DTM) nearby the Adunata bridge (dotted line), with the domain of the 3D CFD model (black 

line); d) location of the level gauge and of the radar sensor with the field of view (FOV) on aerial image (© Google Earth). 

2 Material and Methods 

2.1 Field Site 

The Paglia River, in the central part of Italy (Figure 1a), is a tributary of Tiber River, subjected to severe flooding and high 110 

sediment transport. The reach of interest is across the Adunata bridge (Figure 1b), near the town of Orvieto, where the Paglia 
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River subtends a basin area of about 1’200 km². Here, the average discharge is of 10 m³/s; however, flood discharge can reach 

estimated values of up to 2’500 m³/s.  

The Adunata bridge connects the settlements of Orvieto Scalo and Ciconia, as part of the Italian State Road n.71 (Figure 1c). 

It is a masonry multi-arch bridge, with 5 arches ending at four piers on the river bed. On the right-hand side, an abutment 115 

sustains the bridge and separates it from the floodplain; on the left-hand side, the bridge deck is supported by the main levee. 

Close to the bottom, the piers have a roughly elliptical shape with the major axis, aligned with the flow, 15 m long, and the 

minor axis, orthogonal to the flow, 5.7 m wide. At the bottom, each pier is sustained by an elliptical plinth whose profile is 

2.0 m larger than the pier. The center-distance between the piers is 23.2 m. The piers width increases approaching the deck 

because of the arches; the deck width is approximatively 10 m. 120 

The main thread of the flow is at the right-hand side of the river, and a large depositional area forms on the left-hand side just 

downstream of the bridge (Figure 1b). The main channel axis is characterized by a significant curvature, bending to the left at 

the bridge section (Figure 1c). 

2.2 Available Data 

In the downstream side of the Adunata Bridge, a water level gauge is placed at the center of the first arch, and a radar sensor 125 

for measuring the water surface velocity is located at the second arch (Figure 1d). The field of view (FOV) of the radar sensor 

is also shown in Figure 1d. The time resolution of both the sensors is 10 min. 

In addition, a number of flowrate measures and cross-sectional velocity distributions are provided by the Umbria Region 

Hydrological Service. The flowrate data were collected using a current meter a few tens of meters downstream of the Adunata 

Bridge, by wading in the period 2009-2011 (flowrate ranging between 3.3 and 14.3 m³/s), and from the bridge in the period 130 

1995-2010 (flowrate ranging between 16.8 and 147 m³/s); additional flowrate data were collected using an Acoustic-Doppler 

Current Profiler (ADCP) some hundreds of meters upstream of the bridge in the period 2014-2019 (flowrate ranging between 

0.37 and 45 m³/s). The official rating curve for the Adunata Bridge, provided by ARPA Lazio, is based on these measures.  

As detailed in the following sections, the rating curve derived from current meter and ADCP data, the water levels, and the 

free-surface velocity data collected by the sensors mounted on the Adunata bridge, were used to validate the hydrodynamic 135 

numerical models (Sect. 2.3 and Appendix A). The cross-sectional velocity distributions measured with the current meter just 

downstream of the bridge were used to further assess the spatial variability of the entropy-based velocity distributions, as 

detailed in Sect. 3.1. 

2.3 Numerical Model 

The commercial CFD software STAR-CCM+ (Siemens) was used for the numerical simulations. It implements the Finite 140 

Volume method to compute the flow field on unstructured, Cartesian computational grids. The software has been used and 

validated in several applications for flow over deformed bathymetry in presence of obstacles (Lazzarin et al., 2023c, 2024a; 

Chang et al., 2013; Kirkil et al., 2009) and channel bends (Koken et al., 2013; Constantinescu et al., 2011, 2013). In the present 
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application, the two-phase Volume of Fluid (VoF) method was used to distinguish water and air in the computational domain 

(Hirt and Nichols, 1981). This method was shown to well capture the water surface in complex open channel flows (Horna-145 

Munoz and Constantinescu, 2018; Lazzarin et al., 2023b; Li and Zhang, 2022; Luo et al., 2018; Yoshimura and Fujita, 2020). 

In the used setup, the model solved the Reynolds-Averaged Navier-Stokes (RANS) equations, in which the stress tensor in the 

momentum equations is related to the mean flow quantities by adopting the Bousinnesq approximation. The eddy viscosity, 

μT, was determined by solving transport equations for the turbulent kinetic energy, k, and dissipation rate, ε, according to the 

realizable k-ε turbulence model (Shih et al., 1995), which was shown to provide reliable predictions for large-scale complex 150 

flows in natural rivers (e.g., Horna-Munoz and Constantinescu, 2018). 

The simulations were advanced in time with an implicit, 1st order discretization, until reaching steady state conditions. The 

computational domain reproduced a ~1,100 m long reach of the Paglia River (Figure 1c), centered at the Adunata bridge. The 

average size of the grid elements was of 1.0 m. Starting 100 m upstream of the bridge and up to 300 m downstream of the 

bridge, the grid was refined using elements with average length 0.5 m. To well capture the near-wall boundary layer, a prism 155 

layer refinement with three layers was used to reduce the wall-normal thickness of the grid cells close to solid boundaries (i.e., 

the riverbed and bridge structure). The final computational grid was made of ~4 million elements. 

