
Point-by-point response to the reviews of our manuscript “Enhancing LSTM-based streamflow 
prediction with a spatially distributed approach” including a list of all relevant changes made in the 
manuscript. Please note that our published initial responses to the review comments on the HESS 
website are not included here. We believe our finalized responses below, which often repeat much of 
the initial responses published, stand alone. 

 

RESPONSE TO EDITOR COMMENTS: 

Thank you for your responses to the two sets of reviews. We were expecting a third review, but the reviewer 
was unable to submit it on time, therefore we will proceed with these two reviews and your replies. I 
appreciate your detailed responses, and especially the clarification of the novelty and significance of the 
manuscript. Based on these replies, I would like to invite you to submit a fully-revised manuscript, which 
will be returned to the reviewers. 
We appreciate the review and believe our revisions described below completely address all the review 
comments. We are pleased to hear the novelty was clarified for you. 

 

RESPONSE TO RC1 COMMENTS: 

RC1, C1: [The "Routing-only mode" is an important part of the document, and perhaps a flowchart would 
help readers better understand its workflow. Additionally, the document mentions that the input for the 
Routing-only mode is hourly data. The question is how the authors transform data from the LSTM into 
hourly data.] 
The workflow of the routing mode is briefly explained in Section 2.1.3.  Rather than a flow chart we have 
added clarity to readers with a supplemental document describing how the routing model works in 
complete detail. Section S2 of Supplement has enough detail for precisely replicating our routing model. 
In addition, the minor changes to Figure 1 (and caption) add clarity as well. Finally, we added a sentence 
to the revised manuscript on line 249 - 251 in Section 2.1.3 answering the above specific question as 
follows: 

“We transformed the daily LSTM streamflow predictions to hourly routing simulation inputs by 
assuming the streamflow is constant over the day. That is, for a given date, the LSTM-predicted 
streamflow is assigned to all 24 hourly time steps.” 

 
 
 
RC1, C2: [Including a map of the study area would indeed be beneficial for readers unfamiliar with the 
GRIP-GL project.] 
We have added a detailed map of the study area to the supplemental file of this paper, please see Section 
S1 of the Supplement. 
 
 
 
RC1, C3: [The paper mentions that initially, basin data is used to train the LSTM, which is then applied to 
predict streamflow in subbasins using the subbasins' input data. Since there is sufficient subbasin data 
available, the question is why not directly train a subbasin-specific LSTM for predicting subbasin 
streamflow, which could then enable the prediction of basin streamflow through Routing-only mode?] 



We assume the reviewer is asking us why we did not train specifically on subbasin-scale (i.e., very small 
local drainage basins) watersheds. That would be ideal since we assume that finer resolution (i.e., smaller-
scale data) would result in higher quality of predictions at that scale. The primary reason we did not do 
that is because we wanted to show that our SR model built with an existing LSTM regional streamflow 
model, trained with watersheds beyond the subbasin scale delineated in the routing product (The GRIP-
GL calibration basins are ranging from 200 km2 to 16000 km2, while the average subbasin scale is 
approximately 131 km2 in the GRIP-GL routing product) can easily be augmented with an uncalibrated 
hydrological routing approach to enhance streamflow prediction in larger watersheds where the lumped 
LSTM (with no hydrological routing) predictions are not as good. In this way, our SR model as implemented 
is a lower bound estimate of the optimal performance our SR modelling approach could achieve. For 
example, if we instead trained our LSTM by adding additional subbasin scale watersheds (< 200 km2) to 
the training set, we can assume performance would improve, or at the very least, not degrade. Overall, 
our work shows hydrological modellers a reliable way to improve LSTM-based streamflow predictions 
without having to do any more training or calibration. 
 
We synthesized our extended answer above and have added the following sentence to the opening 
paragraph of our LSTM section (line 149 – 152 in the revised manuscript): 

“The decision to employ an existing lumped LSTM for streamflow prediction, rather than 
attempting to add more basins and retrain a new LSTM, was intentional as we wanted to 
demonstrate explicitly that the proposed spatially distributed methodology works to improve 
upon an existing lumped LSTM without the need for LSTM retraining.” 

