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Abstract. Precipitation is the most important driver of the hydrological cycle but is challenging to estimate over 22 

large scales from satellites and models. Here, we assessed the performance of six global and quasi-global high-23 

resolution precipitation datasets (European Center for Medium-range Weather Forecast (ECMWF) Reanalysis 24 

version 5 (ERA5), Climate Hazards group Infrared Precipitation with Stations version 2.0 (CHIRPS), Multi-25 

Source Weighted-Ensemble Precipitation version 2.80 (MSWEP), TerraClimate (TERRA), Climate Prediction 26 

Centre Unified version 1.0 (CPCU) and Precipitation Estimation from Remotely Sensed Information using 27 

Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERCCDR)) for hydrological 28 

modelling globally and quasi-globally. We forced the WBMsed global hydrological model with the precipitation 29 

datasets to simulate river discharge from 1983 to 2019 and evaluated the predicted discharge against 1825 30 

hydrological stations worldwide, using a range of statistical methods. The results show large differences in the 31 

accuracy of discharge predictions when using different precipitation input datasets. Based on evaluation at annual, 32 

monthly and daily time scales, MSWEP followed by ERA5 demonstrated a higher correlation (CC) and Kling-33 

Gupta Efficiency (KGE) than other datasets for more than 50% of the stations. Whilst ERA5 was the second-34 

highest performing dataset and it showed the highest error and bias in about 20% of the stations. The PERCCDR 35 

is the least well-performing dataset with bias of up to 99% and a normalised root mean square error of up to 247%. 36 

PERCCDR only show a higher KGE and CC than the other products in less than 10% of the stations. Even though 37 

MSWEP provided the highest performance overall, our analysis reveals high spatial variability, meaning that it is 38 

important to consider other datasets in areas where MSWEP showed a lower performance. The results of this 39 

study provide guidance on the selection of precipitation datasets for modelling river discharge for a basin, region 40 

or climatic zone as there is no single best precipitation dataset globally. Finally, the large discrepancy in the 41 

performance of the datasets in different parts of the world highlights the need to improve global precipitation data 42 

products.  43 
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1. Introduction  57 

Whilst precipitation is one of the most important components of the global hydrological cycle and regulates the 58 

climate system (Miao et al., 2019; Sadeghi et al., 2021), it remains one of the most challenging variables to 59 

estimate at a global scale using satellite data and modelling approaches (Michaelides et al., 2009; Kidd and 60 

Levizzani, 2011; Beck et al., 2017a; Ursulak and Coulibaly, 2021). Reliable precipitation data with sufficient 61 

spatial and temporal coverage and accurate representation of extreme events is crucial for various applications. 62 

These include the development of water resource management and planning strategies, hydrological applications 63 

including forecasting hydrological extremes, and climate change analysis (Mehran and AghaKouchak, 2014; 64 

Nguyen et al., 2018; Sadeghi et al., 2021; Acharya et al., 2019). Observed precipitation from meteorological 65 

stations is typically used at local to river basin scale with gauge-based gridded precipitation datasets, such as from 66 

the Global Historical Climatology Network (Menne et al., 2012), developed to study climate and hydrology over 67 

larger scales. However, precipitation from gauges and gauge-based gridded datasets have several drawbacks such 68 

as limited spatial and temporal coverage, prevalence of missing values, and limited accuracy in sparsely populated 69 

and remote areas (Kidd and Levizzani, 2011; Reichle et al., 2011; Kidd et al., 2017; Sun et al., 2018; Gebrechorkos 70 

et al., 2018; Hafizi and Sorman, 2022). In addition, data-sharing policies have caused significant challenges in 71 

obtaining data, particularly in developing countries (Gebrechorkos et al., 2018; Hafizi and Sorman, 2022).  72 

Given the challenges in representing precipitation at global scales, satellite, climate model, and reanalysis-based 73 

precipitation datasets can form the basis for monitoring and prediction of water resources and hydrological 74 

extremes, particularly in data-scarce regions of the world (Sheffield et al., 2018; Dembélé et al., 2020). 75 

Nevertheless, uncertainties and errors in these datasets require careful analysis to assess their suitability for a 76 

specific use. Error in satellite-based precipitation estimates can be due to errors in the sensor measurements, the 77 

frequency of sampling, and the retrieval algorithms, including the representation of cloud physics (Dembélé et al., 78 

2020; Laiti et al., 2018; Alazzy et al., 2017). Climate model-based datasets, including reanalyses, have large 79 

uncertainty due to their coarse spatial resolution and ambiguity associated with model parameters (Gebrechorkos 80 

et al., 2018; AL-Falahi et al., 2020; Dembélé et al., 2020; Her et al., 2019). Reanalysis datasets may correct for 81 

some of these errors via the assimilation of observational data, but this comes with its own uncertainties due to 82 

the error characteristics of the assimilated observations and the assimilation scheme (Sheffield et al., 2006; Parker, 83 

2016). In hydrological modelling, errors and biases in precipitation data result in poor representation of the 84 

hydrological responses and affect applications (Maggioni and Massari, 2018; Zambrano-Bigiarini et al., 2016). 85 

For example, according to Bárdossy et al. (2022), uncertainty in precipitation can lead to hydrological model 86 

errors of up to 50%. Hence, it is important to assess the quality and accuracy of the precipitation products before 87 

using them in global or basin-scale hydrological models. In data-limited regions, hydrological models driven by 88 

precipitation datasets developed from satellite sources, reanalysis or climate models are the only plausible way to 89 

represent the terrestrial water cycle (van Huijgevoort et al., 2013). 90 

Over the last few decades, several global and quasi-global precipitation datasets have been developed that address 91 

some of these challenges and can be used to drive hydrological models at regional and global scales. These 92 

precipitation datasets differ in terms of their spatial resolution, spatial coverage (e.g., global or regional), data 93 

sources (e.g., gauge, satellite, reanalysis, and radar), temporal resolution (e.g., sub-daily and daily), and length of 94 
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record. It is therefore important to evaluate the accuracy of the datasets before they are used to drive global or 95 

regional scale hydrological models. Most studies have evaluated precipitation datasets using observed data from 96 

field-based meteorological stations at a range of scales (e.g., Beck et al., 2017a; Gebrechorkos et al., 2018; Xiang 97 

et al., 2021; Sun et al., 2018; Hong et al., 2022; Wati et al., 2022; AL-Falahi et al., 2020; Ahmed et al., 2019; 98 