A rough-wall, no-slip condition was imposed at the solid boundaries by means of a wall function (roughness height of 0.1 m 

at the bottom, and of 0.01 m at the bridge surfaces). The upper boundary of the computational grid was treated as a symmetry 

plane (i.e., slip-condition) for the air-flow. The water elevation at the outlet (i.e., downstream section) was kept fixed in time 160 

by imposing a suitable hydrostatic-pressure distribution. The value of the downstream level, for each of the simulated 

scenarios, was derived from an auxiliary two-dimensional (2D), depth-averaged hydrodynamic model calibrated on available 

data; the 2DEF model has been used to this purpose (see Appendix A for details on the model and its calibration/verification). 

A constant-in-time, logarithmic velocity distribution was imposed as upstream boundary condition for the water fraction. For 

the air fraction (upper part of the numerical domain), zero velocity and zero pressure were imposed at the inlet and at the outlet, 165 

respectively. 

The 3D-CFD model was validated by comparing the surface velocity computed by the model with those measured by the radar 

sensor located downstream of the bridge (see the yellow bullets in Fig. A2c,d, in the Appendix A). 

2.4 Flood events considered in the study 

Three different steady flow conditions have been simulated with the 3D-CFD model STAR-CCM+, which correspond to the 170 

peak flow conditions of flood events occurred in 2012, 2019, and 2022 as provided by the rating curve for the Adunata Bridge 

(Table 1). In all the three flow conditions, water flowed in the main channel and over the sediment bars that are dry in the low 

flow condition of Figure 1b,d. During the most severe flood of 2012, water flowed on the floodplains adjacent to the main 

river and caused the incipient pressurization of flow below the bridge arches. The preliminary simulation carried out with the 

2DEF depth-averaged model showed that, at the peak of the 2012 flood event, 700 m³/s flowed through the floodplain, 175 

overflowing the bridge access roads, and 1800 m³/s flowed within the main channel; this last value was used in the 3D-CFD 
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simulation, which considered only the main channel of the river. The flood events of 2019 and 2022, although being quite 

ordinary, were the largest floods occurred after the installation of the radar sensor for the surface velocity data (surface velocity 

data were not available for the 2012 flood). 

Event Discharge [m³/s] Return period (years) 

2012 1800 (2500) 200 

2019 450 2 

2022 160 1 
Table 1. Simulations performed in the present work. The value in brackets indicate the total discharge considering also the flow 180 
over floodplains, not considered in the 3D simulations. 

2.5 Entropy theory 

The Entropy theory deals with physical systems that may have a large number of states from a probabilistic point of view. The 

concept of entropy is used for statistical inference, to determine a probability distribution function when the available 

information is limited to some average quantities, defined as constraints such as mean and variance. For the application of 185 

entropy to streamflow measurements, the pioneer was Chiu (1987), who developed a probabilistic formulation of the cross-

sectional velocity distribution in open channels, in which the expected value of the point velocity is determined by applying 

the maximum entropy principle (Chiu 1987, 1988, 1989). Using this probabilistic formulation, the velocity distribution is given 

analytically as a function of the cross-sectional geometry, of the dimensionless entropy parameter, M, and possibly of the depth 

at which the maximum velocity occurs (the so-called dip, h). There is a one-to-one correspondence between M and the ratio 190 

of mean to maximum velocity in the cross-section, which is defined as the entropic function, ϕ(M) (Chiu 1991). In general, for 

a given river site, the magnitude of M and, in turn, of ϕ(M), mainly depend on hydraulic parameters such as roughness and 

hydraulic radius, whereas they are poorly affected by the flow discharge (Chiu and Murray 1992; Moramarco and Singh, 

2010). Moreover, ϕ(M) is consistently found to be nearly constant at different cross-sections through gauged river sites for 

different flow conditions (Moramarco and Singh, 2010; Ammari et al., 2022). This is because the value of ϕ(M) is associated 195 

with geometric and hydraulic characteristics that tend to vary smoothly within a river system (Ammari et al., 2022). 

The estimation of cross-sectional velocity distribution, U(x,y), developed by Chiu (1989), was later simplified by Moramarco 

et al. (2004). Using this approach, one can divide the wet cross-sectional area into Nv verticals and determine the entropy-

based velocity profile along each vertical as 

𝑈(𝑥𝑖 , 𝑦) =
𝑈𝑚𝑎𝑥(𝑥𝑖)

𝑀
ln [1 + (𝑒𝑀 − 1)

𝑦

𝐷(𝑥𝑖) − ℎ(𝑥𝑖)
exp (1 −

𝑦

𝐷(𝑥𝑖) − ℎ(𝑥𝑖)
)]    𝑖 = 1 … 𝑁𝑣 (1) 

where U is the time-averaged velocity, Umax(xi) is the maximum value of U along the ith vertical, xi is the distance of the ith 200 

sampled vertical from the left bank, h(xi) is the dip (i.e., the depth of Umax(xi) below the water surface), D(xi) the flow depth, y 

is the vertical distance from the bed. The relationship between the entropic parameter, M, and the entropic function, ϕ(M), is 

(Chiu, 1989): 

𝜙(𝑀) =
𝑈𝑚

𝑈𝑀𝐴𝑋  
=

𝑒𝑀

𝑒𝑀 − 1
−

1

𝑀
 (2) 
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in which Um and UMAX are the average and maximum flow velocities within the entire cross-section. 