 
And in the conclusion paragraph (line 509 - 511) describing the limitations of this study we added as 
follows: 

“The regional LSTM could be purpose-built to train on a sufficient number of small basins better 
matching the subbasin-level spatial scale at which the lumped LSTM would be applied within 
the SR model (e.g., 131 km2 as the average subbasin size of the GRIP-GL routing product).”  

 
We would also note for the reviewer that given the findings of Kratzert et al. (2023) showing that training 
on more basins is always better, we would caution against a potential assumption that developing any 
subbasin-scale specific LSTM (targeting and training on only watersheds smaller than 200 km2 for 
example) would be optimal within our SR modelling approach. Another practical reason we did not do this 
is that the discharge observations are unavailable for most of the subbasins delineated in the GRIP-GL 
routing product and the North American Lake-River Routing product. Even though we have sufficient 
training features (i.e., dynamic forcings and static attributes) for the subbasins, we do not have the target 
variable (i.e., subbasin streamflow). 
 
 
 
RC1, C4: [In the discussion in section 3.1, for smaller basins, the spatial segmentation might still represent 
a sub-basin. In this scenario, is the structure of the Spatially Recursive (SR) model still the same as it would 
be for multiple sub-basins, or is the Routing-only mode not used under these conditions?] 

Workflow-wise, the routing-only model is used under these conditions: a gauged basin with a delineated 
routing network would only contain one subbasin which is geometrically identical to the basin outline. 
Hence, the routing simulation will still be applied to such a single subbasin routing network and in such a 
case, the routing model only functions to take the subbasin streamflow (LSTM-predicted) as an input 



(constant rate for each 24hrs and input to the model at an hourly timestep) and it would be moved 
instantly without delay to the basin outlet, making it equivalent to a lumped LSTM basin streamflow 
prediction at the daily time scale. We should note that none of the GRIP-GL routing networks (Section 3.2) 
are delineated with a single subbasin. 
 
Section 3.1 (line 351 - 355) is now revised to clarify the above as follows: 

“The predictions from the SR model (blue) are not visible because, as expected, they are the 
virtually the same as the predictions from the lumped LSTM (red). This can be explained by the 
fact that the delineation is geometrically identical to the basin outline (i.e., no spatial 
discretization and each basin is only a single subbasin). In the routing simulation, the LSTM-
predicted subbasin streamflow would be directly flushed without delay to the basin outlet, 
making it equivalent to a lumped prediction.” 

 
 
 
RC1, C5: [What is the role of Figure 8? Providing different delineations of the routing network within a 
single basin might better help in understanding the impact of routing network delineation.] 

Figure 8 is to demonstrate how our findings might relate to different lake densities in the different 
watersheds. On the other hand, Figure 2 is used to demonstrate the impact of different delineations of 
the routing network in a single basin. In response to this comment, we revised the caption of Figure 8 (line 
470 - 473) to make its purpose clear to the readers, as follows: 

“Figure 8. Comparison of the routing networks of 3 large Non-GRIP-GL basins to illustrate the 
variation in different lake densities. (A) Gauged basin 05129115 (5 lakes, 14% of basin is covered 
by lakes). (B) Gauged basin 02KJ004 (11 lakes, 10% of basin is covered by lakes) and (C) Gauged 
basin 04260500 (4 lake, 4% of basin is covered by lakes). The three illustrated routing networks 
were delineated to mimic the GRIP-GL routing delineation strategy.” 

 

 

 

 

 

 

Responses to the second reviewer (RC2) starts on next page. 

 

 

 

 

 

 



RESPONSE TO RC2 COMMENTS: 

RC2, C1: [There is a main paragraph explaining the importance of large-scale training of LSTMs and how 
individual catchment LSTMs are not suitable for comparison. However, it seems you’re still limiting your 
data to only regional data from the Great Lakes region. While this is better than training an LSTM on one 
basin, it is best to give the model all the data you can, including basins outside of the GL region. Have you 
trained your SR, or lumped, LSTM on all CONUS basins, or done any work regarding that?] 

