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Abstract. Since 2010, central Chile has experienced a protracted megadrought with annual precipitation deficits ranging from 13 

25% to 70%. An intensification of drought propagation has been attributed to the effect of cumulative precipitation deficits 14 

linked to catchment memory. Yet, the influence of water extractions on drought intensification is still unclear. Our study assesses 15 

climate and water use effects on streamflow reductions during a high human influence period (1988-2020) in four major 16 

agricultural basins. We performed this attribution by contrasting observed streamflow (driven by climatic and water use) with 17 

near-natural streamflow simulations (driven mainly by climate) representing what would have occurred without water 18 

extractions. Near-natural streamflow estimations were obtained from rainfall-runoff models trained over a reference period with 19 

low human intervention (1960-1988). Annual and seasonal streamflow reductions were examined before and after the 20 

megadrought onset, and hydrological drought events were characterized for the complete evaluation period in terms of their 21 

frequency, duration and intensity. 22 

Our results show that before the megadrought onset (1988-2009), the mean annual deficits in observed streamflow ranged 23 

between 2 to 20% across the study basins, and that 81 to 100% of those deficits were explained by water extractions. During the 24 

megadrought (2010-2020), the mean annual deficits in observed streamflow were 47 to 76 % among the basins. During this time, 25 

the relative contribution of precipitation deficits on streamflow reduction increased while the contribution of water extractions 26 

decreased, accounting for 27 to 51% of the streamflow reduction. Regarding drought events during the complete evaluation 27 

period, we show that human activities have amplified drought propagation, with almost double the intensity of hydrological 28 

mailto:calvarezgarreton@gmail.com


 

 

 

2 

 

 

droughts in some basins, compared to those expected by precipitation deficits only. We conclude that while the primary cause 29 

of streamflow reductions during the megadrought has been the lack of precipitation, water uses have not diminished during this 30 

time, causing an exacerbation of the hydrological drought conditions and aggravating their impacts on water accessibility in 31 

rural communities and natural ecosystems.  32 

1 Introduction 33 

The fluxes of the water cycle vary and change in time and space, as well as the anthropic activities affecting those fluxes, leading 34 

to a co-evolving hydrosocial cycle (Linton and Budds, 2014; Budds, 2012) that defines the state of the hydrological system (Van 35 

Loon et al., 2016). Observational evidence in different regions indicates that hydrological cycles are being affected by climate 36 

change and human activities. Climate change has led to changes in precipitation patterns worldwide (Fleig et al., 2010; Kingston 37 

et al., 2015), while human activities have altered the spatiotemporal distribution of water resources (Van Loon et al., 2022). This 38 

can lead to water scarcity problems, particularly when precipitation deficits occur in regions that concentrate water consumption 39 

requirements.   40 

The alterations in the water cycle may also affect the occurrence of droughts, which are defined as a deficit of water relative to 41 

normal conditions and can be identified in different components of the hydrological cycle. While meteorological droughts 42 

(precipitation deficits) are mainly controlled by regional climate, hydrological droughts (streamflow, and groundwater deficits) 43 

are also influenced by catchment characteristics and water uses. In this way, under similar meteorological conditions, the severity 44 

of hydrological droughts and their impacts on society can vary significantly within the territory (Van Lanen et al., 2013). 45 

Most drought analyses consider climate variability as a main driver of drought, however, increasing focus has been given to 46 

assessing the compounding effects of climate variability and human activities on water resources and drought propagation (Van 47 

Loon et al., 2016; Wanders and Wada, 2015; Zhao et al., 2014). Anthropic activities, such as irrigation, urbanization, land use 48 

changes, and water infrastructure (e.g., reservoirs or water transfer channels) affect runoff mechanisms (Huang et al., 2016) and 49 

can lead to a higher frequency of hydrological droughts (Alvarez-Garreton et al., 2021; Ward et al., 2020). An example of this 50 

is the Yellow river basin in China, where despite no significant rainfall deficits have occurred in recent years, a hydrological 51 

drought with historical minimum streamflow levels is being observed, which has been mainly driven by anthropic activities in 52 

the basin (Huang et al., 2016; Kong et al., 2016; Li et al., 2019; Liu et al., 2016; Zhao et al., 2014). 53 
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Advancing our understanding of hydrological droughts as a complex process depending on the interaction between climatic, 54 

biophysical, and anthropic drivers is critical to assessing catchment’s vulnerability to droughts, mitigating their occurrence, and 55 

designing adaptation plans. While all these drivers influence the propagation and impacts of droughts, water management plans 56 

mainly influence human activities and their local disturbances to the hydrological cycle. Therefore, it is critical to address the 57 

scientific challenge of understanding the influence of human activities on the hydrological cycle and quantifying their impacts. 58 

To address this challenge, in this paper we focus on central Chile (29°-35°S; Fig. 1), a region where the signal of anthropic 59 

climate change is leading to an increase in mean temperature, increasing of heatwaves events, and a sustained decrease in 60 

precipitation (Boisier et al., 2018; Bozkurt et al., 2017; Garreaud et al., 2017, 2020; González-Reyes et al., 2023). The drying 61 

trend has led to the so-called megadrought, affecting the country since 2010, with annual precipitation deficits ranging between 62 

25% and 70% (Garreaud et al., 2020, 2017). This meteorological drought in central Chile has propagated across the terrestrial 63 

system, leading to hydrological droughts and water scarcity problems that vary across the territory (Alvarez-Garreton et al., 64 

2021; Duran-Llacer et al., 2020; Muñoz et al., 2020; Barría et al., 2021b). 65 

In the Petorca river basin, located in the Valparaiso region in central Chile, Muñoz et al. (2020) found that during the 66 

megadrought, streamflow and water bodies from the upper parts of the basin were less affected than the mid and low areas of 67 

the valley, where most of the agriculture is located. However, the authors did not make a formal attribution about the role of 68 

water consumption and climate on streamflow reduction. Another study was conducted on the Aculeo Lake, a natural reservoir 69 

in central Chile that dried up during the ongoing megadrought. Barría et al (2021b) performed an attribution exercise by using 70 

the Water Evaluation and Planning System (WEAP) hydrological model and concluded that climate was the primary factor 71 

explaining the lake's drying, while water demand has remained stable over the past few decades. Another study reported that 72 

basins with larger human intervention within this region exhibited lower runoff sensitivities to precipitation compared to less 73 

disturbed ones (Alvarez-Garreton et al., 2018). In that study, the authors attributed this phenomenon to the alteration of runoff 74 

generation mechanisms associated with water withdrawals and reservoirs. Furthermore, higher than expected streamflow 75 

reductions during the megadrought have also been observed in near-natural basins. Alvarez-Garreton et al. (2021) reported the 76 

effects of catchment memory in snow-dominated catchments in Central Chile, where the accumulation of the persistent 77 

precipitation deficits led to less streamflow than expected from observations during previous single-year meteorological 78 

droughts. These studies have advanced our understanding about the role of catchments and anthropic characteristics in the 79 
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megadrought's propagation, however, further studies are still required to robustly assess the impacts of human activities on 80 

streamflow reduction and drought conditions in the major basins of central Chile. 81 

In this article, we quantify the relative effects of climate and water extractions on streamflow reduction in four major agricultural 82 

basins in central Chile. We analyse a period with high human influence within the study basins (1988-2020), and assess how the 83 

relative effects of climate and water extractions change before and after the megadrought onset. Additionally, we assess the 84 

influence of water extractions on the intensity, frequency, and duration of hydrological droughts for the complete evaluation 85 

period. To achieve this, we follow the approach proposed by Van Loon et al. (2022) and compare streamflow observations with 86 

a near-natural simulated streamflow representing the discharge that would have occurred without human influences. 87 