Introducing the variable 𝛿(𝑥𝑖) = 𝐷(𝑥𝑖)/[𝐷(𝑥𝑖) − ℎ(𝑥𝑖)], the velocity dip, h(xi), is estimated according to Yang et al. (2004) 205 

from the spanwise distribution of 𝛿(𝑥𝑖), which is given as 

𝛿(𝑥𝑖) = 1 + 1.3 exp (−
𝑥𝑚𝑖𝑛

𝐷(𝑥𝑖)
) (3) 

in which xmin is the spanwise distance of the xi vertical from the nearest bank. Note that h(xi) = 0 and δ(xi) = 1 when the 

maximum velocity occurs at the free-surface. 

In case of gauged cross-sections, ϕ(M) can be inferred from measured mean and maximum flow velocities (e.g., with ADCP). 

For ungauged sites ϕ(M) can be estimated as (Moramarco and Singh, 2010): 210 

𝜙(𝑀) =

1
𝑛

𝑅1/6

√𝑔
1
𝑘

ln (
𝐷 − ℎ

𝑦0
)
 (4) 

where y0 is the vertical coordinate, taken from the bottom, where the velocity is zero, k is the von Karman constant, R is the 

hydraulic radius, n is the Manning roughness, D is the maximum water depth, and h is computed with Eq. (3) at the talweg, 

i.e., where the water depth is maximum. According to van Rijn (1982), y0 = 0.065 ξ d90, where d90 is the 90th percentile for 

grain size and ξ a parameter ranging from 1 to 10 (Ferro, 2003; Moramarco and Singh, 2010). 

Whether at a river site only the surface velocities, Usurf (xi), are available, then Umax(xi) can be estimated as (Fulton and 215 

Ostrowski, 2008): 

𝑈𝑚𝑎𝑥(𝑥𝑖) =
𝑈𝑠𝑢𝑟𝑓(𝑥𝑖)

1
𝑀

ln[1 + (𝑒𝑀 − 1)𝛿(𝑥𝑖)𝑒1−𝛿(𝑥𝑖)]
 (5) 

For the current research, the methodological steps to estimate the cross-sectional velocity distribution (and hence the flow 

discharge) using the entropy theory, are as follows. The input data is the river-wide velocity distribution at the free-surface, 

Usurf, provided by the 3D-CFD model. When only the maximum value of Usurf is used as input, corresponding to the 

hypothetical case in which only point-sensor data are available, the spanwise distribution of Usurf is obtained by applying either 220 

a parabolic or an elliptical spanwise distribution (Bahmanpouri et al., 2022a). The velocity dip is computed using Eq. (3). The 

cross-sectional velocity distribution is then obtained using an iterative procedure, in which p denote the iteration. At the first 

iteration, the entropic function, ϕ(M)p=1, is computed with Eq. (4), and Mp=1 is computed with Eq. (2). After computing the 

maximum velocity for each vertical, Umax(xi)p=1, with Eq. (5), Eq. (1) allows estimating the entropic velocity distribution in the 

whole cross-section, U(xi, y)p=1. The following iteration starts by computing the average and the maximum flow velocities, Um 225 

and UMAX, from the velocity distribution obtained in the previous iteration, then ϕ(M)p = Um/UMAX, Mp using Eq. (2), Umax(xi)p 

with Eq. (5), and the velocity distribution U(xi, y)p with Eq. (1). The iterative procedure continues until the error of 

ϕ(M)p – ϕ(M)p−1 becomes lower than 0.01. For more details, the reader is referred to Moramarco et al. (2017). 
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3 Results and discussions 

The comparison between the entropy-based and the CFD-derived velocity distributions has been performed considering four 230 

cross-sections (Figure 2), at a distance of 50 m upstream and 50, 100, and 200 m downstream of the bridge, and the three flood 

events of 2012, 2019, and 2022 (see Table 1). The sections just upstream and downstream of the bridge are located at a distance 

of about 0.45B from the bridge, with B the width of the river at the bridge section. This is a short distance, particularly 

considering that the remote sensors for surface velocity (such as radar, Large Scale PIV, etc.) have their field of view located 

some tens of meter upstream or downstream of the bridge. The sections far downstream are considered to assess how far the 235 

flow field is affected by the presence of the bridge. 

 

Figure 2. Location of the Adunata Bridge and of the four selected cross-sections (aerial image from © Google Earth). 

First, the study analyzes the variability of the entropy function, ϕ(M), at the four cross-sections, as derived from the cross-

sectional velocity distributions provided by both the 3D-CFD model and the current meter measures (Sect. 3.1). Then, in 240 

applying the entropy model to estimate the cross-sectional velocity, two different procedures are considered. In the first one, 

the entropy model was forced with the river-wide distribution of the surface velocities computed by the 3D-CFD model (this 

is described in the following Sect. 3.2); in the second one, only the maximum value of the surface velocity computed by the 

3D-CFD model was considered as input for the entropy model (Sect. 3.3). The first procedure was applied to all the four cross-

sections, whereas the latter was only applied to cross-sections 1 and 4, i.e., where the effects of the bridge piers are minimal 245 

so that the spanwise velocity distribution is unimodal. 