Fallah et al., 2020). Hydrological models have also been used to assess the quality of the precipitation dataset by 99 

comparing simulated and observed discharge across different spatial scales (e.g., Mazzoleni et al., 2019; Beck et 100 

al., 2017a; Zhu et al., 2018; Raimonet et al., 2017; Guo et al., 2018; Wang et al., 2020; Salehi et al., 2022; Zhu et 101 

al., 2018; Seyyedi et al., 2015). In principle, this latter approach is able to identify the precipitation datasets which 102 

best represent hydrological variability including extremes, even in catchments where there have been multiple 103 

drivers of change. 104 

There are a limited number of studies assessing multiple precipitation datasets for global hydrological model 105 

applications (Voisin et al., 2008; Beck et al., 2017a; Mazzoleni et al., 2019). Voisin et al. (2008) conducted a 106 

global-scale evaluation of two precipitation for hydrological modelling. Beck et al., (2017a) compared the 107 

performance of 22 precipitation datasets for global hydrological modelling. Mazzoleni et al. (2019) evaluated 18 108 

different precipitation datasets in eight river basins on different continents. Both Beck et al. (2017a) and Mazzoleni 109 

et al. (2019) found that merged satellite-observation precipitation products showed the best performance compared 110 

to satellite-only products. These studies exclusively concentrate on a daily time scale, evaluating performance 111 

solely through the Nash-Sutcliffe Efficiency (NSE). Neither study extends this assessment to monthly and annual 112 

time scales, and notably, they do not assess the hydrological extremes which are often considered important to 113 

capture. Here, we build upon the work by Beck et al., (2017a) by adding recently developed high-resolution 114 

precipitation datasets. These include the European Center for Medium-range Weather Forecast (ECMWF) 115 

Reanalysis version 5 (ERA5) (Hersbach et al., 2020), TerraClimate (Abatzoglou et al., 2018) and Precipitation 116 

Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-117 

Climate Data Record (PERCCDR, Sadeghi et al., 2021) and the latest Multi-Source Weighted-Ensemble 118 

Precipitation version 2.80 (MSWEP). These additions significantly broaden the scope of our study, offering a 119 

diverse range of products with distinct methodologies. In addition, we use multiple statistical metrics to evaluate 120 

the performance of the precipitation products for hydrological modelling at daily, monthly and annual time scales 121 

and for daily extremes, which represents a current gap in the modelling literature.  122 

The aim of this study is to undertake a comprehensive evaluation, spanning various temporal and spatial scales, 123 

to examine how different input precipitation datasets impact the predictions of a global hydrological model. We 124 

assess six high-resolution precipitation datasets, each with records spanning over 30 years. A comprehensive and 125 

physically based gridded global hydrological model (WBMsed; Cohen et al., (2013)) is used to simulate river 126 

discharge globally. The model incorporates various datasets, including reservoirs, dams, and crop water 127 

requirements, which significantly influence streamflows. The objective is not to evaluate the absolute performance 128 

of the hydrological model, which can be influenced by local factors, rather our focus is on comparing the relative 129 

performance of the six precipitation datasets at individual locations. The modelled discharge, derived from the six 130 

precipitation datasets, is assessed across the various time scales by comparing it with observed discharge data 131 

collected from 1825 river gauge stations worldwide. Furthermore, we assess the performance of the precipitation 132 

products by examining their accuracy in representing daily extreme precipitation events across various percentiles. 133 
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In summary, this research offers a thorough evaluation of this set of diverse precipitation products, spanning from 134 

daily extreme events to annual time scales, providing an invaluable resource for selecting appropriate basin-to-135 

regional-to-global scale inputs for hydrological modelling applications.  136 

2. Data and methods 137 

In the following sections, we outline the various input and evaluation datasets which were used within the 138 

WBMsed hydrological modelling framework. The statistical evaluation methods used to assess the results are also 139 

outlined.  140 

2.1. Precipitation datasets 141 

The precipitation datasets used herein are selected based on their length of record (>30 years period), spatial 142 

coverage (global and quasi-global) and recommendations from previous research (Beck et al., 2017a) (Table 1). 143 

Based on the findings of Beck et al. (2017a), datasets with low performance were excluded, while those 144 

demonstrating the highest performance, such as MSWEP and Climate Hazards group Infrared Precipitation with 145 

Stations version 2.0 (CHIRPS), were retained, and new datasets were incorporated. The selected precipitation 146 

datasets are the ERA5 ERA5, CHIRPS, MSWEP, TerraClimate (TERRA), Climate Prediction Centre Unified 147 

version 1.0 (CPCU), and PERCCDR. Due to their spatial coverage, CHIRPS and PERCCDR are evaluated only 148 

up to latitudes of 50°N and 60°N, respectively (Table 1). Each dataset was subsequently used to force the WBMsed 149 

hydrological model, to generate streamflow estimates. The availability of these datasets with longer records 150 

enables the assessment of long-term hydrological changes at global, regional, and catchment scales.  151 

ERA5 is the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data 152 

available globally from 1940 to present (Hersbach et al., 2020). ERA5 combines modelled data and observations 153 

to create a complete and consistent global climate dataset using advanced data assimilation methods. ERA5 154 

provides improved precipitation representation such as the inclusion of tropical cyclones when compared to the 155 