Hydrological droughts are identified by streamflow deficit using a threshold determined from the near- natural scenario, allowing 88 

for better identification of human impacts (Van Loon, 2016).   89 

2 Methods and data 90 

2.1 Study area 91 

The study was conducted in four major basins located between 29º and 33°S (Fig. 1): The Elqui, Limarí, and Choapa basins in 92 

the Coquimbo region, and the Aconcagua basin in the Valparaíso region. These basins fall within semi-arid (Coquimbo region) 93 

and Mediterranean (Valparaiso region) climate zones, which are particularly vulnerable to droughts due to the majority of annual 94 

precipitation occurring during the winter season concentrated on a few storm events (Garreaud et al., 2017). 95 

All catchments feature a snow-rain-fed hydrologic regime. The Aconcagua basin also has a large glacier area (192 km2) that 96 

contributes to streamflow, especially during dry summers (Crespo et al., 2020). The study basins have experienced precipitation 97 

deficits of 25-70% and streamflow deficits of up to 70% during the megadrought that has affected the region since 2010 (Alvarez-98 

Garreton et al., 2021; Garreaud et al., 2020, 2017). 99 

According to the data provided by the water security platform from the Center for Climate and Resilience Research 100 

(www.seguridadhidrica.cl), agriculture is the primary productive sector and the main consumer of water resources within these 101 

basins. Agricultural land cover areas of 152 km2 (total catchment area of 9800 km2), 605 km2 (total catchment area of 11800 102 

km2), 313 km2 (total catchment area of 8124 km2), and 582 km2 (total catchment area of 7200 km2), and their annual water 103 

http://www.seguridadhidrica.cl/
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consumption at present corresponds to 3.25 m3/s, 14.3 m3/s, 6.48 m3/s, and 15.72 m3/s, in the Elqui, Limarí, Choapa, and 104 

Aconcagua basins, respectively. Avocado and table vine species are the main consumers in the Aconcagua basin, while the 105 

Limarí basin has a higher demand from permanent forage species, table vine, and citrus plantations. 106 

 107 

Figure 1. Panel a) shows the four main basins of the study area and the streamflow gauges used for the analyses. The red diamonds 108 
indicate the stations used to characterise each basin; the green diamonds are the gauges used as predictors for filling in monthly 109 
streamflow data (note that in the Limarí catchment, no gap-filling process was made, leading to the absence of a predictor gauge 110 
station; Sect. 2.2); and the orange circles are the up-stream stations used in the rainfall-runoff ratio analysis (Sect. 2.3). The basin area 111 
covered by the red diamond gauge is painted blue. Panel b) presents the mean annual precipitation (mm/yr) from the CR2MET dataset 112 
for the period 1980-2010. Panel c) shows the gridded land cover dataset from Zhao et al. (2016). Base map source: Esri, 2017. 113 

 2.2 Data  114 

Catchment boundaries and times series of total monthly streamflow normalized by catchment area (in mm/month) were obtained 115 

from the CAMELS-CL dataset (Alvarez-Garreton et al., 2018; available at: https://camels.cr2.cl/) for the period April 1960 – 116 

https://camels.cr2.cl/
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March 2020. Total monthly precipitation for the same period was obtained from the CR2MET dataset version 2.5 at a 5 x 5 km 117 

grid resolution (Boisier, 2023) and averaged across the basin boundaries. Catchment-scale monthly evapotranspiration (ET) was 118 

computed based on the ECMWF surface re-analysis ERA5-Land dataset, available at a horizontal resolution of 10 km (Muñoz-119 

Sabater et al., 2021) from April 1960 to March 2020. For each study basin, we selected the most downstream streamflow gauge 120 

station having more than 80% of streamflow records for the 1960-2020 period (see Fig. 1). Gaps in monthly streamflow of 121 

downstream gauges (red diamonds in Fig. 1a) were filled based on linear regression models, using the basin's precipitation and 122 

the streamflow of an upstream gauge with a strong correlation with the considered station (green diamonds in Fig. 1a) as 123 

predictors. The linear regressions resulted in coefficients of determination larger than 0.8 in Elqui, Choapa, and Aconcagua 124 

basins. 125 

Streamflow and basin-averaged precipitation and ET were computed for hydrological years (April to March in Chile) and for 126 

wet and dry seasons. The wet season is defined from April to August, while the dry season corresponds to the months between 127 

September and March. Annual (seasonal) streamflow values were computed when the 12 (6) months had valid data.  128 

To account for human intervention within the basins, we analysed annual water uses from industry, energy, mining, livestock, 129 

drinking water sectors, as well as water evaporation from lakes and reservoirs for the period 1960-2020 obtained from the water 130 

security platform from the Center for Climate and Resilience Research (www.seguridadhidrica.cl). All variables with a different 131 

spatial resolution than the basin (whether gridded or administrative units) were calculated for the basin considering the weighted 132 

average of the variable within the basin surface. 133 

 2.3 Near-natural streamflow modelling and attribution exercise  134 

The attribution exercise to quantify the climatic and human contributions on streamflow reductions is schematized in Fig. 2. 135 

Near-natural streamflow simulations were obtained by rainfall-runoff statistical models trained in a period when anthropic 136 

activities had low water consumption (Sharifi et al., 2021; Zhao et al., 2014). 137 

http://www.seguridadhidrica.cl/
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 138 

Figure 2. Flowchart of the steps to quantify the human contribution to streamflow reduction based on comparing a near-natural 139 
simulated streamflow with the observed streamflow on a period of high anthropic activities. 140 

2.3.1 Selection of low-influence reference periods 141 

For each basin, we identified low human intervention periods based on the regime shifts of streamflow, precipitation, and water 142 

uses (Sect. 2.2). The non-parametric Buishand break point test (Buishand, 1982) was applied to identify these shifts. Buishand 143 

is a statistical homogeneity test method that checks if two (or more) datasets come from the same distribution. In this way, the 144 

test can detect breakpoints where the distribution of a dataset changes. We applied the Buishand test to each time series during 145 

the 1960-2020 periods. To identify multiple breakpoints, we iterated the test in the sub-periods before and after the previous 146 

breakpoint until no breakpoints with a significance level at p-value < 0.05. For the Buishand test, we used the pyHomogeneity 147 

Python library (Shourov, 2020).  148 

In order to select periods with minimal human activities, it is important to identify breakpoints in the streamflow time series that 149 

are not primarily explained by climate shifts. To account for this, we selected a unique training period across basins based on 150 

the identification of concurrent breaking points in both streamflow and human activities time series, while ensuring the absence 151 

of discernible precipitation shifts. We analysed multiple variables instead of using only water use data to achieve a more robust 152 
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selection of the training period. This reduces the effects of inter-basin water transfers and land cover changes, which may obscure 153 

the ability of water use data to accurately capture the magnitude of anthropogenic intervention in the basins.   154 

To ensure that the chosen period of analysis is not dependent on the specific statistical test employed, we conducted a sensitivity 155 

analysis using the Sequential T-test Analysis of Regime Shifts (STARS) at a monthly time scale for both precipitation and 156 

streamflow time series (Rodionov, 2004). The STARS V6.3 Excel macro application, available at 157 

https://sites.google.com/view/regime-shift-test was utilized to perform the STARS test. 158 

