Supporting Information for

Technical assessment combined with extended cost-benefit analysis for groundwater cosystem services restoration - An application for Grand Bahama

Anne Imig¹, Francesca Perosa², Carolina Iwane Hotta², Sophia Klausner¹, Kristen Welsh^{3,4}, Arno Rein^{1*}

¹Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, Germany; <u>anne.imig@tum.de</u>,
 <u>sophia.klausner@tum.de</u>, <u>arno.rein@tum.de</u>

²Chair of Hydrology and River Basin Management, School of Engineering and Design, Technical University of Munich, Germany; <u>francesca.perosa@tum.de</u>, <u>Carolina.hotta@tum.de</u> ³Small Island Sustainability Programme, University of The Bahamas, Nassau, Bahamas; <u>kristen.unwala@ub.edu.bs</u>

1

⁴Geosciences Department, Oberlin College, Oberlin, Ohio, USA; <u>k.welsh@oberlin.edu</u>

15

Correspondence to: Arno Rein arno.rein@tum.de

25

Table S1. Description	of the input data :	for the holistic ana	lysis of potentia	l sustainability measures.
-----------------------	---------------------	----------------------	-------------------	----------------------------

Input data	Units	Value/comment	Sources
Common data			
Daily precipitation rates	mm/day	Monitored time series	From meteorological station ECMWF ERA5 (1979- 2000) and Freeport airport (2012-2021); provided by the meteorological department of the Grand Bahama Port Authority.
Monthly precipitation rates at the spatial level	mm/month	Maps from 1970 to 2000 (resolution: 1 km ²)	WorldClim 2.1, Fick and Hijmans (2017).
Land use/land cover	-	Raster file	Esri (2021); Ruesch and Gibbs (2008).
Digital elevation model (DEM)	m a.s.l.		Eurostat DEM (Eurostat, 2013)
Building footprints	Vector file		Provided by GBUC.
Evaluating the technical feasibilit	ty of MAR		
Samples from a sedimentation layer	mm	grain diameter	Grain size analysis according to DIN (2017) of soil sample taken on 6 th of July 2021 in the west part of Wellfield 6 (coordinates: 26.613531, -78.542213).
Groundwater level measurements	m	below ground level	January and October 2020 (Dokou et al., 2020) January 2021, taken by IsraAID, published in the mWaterPortal (https://portal.mwater.co/)
CBA common data			
Discount rate	%	1-10	Flory (2013)
Reference years	years	30 (2020 to 2050)	European Commission (2015)
GB households	number of households	15140	Department of Statistics of The Bahamas (2012)
Costs common data			
Project manager costs	USD/hour	150	Phoenix Engineer (M. Gomez, personal communication, April 14, 2022)
Project administrator costs	USD/hour	125	as before
Work coordinator costs	USD/hour	125	as before
Financial manager costs	USD/hour	200	as before
Certificated expert for public procurement costs	USD/hour	150	as before
Study documentation costs	USD/hour	150	as before
Project documentation costs	USD/hour	100	as before
Permits obtaining costs	USD/hour	100	as before
Advertisement campaign costs	USD/unit	2180	Miller et al. (2014)