3.1 Variability of the entropy function 

Some relevant parameters that characterize the flow field (e.g., aspect ratio, average and maximum velocity) at the selected 

cross-sections are presented in Table 2 for the peak flow condition of the three flood events. The values of the entropic function, 

ϕ(M)CFD, were first computed as the ratio of average to maximum velocity within the cross-section provided by the 3D-CFD 250 

model. Then, assuming the site as ungauged, ϕ(M)Eq (4) were estimated using Eq. (4) with d90 = 0.01 m (Pilbala et al., 2024) 
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and a Manning parameter, n, equal to 0.035 m−1/3s at the upstream (−50 m) and far downstream sections (+100 m and +200 m), 

and equal to 0.055 m−1/3s just downstream of the bridge (+50 m cross-section) where larger energy losses are expected because 

of the wakes generated by the bridge piers. The values of ϕ(M)Eq (4) reported in Table 2, corresponding with the points marked 

with dashed lines in Figure 3b, were obtained using ξ = 5 to compute y0 (Sect. 2.5 just after Eq. (4)), and the grey band was 255 

obtained by varying ξ in the range [1,10]. Finally, the values of the entropic parameter associated to the different values of 

ϕ(M) are computed using Eq. (2). 

Year 

Distance 

from the 

bridge 

(m) 

Channel 

aspect ratio 

(width/depth) 

Average 

Velocity 

(m/s) 

Maximum 

Velocity 

(m/s) 

ϕ(M)CFD MCFD ϕ(M)Eq (4) MEq (4) 

2012 

−50 9.26 4.43 6.82 0.650 1.91 0.659 2.04 

+50 13.78 2.91 7.01 0.415 −1.03 0.410 −1.10 

+100 11.05 3.61 6.68 0.541 0.50 0.643 1.81 

+200 8.5 4.06 5.48 0.740 3.4 0.642 1.80 

2019 

−50 16.3 3.0 4.21 0.711 2.87 0.635 1.70 

+50 18.45 1.93 3.74 0.515 0.18 0.405 −1.16 

+100 14.75 2.08 3.26 0.639 1.75 0.630 1.70 

+200 12.84 2.40 3.47 0.690 2.51 0.609 1.35 

2022 

−50 27.7 2.57 3.40 0.755 3.71 0.625 1.56 

+50 27.3 1.33 2.58 0.514 0.17 0.395 −1.29 

+100 20.9 1.55 2.19 0.711 2.86 0.612 1.39 

+200 13.23 1.97 2.56 0.767 3.96 0.619 1.48 

Table 2. Flow data for the cross-sections of Figure 2 and the three considered flood events of Table 1. The values of the entropic 

function, ϕ(M), and parameter, M, are obtained from the 3D-CFD velocity distributions and estimated according to Eq. (4). 

Since the entropic function is typically assumed to be constant for all flow conditions at a given cross-section, it is of interest 260 

to analyze its actual variation by exploiting the flow fields provided by the 3D-CFD model, and to see the effectiveness of 

their first-guess estimates obtained using Eq. (4). The values of ϕ(M) reported in Table 2 are plotted in Figure 3 as a function 

of the downstream distance from the bridge. At the first cross-section downstream of the bridge (i.e., cross-section 2), although 

referring to different flow conditions, values of the entropic function computed with the 3D-CFD and the current meter velocity 

distributions show the same magnitude, further confirming the reliability of the 3D-CFD model. 265 

For each flood event, at cross-sections 1 and 4, i.e., where the flow field is not characterized by the wakes generated by the 

bridge piers, the entropic function assumes similar values, which can be identified as “undisturbed” values. The variability of 

such undisturbed values of ϕ(M) with the flowrate is relatively small, as all the values fall in the range 0.65 < ϕ(M) < 0.75, 

which is in agreement with the range found by Bahmanpouri et al. (2022b) for similar European rivers. On the contrary, at 

cross-sections 2 and 3, just downstream of the bridge, the values of ϕ(M) are consistently reduced due to the effect of the 270 

bridge. At cross-section 2, for the flood conditions of 2012, ϕ(M)CFD equals to 0.415, which leads to MCFD = −1.03. The low 

value of ϕ(M) and the negative value of M attest the strongly non-uniform distribution of the velocity (i.e., the maximum 
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velocity in this cross-section is much higher than the average velocity). For the moderate peak flows of 2019 and 2022 event, 

the entropic function recovers undisturbed values already at cross-section 3, i.e., 100 m downstream of the bridge. In the largest 

flood event of 2012, which produced near pressure-flow conditions at the bridge with marked localized increasing of the flow 275 

velocity, ϕ(M) decreases from 0.64 to 0.42, and a sensible reduction is still present 100 m downstream of the bridge (cross-

section 3). 

 

Figure 3. Entropic function ϕ(M), for the different simulated scenarios, as a function of the distance from the bridge (positive 

downstream), (a) computed from the 3D-CFD flow fields and (b) estimated with Eq. (4), where the lines refer to the average values 280 
and the gray band is obtained by varying the reference height y0 in Eq. (4) within the expected range. Green circles refer to data 

derived from velocity distributions measured with the current meter just downstream of the bridge. 

This first analysis suggests that assuming constant values of ϕ(M) can be reasonable in undisturbed river reaches; however, in 

case of irregular flow fields induced by the interactions with in-stream structures, the entropic function ϕ(M) can vary with 

respect to undisturbed values and, in addition, it can show significant variations with the flowrate. 285 

3.2 Entropy model forced with the river-wide profile of free-surface velocity 

The efficacy of the entropy model is here tested for the case in which the surface velocity is known for all the width of the 

cross-section. This could be the case in which the river-wide surface velocity is estimated from imaging techniques (e.g., Eltner 

et al., 2020; Schweitzer and Cowen, 2021). The results, in terms of cross-sectional velocity distributions, are presented for 

brevity only for the intermediate peak flow of the 2019 flood event, and for the most challenging cross-sections just 290 

downstream of the bridge, where the flow field is disturbed by the pier wakes. The same results, for the peak flows of 2012 

and 2022 events, are provided as supplementary material.  