ERA-Interim (He et al., 2020; Jiao et al., 2021). In addition, ERA5-Land, a subset of ERA5 focusing on land 156 

areas, delivers more detailed climate information at higher spatial resolution (0.1°) from 1950 to the present 157 

compared to ERA5 (Hersbach et al., 2020). Here, ERA5-Land (referred to as ERA5) is used to evaluate its 158 

performance for global hydrological modelling. The data is freely available from Copernicus Climate Data Store 159 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview).  160 

CHIRPS is a high-resolution (0.05°) quasi-global rainfall product primarily developed for monitoring droughts 161 

and global environmental changes (Funk et al., 2015). CHIRPS provides coupled gauge-satellite precipitation 162 

estimates with a 0.05° spatial resolution and long-period records. The product is developed by combining satellite-163 

only Climate Hazards group Infrared Precipitation (CHIRP), Climate Hazards group Precipitation climatology 164 

(CHPclim), and data from ground stations. CHIRP and CHPclim were developed based on calibrated infrared 165 

cold cloud duration (CCD) precipitation estimates and ground station data from the Global Historical Climate 166 

Network (GHCN). The product is available at the Climate Hazards Group (https://www.chc.ucsb.edu/data/chirps/) 167 

on daily, 10-day, and monthly timescales from the 1981-near present. Due to its availability at high spatial and 168 

temporal resolution, CHIRPS is widely used in hydrological studies (Luo et al., 2019; Gebrechorkos et al., 2020; 169 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://www.chc.ucsb.edu/data/chirps/
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Geleta and Deressa, 2021; Wang et al., 2021; Opere et al., 2022; Day and Howarth, 2019; Gebrechorkos et al., 170 

2019) and modelling of hydrological extremes such as droughts and floods (Chen et al., 2020; Mianabadi et al., 171 

2022; Peng et al., 2020).  172 

MSWEP is a global high-resolution (0.1°) precipitation product developed by merging multiple datasets such as 173 

ground stations (~77,000), satellite-based rainfall estimates, and reanalysis data (Beck et al., 2019b). MSWEP 174 

was developed by merging station data satellite datasets and reanalysis datasets (Beck et al., 2017b, 2019b). 175 

MSWEP has been widely used in regional and global scale hydrological studies such as for floods and droughts 176 

(Gu et al., 2023; Gebrechorkos et al., 2022b; Reis et al., 2022; Wu et al., 2018; Sun et al., 2022; Gebrechorkos et 177 

al., 2022c; Xiang et al., 2021; López López et al., 2017) and for developing high-resolution global scale 178 

hydrological extreme and climate datasets and regional drought monitoring (Gebrechorkos et al., 2023, 2022a; Li 179 

et al., 2022b). MSWEP is available from 1979-present at multiple timescales (e.g., 3 hourly) and can be accessed 180 

from the GloH2O website (https://www.gloh2o.org/mswep/).  181 

TerraClimate (TERRA) is a high-resolution (0.04°) terrestrial monthly climate (e.g., precipitation and 182 

temperature) and climatic water-balance dataset available from 1958-2020 (Abatzoglou et al., 2018). TERRA was 183 

developed by combining high and coarse spatial resolution datasets such as WorldClim climatological normals 184 

and Climatic Research Unit gridded Time Series (CRU TS) and JRA-55, respectively. The data was evaluated 185 

against ground observation from the Historical Climate Network and exhibited better performance than the CRU-186 

TS (Abatzoglou et al., 2018). The monthly climate and climatic water balance is available from the Climatology 187 

Lab website (https://www.climatologylab.org/).  188 

CPCU is a gauge-based analysis of daily precipitation datasets available globally from 1979 to present at a spatial 189 

resolution of 0.5° (Chen et al., 2008). CPCU is the product of the CPC Unified Precipitation project at NOAA 190 

Climate Prediction Center. The product uses data from more than 30,000 (1979-2005) and 17,000 (2006-present) 191 

stations. The CPCU data is publicly available at the NOAA Physical Sciences Laboratory (PSL, 192 

https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/) and has been used for hydrological and climate 193 

studies (Beck et al., 2017a; Zhu et al., 2021; Hou et al., 2014).  194 

The PERCCDR is a quasi-global (latitude from 60°S to 60°N) dataset developed at the University of California 195 

(Sadeghi et al., 2021). PERCCDR provides precipitation estimates at high spatial (0.04°) and temporal (3-hourly) 196 

resolutions from 1983 to present. The dataset is developed using the rain rate output from the PERSIANN-CCS 197 

model, which uses GridSat-B1 IR and NOAA Climate Prediction Center (CPC-4km) IR data. Compared to other 198 

PERSIANN precipitation datasets, PERCCDR provides a realistic representation of precipitation extremes 199 

globally and shows better agreement with CPCU precipitation (Sadeghi et al., 2021). The PERCCDR has been 200 

used in hydrological studies (Salehi et al., 2022; Eini et al., 2022) and is freely available from the Center for 201 

Hydrometeorology and Remote Sensing (CHRS) Data Portal (https://chrsdata.eng.uci.edu/).  202 

Table 1. The six precipitation datasets used in this study, their spatial and temporal resolution, spatial coverage 203 

and data sources.  204 

https://www.gloh2o.org/mswep/
https://www.climatologylab.org/
https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/
https://chrsdata.eng.uci.edu/
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Abbreviation Full name  Spatial 

resolution 

and 

coverage  

Tempo

ral 

resolut

ion 

Temp

oral 

covera

ge  

Data 

source 

Reference  

ERA5 ECMWF (European 

Centre for Medium-Range 

Weather Forecasts) 

Reanalysis V5 

0.1°, global  Sub-

daily 

1979-

presen

t 

Gauge and 

reanalysis 

(Hersbach et 

al., 2020) 

CHIRPS  Climate Hazards group 

Infrared Precipitation with 

Stations (CHIRPS) version 

2.0 

0.05°, 

quasi 

global 

(50°S-

50°N)  