No, we have not done that. We agree with you and so does Kratzert et al. (2023) who show that training 
on more basins is always better. The primary reason we did not train a new LSTM model on CONUS basins 
in this study is because we wanted to show that our SR model built with an existing LSTM regional 
streamflow model (i.e., the GRIP-GL lumped LSTM), can easily be augmented with an uncalibrated 
hydrological routing approach to enhance streamflow prediction in larger watersheds where the lumped 
LSTM (with no hydrological routing) predictions are not as good. In this way, no need for researchers to 
train a new lumped LSTM on new dataset. 

We synthesized the above rationale and included the following sentence in the opening paragraph of our 
LSTM section (2.1.1) of the paper (line 149 – 152 in the revised manuscript): 

“The decision to employ an existing lumped LSTM for streamflow prediction, rather than 
attempting to add more basins and retrain a new LSTM, was intentional as we wanted to 
demonstrate explicitly that the proposed spatially distributed methodology works to improve 
upon an existing lumped LSTM without the need for LSTM retraining.” 

 
 
 
RC2, C2: [Figure 1 is confusing as the numbering doesn’t align with how the graph is read. It reads like it’s 
circular, everything is somehow mapping to itself. I suggest redoing this figure as it would be easier for the 
reader to understand the SR workflow.] 

We modified the workflow figure with some rearranging, along with the caption. We would like to note 
that the arrows in the workflow are (and were not) circular. However, data and components are used 
multiple times by various components and hence multiple arrows. Please see the revised Figure 1 and 
caption in the revised manuscript. 

 
 
 
RC2, C3: [What loss function was used? While it makes sense to have a lot of your information in a 
supplemental paper, adding this information would be helpful to readers as they would know what 
information is used in training your lumped LSTM.] 

The loss function is the same as the loss function introduced in Kratzert et al. (2019), which is effectively 
the averaged Nash–Sutcliffe efficiency (NSE) value across the training basins. We made sure to add a 
supplemental document for this manuscript and in it, we list all information about the lumped LSTM 
including the loss function equation.  

Rather than duplicate the Supplement contents here, we refer you to the Section S3 of the Supplement 
we submitted along with the manuscript revision to see the complete LSTM documentation. 

 



 
 

RC2, C4: [I’m unsure of the novelty here. After reading the paper, and the novelty statement, multiple times. 
I’m not convinced that what you’re doing hasn’t already been done. It appears you’re only routing 
streamflow from a model created in Mai et al. (2022). I hate to share/recommend reading my own 
research as it can come off as scummy, but I have an accepted manuscript that has a very similar workflow 
what you’re doing here (Training a LSTM that was created based on another paper’s work, applying the 
LSTM to smaller catchments, routing those outputs, and comparing the routed flows against the lumped 
predictions. My paper’s novelty is that our Muskingum-Cunge routing is a differentiable model). The 
reason I’m sharing my work is because you may not be aware that I had used a very similar set up in my 
research. The paper has been under review for ~15 months and only available in preprint. See below for 
the Title and DOI. 

Improving large-basin river routing using a differentiable Muskingum-Cunge model and physics-informed 
machine learning 10.22541/essoar.168500246.67971832/v1 

To be fair to your work, I do think that your paper presents an angle that has not been done yet but is not 
expressed in the novelty statement: “The distinctive aspect of our research lies in the combination of 
components to form the SR model. The following subsections explain the specifics of the components we 
selected in this study to demonstrate the spatially recursive modelling approach.” 

I believe your work’s novelty is both the scale (as my accepted work is done at the catchment scale, not at 
the regional scale), and my work does not have a reservoir module included in the routing. This will ensure 
your paper correctly identifies what is an expansion of domain knowledge.] 

Thank you for sharing your preprint. Given it was a preprint when we conducted our research and crafted 
the original manuscript, we were not aware it existed and so everything we have presented was 
developed without knowing anything of the research in Bindas et al. (2024).   