Input data	Units	Value/comment	Sources
Ecosystem services valuations: C	arbon sequestration		
Carbon Pools	t C/ha	IPCC Tier 1 method	IPCC (2014, 2006)
Ecofloristic zones	Vector file		Ruesch and Gibbs (2008)
Carbon prices (social cost)	USD/tCO ₂	17.90; 20.00; 55.91	Smith et al. (2014); The World Bank (2021); U.S. EPA (1999)
Ecosystem services valuations: T	imber production		
Timber parcels	km ²	Assumptions: 88% survival rate when planting; 12 trees/ha left during harvesting.	Le et al. (2014) and Myers et al. (2004)
Percentage of harvesting	%	99	Myers et al. (2004)
Mass of wood harvested	ton/ha	(calculation- based) on the density of 420 kg/m ³ , 15 cm diameter and 30 m height for 30 year pine tree	The Engineering ToolBox (2004) and (Sanchez, 2020)
Frequency of harvest periods	years	30	Forest NSW (n.d.) (Forest NSW, n.d.)
Price of wood	USD/ton	91	Wood Resources International (2019)
Maintenance costs	USD/acre/year	0.70	Little et al. (1977)
Harvesting costs	USD/ton	11	Donagh et al. (2019)
Biomass conversion and expansion factors (BCEF)	-	range of default values	Sharp et al. (2015)
Ecosystem services valuations: D	rinking water supply	У	
Water price: minimum monthly $(0-2,000 \text{ gallons})$	USD flat rate	12.83	GBUC (2022)
Water price: 2,001 – 10,000 gallons	USD/1000 gallons	4.37	GBUC (2022)
Water price: 10,001 – 20,000 gallons	USD/1000 gallons	5.25	GBUC (2022)
Water price: >20,000 gallons	USD/1000 gallons	6.16	GBUC (2022)
Ecosystem services valuations: H	labitat provisioning		
Willingness to pay for habitat conservation	USD/ household	26.20	Wang et al. (2021)
Ecosystem services valuations: N	ature-based tourism		
Average tourism expenditure before hurricane events	USD/quarter	Depends on year and quarter	Bahamas Ministry of Tourism (2022)
Average tourism expenditure in 2021	USD/quarter	Depends on quarter	Bahamas Ministry of Tourism (2022)

Table S1 (continued)

S1. Achievable recharge volume from rainwater harvesting

35 The achievable recharge volume from rainwater harvesting schemes E_R [M³T⁻¹] in wellfield 1,3 and 4 was calculated based on recommendations by the German institute for norms (DIN, 2002):

$$E_R = A_A \times e \times h_n \times h$$

with A_A , the catchment area [M²], *e* the coefficient of yield [%] set to 0.8 for inclined hard roofs like on Grand Bahama, h_n the yearly rainfall amount [M] and *h*, the hydraulic filter efficiency [%] set to 0.9 for a typical filter value.

S2. Method to estimate the annual average tourism expenditure

The annual average tourism expenditure of the years before a hurricane event was calculated considering data from the years 2010 to 2015 and 2018. The total annual tourism expenditure of 2021 was estimated based on the data of the first quarter of 2021 and the averaged percentage of each quarter over multiple years (Bahamas Ministry of

Tourism, 2022), as shown in Table S2.

40

45

Period	Percentage	Average expenditure before hurricane events [USD]	Estimated expenditure of 2021 [USD]
First quarter of the year	27,9%	40,587,623	10,540,443
Second quarter of the year	30,1%	43,673,733	11,387,157
Third quarter of the year	22,1%	32,349,384	8,337,353
Fourth quarter of the year	19,9%	29,052,309	7,539,175
Full year	100%	145,663,049	37,804,128

Table S2. Applied tourism expenditure in tourism revenue projection (Bahamas Ministry of Tourism, 2022).

50 S3. Risk assessment related to potential MAR scheme

Potential risks were identified for rooftop rainwater harvesting with drain trenches on Grand Bahama, based on a summary in Imig et al. (2022). Further, the risks were ranked according to the stage of MAR implementation into risks occurring in the planning phase, in the catchment of the water source, during MAR operation (infiltration, storage and recovery), or during distribution and final use (Table S3-S6). Qualitative risk scores were given using a risk matrix after Swiere et al. (2005) considering both likelihood and severity of consequences on a scale from 1 to 5 (Figure S1). Possible risk treatments were suggested by considering suggestions from DEEPWATER-CE (2020) and Nadebaum et al. (2004). The remaining risks after applying the mitigation strategies were evaluated with the risk score matrix again to determine the residual risk. Some risks occur in multiple phases, and if in the prior phase a treatment was suggested, the residual risk after treatment was used to continue with the risk in the

next phase.

55

Figure S1.: Risk factor score matrix for qualitative risk assessment, relating the likelihood of hazards to the severity of consequences (Imig et al., 2022; after Swierc et al., 2005).