2.3.2 Climate and human contribution to streamflow reduction 159 

Assuming that the effects of climate and local human activities on streamflow generation are independent, the observed 160 

streamflow (𝑄𝑜𝑏𝑠) can be disaggregated as follows (Kong et al., 2016): 161 

𝑄𝑜𝑏𝑠 = 𝑄𝑛𝑛 + 𝛥𝑄ℎ𝑢𝑚𝑎𝑛   (1) 162 

Where 𝑄𝑛𝑛 corresponds to a climatic-induced streamflow, referred as near-natural streamflow in this paper, and 𝛥𝑄ℎ𝑢𝑚𝑎𝑛 is the 163 

human-induced effect on streamflow. In this study, near-natural streamflow in Eq.1 is estimated from linear rainfall-runoff 164 

regressions trained during the low-influence reference period defined in Sect. 2.3.1. To account for pluvial and snowmelt runoff 165 

generation processes, we implemented seasonal rainfall-runoff models considering the total streamflow and rainfall in the six-166 

month periods defined in Sect 2.2 as dependent and independent variables, respectively. In several snow-dominated basins in 167 

central Chile, the winter flows continue to be fed by the snow melt from the previous hydrological year, especially when the 168 

previous year was wetter than normal (Alvarez-Garreton et al., 2021). Given this, winter flow models include winter precipitation 169 

from the previous year. The models representing near-natural summer (�̂�𝑠𝑢𝑚𝑚𝑒𝑟) and near-natural winter streamflow 170 

(�̂�𝑤𝑖𝑛𝑡𝑒𝑟) were defined for year 𝑡 as follows: 171 

�̂�𝑠𝑢𝑚𝑚𝑒𝑟(𝑡) = 𝑎0 + 𝑎1𝑃𝑤𝑖𝑛𝑡𝑒𝑟(𝑡)  (2) 172 

�̂�𝑤𝑖𝑛𝑡𝑒𝑟(𝑡) = 𝑏0 + 𝑏1𝑃𝑤𝑖𝑛𝑡𝑒𝑟(𝑡)  + 𝑏2𝑃𝑤𝑖𝑛𝑡𝑒𝑟(𝑡 − 1)    (3) 173 

The coefficients in Eq. 2 and 3 were obtained by least square errors method during the training period. Based on this, the human 174 

influence during the evaluation (high-influence) period was obtained as:  175 

about:blank
about:blank
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𝛥𝑄ℎ𝑢𝑚𝑎𝑛 = 𝑄𝑜𝑏𝑠  −  �̂�𝑛𝑛  ±  𝜀   (4) 176 

where 𝑄𝑛�̂� is the simulated near-natural streamflow (seasonal concatenation of Eq. 2 and 3) and 𝜀 represents the uncertainty 177 

from the regression model parameters. The attribution exercises were performed by applying Eq. 4 during the evaluation period. 178 

In the results of the attribution exercise (Sect 3.3; Fig 7), hydroclimatic variables are depicted as anomalies computed as the 179 

percentage difference from their mean values during the reference period (1960-1988). Noteworthy that multiple regression 180 

equations with different functional forms (including a Box-Cox transformation to the seasonal and annual streamflow to account 181 

for potential non linearities between precipitation and streamflow) and variables (such as evapotranspiration and temperature) 182 

were tested for representing near-natural streamflow during the reference period (see Appendix A). The linear rainfall-runoff 183 

regressions from equations (2) and (3) were those with a higher r2, and all variables were statistically significant at a p-value of 184 

0.05.  185 

It should be noted that the near-natural streamflow estimations from Eq. 2 and 3 assume a stationary rainfall-runoff relationship. 186 

However, recent evidence in this region has shown that under protracted drought conditions, a non-stationary catchment response 187 

modulated by catchment memory can emerge, resulting in larger streamflow reductions than those expected from single-year 188 

precipitation deficits (Alvarez-Garreton et al., 2021). This evidence corresponds to the headwater near-natural basins located 189 

upstream of the human influenced basins selected in this study. To assess whether our analyses over the complete basins are 190 

potentially biased by non-stationary catchment responses, we compared the rainfall-runoff ratios (mean annual observed 191 

streamflow normalised by mean annual precipitation) during the evaluation period before (1988-2010) and after the megadrought 192 

onset (2010-2020), in both the upper and lower sections of each basin. These sections were defined by the streamflow gauges 193 

highlighted in orange circles and red diamonds in Fig. 1, respectively. 194 

2.4 Hydrological drought events characterisation 195 

To quantify the impact of human activities on hydrological droughts (schematised in Fig. 3), we compared the characteristics 196 

of the observed and the near-natural streamflow deficits during drought events, including their frequency (number of drought 197 

events), duration (average, maximum and total seasons), and intensity (i.e., deficit of volume) across the evaluation period.  In 198 

this way, we assessed the influence of human activities over observed hydrological droughts by calculating the relative 199 

difference in each drought characteristic (DC) in the observed and near natural scenario. To keep consistency with the 200 

attribution methodology (Sect. 2.3), drought events were characterised at a seasonal scale, as indicated in Eq. 5.  201 
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𝐷𝐶ℎ𝑢𝑚𝑎𝑛 =
𝐷𝐶𝑜𝑏𝑠−DCnn

𝐷𝐷𝐶𝑜𝑏𝑠
∗ 100  (5) 202 

 203 

Figure 3. Example of drought periods with annual streamflow lower than a threshold. Three types of droughts are identified: climate-204 
induced droughts, when near-natural streamflow simulations are below the threshold; human-induced droughts, where only 205 
observations are below the threshold; and human and natural induced, where both observations and near-natural estimations are 206 
below the threshold (adapted from Van Loon et al., 2016). 207 

To identify the hydrological drought events, we adopted a threshold approach, which defines drought events when the streamflow 208 

is below a specific percentile of the flow duration curve. For daily or monthly time series, a recommended threshold falls between 209 

the 70th and 90th percentile (Rangecroft et al., 2019; Van Loon et al., 2016; Van Loon, 2015). In this study, we adopted the 70th 210 

percentile of the seasonal streamflow series. This lowest threshold allows for the selection of more drought events, which makes 211 

statistical analysis more robust. The threshold can be fixed or variable; we used the variable threshold to incorporate seasonality 212 

into the drought selection (Rangecroft et al., 2019; Van Loon et al., 2019). 213 
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To allow for a strict assessment of human influence on hydrological drought, the selected threshold should not account for human 214 

activities (Rangecroft et al., 2019. To achieve this, we defined the 70th percentile threshold based on the entire period of records 215 

(1960-2020), but considering a naturalized regime provided by the near-natural simulated streamflow time series.  It should be 216 

noted that if the observed streamflow for the complete period were considered, human activities would be included. On the other 217 

hand, if only the training low-influence periods were used to calculate the threshold, the climate variability and drying trend of 218 

the complete period would not be represented by the threshold.  219 

3 Results 220 

3.1 Low-influence reference period 221 

The series of annual streamflow, precipitation, total evapotranspiration (ET), and runoff coefficients (runoff normalised by 222 

precipitation) are shown in Fig. 4. The Buishand test resulted in significant change points only in streamflow and ET. Three 223 

change points were detected in all basins, the first between the years 1977-1978, the second one in 1988, and the last one between 224 

years 1998-2010 years for the streamflow in all basins (Fig. 4), while a single change point was detected in 1973-1975 for ET 225 

in all basins except Aconcagua (Fig. 4d). The STARS test detected similar three change points in streamflow in 1977-1981, 226 

1988, and 2010, with the 1988 breakpoint presenting the higher R-shift index value. 227 