Figure 4 presents the cross-sectional velocity distribution 50 m downstream of the bridge (cross-section 2). As shown by the 

3D-CFD flow field (Fig. 4a) and reflected in the low value of ϕ(M) for this cross-section (Table 2 and Figure 3), the effect of 

the piers is very strong, such that there is a clearly uneven distribution of the cross-sectional velocity because of the wakes 295 

developing downstream the piers. Despite that, using as input the river-wide distribution of the surface velocity provided by 

the CFD simulation, the entropy model can reliably capture the salient features of the cross-sectional velocity distribution. 
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Figure 4. Flood event of 2019, cross-section 2 (50 m downstream of the bridge). Velocity distributions provided by (a) the 3D-CFD 

model, and (b) the entropy model forced with the river-wide distribution of the free-surface velocity. Comparison of vertical 300 
distributions of velocity at 0.2B (c), 0.5B (d), and 0.8B (e), where B is the width of the cross-section. 

Figure 4(c-e) highlights the comparison of 3D-CFD and entropy flow velocities along three verticals located at 0.2 B, 0.5 B, 

and 0.8 B (where B is the channel width). Compared to the results of the 3D-CFD model, the entropy approach underestimates 

the velocity close to the bed. Just downstream of the bridge, due to the presence of the bridge arches, the flow field provided 

by the 3D-CFD model is configured as a sort of partial orifice flow that increases the vertical uniformity of the velocity 305 

distribution compared to a uniform shear flow. Of course, the entropy model cannot capture such a localized flow features, 

which entails some difference in the patchiness of the physics-based and the entropy velocity distributions (Figure 4a-e). Since 

the velocities and the volumetric fluxes are still relatively small near the bed, these discrepancies marginally affect the 

estimation of the section-averaged velocity and, consequently, of the total discharge (Table 3). The percentage error is quite 
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larger (7.6%) for the very high-flow condition of the 2012 event (see Supplementary Materials), due to the accentuation of 310 

orifice-flow conditions associated to the higher water levels. 

Figure 5 depicts the cross-sectional velocity distributions at a larger distance from the bridge, i.e. at cross-section 3, placed 

100 m downstream the bridge. The visual comparison with Figure 4 suggests that the effects of the piers on the flow field are 

reduced because of the increased distance, and the cross-sectional distribution provided by the 3D-CFD model (Figure 5a) 

appears more regular. The statistical analysis confirms that in this case the entropy model (Figure 5b) is able to simulate the 315 

velocity profiles with a higher accuracy. 

 

Figure 5. Flood event of 2019, cross-section 3 (100 m downstream of the bridge). Velocity distributions provided by (a) the 3D-CFD 

model, and (b) the entropy model forced with the river-wide distribution of the free-surface velocity. Comparison of vertical 

distributions of velocity at 0.2B (c), 0.5B (d), and 0.8B (e), where B is the width of the cross-section. 320 
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Figure 6 shows the cross-sectional velocity distributions of 3D-CFD and entropy models for the cross-section 4, i.e. 200 m 

downstream of the bridge. Compared to cross-section 3, the effect of the bridge piers is further reduced, because of both the 

distance and the more compact shape of the cross-section. Since the effect of the bridge piers is minimum, the statistical 

analysis shows a better agreement of the entropy model results with the CFD-based data. Though areas with high velocities 

are still visible in simulations with higher values of the discharge (i.e., events of 2012 and 2019), for the high-flow conditions 325 

of 2022, the effect of the bridge pier has completely vanished. Therefore, the lower the flow discharge the lower the distance 

from the bridge to reach the normal flow condition without the bridge effect. 

 

Figure 6. Flood event of 2019, cross-section 4 (200 m downstream of the bridge). Velocity distributions provided by (a) the 3D-CFD 

model, and (b) the entropy model forced with the river-wide distribution of the free-surface velocity. Comparison of vertical 330 
distributions of velocity at 0.2B (c), 0.5B (d), and 0.8B (e), where B is the width of the cross-section. 
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The results here presented show that, when the river-wide distribution of the free-surface velocity is provided, the entropy 

method allows to provide good estimations of the cross-sectional velocity distribution even when the influence of bridge piers, 

and thus the unevenness of the flow field, is relevant. The main discrepancies are observed in the regions of flow with low 

values of velocity, which slightly affect the estimation of the flow discharge. Table 3 lists some statistics and error percentages 335 

for the depth-averaged velocity and discharge estimates for all cross-section and the three events considered. The estimation 

provided by the entropy method are in good agreement with results of CFD model, both upstream and downstream of the 

Adunata bridge. Though the accuracy is slightly reduced downstream of the bridge, the results are reliable also in the vicinity 

of the structure (i.e., at cross-section 2), suggesting the applicability of the entropy model to estimate the flow discharges even 

in case of irregular distributions of the cross-sectional velocity, provided that the river-wide distribution of the surface velocity 340 

is used as input data.  