Daily 1981-

presen

t  

Gauge, 

satellite, 

and 

reanalysis 

(Funk et al., 

2015) 

MSWEP Multi-Source Weighted-

Ensemble Precipitation 

(MSWEP) version 2.80 

0.1°, global Daily 1979-

presen

t  

Gauge, 

satellite, 

and 

reanalysis 

(Beck et al., 

2019b) 

TERRA TerraClimate 0.042°, 

global  

Monthl

y  

1958-

presen

t 

Gauge and 

reanalysis 

(Abatzoglou 

et al., 2018) 

CPCU Climate Prediction Centre 

(CPC) Unified V1.0  

0.5°, global  Daily  1979-

presen

t  

Gauge 

only 

(Chen et al., 

2008) 

PERCCDR Precipitation Estimation 

from Remotely Sensed 

Information using 

Artificial Neural 

Networks-Cloud 

Classification System-

Climate Data Record 

(PERSIANN-CCS-CDR) 

0.04°, 

Quasi 

global 

(60°S-

60°N) 

Sub-

daily  

1983-

presen

t  

Gauge and 

satellite 

(Sadeghi et 

al., 2021) 

2.2. WBMsed hydrological model 205 

The WBMsed (Cohen et al., 2013, 2014) model is used to assess the performance of the different precipitation 206 

datasets for hydrological modelling globally. WBMsed is a global-scale hydrogeomorphic model, an extension of 207 

the WBMplus global hydrology model (Wisser et al., 2010), which is part of the FrAMES biogeochemical 208 

modelling framework (Wollheim et al., 2008). The WBMplus model is one of the first Global Hydrological 209 

Models (GHMs) applied to a global domain (Cohen et al., 2013; Grogan et al., 2022). The WBMsed model extends 210 

the WBMplus model by including sediment flux modules (suspended, bedload and suspended bed material; Cohen 211 
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et al. 2022). While we are not analyzing sediment flux in this paper, we opted to use the WBMsed model for 212 

consistency with consequent analysis. The hydrological prediction of WBMsed is equivalent to WBMplus.  213 

The model represents the major hydrological cycle components of the land surface and tracks the balances and 214 

fluxes between the atmosphere, surface water storages, vegetation, runoff, and groundwater (Grogan et al., 2022). 215 

The model includes hydrological infrastructure (e.g., dams and reservoirs), agricultural water requirements, and 216 

domestic and industrial water uses. A gridded river network connects grid cells, which allows the routing of fluxes 217 

downstream (e.g., streamflow). The model requires several climate datasets as input in addition to precipitation, 218 

including temperature, humidity, air pressure, and wind speed (Table S1). Additional parameters such as field 219 

capacity, rooting depth, and riverbed slope are used to drive the model.  220 

We use an identical model setup to that used by Cohen et al., (2022) with all input datasets as detailed in Cohen 221 

et al. (2013). Updates include daily ERA5 air temperature (Hersbach et al., 2020) re-gridded at 10 arc-minutes 222 

resolution, reservoir capacity from the global reservoir and dam database (GRanD v1.3; Lehner et al., (2011)), 223 

and a 6 arc-minute HydroSTN30 network derived from HydroSHEDS (Lehner et al., 2008). In addition, we used 224 

each of the six input precipitation datasets, ERA5, CHIRPS, MSWEP, TERRA, CPCU, and PERCCDR in turn, 225 

keeping all other parameters and inputs the same. All the input precipitation datasets are bilinearly interpolated to 226 

the same spatial resolution of 0.1°. Even though WBMsed can disaggregate monthly time series into daily, 227 

TERRA (only available at monthly resolution, see Table 1) is evaluated on monthly and annual time scales, whilst 228 

all other datasets are evaluated at daily, monthly and annual time scales. WBMsed simulations were run at 0.1° 229 

(~11km at the equator) spatial and daily and monthly temporal resolutions. Several WBMsed streamflow 230 

validation analyses have been reported previously (e.g., Cohen et al., 2022; Dunn et al., 2019; Cohen et al., 2014, 231 

2013; Moragoda and Cohen, 2020), which indicate that the model represents the long-term average observed 232 

streamflow globally. It is important to note that this study assesses the precipitation datasets without calibration 233 

of the WBMsed model for each precipitation dataset, which could theoretically improve their performance in 234 

replicating observed river discharge. 235 

2.3. Observed river discharge from ground stations  236 

Observed daily and monthly river discharge used to evaluate the hydrological model were obtained from the 237 

Global Runoff Data Centre (GRDC, 2023). The GRDC is an international data archive 238 

(https://www.bafg.de/GRDC/), which hosts data for over 10,000 hydrological stations. The number of stations 239 

with a length of record greater than 10 years during the evaluation period (1981-2019) are limited. Here, we 240 

consider stations with a minimum record length of 10 years, allowing for missing values within this period. Due 241 

to the spatial resolution of the input datasets and the model simulations (~11x11 km), we only consider stations 242 

with a catchment area of greater than 100 km2. Overall, 1825 suitable stations were identified with daily and 243 

monthly records, largely in North and South America, Europe and Australia, with very few stations in Africa and 244 

Asia (Figure 1).  245 

https://www.bafg.de/GRDC/
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2.4. Evaluation metrics 246 

Several methods are used to assess the modelled discharge using the streamflow observations: the Pearson 247 

correlation coefficient (CC, Eq. 1), Kling-Gupta Efficiency (KGE, Eq. 2) (Gupta et al., 2009), Root-Mean-Square 248 