We strongly disagree with your concern about the novelty of our work but certainly understand why you 
might think that from our original introduction versus the content in your paper. Yes, at the highest level 
our aim is the same as your paper: enhance prediction accuracy on large basins by combining LSTMs 
applied at the small spatial scale with physically-based routing. However, how we have approached the 
problem and our demonstration of the efficacy of our method are completely different than what is done 
in Bindas et al. (2024). For example, we consider lakes in our routing model, we demonstrate 
methodological success at the regional level rather than individual watershed level, we do not require the 
watershed-specific training/calibration of the routing model. Overall, our method is technically simpler to 
implement. 

We will carefully detail these fundamental differences below and then synthesize these more concisely 
for inclusion in the revised introduction in order to clearly indicate the relative novelty.  We think it would 
be awkward to include all the details in the revised manuscript, but we want to include them in this 
response file to be sure that you and the Editors are convinced we have produced novel work. 

Our SR model applies an LSTM to directly generate routing model inputs at the spatial scale of the routing 
model. Specifically, our LSTM directly predicts local subbasin streamflow appearing at the subbasin outlet 
and these are directly the inputs to our routing model. We have demonstrated that the SR model is robust 
and works without user intervention when the routing model scale, and hence the scale at which the 
LSTM predicts local subbasin streamflow, is varied. Furthermore, we even demonstrated our method 
works ‘out of the box’ for routing networks built from different DEMs (see Section 2.1.2 and a restatement 



of this fact in a single sentence now added to Section 2.1.4).  All of this is achieved without any routing 
model calibration or any LSTM/ML training beyond the regional pretraining of the employed LSTM. 

In contrast, the approach in Bindas et al. (2024) is fundamentally different as their LSTM streamflow 
predictions do not match the spatial scale of their routing model and hence require an intermediate, scale-
specific, and watershed-specific parameterization to translate LSTM streamflow predictions into lateral 
flow inputs for each of their 2 km reaches in the routing model. Specifically, they generate HUC10 subbasin 
level streamflow predictions with their pre-existing LSTM and then rescale each of these within the 
subbasin to lateral inflows of each 2 km reach (based on the derived incremental drainage areas). More 
significantly, a simple alternative to the inverse-routing approach was required to revert LSTM-predicted 
runoff at the HUC10 outlets to the time before it enters the river network in each of their 2 km reaches, 
due to the scale mismatch. Their approach required additional watershed-specific and scale-specific 
testing and tuning of their inverse routing parameter. Their overall approach to addressing the LSTM scale 
and routing scale mismatch is not generalizable to new watersheds or different spatial scales and thus 
requires site-specific fine-tuning followed by watershed-specific training of their differentiable physics-
Informed machine learning routing model.  

Beyond the above difference, Bindas et al. (2024) report that the differentiable routing model performed 
noticeably better than the uniform (i.e. lumped) LSTM model at 1 of 3 large (~2000 km2 or greater) internal 
gauging stations not used in training within a single 5212 km2 watershed. This is achieved when their 
routing model is trained on the watershed outlet and when the training/testing is restricted to a single 
year in the period of record. The differentiable routing model was also not trained or applied in testing 
mode for the multi-year period of record available in their watershed. Their body of evidence empirically 
showing their differentiable routing model is better than the uniform LSTM is limited. On the contrary, 
our method is at the regional, not watershed scale, and demonstrates our untrained SR approach 
(uncalibrated routing model) beats the lumped LSTM in 1) spatial validation over an 10-yr period in 10 of 
15 large GRIP-GL basins (KGE improvement in the 10 basins is average of 0.24 KGE units) and 2) spatial 
validation over a 17-yr period for 7 of 8 additional large non-GRIP-GL basins (KGE improvement in the 7 
basins is average of 0.16 KGE units). Our body of empirical evidence is much stronger. 

There is also a third key difference. Given an existing applicable lumped LSTM model for streamflow, 
Bindas et al. (2024) requires additional neural network training using watershed-specific attributes to 
derive two routing parameters per 2 km reach. On the contrary, our approach does not require such 
further training nor routing parameter calibration. It is not clear the approach in Bindas et al. (2024) would 
work as successfully at the regional-scale or larger, where it would encounter much more spatially variable 
routing conditions. Particularly, the scale-specific rescaling approach noted above was only validated in 
the 5212 km2 catchment case study.  