 

Flood 

event 

Cross-

section 

Distance from 

the bridge (m) 

Average velocity (m/s) Discharge  

(m³/s) 
Error 

percentage (%) 
3D-CFD Entropy 3D-CFD Entropy 

2012 

1 −50 4.43 4.64 

1’800 

1’885 +4.7 

2 +50 2.91 2.69 1’664 −7.6 

3 +100 3.61 3.54 1’765 −2.0 

4 +200 4.06 4.30 1’906 +5.9 

2019 

1 −50 3.0 3.0 

450 

450 +0.1 

2 +50 1.93 1.90 443 −1.5 

3 +100 2.08 2.12 459 +2.0 

4 +200 2.40 2.54 476 +5.8 

2022 

1 −50 2.55 2.66 

160 

166 +3.7 

2 +50 1.32 1.24 150 −6.3 

3 +100 1.55 1.51 157 −1.9 

4 +200 1.97 1.98 161 +0.6 

Table 3. Flood event of 2019. Comparison between 3D-CFD outputs and entropy-based estimations forced with the river-wide 

distribution of the free-surface velocity. 

3.3 Entropy model forced with a single value of free-surface velocity 345 

In this section, the results are presented considering only a single value of the surface velocity as input for the entropy model, 

which corresponds to the maximum surface velocity predicted by the 3D-CFD model. Two different spanwise velocity 

distributions are enforced in the entropic model, namely a parabolic spanwise distribution (PSD) and an elliptic spanwise 

distribution (ESD). Of course, applying the entropy model using a unique value of the velocity is particularly sensitive of this 

value and suppose a unimodal velocity distribution in the spanwise direction. For this reason, this kind of approach cannot be 350 

used in the cross-sections immediately downstream the bridge, where velocities show large spatial variations (see e.g., Figure 

4). Herein, the results are presented for cross-section 1, i.e. 50 m upstream of the bridge for the high-flow condition of the 
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2012 event, and for cross-section 4, i.e. 200 m downstream of the bridge for the modest peak flow condition of the 2022 event, 

where the effect of bridge piers on the velocity distribution wears off in a shorter distance. 

Figure 7 shows the distribution of the surface velocity based on CFD outputs and both the PSD and ESD entropy models. The 355 

agreement of both the PSD and the ESD is generally good in the central and the right parts of the channel, and less good in the 

left part of the channel. Here, due to the irregular bathymetry (i.e., gravel deposit), the 3D-CFD model predicts localized 

stagnation zones that cannot be captured by the entropy model based on a single value of the surface velocity. This is confirmed 

by Figure 8a, which shows the cross-sectional distribution of the depth-average velocity and three vertical profiles. In the 

perspective of estimating the flow discharge, the lateral discrepancies represent a minor limit, as the central part of the cross-360 

sections conveys the largest part of the total discharge. 

 

Figure 7. Flood event of 2012, cross-section 1 (50 m upstream of the bridge). Cross-sectional velocity distribution computed with the 

3D-CFD model (a), the entropy theory with parabolic (b) and elliptic (c) spanwise velocity distribution. 
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Overall, the cross-sectional velocity distributions based on ESD seem more accurate than those based on the PSD: they provide 365 

similar results at the center of the channel, but the parabolic distribution generally underestimates the flow velocity close to 

the banks. Both cross-sectional and vertical distributions of the velocity profiles (Figure 7a and Figure 8c) highlight the 

existence of a velocity dip, i.e. the maximum velocity is below the water surface, particularly at the center of the channel. This 

is generally the consequence of secondary currents superposed to the main flow (Termini and Moramarco, 2020). Yang et al. 

(2004) and Moramarco et al. (2017) reported that for large aspect ratios of channel flow, B/D, the dip phenomenon appears 370 

primarily near the sidewall region, whereas for relatively low aspect ratios (B/D = 9.26 for cross-section 1) the velocity dip is 

generally located at the center of the channel (Bahmanpouri et al., 2022b, a; Kundu and Ghoshal, 2018; Moramarco et al., 

2017; Termini and Moramarco, 2020). In this case, the 3D flow field from the CFD simulation shows that the dip depends on 

the counter-clockwise rotating secondary current generated by the upstream right-handed bend. Indeed, rotational inertia makes 

these curvature-induced helical flow structures to propagate downstream for relatively long distances (Dominguez Ruben et 375 

al., 2021; Lazzarin and Viero, 2023; Thorne et al., 1985). 

 

Figure 8. Flood event of 2012, cross-section 1 (50 m upstream of the bridge). Spanwise distribution of the surface velocity (a); 

comparison of vertical distributions of velocity at 0.2B (b), 0.5B (c), and 0.8B (d). 

The distribution of the velocity at the free surface for the cross-section 4 (200 m downstream of the bridge) is presented in 380 

Figure 9 for the moderate peak flow condition of the 2022 event. For this cross-section, in the 3D-CFD results (Figure 9a), the 

maximum surface velocity is located on the left side of the channel, rather than at its center (this aspect is discussed in the 
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following). Forced with the maximum water surface velocity, the entropy model well reproduces the velocity field in the 

central part of the riverbed. Larger discrepancies are instead observed in the lateral part of the cross-section, with the elliptic 

spanwise distribution (ESD) that performs slightly better than the parabolic (PSD), particularly in the right side. Figure 10 385 

shows the cross-sectional distribution of the depth-averaged velocity and the velocity distribution along three verticals. In 

terms of cross-sectional average velocity and flow discharge, both the PSD and ESD produce error that are lower than 10% 

(Table 4), then quite larger than those obtained using the river-wide surface velocity as input for the entropy model. 

 

Figure 9. Flood event of 2022, cross-section 4 (200 m downstream of the bridge). Cross-sectional velocity distribution computed with 390 
the 3D-CFD model (a), the entropy theory with parabolic (b) and elliptic (c) spanwise velocity distribution. 