Error (RMSE, Eq.3) and Percentage of bias (Pbias, Eq.4). CC measures the linear relationship between observed 249 

discharge and simulated discharge, focusing primarily on the degree of association between the two datasets. It is 250 

particularly useful for assessing the strength and direction of this relationship, highlighting how well the model 251 

captures the variability in discharge (Moazami et al., 2013). KGE is a comprehensive metric that evaluates the 252 

overall agreement between observed and simulated streamflow, considering similarities in variability, amplitude, 253 

and timing. It provides an assessment of the model's ability to capture both the magnitude and temporal dynamics 254 

of the observed discharge (Gupta et al., 2009). RMSE measures the average magnitude of the differences between 255 

observed and simulated discharge, providing a measure of the overall goodness of fit. Moreover, the percentage 256 

of bias is used to quantify the systematic overestimation or underestimation of discharge by the model compared 257 

to observations (Moazami et al., 2013). A KGE value of 1.0 indicates a perfect match between the observed and 258 

simulated discharge, whereas values lower than -0.41 show that the model is worse than using the mean of the 259 

observed discharge as a predictor (Knoben et al., 2019). For spatial comparison, the RMSE is normalised by the 260 

standard deviation of the observed data (NRMSE; Eq. 5).  261 

𝐶𝐶 =
∑ (𝑀𝑖−𝑀̅) ∗ (𝑂𝑖−𝑂̅)𝑁

𝑖=1

√∑ (𝑀𝑖−𝑀̅)𝑁
𝑖=1

2
 ∗ √∑ (𝑂𝑖−𝑂̅)𝑁

𝑖=1

2
 

        (1) 262 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2       (2) 263 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖−𝑀𝑖)2𝑁

𝑖=1

𝑁
          (3) 264 

𝑃𝑏𝑖𝑎𝑠 =  
∑ (𝑀𝑖−𝑂𝑖)𝑁

𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

∗ 100         (4) 265 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑆𝐷
∗ 100          (5) 266 

where r is the linear correlation between observed (O) and modelled (M) discharge and α and β are the variability 267 

and bias ratios, respectively. The NRMSE and SD are the normalised RMSE and standard deviation, respectively. 268 

To assess the performance of the precipitation datasets for representing daily hydrological extremes, the 90th and 269 

10th percentile are used, which indicates high and low flows, respectively. To derive high and low flow thresholds 270 

from a daily flow time series, the data is first arranged in ascending order. The 90 th percentile (Q10) is then 271 

determined as the flow value above which 90% of the daily flows lie, representing high-flow conditions. Similarly, 272 

the 10th percentile (Q90) represents the flow value below which 90% of the daily flows occur, indicating low-flow 273 

conditions.  274 
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3. Results 275 

3.1. Performance of the six precipitation datasets for annual discharge prediction 276 

The temporal correlation coefficient (CC) between the observed and simulated annual discharge based on the six 277 

precipitation datasets is summarised in Figure 1. Most of the datasets, particularly ERA5, MSWEP, and CHIRPS, 278 

showed a high CC in basins of Europe (e.g., Danube basin), South America (e.g., Rio de la Plata-Parana), North 279 

America and Australia (e.g., Murray-Darling). MSWEP and ERA5 showed the highest CC for 34% and 32% of 280 

the stations, respectively, followed by CPCU and CHIRPS. The TERRA and PERCCDR were the least well-281 

performing datasets with lower CC overall, and a higher CC than other datasets for less than 9% of stations. The 282 

median CC of MSWEP and ERA5 is 0.82 and 0.8, respectively. MSWEP and TERRA showed lower Pbias and 283 

NRMSE compared to the other datasets (Figures S1 and S2). ERA5 and PERCCDR showed a high NRMSE (up 284 

to 247%) and Pbias (up to 99%) for more than 46% of stations. Similar to the CC, ERA5 and MSWEP 285 

outperformed the other datasets for KGE, with higher values for 32% and 27% of stations, respectively. The 286 

performance of MSWEP and ERA5 is higher in basins of Europe, South America, and Australia compared to Asia 287 

and Africa. The median KGE values of ERA5 and MSWEP are 0.33 and 0.32, respectively (Figure 2). The 288 

PERCCDR and CPU demonstrate high KGE only in about 9% of the stations, with median values of 0.10 and 289 

0.13, respectively. Based on the annual CC and KGE, there is no single precipitation dataset that is best 290 

everywhere, and even the least well-performing dataset overall shows better performance in some stations (Figure 291 

3). Figure 3 summarizes the spatial representation of precipitation dataset performance, highlighting the individual 292 

datasets exhibiting the highest CC and KGE values at each observation point.  293 



11 
 

   294 

Figure 1: Correlation (CC) between annual observed and modelled streamflow data using a) ERA5, b) CHIRPS, c) 295 

MSWEP, d) TERRA, e) CPCU and f) PERCCDR precipitation datasets. The inset histograms show the frequency 296 

distribution (y-axis) of the annual CC (x-axis), with the red vertical line indicating the median value. 297 

 298 
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   299 

Figure 2: KGE between observed and modelled annual streamflow based on a) ERA5, b) CHIRPS, c) MSWEP, d) 300 

TERRA, e) CPCU, and f) PERCCDR precipitation datasets. KGE values below -0.41 indicate bad model performance 301 

than using observed discharge mean as a predictor. The inset histograms show the frequency distribution (y-axis) of 302 

the annual KGE (x-axis). KGE values lower than -1 are highlighted in orange. The red vertical line indicates the median 303 

value. 304 
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 305 

Figure 3: The best performing precipitation dataset (ERA5, CHIRPS, MSWEP, TERRA, CPCU, and PERCCDR) at 306 

each of the observed discharge stations based on annual CC (a) and KGE (b).  307 

3.2. Performance of the six precipitation datasets for monthly discharge predictions  308 

The six precipitation datasets consistently demonstrate high CC at a monthly scale in large parts of the world, 309 

except in some rivers of Canada and Australia (Figure 4). The monthly CC, similar to the annual CC, shows a 310 

relatively better performance of MSWEP with a median CC of 0.76. TERRA is the second-best with a median 311 