Another novel aspect of our manuscript is that we utilize a routing model that explicitly includes lakes, 
while in BIndas et al. (2024) the routing model is based on a river network which does not include lakes 
explicitly. 

Given the above detailed evidence on why we think our contribution is novel, we think the following new 
paragraph in the introduction section (line 95 - 105) is a fair synthesis helping to highlight this by noting 
there is more research to do beyond Bindas et al. (2024): 

“A recent study by Bindas et al. (2024) presents a novel differentiable river routing method to 
improve the streamflow prediction in a single large basin. They employed a regionally-trained 
LSTM to predict discharge at the subbasin-level and then map the LSTM predictions to a river 
network for routing. The results of the final routing model show promise by simulating 



predicted subbasin-level discharge from a lumped LSTM. However, their study presents limited 
empirical evidence demonstrating the superiority of their routing model over the lumped LSTM. 
Specifically, the comparison was conducted within one single basin for a short testing period of 
one year, and the routing model outperforms the lumped LSTM in one of the three untrained 
gauges with larger than 2000km2 of drainage area. As for methodology, an intermediate process 
(scale-specific and basin-specific) is required to translate the LSTM predictions into lateral flow 
inputs for each reach in the river network. Furthermore, the routing model requires training of 
a multilayer perceptron network to update the parameters. As such, their basin-scale approach 
is challenging to directly generalize to new basins, or to different spatial scales for modelling.” 

In addition, we have edited our original introduction paragraph about the novelty of our work (line 106 – 
113, which appears right after the above new paragraph) as follows: 

“Our study aims to identify an easy-to-implement, generalizable, regional-scale (or larger) 
approach for applying spatially-distributed inputs to effectively improve upon lumped data-
driven streamflow prediction, especially in large, ungauged basins. In pursuit of this goal, we 
propose the Spatially Recursive (SR) model. The SR model first employs a lumped data-driven 
prediction model (regionally-trained on a large sample of basins) to predict local streamflow at 
subbasins discretized from the basin of interest. Then, it utilizes a semi-distributed hydrologic 
routing-only model, capable of explicit lake simulation, to route subbasin streamflow to the 
basin outlet. The data-driven prediction model is considered spatially recursive because it is 
trained at the basin scale and further applied at the subbasin scale to incorporate finer-
resolution forcing data and subbasin attributes.” 

In the following sections of the revised manuscript, we note in various places what is unique about our 
method.  

Line 132 - 137: We edited the paragraph describing the model coupling in the methodology section: 

 “The distinctive aspect of our research lies in the smooth coupling of the LSTM and the routing 
model. The regionally-trained LSTM is applied to directly produce the local streamflow at the 
subbasin-scale (i.e., the spatial scale of the routing model), thus no need for scale 
transformation when we use the LSTM prediction as the direct input to the routing model. 
Additionally, the SR model does not require any further training/calibration of either of the 
regional LSTM or the routing model, making it generalizable to any designated gauge or basin 
outlet within the LSTM training region.” 

Line 479 - 483: We edited the novelty statement in the conclusion section to make sense: 

 “The novelty of the SR model is threefold: (1) It considers the spatial variability of input 
variables at finer spatial resolution by having smaller response units than the training dataset 
(i.e., in our case, this is from basin-scale to subbasin-scale); (2) It integrates physically-based 
lake-river hydrological routing with the data-driven learning to form a generalizable modelling 
approach for enhanced streamflow prediction in large ungauged basins; (3) It operates without 
the need for further fine-tuning, parameter transfer, or training/calibration, given the trained 
LSTM is available.” 

Line 493 - 498: We edited the paragraphs in the conclusion section to better summarize the relative 
performance of our model, highlighting the empirical evidence: 



“The empirical performance improvement over the lumped LSTM is most significant in a PUB 
context. For the 15 large GRIP-GL validation basins, the median KGE levels over the 10-year 
training period and the 7-year testing period, are 0.11 and 0.08 KGE units higher, respectively, 
than those of the lumped LSTM. Importantly, for smaller basins (< 2000 km2), the performance 
gains for large basins do not result in significant performance drops, as the median KGE 
difference of SR model and the lumped LSTM were within 0.03 KGE units in all three validation 
modes.” 