A last point worth of discussing regards the unusual cross-sectional distribution of flow velocity at section 4 (Figure 9a). The 

reason why the 3D-CFD model locates the maximum velocity at the left of the talweg is the alternate vortex shedding occurring 

downstream of the bridge piers, which propagates beyond the last considered cross-section. This is evident in the map of 
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instantaneous surface-velocity of Figure 11. This particular occurrence poses interesting questions on the application of the 395 

entropy model to estimate the flow discharge downstream of in-stream structures. First, the spanwise location of the maximum 

surface velocity is subject to a periodical shift, which prevents its correct detection by means of a fixed sensor with a small-

size field of view, like the one mounted on the Adunata bridge. Secondly, marked time-varying flow fields, which occasionally 

(or periodically) deviate from nearly uniform flow conditions, can hardly be captured by any preset velocity distribution. To 

alleviate the problem, the periodic signal of surface velocity can be filtered, which is equivalent to look at time-averaged 400 

modelled flow fields, which requires knowing the frequency of vortex shedding. 

 

Figure 10. Flood event of 2022, cross-section 4 (200 m downstream of the bridge). Spanwise distribution of the surface velocity (a); 

comparison of vertical distributions of velocity at 0.2B (b), 0.5B (c), and 0.8B (d). 
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 405 

Figure 11. Flood event of 2022. Colormap of the instantaneous surface velocities computed with the 3D-CFD model for the Paglia 

River at the Adunata bridge (aerial image from © Google Earth). 

The results shown in this Section confirm the general accuracy of the entropy model in predicting the velocity distributions. 

As expected, when using a single value of velocity in place of the river-wide distribution of surface velocity, the accuracy of 

the method decreases. Provided that using a single velocity is beyond the scope of the method when the velocity distribution 410 

is markedly irregular, the entropy approach can still be forced with a single surface velocity, and produce accurate results,  

when there are no evidences of strong disturbances of the flow. Indeed, such an approach cannot capture marked unevenness 

in the flow field, as shown in the case of the lateral low-velocity regions at cross-section 1 for the 2012 event (Figure 7), and 

in the time-varying flow field of cross-section 4 for the 2022 event (Figure 9). 

 415 

Distance from the 

bridge (m)  

and year 

Average velocity (m/s) Discharge (m³/s) 
Error percentage (%) 

3D-

CFD 

Entropy 3D-

CFD 

Entropy 

Parabolic Elliptic Parabolic Elliptic Parabolic Elliptic 

−50 (2012) 4.43 4.44 4.83 1’800 1’804 1’962 +0.2 +9.0 

−50 (2019) 3.00 3.24 3.40 450 486 510 +8.0 +13.3 

−50 (2022) 2.55 2.65 2.74 160 166 172 +3.8 +7.5 

+200 (2022) 1.97 1.81 2.02 160 147 164 −8.0 +2.0 

Table 4. Comparison between 3D-CFD and entropy-based outputs considering a single surface velocity. 

4 Conclusions 

The present study investigated the ability of the entropy-based method to estimate the cross-sectional distribution of velocity, 

as well as the associated river discharge, for different flow conditions in a representative case study. As sensors for continuous 
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monitoring of water level and surface velocity are often mounted on existing bridges, a stretch of the Paglia River was analyzed 420 

where a multi-arch bridge with thick piers, which hosts a level gauge and a radar sensor, strongly affects the flow field.  

With the goal of assessing the applicability of the entropy model in case of flows disturbed by the presence of in-stream 

structures, a 3D-CFD model was set up to obtain reliable, physics-based velocity distributions at relevant cross-sections, both 

upstream and downstream of the bridge. The entropy model was then applied to reproduce this set of velocity distributions, 

using the bathymetric data and the CFD-computed surface velocity as input. 425 

As a first point, the study highlighted the potential of using accurate, physics-based, 3D-CFD models to deepen the knowledge 

of rivers and, specifically, of theoretical methods for discharge estimation. Indeed, 3D-CFD models allows providing pictures 

of complex flow fields that are more complete than, e.g., ADCP measures, in terms of spatial and temporal distribution and, 

above all, valid for high-flow regimes which typically prevent any direct measurement of the flow field beneath the free-

surface. This entails unexplored chances of outlining best-practices in the use of simplified methods for continuous discharge 430 

monitoring, and, as a consequence, to improve their accuracy. 

According to the present analysis, the entropy model revealed remarkable skills in reproducing also disturbed and uneven flow 

fields when the river-wide distribution of the surface velocity is used as input data. This occurred also just downstream of the 

bridge, where the pier-induced wakes made the velocity distribution multimodal and extremely irregular, with error on 

discharge estimates lower than 8%. The availability of innovative measuring techniques, able to collect river-wide surface 435 

velocity data at a relatively low cost, adds value to the present findings. 

On the other side, the accuracy of the entropy model is reduced when only the maximum surface velocity is used as input data, 

so that the spanwise velocity distribution has to be assumed on a theoretical basis (e.g., parabolic or elliptical). While such a 

method is absolutely discouraged in case of disturbed flow fields (e.g., downstream of in-stream structures), it still provides 

accurate estimates where the velocity field is sufficiently regular. 440 

As a final recommendation, measuring instruments and sensors for surface velocity become more effective when placed 

upstream of in-stream structures, i.e., where the flow field is only marginally affected by the structure and both the water 

surface elevation and the velocity distribution are far more regular. 