The streamflow breakpoint of 1977-1978 was disregarded since it is mainly due to climatic drivers, as indicated by the single 228 

ET breakpoint during that period. We can relate this to the great Pacific shift and the warm cycle of the Pacific Decadal 229 

Oscillation (PDO) between 1977 and the mid-1990s (Kayano et al., 2009; Jacques-Coper and Garreaud, 2015; González-Reyes 230 

et al., 2017). Additionally, the 2010 Aconcagua streamflow breakpoint is likely driven by the onset of the megadrought, which 231 

also affected the 2004 change points in the Limarí and Choapa Basins where lower precipitation was observed even before the 232 

megadrought.  233 
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Figure 4. Annual streamflow, precipitation, evapotranspiration, and runoff coefficient during the complete period (1960-2020) for 235 

Elqui (a), Limarí (b), Choapa (c), and Aconcagua (d) Basins, respectively. The vertical red line indicates the years where significant 236 

change points (P value < 0.05) on streamflow distribution are detected by the Buishand test. 237 

Regarding water use, breakpoints were observed in Elqui and Limarí in 1988 and 1992, respectively, mainly associated to the 238 

growth of the agricultural sector (Fig. 5a and b). In the Aconcagua basin, a breakpoint occurred in 1985 due to intensified water 239 

use by the mining and agriculture sectors (Fig. 5d). Meanwhile, in the Choapa basin, a significant increase in mining water 240 

consumption since 2000 explains the time series breakpoint observed in that year (Fig. 5c). The 1998 Elqui Basin streamflow 241 

breakpoint may be attributed to the construction of a dam upstream from the gauge station considered in this study (Fig. 5a). 242 

Based on these results, we used the 1988 streamflow breakpoint detected in all basins to define the low-influence period of 1960-243 

1988. In consequence, the evaluation period was defined between 1988 and 2020, characterised by greater anthropic intervention 244 

and by the megadrought in its second half. 245 

By comparing the hydroclimatic conditions of the study basins during the low-influence and evaluation periods, we see that the 246 

mean annual precipitation declined between 0.04 to 15.89% during these periods (Table 1). In contrast, the mean annual 247 

streamflow decreased by a range of 13.97 to 37.25%. If we examine summer streamflow, when agricultural water consumption 248 

is more intense, a reduction of 24.25 to 46.1% is observed. While the Aconcagua basin features the largest decrease in 249 

precipitation, the Choapa basin has the largest decrease in streamflow. 250 

Basin Mean annual precipitation (mm) Mean annual streamflow(mm) Mean summer streamflow(mm) 

Low-

influence 

period  

Evaluatio

n period   

Difference  Low-

influence 

period  

Evaluatio

n period   

Difference 

% 

Low-

influence 

period  

Evaluatio

n period  

Difference 

% 

Elqui  232.83 232.73 -0.04% 45.53 39.17 -13.97% 28.66 21.71 -24.25% 

Limarí 355.13 336.78 -5.17% 95.91 66.92 -30.23% 54.5 33.87 -37.85% 

Choapa  371.16 327.76 -11.69% 106.41 66.77 -37.25% 68.09 36.7 -46.10% 

Aconcagua  634.61 533.76 -15.89% 258.42 173.87 -32.72% 193.29 119.82 -38.01% 
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Table 1: Average annual precipitation, average annual streamflow, and average summer season streamflow for each basin in the low-251 
influence reference period (1960-1988) and the evaluation period (1988-2020).  252 

 253 



 

 

 

15 

 

 

 254 



 

 

 

16 

 

 

Figure 5. Time series of water uses from different human activities in Elqui (a), Limarí (b), Choapa (c), and Aconcagua (d) basins, 255 
respectively. These time series include water uses for industrial, agriculture, mining, energy, animals, water surfaces, and drinking 256 
water sectors. The red line indicates a breakpoint in the total water use distribution.  257 

3.2 Near-natural streamflow estimation 258 

Near-natural simulated streamflow during the low-influence and evaluation periods for each basin is presented in Fig. 6. The 259 

selected models (Sect. 2.3) were based on streamflow values without the Box-Cox transformation, since the transformed data 260 

led to a reduction in model performance across all basins (Appendix A). The summer season estimations obtained from Eq. 2 261 

had good performances during the training period, with mean biases of 0 to 5% and r2 ranging from 0.81 to 0.89 for the different 262 

basins. The winter season models resulted in lower performance, with mean biases of 0 to 0.63% and r2 ranging from 0.61 and 263 

0.93 among the study basins.  264 
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Figure 6. The observed (continuous blue line) and near-natural simulated seasonal streamflow (continuous and dashed yellow line) for 266 
Elqui (a), Limarí (b), Choapa (c), and Aconcagua (d) basins, respectively. The continuous yellow line represents the simulated 267 
streamflow during the reference period, whose r2 is presented on the legend. The dashed yellow line is the simulated streamflow during 268 
the evaluation period (defined by the change point in 1988). The yellow ban represents the 95% confidence interval of the simulated 269 
streamflow.  270 

To examine the potential influence of non-stationary catchment response during the megadrought on the interpretation of our 271 

results, Table 2 shows the rainfall-runoff ratios during the evaluation period before (1988-2010) and after the megadrought onset 272 

(2010-2020). These results indicate that the mean rainfall-runoff ratios declined across the upper and lower sections (defined by 273 

up-stream and attribution stations from Fig. 1a, respectively) of all basins during the megadrought, however, the reduction in the 274 

upper sections (with low human intervention), mostly attributed to endogenous runoff mechanisms and hydrological memory, 275 

is less significant than those observed downstream (intervened basin). The changes in downstream rainfall-runoff ratios are 276 

nearly four times greater than the upper stream changes in the Aconcagua and Elqui basins, more than twice in Choapa, and 1.6 277 

times greater in the Limarí basin. This indicates that while endogenous runoff mechanisms, such as hydrological memory, may 278 

contribute to larger streamflow deficits during prolonged drought in near-natural basins, human activities in the downstream 279 

basins are inducing a larger impact on runoff generation during the megadrought.  280 

 Basin Elqui Limarí Choapa Aconcagua 

Section Upper Lower Upper Lower Upper Lower Upper Lower 

Period 1988 -2010 0.42 0.19 0.41 0.18 0.58 0.21 0.75 0.33 

2010 -2020 0.38 0.12 0.31 0.11 0.43 0.09 0.66 0.18 

 Difference 9.03% 34.3% 25.2% 40.4% 24.94% 58.33% 11.94% 46.21% 

Table 2: Average annual runoff coefficient during the evaluation period before the megadrought onset (1988-2010) and during the 281 
megadrought (2010-2020) for the upper and lower sections of each basin. The difference between the two periods relative to 1988-2010 282 
is shown in the third row. 283 

3.3 The impacts of climate and human activities on streamflow 284 

During the complete evaluation period, the near-natural simulated streamflow is higher than the observed streamflow in all the 285 

cases (Fig. 6) with mean differences ranging from 39.4% in the Limarí basin (near-natural annual runoff of 93.23 mm and 286 
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observed annual runoff of 66.91 mm) to 20.7% in the Aconcagua basin (near-natural annual streamflow of 210 mm and observed 287 

annual runoff of 173.86 mm).  288 

The relative impacts of climate and human activities on summer streamflow reductions during the evaluation period is presented 289 

in Fig. 7. This figure shows the annual anomalies of precipitation, observed and near-natural simulated summer streamflow, as 290 

well as the human-induced streamflow reduction obtained as the difference of the latter two (Eq. 4). The results for the annual 291 

fluxes are presented in Appendix B.  292 

 293 

Figure 7: Anomalies in annual precipitation, observed and near-natural summer streamflow, and the difference between the latter 294 

two, which represent the human-induced streamflow anomaly for Elqui (a), Limarí (b), Choapa (c), and Aconcagua (d) basins. The 295 

anomalies are presented for the evaluation period before and after the megadrought onset (1988-2009 and 2010-2020, respectively). 296 
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For each flux, the anomalies are computed as the percentage difference with respect to their mean values during the reference period 297 