CC of 0.69. MSWEP and TERRA show a higher CC than other datasets in 35% and 28% of the stations, 312 

respectively. ERA5 and CHIRPS are ranked as the third and fourth datasets with a median CC of 0.71 and 0.75, 313 

respectively. CPCU and PERCCDR are the least well-performing datasets, which only show the highest CC in 314 

less than 6% of the stations with a median CC of 0.67 and 0.56, respectively.  315 
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   316 

Figure 4: Correlation (CC) between monthly observed and modelled streamflow data based on a) ERA5, b) CHIRPS, 317 

c) MSWEP, d) TERRA, e) CPCU and f) PERCCDR precipitation datasets. The inset histograms show the frequency 318 

distribution (y-axis) of the monthly CC (x-axis), with the red vertical line indicating the median value. 319 

The monthly KGE also indicates the better performance of ERA5 and MSWEP for 26% and 24% of stations, 320 

respectively (Figure 5). MSWEP showed a lower Pbias and NRMSE than all datasets, except in 5% of the stations 321 

(Figures S3 and S4). Compared to MSWEP, ERA5 showed a larger Pbias and NRMSE in 15% and 19% of the 322 

stations. TERRA, a third-best performing dataset based on KGE (18% of stations), shows a lower monthly Pbias 323 

and RMSE in 85% of the stations compared to CHIRPS, ERA5, and PERCCDR. Compared to all datasets, the 324 

PERCCDR showed a higher NRMSE and Pbias in 55% and 28% of the stations, respectively.  325 
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   326 

Figure 5: Monthly KGE values between observed and modelled streamflow based on a) ERA5, b) CHIRPS, c) MSWEP, 327 

d) TERRA, e) CPCU and f) PERCCDR precipitation datasets. KGE values below -0.41 indicate model performance 328 

that is worse than using the observed discharge mean as a predictor. The inset histograms show the frequency 329 

distribution (y-axis) of the monthly KGE (x-axis). KGE values lower than -1 are highlighted in orange, with the red 330 

vertical line indicating the median value. 331 

The spatial representation of the six precipitation datasets in the Amazon, Mississippi, Danube, and Orange River 332 

basins is summarised in Figure 6, highlighting the individual datasets exhibiting the highest CC and KGE values 333 

at each hydrological station. In the Amazon basin, ERA5 (31%) and CHIRPS (29%) emerge as the top performers, 334 

while PERCCDR (8%) and TERRA (5%) rank lower among the precipitation datasets. In the Mississippi basin, 335 

MSWEP leads with higher CC in 37% of stations, and ERA5 holds the top products with higher KGE in 31% of 336 

the stations. Notably, PCCSCDR displays higher KGE values than MSWEP, TERRA, CHIRPS, and CPCU in 337 

30% of Mississippi stations. Across the Danube basin, MSWEP outperforms the other products with a higher CC 338 

in 66% of stations and KGE in 30% of the stations, while TERRA and CPCU are the least performing products. 339 

Furthermore, CHIRPS, in 52% of stations based on CC and 37% based on KGE, outperformed other datasets in 340 
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the Orange River basin. In Orange, MSWEP ranks second with higher KGE and CC in about 27% of stations, 341 

while TERRA and PCCSCDR are the least performing datasets. 342 

 343 
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Figure 6: Performance of precipitation datasets (ERA5, CHIRPS, MSWEP, TERRA, CPCU, and PERCCDR) at 344 

discharge stations in a) Amazon, c) Mississippi, e) Danube, and g) Orange river basins based on their monthly CC. 345 

Performance of the datasets based on KGE for the Amazon, Mississippi, Danube, and Orange River Basins is illustrated 346 

in figures b, d, f, and h, respectively. 347 

Table 2 summarises the monthly KGE between observed and modelled streamflow, based on the six precipitation 348 

datasets, for selected locations in basins of Africa (Niger, Lokoja), Asia (Mekong, Khong-Chiam), South America 349 

(Amazon, Missao-Icana), North America (Mississippi, Savannah), Australia (North East Coast, Mirani-Weir), 350 

and Europe (Danube, Dunaalmas). The basins were chosen to represent a good range of climatic regions and 351 

drainage areas where there was availability of a long time series of observed data (Figure S5). In Niger, the 352 

observed monthly flow and variability at Lokoja station are very well reproduced by CHIRPS and TERRA with 353 

a CC of 0.88 and 0.85, respectively (Figure S5a). Even though CPCU showed a lower CC (0.64) at Lokoja, it 354 

showed a higher KGE (0.62) and lower Pbias (0.4%) compared to the other products. At Lokoja, PERCCDR is 355 

the least well-performing dataset with the highest RMSE and Pbias and lowest KGE. The monthly variability at 356 

the Khong-Chiam station is reproduced by all the precipitation products with a CC of greater than 0.91, with 357 

MSWEP and TERRA showing the lowest bias and RMSE. ERA5 and CHIRPS performed well at station Missao-358 

Icana in the Amazon with a CC of 0.9 and RMSE of about 610 m3/s. For stations Savannah, Mirani-Weir, and 359 

Dunaalmas, MSWEP is the best product with higher CC (> 0.72) and KGE (> 0.62) and lower Pbias and RMSE 360 

(Figure S5d - S5f).  361 

Table 2. KGE of monthly predictions for selected stations in basins of Africa (Niger), Asia (Mekong), South 362 

America (Amazon), North America (Mississippi), Australia (North East Coast), and Europe (Danube).  363 

Basin Stations 

name 

Longi

tude  

Lati

tude 

Catchme

nt area 

(km2) 