Table S3.: Identified, analysed, and evaluated risks in the MAR planning phase; H: human health risk, T: technical75risk; L: Likelihood, C: Severity of consequences.

	P	lanning Phase		
Туре	Potential Risk	Score	Treatment	Residual Score
Н	Surface infiltration of saltwater			
	or water with high pollutant	Very high	Sealing of storm drains at the	Moderate
	loads into drain during storm	(L:5/C:3)	top	(L:5/C:1)
	event			
Н	Inflow of saltwater or water			
	with high pollutant loads into	High	MAD only in algorithd arous	Moderate
	the gutter during storm	(L:4/C:3)	WAR only in elevated areas	(L:1/C:3)
	with very high surge			
Н	Inflow of saltwater or water			
	with high pollutant loads into	High	MAD only in algorithd arous	Moderate
	the gutter during storm	(L:4/C:3)	WAR only in clevated areas	(L:1/C:3)
	with very high surge			
Т	Groundwater flooding due to	High	Leaving enough distance to	Moderate
	mounding water table	(L:3/C:3)	groundwater table	(L:2/C:3)
Н	Roof material deteriorating	Moderate	Study on water	
	water quality	(L:4/C:1)	quality	
Т	Increased carbonate dissolution	Moderate		Moderate
	causing to subsidence	(L:1/C:3)	-	(L:1/C:3)
Н	Mobilization of toxic substances	Low	_	Low
	from carbonates	(L:1/C:2)	-	(L:1/C:2)

Table S4.: Identified, analysed, and evaluated risks during the runoff concentration phase in the catchment; H: human85health risk, T: technical risk; L: Likelihood, C: Severity of consequences.

	Ca	tchment Phase		
Туре	Potential Risk	Score	Treatment	Residual Score
Н	Surface infiltration of saltwater or water with high pollutant loads into drain during storm event	Moderate (L:5/C:1)	Adjustment of disinfection, dependent on monitoring	Low (L:2/C:1)
Н	Inflow of saltwater or water with high pollutant loads into the gutter during storm with very high surge	Moderate (L:1/C:3)	Adjustment of disinfection, dependent on monitoring	Moderate (L:1/C:3)
Н	Microbiological contamination and turbidity due to bird fecies, dead animals, leaf litter or dust on the roof	Moderate (L:3/C:2)	Adjustment of disinfection, dependent on monitoring	Low (L:2/C:2)
Н	Roof material deteriorating water quality	Moderate (L:4/C:1)	Monitoring of water quality	Moderate (L:4/C:1)
Н	Mobilization of toxic substances from carbonates	Low (L:1/C:2)	Monitoring of water quality	Low (L:1/C:2

Table S5.: Identified, analysed, and evaluated risks in the MAR operation phase; H: human health risk, T: technical risk; L: Likelihood, C: Severity of consequences.

		Operation Phase		
Туре	Potential Risk	Score	Treatment	Residual Score
Т	Increased carbonate dissolution causing	Moderate	(Hydro)geochemical and	Low
	subsidence	(L:1/C:3)	geotechnical studies	(L:1/C:2)
Т			Decommissioning of MAR	
	Groundwater flooding due to mounding	Moderate	system during wet season,	Low
	groundwater table	(L:2/C:3)	control borehole to notice high	(L:2/C:2)
			water level	
Т	Clogging of drain trench	Moderate	_	Moderate
		(L:2/C:3)		(L:2/C:3)
Т	Unplanned costs like cleaning of drain	Moderate	Account for economic	Low
	trench (No.13'); decommissioning of drain	$(1 \cdot 2/C \cdot 3)$	flevibility in the budget	$(I \cdot 2/C \cdot 2)$
	trench (No.7')	(1.2/0.5)	nexionity in the budget	(1.2/0.2)

90

Table S6.: Identified, analysed, and evaluated risks in the MAR operation phase; H: human health risk, T: technical risk; L: Likelihood, C: Severity of consequences.