(1960-1988).  298 

Before the megadrought onset, annual precipitation varied between 5 to -7.6% with respect to the reference period among the 299 

study basins. The near-natural summer streamflow during that period followed the direction of the annual precipitation 300 

anomalies, with anomalies between 23 to -4% across basins. During that period, the observed summer streamflow -accounting 301 

for full climatic and human influence- decreased by 10-28%. This indicates that water uses for human activities were the main 302 

driver factor of summer streamflow reduction before the megadrought onset, causing up to 100% reduction in Elqui, Limarí and 303 

Choapa, and 82% in the Aconcagua Basin, respectively. 304 

After the megadrought onset, the relative impact of precipitation deficits and human activities on streamflow depletion changed. 305 

The annual precipitation anomalies during the megadrought varied between -13 to -36% across basins, while the near-natural 306 

streamflow estimates presented anomalies between -26% to - 61%. During this period, the observed summer streamflow featured 307 

anomalies of -54% to -84%. This indicates that precipitation deficits dominate the streamflow reductions, however, there is still 308 

a relevant reduction attributed to human activities, representing 51%, 29%, 27%, and 27% of the total summer streamflow 309 

reduction in Elqui, Limarí, Choapa, and Aconcagua Basin, respectively. 310 

Particularly noteworthy is the Aconcagua basin case, where, in absolute terms, the human induced summer streamflow reduction 311 

during the megadrought (corresponding to an absolute value of 39.47 mm) was higher than during the period before the 312 

megadrought (33.78 mm). This has happened despite the significantly lower water availability during the megadrought, where 313 

near-natural summer streamflow was 88.61 mm, which corresponds to less than half of the near-natural summer flow before the 314 

megadrought onset (185,73 mm). This apparent contradiction may be attributed to the Aconcagua’s increased total water 315 

consumption during the megadrought, led by intensified agricultural water demand (Fig. 5a). 316 

Consistently with the summer seasons, near-natural annual streamflow before the megadrought followed precipitation patterns, 317 

with anomalies between 22 to -5% across basins (Fig. A1). During that period, the observed annual streamflow varied between 318 

-2 to -20% across basins. Water uses for human activities were the driver factor of streamflow reduction before the megadrought 319 

onset, causing up to 100% of reduction in Elqui, Limarí and Choapa, and 71% in the Aconcagua Basin, respectively. After the 320 

megadrought onset, the observed streamflow featured anomalies of -47 to -71%. From these streamflow deficits, a 44% to 75 % 321 
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of the reduction is attributed to climatic-factors (i.e., anomalies represented by the near-natural simulated streamflow), while the 322 

remaining 25 to 56% is attributed to human activities. 323 

3.4 The impacts of human activities on hydrological drought events 324 

The selected hydrological drought events for each basin are shown in Fig. 8. By contrasting the observed and near-natural time 325 

series, the climate-induced and human-induced droughts are distinguished. The meteorological megadrought (2010-2020) is 326 

associated to several hydrological drought events, as evidenced by the observed streamflow time series. However, the 327 

megadrought does not seem to have such a persistent and intense effect on the near-natural streamflow. 328 

The human impact on hydrological droughts (computed as the difference between observed and near-natural streamflow drought 329 

events) is evident in the duration and intensity of drought events (Table 3). Elqui, Limarí, Choapa, and Aconcagua have 10, 13, 330 

13 and 7 extra seasons in drought duration, respectively, and close to double of streamflow deficits. In general, more drought 331 

events (Limarí, Choapa and Aconcagua) with a larger average time duration (Elqui and Choapa) and average deficit (Elqui, 332 

Choapa and Aconcagua) have occurred in the observed scenario compared to the near-natural scenario. The largest drought event 333 

in each basin occurred during the megadrought. Across all basins, the human activities led to an increase in the maximum 334 

duration of hydrological droughts, with maximum values ranging between 10 to 12 seasons, in contrast to 4 to 6 seasons 335 

experienced in the near-natural cases. In particular, this translates to 5 or 6 years of continuous streamflow below the Q70 336 

threshold during the megadrought. The human influence over hydrological drought varies between the different drought 337 

characteristics, but in most cases it causes drought intensification, leading to an increase of 25.93 to 44.83% of the total drought 338 

events and an increase of 17.89 to 61.66% of the total streamflow deficit. The negative percentage difference in mean duration 339 

or mean deficit reported for Limarí and Aconcagua basins is due to a greater number of shorter events. However, considering 340 

that the total number of events is larger in the observed scenario, this is not indicative of an alleviation of the drought. 341 

When analyzing drought characteristics separately before and during the megadrought (Appendix C), Elqui exhibits a low human 342 

impact before the megadrought onset and it notably increases during the megadrought, contributing to 57.14% of total drought 343 

events and 70.82% of the observed deficit. In contrast, Limarí, Choapa, and Aconcagua show a more stable human contribution 344 

to drought characteristics before and during the megadrought, with a decrease of human contribution to total events close to 25% 345 

(all basins), a decrease in human contribution to total deficit (Limarí basin) and a slight increase contribution to total deficit 346 

during the megadrought (Choapa basin). 347 
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Figure 8. Observed and near-natural streamflow and hydrological drought events during the evaluation period (1988–2020) for Elqui 349 
(a), Limarí (b), Choapa (c), and Aconcagua (d) basins, respectively. 350 

Basin Hydrological 
Drought 

Frequency 
Duration (seasons) Deficit (mm) 

Total 

seasons 
Max 

duration 
Average 
duration 

Total 
deficit 

Max 
deficit 

Avergae 
deficit 

Elqui 
Near- natural 10.00 16.00 4.00 1.60 51.61 20.55 5.16 

Observed 10.00 26.00 12.00 2.60 95.30 54.77 9.53 

diff % 
0.00% 38.46% 66.67% 38.46% 45.84% 62.47% 45.84% 

Limarí 
Near- natural 5.00 16.00 6.00 3.20 157.34 51.69 31.47 

Observed 10.00 29.00 10.00 2.90 191.62 77.05 19.16 

diff % 
50.00% 44.83% 40.00% -10.34% 17.89% 32.92% -64.22% 

Choapa 
Near- natural 7.00 19.00 6.00 2.71 181.43 58.31 25.92 

Observed 11.00 32.00 11.00 2.91 355.70 142.27 32.34 

diff % 
36.36% 40.63% 45.45% 6.70% 48.99% 59.01% 19.85% 

Aconcagua 
Near- natural 7.00 20.00 6.00 2.86 411.97 133.27 58.85 

Observed 12.00 27.00 10.00 2.25 1074.65 415.00 89.55 

diff % 
41.67% 25.93% 40.00% -26.98% 61.66% 67.89% 34.28% 

Table 3: drought characteristics for each basin considering the observed and simulated near natural streamflow during the evaluation 351 
period (1988-2020). The third row for each basin represents the human influence on drought characteristics as the percentage 352 
difference between the observed and the naturalized scenario   353 