ERA

5 

CHIR

PS 

MSW

EP 

TERR

A 

CPC

U 

PCCSCD

R 

Niger Lokoja  6.8 7.8 1670000 0.21 -0.1 0.60 0.34 0.62 -0.99 

Mekong Khong 

Chiam  

105.5 15.3 419000 0.13 0.56 0.70 0.91 0.70 -0.04 

Amazon Missao 

Icana 

-67.6 1.1 22282 0.71 0.78 0.73 0.72 0.61 0.65 

Mississip

pi 

Savannah -88.3 35.2 85833 0.59 0.65 0.67 0.66 0.53 0.66 

North 

East 

Coast 

Mirani-

Weir 

148.8 -

21.2 

1211 -0.1 0.38 0.62 0.44 0.46 -0.05 

Danube Dunaalmas 18.3 47.7 171720 0.34 0.73 0.78 0.52 0.71 -0.49 

 364 

 365 
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3.3. Performance of the precipitation datasets for daily and daily extreme discharge predictions 366 

Based on the daily evaluation, MSWEP followed by ERA5 show a higher CC in more than 50% of the stations 367 

with median values of 0.41 and 0.39, respectively (Figure 7). ERA5 and MSWEP performed well in 31% and 368 

31% of the stations with high KGE values (Figure 8). Similar to the monthly evaluation, PERCCDR shows poorer 369 

performance (lower CC and KGE, higher biases and errors) in almost 95% of the stations. Even though ERA5 370 

showed a higher CC and KGE in 30% of the stations it shows a higher NRMSE (up to 250%) and Pbias (up to 371 

100%) in 20% and 30% of the stations (Figures S6 and S7). Overall, MSWEP and CHIRPS showed lower NRMSE 372 

and Pbias compared to the other products. The CC and KGE of all the products (except CHIRPS) are lower in 373 

North America compared to stations in South America, Europe, and Australia. The spatial representation of 374 

precipitation dataset performance, highlighting the individual datasets exhibiting the highest daily CC and KGE 375 

values at each observation point, is provided in Figure S9. Additionally, Figure S10 depicts the spatial 376 

representation of each precipitation dataset for the Amazon, Mississippi, Danube, and Orange River Basins. In 377 

Mississippi, ERA5 exhibited the highest KGE and CC values, followed by MSWEP and CPCU (Figure S10). In 378 

the Amazon, ERA5 and CHIRPS displayed the highest KGE and CC values compared to the other datasets. For 379 

the Danube, CPCU followed by MSWEP emerged as the best precipitation product relative to ERA5, PCCSCDR, 380 

and CHIRPS. In the Orange River Basin, MSWEP based on CC and CHIRPS based on KGE were the top-381 

performing products, while PCCSCDR performed the least. 382 
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   383 

Figure 7: Correlation (CC) between daily observed and modelled streamflow data using a) ERA5, b) CHIRPS, c) 384 

MSWEP, d) CPCU and e) PERCCDR precipitation datasets. The inset histograms show the frequency distribution (y-385 

axis) of the daily CC (x-axis), with the red vertical line indicating the median value. 386 
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     387 

Figure 8: Daily KGE values between observed and modelled streamflow based on a) ERA5, b) CHIRPS, c) MSWEP, 388 

d) CPCU, and e) PERCCDR precipitation datasets. KGE values below -0.41 indicate bad model performance than 389 

using observed discharge mean as a predictor. The inset histograms show the frequency distribution (y-axis) of the 390 

daily KGE (y-axis). KGE values lower than -1 are highlighted in orange, with the red vertical line indicating the median 391 

value.  392 

The performance of the daily precipitation products is also assessed for daily extremes in terms of the Q10 and 393 

Q90 values. Based on the CC, MSWEP is the best-performing dataset for Q10 (Figure 9) and Q90 (Figure S8). 394 

For Q10, MSWEP and CPCU exhibited a higher CC than other datasets at 38% and 32% of the stations, 395 

respectively. Similarly, for Q90, MSWEP and ERA demonstrated a higher CC compared to other datasets at 35% 396 

and 30% of the stations. The median CC for Q10 (Q90) is 0.32 (0.41), 0.28 (0.36), 0.27 (0.35), 0.26 (0.38), and 397 

0.16 (0.23) for MSWEP, CPCU, CHIRPS, ERA5, CHIRPS, and PERCCDR, respectively. Similar to the annual, 398 

monthly and daily evaluations, PERCCDR showed poor performance for the two extremes (Q90 and Q10). 399 

Overall, the performance of the datasets is lower for extremes compared to the annual, monthly and daily scales.  400 
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 401 

Figure 9: Correlation (CC) between observed and modelled daily extremes (Q10, high flow) streamflow data a) ERA5, 402 

b) CHIRPS, c) MSWEP, d) CPCU and e) PERCCDR precipitation datasets. The inset histograms show the frequency 403 

distribution (y-axis) of the daily Q10 CC (x-axis), with the red vertical line indicating the median value. 404 

4. Discussion and Conclusion  405 

Based on the evaluation at annual, monthly and daily time scales and analysis of daily extremes, no single 406 

precipitation dataset consistently exhibits high accuracy across all geographical regions, nor is one consistently 407 

better than the other datasets. This finding is in line with previous studies (Beck et al., 2017a; Dembélé et al., 408 

2020). A similar pattern of varied performance (e.g., lower in Africa and the central United States and better in 409 

Europe) by different global hydrological models and precipitation datasets has been presented (Beck et al., 2017a; 410 

Lin et al., 2019; Harrigan et al., 2020). In addition to the uncertainty in the precipitation datasets, the poorer 411 

performance in some regions presented in this and previous studies (Beck et al., 2017a; Lin et al., 2019; Harrigan 412 

et al., 2020) can be due to the lack of representation in the hydrological models of anthropogenic influences, such 413 

as for agriculture, irrigation, water supply, and energy production.  414 
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Comparably, MSWEP and ERA5 consistently exhibited higher CC and KGE values at over 50% of the stations 415 

across annual, monthly, and daily time scales. According to Gu et al. (2023), satellite- and reanalysis-based 416 

precipitation datasets, such as MSWEP and ERA5, can provide satisfactory performance for simulating discharge 417 

globally. The higher performance of MSWEP indicates the advantage of incorporating a large number of daily 418 

observations from field-based meteorological stations, in addition to a large set of satellite and reanalysis datasets 419 