 
 
 
RC2, C5: [Lines 107-108: This sentence reads a little weird. I suggest changing to: “Han et al. (2020) and 
Mizukami et al. (2016) include examples of hydrologic routing models.”] 

Thanks for the suggestion, we rephrased the sentence (line 131 – 132 of the revised manuscript), as 
follows: 

“Furthermore, Han et al. (2020) and Mizukami et al. (2016) include examples of vector-based 
hydrologic routing models.” 

 
 
 
RC2, C6: [Can you make the font bigger for figure 5 axis?] 

Done for x-axis and y-axis. Please see Figure 5 in the revised manuscript. 

 
 
 

ADDITIONAL MANUSCRIPT CHANGE BY AUTHORS (NOT IN RESPONSE TO SPECIFIC REVIEW COMMENTS): 

1. In addition to the changes listed above, we clarified the definition of the term ‘large basin’ in the revised 
manuscript and made corresponding adjustments. In the initial manuscript, the definition of ‘large basin’ 
was inconsistent. We used 1000 km² as the threshold in Section 3.2 for model performance comparison, 
while employing 2000 km² in Sections 2.2 and Section 3.3 for selecting new testing basins. In an effort to 
objectively pick a standard value, we reviewed various large-sample hydrology literature more closely and 
found 2000 km2 as a commonly used threshold. Therefore, in the revision, the threshold is consistently 
set to be 2000 km2 throughout the paper (including in Table 2), and we provide the following justification 
for this in the introduction section (line 82 - 94) as follows: 

“Conceptually, the predictive accuracy of lumped hydrological modelling will eventually 
degrade as basin size increases. This is due to the fact that meteorological forcing inputs are 
simply not well approximated by assuming they are constant over space. For example, in their 
paper presenting the CAMELS dataset of attributes for 671 basins in the contiguous United 
States, Addor et al. (2017) caution against using the largest of these basins for lumped 
hydrological modelling. They argued that the significance of basin-averaged input attributes 
diminishes with an increase in basin drainage area, because larger basin tends to necessitate a 
heightened consideration of spatial heterogeneity, requiring the incorporation of a spatially 
distributed representation. Nevertheless, the threshold at which basin area leads to poor 



lumped model performance is not precisely known and will likely vary by watershed location. 
In a study of benchmarking multiple hydrologic models, Newman et al. (2017) excluded basins 
in the CAMELS dataset over 2000 km2 in drainage area. Additionally, the lumped LSTM 
modelling study by Kratzert et al. (2019) and the original set of basins in the CARAVAN lumped 
global large-sample hydrology dataset (Kratzert et al., 2023) both employ 2000 km2 as an upper 
threshold. Given the past use of the 2000 km2 threshold, we apply this criterion to define a 
‘large basin’ in our study.” 

While this change has improved the SR model performance metrics for ‘large basins’ in Table 2 relative to 
the initial submission, the improvements do not change any of the conclusions in the manuscript. The SR 
model works well on aggregate in basins over 1000 km2 (i.e., the initial threshold in first version of the 
manuscript) and performance for large basins defined by the new threshold of 2000 km2 is somewhat 
better than the metrics under the previous threshold. 

 

2. We would like to make a point we failed to make in the first version of the manuscript. We strongly 
believe our SR model performance is a lower bound of that it could be. Our conclusion section has a 
revised paragraph justifying this as follows (line 505 - 511): 

“Moreover, these improvements of the SR model relative to the lumped data-driven model did 
not require calibration or additional training after the original lumped LSTM was trained. In fact, 
the reported results of the SR model reflect a conservative estimate (i.e., lower bound) of 
performance, considering the following factors: (1) The regional LSTM within the SR model 
could be improved with additional training data (Kratzert et al., 2024); (2) The SR model routing 
parameters could be calibrated and regionalized to further improve validation results; and (3) 
The regional LSTM could be purpose-built to train on a sufficient number of small basins better 
matching the subbasin-level spatial scale at which the lumped LSTM would be applied within 
the SR model (e.g., 131 km2 as the average subbasin size of the GRIP-GL routing product). “  
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