4 Discussion 354 

4.1 Impact of increased human activities on water availability 355 

During the megadrought, precipitation deficits have played a more significant role on the decrease in annual streamflow than 356 

anthropic factors, however, human activities still account for approximately 27 to 29% of the streamflow reduction in the 357 

Aconcagua, Choapa, and Limarí basins and 51% in Elqui, the basin least affected by the meteorological megadrought.  358 

Human activities have intensified since the 1980s, driven by rising water demand from economic activities, population growth, 359 

and land use changes (Fig. 5a), despite the precipitation deficits and streamflow reduction during the megadrought. In general, 360 

the basins with the greatest increases in total water consumption during the evaluation period also exhibit higher human influence 361 
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in the reduction of streamflow. Elqui and Limarí exhibited the most significant relative increase in total water consumption, 362 

primarily driven by a substantial rise in agriculture consumption from 1989 to 2010, while Choapa almost duplicated its total 363 

water consumption during the 2000-2010 decade due to mining operations. It is noteworthy that agriculture and mining water 364 

consumption continued to rise during the megadrought. 365 

This suggests that total water consumption from surface and groundwater sources has been somehow inelastic to the surface 366 

water deficits. In the Aconcagua basin, the human-induced streamflow reduction expressed as mm increased during the 367 

megadrought, while in the other three basins was slightly smaller compared to the period prior to the megadrought (Fig. 7). This 368 

finding can be explained by an initial reduction in agricultural water consumption during the first years of the megadrought, 369 

which was later reversed (Fig. 5a) by higher extractions of groundwater sources in the subsequent years (Taucare et al., 2020; 370 

Duran-Llacer et al., 2020).  371 

Groundwater sources play a crucial role in streamflow within this study region, and the declines of groundwater levels caused 372 

by meteorological droughts and water extractions have critical impacts on water accessibility in rural areas (Crespo et al., 2020; 373 

Taucare et al., 2020; Alvarez-Garreton et al., 2021; 2023; 2024). These declines can also lead to the disconnection between 374 

surface and underground water sources, leading to a decrease in soil moisture conditions (agricultural drought) and the 375 

desiccation of rivers and lakes (Duran-Llacer et al., 2022; Muñoz et al., 2020). This exacerbates hydrological drought, delaying 376 

the recovery of catchments from drought episodes. Also, irrigation water extraction shifts from surface to groundwater sources, 377 

intended to alleviate megadrought impacts, also promotes the inelastic behaviour of water consumption rates. In fact, new surface 378 

and underground water use rights have been granted during the megadrought (Barría et al., 2021b). This has led to increases in 379 

water stress levels and reduction of groundwater reservoirs, which could ultimately lead to an absolute day zero (Alvarez-380 

Garreton et al., 2024). 381 

Despite a general decrease in the impact of human influence on streamflow reductions between the pre-megadrought and 382 

megadrought periods, the Limarí, Choapa, and Aconcagua basins show a relatively stable human contribution to drought 383 

characteristics before and during the megadrought, while the Elqui basin experiences a notable increase in human contribution. 384 

These observations highlight two key insights. First, they suggest that human activities have a greater influence on drought 385 

conditions and characteristics than the solely relative impact of human activities on total streamflow reductions. In the context 386 

of meteorological drought, increased and inelastic human water demand exacerbates streamflow reductions, causing them to 387 
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exceed hydrological drought thresholds in terms of both magnitude and frequency. Second, the increase in human contribution 388 

to drought characteristics in the Elqui basin leads it to similar patterns of hydrological drought conditions than the other basins, 389 

despite having lower precipitation deficits. This suggests that the role of human water demands is particularly relevant in semi-390 

arid basins with limited precipitation and high interannual variability in terms of precipitation regime, such as Elqui. 391 

Consequently, highly intervened basins in semi-arid regions are more susceptible to experiencing severe hydrological droughts 392 

during periods of precipitation deficits. These findings align with the observations of Huang (2016), who highlighted that 393 

sustainable agricultural development is threatened in arid and semi-arid regions due to limited available water resources, and 394 

with Saft et al. (2016), who demonstrated that aridity is a crucial factor influencing streamflow sensitivity to interdecadal climate 395 

variability. 396 

4.2 Drought vulnerability 397 

Hydrological drought vulnerability is associated with those conditions that cause an increase in the frequency, duration, and 398 

intensity of the hydrological droughts when a precipitation deficit threat is faced. Vulnerability should be addressed by looking 399 

for sensitivity variables that come from the biophysical basin's characteristics, such as aridity, location, geomorphology, 400 

hydrological regime, natural land cover, and snow and glacier cover (Saft et al., 2015; Van Loon and Laaha, 2015), and human 401 

activities such as management and extraction of water, land use, land cover changes, urbanisation, between others (Barría et al., 402 

2021a; Van Loon et al., 2016, 2022).  403 

As discussed in Sect. 4.1, human activities have intensified streamflow deficits during the megadrought. Human activities that 404 

affect catchment vulnerability in central Chile include groundwater extractions (Taucare et al., 2020), overallocation of water 405 

use rights (Alvarez-Garreton et al., 2021; Barría et al., 2021a), and continuous land use change for agricultural purposes 406 

(Madariaga et al., 2021). For example, agriculture is sometimes established on hillsides with high slopes, exacerbating water 407 

consumption problems and changing runoff mechanisms. In the entire Aconcagua basin, the water consumption of avocado 408 

plantations has increased 15% between 2014 and 2020, reaching almost 4.8 m3/s, while citrus plantations have increased 67-409 

70% in the Elqui and Limarí basins since 2010, reaching 1.8 m3/s of water consumption in the Limarí basin. This reveals that 410 

irrigated agriculture has been inelastic to the precipitation deficits during the megadrought. Human activities in these basins are 411 

adapting to less water availability in ways that are leading to aggravated water scarcity problems, which is considered in the 412 

literature as maladaptation (Schipper, 2020).  413 
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Precipitation deficits and human activities including human-induced maladaptation processes have broad, complex and 414 

exacerbated impacts on society and ecosystems. For example, agricultural practices may worsen water scarcity problems and 415 

contribute to soil erosion and sediment transport (Owens, 2020), further degrading ecosystem health. The intensified streamflow 416 

deficits have disrupted watercourses and contribute to tree mortality (Miranda et al., 2020). Additionally, thousands of people 417 

have lost access to domestic water services (Muñoz et al., 2020), leading to a large spending on water cistern trucks (Alvarez-418 

Garreton et al., 2023).  These impacts reveal that there is still a gap in understanding how human activities contribute to 419 

catchment vulnerability to hydrological droughts and how their influence on the hydrological cycle can be effectively included 420 

in drought management (Anne F. Van Loon et al., 2016). In the case of Chile, previous studies have shown that the current water 421 

management policy inadequately addresses the physical constraints of surface and groundwater availability, contributing to an 422 

inadequate prevention of water stress conditions (Alvarez-Garreton et al., 2023). This calls for urgent modifications in the water 423 

management system to ensure sustainable water use and prevent the exacerbation of water stress conditions in the region.  424 

4.3 Study limitations 425 

Our approach and insights are based on attribution exercises that compare the observed streamflow and a naturalised simulation 426 

of it, which permits to isolate the effect of human activities. In this study, the near-natural simulation was done by using 427 

regression statistical methods, which have limitations that should be considered: they do not explicitly account for the physical 428 

mechanisms of runoff generation, they rely solely on precipitation as a predictor and they consider a linear relationship between 429 

the variables. Although the attribution exercise is still consistent, this methodological limitation prevents to drawing 430 

conclusions regarding the physical mechanisms involved in streamflow reduction during droughts. To enable a physical 431 

interpretation, and likely a better representation of streamflow generation and memory effects, future studies should advance 432 

into implementing physically-based models to perform the attribution exercises.  433 