9

	E	Distribution Phase		
Туре	Potential Risk	Score	Treatment	Residual Score
Н	Biological contamination of water	High	Adjust disinfection measure	Moderate
	biological containination of water	(L:2/C:4)	rujust disinfection measure	(L:2/C:3)
Н	Microbial or algae growth during storage	Moderate	Adjust storage time or	Low
	interoonal of algae growin during storage	(L:2/C:3)	disinfect only after storage	(L:1/C:2)
T/H	Contamination with disinfection by-	Moderate	Use different disinfection	Low
	products	(L:2/C:3)	measure	(L:1/C:2)

S4. Costs of reverse osmosis

A reverse osmosis system was installed in Grand Bahama and the published investment cost was \$5 million (GBUC, 2021). This value was considered as a lumped sum of the measure's costs, but no detailed information on the types of costs was found. This lumped sum did not include operation costs. Therefore, the operation costs were estimated through a literature review on

100 studies and publications describing similar projects (Abbasighadi, 2013; CDM, 2011; Sarica, 2018).

S5. Costs of Rooftop rainwater harvesting (RRWH)

Experts of the company Phoenix Engineer (M. Gomez, personal communication, April 14, 2022) provided the necessary information to estimate the investment and operation costs of the RRWH system.

- 105 The size of the gutter system was calculated by using the following information:
 - the average length of the roof buildings, which was derived from the average roof area of the buildings in Wellfield 1 (221 m²) and in Wellfields 3 and 4 (347 m²);
 - the assumption of a squared roof;
 - planning the presence of four gutter sections per house.
- 110 The costs of the gutter system were estimated by using the following information:
 - the fact that vinyl gutters have average lifespan of 25 years (Gutter professionals, 2017);
 - the assumption that all buildings have one floor with an average height of 3 m;
 - the average estimation of one soakaway excavation per building,
 - the estimation of the total volume of gravel to be removed: corresponding to 23.8 m³ for the buildings in Wellfield 1

115 and 37.4 m^3 for the buildings in Wellfields 3 and 4.

Table S7 describes the costs per unit used to estimate the operation costs, like the maintenance of the system or the service of experts to replace gutters.

Table S7. Basis for estimating investment and operation costs of the RRWH system.

Type of cost	Price	Unit	Comment
Project management and administration			
Experts in the installation of the system	190.00	\$ / hour	16-hour installation per house, suggested by Phoenix Engineer
Preparation of the project			
Water quality analysis	160.00	\$ / hour	Assumption of 40 hours
Implementation of works and equipping			
Gutter (vinyl)	15.00	\$ / ft	Length based on the average size of roof
Distribution piping	10.50	\$ / ft	Length based on average height of one floor house
Filter	161.29	\$ / unit	Self-cleaning filter from (Rainy, 2023)
Excavation soakaway	4,500.00	\$ / unit	One soakaway per house
Gravel	26.40	\$ / ton	Stone 3/8"
Operation			
Maintenance of system	500.00	\$ / month	
Experts in replacement of gutters	190.00	\$ / hour	Vinyl gutters have a lifetime of 25 years
Regular water quality analysis	160.00	\$ / hour	Assumption of two days per month

120

125

S6. Costs of reforestation

Jantawong et al. (2022) reported reforestation costs according to the initial stocking density. We combined these data with the number of trees in the reforestation area, information that was derived from the extent of the measure and from expert-based knowledge from Turks & Caicos Island Government (B. N. Manco, personal communication, April 1, 2022). As a result, we estimated that the reforestation would involve 1000 trees per hectare.

Table S8 displays the costs for the pre-planting phase, tree planting and operation. Tree production costs were assumed to be null, as the ongoing project "Establishment of a seedling nursery and replanting for forest recovery on Grand Bahama" would cover these costs by implementing a nursery for forest recovery (University of The Bahamas, 2021). We assumed two tree-planting events of the project (one for the first and one for the second year), where all saplings would be planted in the

130 reforestation sites. For the maintenance costs, we assumed that weeding and fertilizer application would take place for two years, and that also tree-growth monitoring is needed for two years from planting.