(Beck et al., 2017a, 2019a). Other studies have also shown the good performance of MSWEP for hydrological 420 

modelling in different parts of the world (Beck et al., 2017a; Lakew, 2020; Li et al., 2022a; Reis et al., 2022; Gu 421 

et al., 2023; López López et al., 2017; Satgé et al., 2019; Ibrahim et al., 2022). For example, Satgé et al. (2019) 422 

evaluated 12 satellite-based precipitation estimates such as MSWEP, CHIRPS and PERSIANN-CDR in South 423 

America (Lake Titicaca region) and found MSWEP was the best precipitation dataset for realistic simulation of 424 

river discharge. MSWEP was also found to be the most reliable precipitation dataset compared to multiple datasets 425 

such as CHIRPS and CMORPH for hydrological and climate studies in basins of Eastern China (Shaowei et al., 426 

2022; Wu et al., 2018).  427 

Even though ERA5 showed a higher KGE and CC than MSWEP, CHIRPS and TERRA in about 32% of the 428 

stations it showed a higher error and biases. Previous studies have revealed bias and errors in ERA5 precipitation 429 

(Lavers et al., 2021; Bechtold et al., 2020; AL-Falahi et al., 2020; Jiang et al., 2023; Lavers et al., 2022), which 430 

leads to propagated errors and bias in hydrological modelling outputs. Harrigan et al. (2020) also reported large 431 

biases in ERA5-driven hydrological simulations in the Central United States, South America (e.g., Brazil), and 432 

Africa. According to Lavers et al. (2022), ERA5 precipitation is more reliable in extratropical areas compared to 433 

tropical areas. Despite CPCU being a gauge-based precipitation dataset, it did not show as good performance as 434 

MSWEP and ERA5 on annual, monthly, and daily timescales. In addition to the lower KGE and CC, CPCU 435 

showed higher bias and error, particularly on annual and monthly time scales. The bias and errors in CPCU can 436 

be due to the coarse resolution (0.5°) and the limited number of stations used to develop the datasets, particularly 437 

in Africa and South America. According to Beck et al. (2017a), CPCU can be used in large river basins with dense 438 

meteorological stations but can be disadvantageous in Africa and South America. This highlights the need to 439 

expand and maintain the meteorological stations in these regions, but also the need to draw from satellite and 440 

model data sources. The PERSIANN-CDR is the least-performing product with lower KGE and higher errors and 441 

biases, which has been highlighted elsewhere in terms of its inability to represent precipitation extremes (Miao et 442 

al., 2015; Solakian et al., 2020).  443 

The precipitation datasets show limited skill overall in reproducing daily extremes (high and low flows), relative 444 

to the annual and monthly time scales. MSWEP and CPCU have shown a high CC in about 38% of the stations. 445 

This is consistent with the findings of Tang et al., (2019) for the Mekong River Basin. CHIRPS and PERSIANN-446 

CDR are the least skilful in capturing extremes with a very low CC and large positive and negative biases (Araujo 447 

Palharini et al., 2021). For instance, numerous precipitation products have been observed to both underestimate 448 

and overestimate low and high precipitation values in Brazil (Palharini et al., 2020), consequently resulting in 449 

corresponding underestimations and overestimations of low and high streamflows. In general, several studies have 450 

concluded that precipitation datasets exhibit a substantial disparity in daily extreme precipitation events (e.g., 451 

Araujo Palharini et al., 2021; Jiang et al., 2019; Huang et al., 2022), which can be attributed to factors such as 452 

inaccuracies in satellite sensors, retrieval algorithms, temporal sampling, and satellite-observation merging and 453 
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bias correction procedures used, particularly in gauge-limited regions (Miao et al., 2015; El Kenawy et al., 2015; 454 

Shen et al., 2010; Jiang et al., 2019). In addition to the uncertainty of the precipitation datasets, the limited 455 

availability of hydrological observations limits the ability to assess these datasets globally, especially for extreme 456 

flood and drought events (Brunner et al., 2021).  457 

While our study evaluates six global precipitation datasets for hydrological modelling using WBMsed, which 458 

show an R2 of 0.99 in 30-year average prediction against USGS gauge data and global river datasets (Cohen et 459 

al., 2022), it is important to acknowledge uncertainties and limitations in both the precipitation data and model 460 

parameters. Uncertainties in input data, such as those derived from satellite-based precipitation datasets, including 461 

retrieval errors, can propagate through the hydrological model, potentially affecting the accuracy of simulated 462 

discharge. Additionally, globally calibrated model parameters may introduce further uncertainty, particularly in 463 

regions with limited observational data coverage. Due to the limited availability of observed discharge in Africa 464 

and Asia, the evaluation predominantly focuses on North and South America and Europe. Hence, further 465 

evaluation in Africa and Asia could be essential to enhance the robustness of global hydrological models. 466 

Overall, the evaluation presented in this paper underlines the importance of selecting high-quality precipitation 467 

datasets to drive hydrological models. Since no single precipitation dataset was found to be adequately accurate 468 

everywhere, this study can help identify the best precipitation products for any basin or region under consideration. 469 

Based on our results, MSWEP is the best overall choice but there are regions where ERA5, CHIRPS and CPCU 470 

were better overall. All the precipitation datasets, particularly ERA5 and PERCCDR, require bias correction 471 

before being used to drive hydrological models in regions like North America, Asia, Africa, and Australia. For 472 

data-scarce regions such as Africa and Asia, it is difficult to recommend a precipitation dataset due to the limited 473 

number of hydrological stations used in this study. Finally, improving the precipitation datasets by adding more 474 

ground observations, for example, and by better representing anthropogenic drivers in hydrological models has 475 

the potential of considerably improving global and regional hydrological predictions. 476 
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