Independently of the adopted model, the streamflow estimations have uncertainties that can mask some of the human influence 434 

effects in the attribution exercise. In order to visualize this potential artefact, Fig. 6 shows the streamflow estimations with a 435 

95% confidence interval. These plots, in general, show that the lowest values of naturalized streamflow are above the observed 436 

time series. Anyway, considering the lower performance of the winter models in some catchments and that the summer season 437 

concentrates most human intervention due to agricultural activities, we have primarily focused on exploring the results of this 438 

season (Fig. 7). 439 
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Considering the evidence of potential climate-driven non-stationarities on streamflow generation during the megadrought in 440 

Chilean catchments (Alvarez-Garreton et al., 2021), the attribution of human activities as the driving factor of the intensified 441 

streamflow reduction should then interpreted carefully. The intensification in streamflow reduction is attributed to the 442 

combination of human activities, natural hydrological processes, and the potential effects of non-stationarity catchment 443 

response. Since the upper catchment sections have a lower human influence (but still influenced) than the downstream sections, 444 

the larger streamflow decrease during the megadrought (compared to the previous period) in these sections may be mostly (but 445 

not fully) attributed to non-stationarity in basin response during protracted droughts (consistent with Saft et al., 2015; Alvarez-446 

Garreton et al., 2021). However, the downstream sections feature an even larger streamflow reduction during the megadrought 447 

compared to the reduction in the upper sections (Table 2). This is consistent to the added effect of human activities on 448 

streamflow reduction, which have maintained water consumption despite the reduced water availability (Fig. 5).  449 

5 Conclusions 450 

The megadrought in central Chile has been the longest dry period over the last centuries. The study basins featured a range of 451 

16 to 41% in mean annual precipitation deficits during this period, whereas the deficits in observed streamflow were significantly 452 

larger. The Elqui, Limarí, Choapa, and Aconcagua basin experienced deficits in summer streamflow of 54%, 75%, 84%, and 453 

75%, respectively. 454 

Our findings indicate that human activities were the main driving factor of streamflow reduction before the megadrought onset. 455 

During the megadrought, human activities still accounted for a significant portion of streamflow reduction, ranging from 27 to 456 

51%. The impact of human activities on hydrological drought characteristics was substantial, leading to more than double the 457 

recurrence, duration, and intensity of droughts in some basins.  458 

Human activities in these basins have shown limited adaptation to the decrease in water availability. The increase in human 459 

water demand, often inelastic to the decreased surface water availability, makes basins more vulnerable to severe hydrological 460 

droughts when precipitation deficits are faced, especially on semi-arid basins with water availability constraints. 461 

This paper demonstrates that during long and persistent dry periods, human activities in basins in central Chile have intensified 462 

drought propagation, by increasing both the intensity and the duration of hydrological droughts. This highlights the importance 463 

of understanding the impacts of human activities on drought propagation, and to consider such evidence in water management 464 
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policies.  In particular, to prevent implementing maladaptive measures, the feedback loop between water usage, human activities, 465 

and the hydrological system should be considered in the adaptation strategies. These considerations are particularly important 466 

not only in Chile but also in other regions worldwide, where the dry signal is consistent and expected to persist. 467 
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Appendix A.  621 

This appendix presents the outcomes of a comprehensive evaluation of various regression models, considering the seasonal 622 

runoff as a dependent variable. The objective was to identify the key climate factors influencing the streamflow response in 623 

the studied basins. Variables such as precipitation in different seasons, evapotranspiration, temperature, and the interaction 624 

between temperature and precipitation were used. Additionally, a model incorporating a Box-Cox transformation of the 625 

dependent variable (runoff) was examined to achieve a normal distribution in the variable. 626 
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After rigorous testing, it is noteworthy that the majority of the models demonstrated a singular dependency on precipitation 627 

(P). We chose the model with a higher r2, and all variables were statistically significant at a p-value of 0.05 In Summer (Table 628 

A1) this condition is achieved with model 1 (eq 2 of sect 2.3.2), where the summer runoff is modelled based on the winter 629 

precipitations. In winter (table A2) the condition is achieved in model 2 (eq 3 of sect 2.3.2) where the runoff depends on the 630 

winter precipitation of the present year (t) and the annual precipitation of the previous year (t-1). 631 

 632 

Table A1: results of multiple regression equations tested for representing near-natural streamflow during the reference period in the 633 
summer season  634 

Elqui Lim Choap Acon Elqui Lim Choap Acon Elqui Lim Choap Acon Elqui Lim Choap Acon Elqui Lim Choap Acon

-

19.80***

-

70.05***
-56.80*** -61.87** 1.52*** 0.12 1.38*** 3.57*** -8.89 -55.36**

-

59.92***
-111.17*** 8.59 -3.46 -3.18 39.82 86.77 174.87 -158.72 -218.17

(-5.49) (-12.5) -11.34 (-28.38) (-0.17) (-0.4) (-0.36) (-0.33) (-10.11) (-19.89) (-18.7) (-39.06) (-22.99) (-57.02) (-59.14) (-110.76) (-90.18)
(-

211.48)

(-

186.45)

(-

277.96)

0.31*** 0.45*** 0.39*** 0.49*** 0.01*** 0.01*** 0.01*** 0.01*** 0.31*** 0.46*** 0.39*** 0.47*** 0.33*** 0.46*** 0.40*** 0.49*** 0.31*** 0.47*** 0.39*** 0.47***

(-0.03) (-0.04) (-0.03) (-0.05) 0 0 0 0 (-0.03) (-0.04) (-0.03) (-0.05) (-0.03) (-0.04) (-0.03) (-0.05) (-0.03) (-0.04) (-0.03) (-0.05)

-0.14 -0.24 0.07 0.56*

(-0.11) (-0.25) (-0.32) (-0.32)

-0.2 -0.41 -0.28 -0.57

(-0.16) (-0.34) (-0.3) (-0.6)

-9.9 -19.78 8.55 12

(-9.29) (-18.13) (-16.16) (-30.65)

-0.01 -0.02 0 -0.06

(-0.01) (-0.02) (-0.03) (-0.04)

O bservations 27 27 22 26 27 27 22 26 27 27 22 26 27 27 22 26 27 27 22 26

R2 0.81 0.84 0.89 0.81 0.82 0.74 0.74 0.61 0.82 0.84 0.89 0.83 0.82 0.85 0.89 0.81 0.83 0.85 0.89 0.83

Adjusted R2 0.8 0.83 0.88 0.8 0.81 0.73 0.73 0.59 0.8 0.83 0.88 0.81 0.8 0.84 0.88 0.8 0.81 0.83 0.87 0.81

Residual Std. 