Table S8. Basis for estimating investment and operation costs of the reforestation scenarios from Jantawong et al. (2022)

Type of cost	Year 1	Year 2	Unit
Pre-planting			
Site preparation	244.10	-	\$ / ha
Pre-planting site survey	13.07	-	\$ / ha
Tree planting			
Planting	2,346.20	1,218.59	\$ / ha
Materials and equipment	253.80	129.03	\$ / ha
Labour	874.00	546.56	\$ / ha
Transportation	99.55	23.94	\$ / ha
Operation			
Maintenance	1,398.36	693.97	\$ / ha
Monitoring	54.19	31.04	\$ / ha

References

Abbasighadi, A., 2013. A Cost-Benefit Analysis of a Reverse Osmosis Desalination Plant with and without Advanced Energy Recovery Devices. Institute of Graduate Studies and Research, North Cyprus.

Bahamas Ministry of Tourism, 2022. Expenditure: Yearly Expenditure Comparisons By Qtr & Visitor Type.

- 140 CDM Camp Dresser & McKee Inc., 2011. Groundwater Supply, Sustainability Yield and Storm Surge Vulnerability.
 - DEEPWATER-CE, 2020. Common methodological guidance for DEEPQWATER-CE MAR pilot feasibility studies [WWW Document]. URL https://www.interreg-central.eu/Content.Node/DEEPWATER-CE.html

Department of Statistics The Bahamas, 2012. The Commonwealth of The Bahamas: Cenus of Population and Housing 2010.

Deutsche Institut für Normung e.V., 2017. Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of

- 145 particle size distribution (ISO 17892-4:2016); German version EN ISO 17892-4:2016. https://doi.org/https://dx.doi.org/10.31030/2362539
 - DIN Deutsche Institut für Normung e.V., 2002. Rainwater harvesting systems Part 1: Planning, installation, operation and maintanance DIN 1989-1:2002-04.

150 Grand Bahama island, in: American Geophysical Union, Fall Meeting. American Geophysical Union, Fall Meeting 2020.

Esri, 2021. Esri 2020 Land Cover.

European Commission, 2015. Guide to cost-benefit analysis of investment projects: Economic appraisal tool for cohesion policy 2014-2020.

155 European Union, Luxembourg.

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315.

Dokou, Z., Al Baghdadi, L., Mazzoni, N., Moxey, A., Nikolopoulos, E.I., 2020. The impact of hurricane Dorian on freshwater resources of

Donagh, P. Mac, Roll, J., Hahn, G., Cubbage, F., 2019. Timber Harvesting Production, Costs, Innovation, and Capacity in the Southern Cone and the U.S. South, in: Concu, G. (Ed.), Timber Buildings and Sustainability. InTech.

Eurostat, 2013. EU-DEM (LAEA). GISCO.

Flory, B., 2013. Updating the Discount Rate Used for Benefit-Cost Analysis at Seattle Public Utilities- Draft. Munic. Res. Serv. Cent.

- 160 Forest NSW, n.d. The pine plantation rotation [WWW Document]. URL https://www.forestrycorporation.com.au/__data/assets/pdf_file/0009/238473/pine-plantation-rotation.pdf
 - GBUC, 2022. Metering, Rates & Tariffs: Current Rates & Charges [WWW Document]. URL https://grandbahamautility.com/accountbilling/rates/

GBUC Public Relations, 2021. \$5 million Reverse Osmosis System for Grand Bahama completed by GBUC.