A main limitation of the present methodological approach relies in the assumption of fixed bed in both the CFD analysis and 

the application of the entropic model. In natural rivers, bed scouring during sever flood events and the ensuing formation of 445 

local deposits, especially close to in-stream structures such as bridges, can alter the bathymetry and, in turn, the velocity 

distribution and the discharge estimates. In case of movable bed and absence of protection measures (e.g., riprap or bed sills), 

the uncertainty associated to the local bed mobility has to be evaluated with due care.  

Future research on more complex scenarios that still need a comprehensive assessment, and which could largely benefit from 

physics-based numerical modelling, will include the case of mobile beds and the analysis of stage-dependent variations of 450 

cross-sectional velocity distribution, particularly in case of compound cross-sections that are typical of natural rivers. 
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Appendix A 

To impose the boundary conditions to the 3D-CFD model, a 2D depth-averaged model of a longer stretch of the Paglia River 

has been setup. We used the 2DEF Finite Element model (Defina, 2003; Lazzarin et al., 2023a; Viero, 2019; Viero et al., 2014, 

2013; Lazzarin et al., 2024b), which solves a modified version of the shallow water equations (SWEs) that allow for a robust 455 

treatment of wetting and drying over irregular topographies (D’Alpaos and Defina, 2007; Defina, 2000). The SWEs are written 

as: 

𝜂(ℎ𝑠)
𝜕ℎ𝑠

𝜕𝑡
+ ∇ ∙ 𝐪 = 0  

𝑔∇ℎ𝑠 +
D

D𝑡
(

𝐪

𝑌
) +

𝝉

𝜌𝑌
− ∇ ∙ 𝐑𝐞 = 0 

(A1) 

in which hs is the free surface elevation, t is the time, ∇ and ∇ ∙ denote the 2D gradient and divergence operators, respectively, 

q = (qx; qy) is the depth-integrated velocity (i.e., the unit-width discharge), Y is the equivalent water depth (i.e., the volume of 

water per unit area), and η(hs) a storativity coefficient to account for the wetted fraction of the domain, 𝝉 = (𝜏𝑥; 𝜏𝑦) is the bed 460 

shear stress, evaluated using the Gauckler-Strickler formula, 𝜌 is the water density, and Re the horizontal components of the 

Reynolds stresses, modelled according to the Boussinesq approximation. A mixed Eulerian-Lagrangian approach allows 

evaluating the total derivative of the flow velocity in the momentum equations using finite differences and a backward tracing 

technique based on the method of characteristics (Defina, 2003; Giraldo, 2003; Walters and Casulli, 1998). Then, the SWEs 

are solved with a finite element method, based on triangular, unstructured grids. The model also allows to couple 2D triangular 465 

elements with 1D elements (either open- or closed-sections) to model the minor hydraulic network efficiently; other 1D 

elements are used to model particular devices, such as pumps, weirs, etc. (Martini et al., 2004). The model has been successfully 

used to simulate flows in various rivers (e.g., Mel et al., 2020b, a; Viero et al., 2019; Baldasso et al., 2023); its effectiveness 

have been demonstrated also in different research field, such as lagoon and marine environments (e.g., Carniello et al., 2012; 

Pivato et al., 2020; Tognin et al., 2022; Viero and Defina, 2016).  470 

In the present case, the computational mesh covered a stretch of the Paglia River about 7 km long, from 600 m upstream of 

the Adunata Bridge to the confluence with the Tiber River, including floodable floodplains (Fig. A1). The average mesh size 

ranged from 10 m in the riverbed near the Adunata bridge, to 30 m in the floodplains and far downstream of the Adunata 

bridge. The computational mesh included 61’000 triangular elements, 16 1D elements to simulate underpasses, and 4 1D weir 

elements to simulate the sill located 500 m downstream of the Adunata Bridge. 475 

The inflow hydrographs, prescribed at the upstream mesh inlet, were derived from water levels measured at the Adunata Bridge 

using the associated rating curve. At the outlet, an arbitrary rating curve was applied as downstream boundary condition; a 

sensitivity analysis showed that, because of the distance from the Adunata Bridge, this boundary condition did not produce 

any perceivable effect in the water levels simulated at the study site. 
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 480 

Figure A1. Spatial extent of the 2D computational mesh (aerial image from World Imagery). The color map shows the bottom 

elevation of the grid elements derived from the LiDAR-based DTM. 

Different Gauckler-Strickler coefficients were assigned to the different parts of the domain (e.g., floodplains, densely vegetated 

areas, etc.) based on the soil cover. The value assigned to the main riverbed were calibrated to match the time series of the 

water levels measured at the Adunata bridge gauging station for the 2019 flood event (Fig. A2a) and, for the most sever flood 485 

event occurred in 2012, the model results were also checked in terms of extent of flooded areas. The minor flood of 2022 was 

used to verify the model (Fig. A2b). Finally, the depth-averaged velocity just downstream of the Adunata Bridge was compared 

with the free-surface velocity measured by the radar sensor. Due to the use of a coarse grid and to the depth-average 

assumption, the 2D model underpredicted the measured water surface systematically (Fig. A2c,d); however, using an 

amplification factor of 1.7 (gray dots in Fig. A2c,d), the predicted values were quite similar to the measured ones. 490 
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Figure A2. Observed (red) and predicted (blue) water levels at the Adunata Bridge gauging station for the flood events of 2019 (a) 

and 2022 (b). Observed and predicted water velocity for the flood events of 2019 (c) and 2022 (d). 
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