Error
14.2 31.74 25.29 62.87 0.45 1.01 0.8 0.74 14.02 31.8 25.91 60.29 14.03 31.47 25.38 63 13.92 31.58 26.4 61.35

F Statistic
103.34*

**

130.43**

*
156.66*** 99.65*** 110.49*** 69.99*** 57.83*** 36.78*** 53.80*** 65.42*** 74.62*** 55.72*** 53.75*** 67.06*** 78.19*** 50.07*** 37.05*** 23.73*** 18.66*** 13.94***

Note: *p<0.1; **p<0.05; ***p<0.01; std_dv in ()

TxP

T_mean_summer

ET_summer

Model 5

const

P_winter(t)

P_summer(t)

Dependent variable: Summer runoff

Variables/ Models
Model 1 Model 2 (runoff Box-Cox) Model 3 Model 4



 

 

 

35 

 

 

 635 

Table A2: results of multiple regression equations tested for representing near-natural streamflow during the reference period in the 636 
Winter season  637 

Elqui Lim Choap Acon Elqui Lim Choap Acon Elqui Lim Choap Acon Elqui Lim Choap Acon Elqui Lim Choap Acon

11.90*** -15.45** -10.53** -11.17 -5.22 -30.94*** -20.01*** -31.44 1.41*** 0.75 1.13** 0.16 -9.53** -35.18*** -7.67 -16.03 -32.84 -117.70* -45.62 -116.79

(-3.67) (-6.23) (-4.02) (-14.14) (-3.49) (-6.85) (-4.57) (-20.08) (-0.42) (-0.44) (-0.52) (-1.31) (-4.31) (-12.07) (-7.95) (-53.56) (-20.13) (-58.61) (-40.73) (-82.56)

0.04* 0.19*** 0.16*** 0.14*** 0.02 0.17*** 0.16*** 0.14*** 0.01*** 0.01*** 0.01*** 0.01*** -0.01 0.17*** 0.17*** 0.14*** 0.16 0.57*** 0.23* 0.27**

(-0.02) (-0.02) (-0.01) (-0.02) (-0.01) (-0.02) (-0.01) (-0.02) 0 0 0 0 (-0.02) (-0.02) (-0.01) (-0.03) (-0.11) (-0.17) (-0.11) (-0.13)

0.09*** 0.06*** 0.03*** 0.03 0.01*** 0.01*** 0.00*** 0.00*** 0.07*** 0.05* 0.05*** 0.04 0.08*** 0.05*** 0.03** 0.03

(-0.01) (-0.02) (-0.01) (-0.02) 0 0 0 0 (-0.02) (-0.03) (-0.01) (-0.03) (-0.02) (-0.02) (-0.01) (-0.03)

0.08 0.05 -0.15* -0.12

(-0.05) (-0.12) (-0.08) (-0.37)

6.6 15.65 4.59 32.78

(-4.71) (-9.79) (-7.1) (-30.42)

-0.03 -0.07** -0.01 -0.05

(-0.03) (-0.03) (-0.02) (-0.05)

O bservations 26 26 25 25 26 26 25 25 26 26 25 25 26 26 25 25 26 26 25 25

R2 0.12 0.8 0.89 0.57 0.69 0.87 0.93 0.61 0.65 0.86 0.81 0.57 0.72 0.87 0.94 0.61 0.71 0.9 0.93 0.63

Adjusted R2 0.09 0.79 0.89 0.56 0.66 0.86 0.92 0.57 0.62 0.85 0.8 0.53 0.68 0.85 0.93 0.56 0.66 0.88 0.91 0.56

Residual Std. 

Error
9.48 15.13 9.78 32.22 5.8 12.55 8.32 31.57 0.7 0.81 0.94 2.06 5.61 12.78 7.89 32.24 5.81 11.51 8.62 32.18

F Statistic 3.36* 96.18*** 195.83*** 31.06*** 25.04*** 75.83*** 140.27*** 17.14*** 21.00*** 69.40*** 47.84*** 14.79*** 18.72*** 48.82*** 104.98*** 10.99*** 12.99*** 46.61*** 65.47*** 8.54*** 

Note: *p<0.1; **p<0.05; ***p<0.01; std_dv in ()

TxP

T_mean_winter

ET_winter

Model 5

const

P_winter(t)

P_winter(t-1)

Dependent variable: Winter runoff

Variables/ Models
Model 1 Model 2 Model 3 runoff (Box-Cox) Model 4
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Appendix B 638 

 639 

Figure B1: Anomalies in annual precipitation, observed streamflow, simulated near-natural streamflow and human-induced 640 
streamflow change. The anomalies are presented for the evaluation period before and after the megadrought onset (1988-2009 and 641 
2010-2020, respectively). For each flux, the anomalies are computed as the percentage difference with respect to their mean values 642 
during the low-influence reference period (1960-1988). The graphs show these results for Elqui (a), Limarí (b), Choapa (c), and 643 
Aconcagua (d) Basins, respective644 

 645 

Appendix C. 646 

Basin Hydrological 

Drought 

Frequency Duration (seasons) Deficit (mm) 

Total 

season 

Max 

duration 

Average 

duration 

Total 

deficit 

Max 

deficit 

Average 

deficit 



 

 

 

2 

 

 

Elqui Near- natural 4.00 6.00 2.00 1.50 18.43 10.13 4.61 

Observed 4.00 14.00 10.00 3.50 63.15 53.09 15.79 

diff % 0.00% 57.14% 80.00% 57.14% 70.82% 80.92% 70.82% 

Limarí Near- natural 2.00 10.00 6.00 5.00 98.39 51.69 49.20 

Observed 3.00 13.00 8.00 4.33 94.94 65.87 31.65 

diff % 33.33% 23.08% 25.00% -15.38% -3.64% 21.53% -55.46% 

Choapa Near- natural 2.00 10.00 6.00 5.00 107.89 58.31 53.94 

Observed 4.00 14.00 8.00 3.50 212.76 123.74 53.19 

diff % 50.00% 28.57% 25.00% -42.86% 49.29% 52.88% -1.42% 

Aconcagua Near- natural 3.00 10.00 4.00 3.33 237.65 133.27 79.22 

Observed 4.00 13.00 8.00 3.25 565.61 315.06 141.40 

diff % 25.00% 23.08% 50.00% -2.56% 57.98% 57.70% 43.98% 

Table C1: drought characteristics for each basin considering the observed and simulated near natural streamflow during the 647 
megadrought period (2010-2020). The third row for each basin represents the human influence on drought characteristics as the 648 
percentage difference between the observed and the naturalized scenario   649 

Basin Hydrological 

Drought 
Frequency 

Duration (seasons) Deficit (mm) 

Total 

season 
Max 

duration 
Average 

duration 
Total 

deficit 
Max 

deficit 
Average 

deficit 
Elqui 

Near- natural 7.00 10.00 4.00 1.43 44.99 20.55 6.43 

Observed 6.00 10.00 4.00 1.67 30.46 12.73 5.08 

diff % 
-16.67% 0.00% 0.00% 14.29% -47.69% -61.49% -26.59% 

Limarí 
Near- natural 4.00 7.00 4.00 1.75 68.65 50.78 17.16 

Observed 8.00 15.00 6.00 1.88 91.61 54.26 11.45 

diff % 
50.00% 53.33% 33.33% 6.67% 25.06% 6.41% -49.87% 

Choapa 
Near- natural 6.00 10.00 4.00 1.67 90.04 34.36 15.01 

Observed 9.00 17.00 6.00 1.89 135.96 67.42 15.11 

diff % 
33.33% 41.18% 33.33% 11.76% 33.78% 49.04% 0.66% 

Aconcagua 
Near- natural 5.00 9.00 2.00 1.80 180.33 67.70 36.07 

Observed 9.00 13.00 3.00 1.44 468.17 110.86 52.02 

diff % 
44.44% 30.77% 33.33% -24.62% 61.48% 38.93% 30.67% 
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Table C2: drought characteristics for each basin considering the observed and simulated near natural streamflow before the mega 650 
drought period (1988-2010). The third row for each basin represents the human influence on drought characteristics as the percentage 651 
difference between the observed and the naturalized scenario   652 

 653 

 654 