- 165 Gutter professionals, 2017. How Long Should a Gutter System Last? [WWW Document]. URL https://gutterprofessionalsinc.com/howlong-should-a-gutter-system-last/
 - Imig, A., Szabó, Z., Halytsia, O., Vrachioli, M., Kleinert, V., Rein, A., 2022. A review on risk assessment in managed aquifer recharge. Integr. Environ. Assess. Manag. 18, 1513–1529. https://doi.org/10.1002/ieam.4584
- IPCC, 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, ed. IPCC, 170 Switzerland.
 - IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories: Volume 4: Agriculture, Forestry and Other Land Use, Eggleston. ed.
 - Jantawong, K., Kavinchan, N., Wangpakapattanawong, P., Elliott, S., 2022. Financial Analysis of Potential Carbon Value over 14 Years of Forest Restoration by the Framework Species Method. Forests 13, 144. https://doi.org/10.3390/f13020144
- 175 Le, H.D., Smith, C., Herbohn, J., 2014. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Chang. 24, 334–348. https://doi.org/10.1016/j.gloenvcha.2013.09.010
 - Little, B., Buckley, D., Cant, R., Henry, P., Jefferiss, A., Mather, J., Stark, J., Young, R., 1977. Land resources of the Bahamas: a summary. Land Resources Division, Ministry of Overseas Development, England.

Miller, I., Russel, C., Daniels, M., 2014. Cost Benefit Analysis of Casuarina Species Management on Eleuthera Island, The Bahamas -

- 180 Governor's Harbour Airport: A Case Study, in: CABI (Ed.), Economic Impact of IAS in The Caribbean: Case Studies. pp. 12–29.
 - Myers, R., D. Wade, C. Bergh, 2004. Fire Management Assessment of the Caribbean Pine (Pinus caribea) Forest Ecosystems on Andros and Abaco Islands, Bahamas: GFI publication no. 2004-1.
 - Nadebaum, P., Chapman, M., Morden, R., Rizak, S., 2004. A Guide To Hazard Identification & Risk Assessment For Drinking Water Supplies.

185 Rainy, 2023. "Rainy" filters RF80 [WWW Document]. URL https://www.rainyfilters.com/products/rainy-filters

Ruesch, A., Gibbs, H.K., 2008. Global ecofloristic zones mapped by the United Nations Food and Agricultural Organization.

Sanchez, M., 2020. Conservation genetics and biogeography of the Caribbean pine (Pinus caribaea var. bahamensis) in the Bahaman archipelago. Birbeck University of London.

- Sar\ica, A., 2018. Cost-benefit Analysis of Water Production with Seawater Reverse Osmosis System: A Case study for Mersin Free Zone and International Port. Int. J. Econ. Financ. Issues 8, 142–147.
 - Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N.:
 Vigerstol, K.: Pennington, D.: Mendoza, G.: Aukema, J.: Foster, J.: Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C.,
 Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N.,
 Perelman, A., Lacayo, M., Mandle, L., Hamel, P., Vogl, A.L., Rogers, L., Bierbower, W., 2015. InVEST 3.3.1. User's Guide.
- Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F., Tubiello, F., 2014. Agriculture, Forestry and Other Land Use (AFOLU), in: Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (Ed.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, pp. 811–922.
- Swierc, J., Page, D., Leeuwen, J. Van, 2005. Preliminary Hazard Analysis and Critical Control Points Plan (HACCP) Salisbury Stormwater
 - to Drinking Water Aquifer Storage Transfer and Recovery (ASTR) Project of Montana. Water.
 - The Engineering ToolBox, 2004. Wood Densities of Various Species [WWW Document]. URL https://www.engineeringtoolbox.com/wood-density-d_40.html https://www.engineeringtoolbox.com/wood-density-d_40.html
- 205 The World Bank, 2021. State and Trends of Carbon Pricing 2021. Washington, DC.
 - University of The Bahamas, 2021. Establishment of a seedling nursery and replanting for forest recovery on Grand Bahama: Grant Proposal Submitted to the Bahamas Protected Areas Fund.
 - US EPA United States Environmental Protection Agency, 1999. Decentralized Systems Technology Fact Sheet. US Environ. Prot. Agency Washington, D.C. 1–4.

210 Wang, W., Mu, J.E., Ziolkowska, J.R., 2021. Perceived Economic Value of Ecosystem Services in the US Rio Grande Basin. Sustainability

13, 13798. https://doi.org/10.3390/su132413798

Wood Resources International, 2019. Pulpwood Price Indices [WWW Document]. URL https://woodprices.com/pulpwood-price-indices/