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Abstract. Non-asymptotic (NA) probability distributions of block maxima (BM) have been proposed as an alternative to

asymptotic distributions of BM derived by classic extreme value theory (EVT). Their advantage should be the inclusion of

moderate quantiles as well as extremes in the inference procedures. This would increase the amount of used information

and reduce the uncertainty characterizing the inference based on short samples of BM or peaks over high threshold. In this

study, we show that NA distributions of BM suffer from two main drawbacks that make them of little usefulness for practical5

applications. Firstly, unlike classic EVT distributions, NA models of BM imply the preliminary definition of their conditional

parent distributions, which explicitly appears in their expression. However, when such conditional parent distributions are

known or estimated also the unconditional parent distribution is readily available, and the corresponding NA distribution of

BM is no longer needed, as it is just an approximation of the upper tail of the parent. Secondly, when declustering procedures

are used to remove autocorrelation characterizing hydro-climatic records, NA distributions of BM devised for independent10

data are strongly biased even if the original process exhibits low/moderate autocorrelation. On the other hand,NA distributions

of BM accounting for autocorrelation are less biased but still of little practical usefulness. Such conclusions are supported by

theoretical arguments, Monte Carlo simulations, and re-analysis of sea level data.

1 Introduction

In the last decades, the statistical analysis of hydro-climatic extremes has mainly relied on theoretical results and models devel-15

oped by a branch of statistics called extreme value theory (EVT) (Fisher and Tippett, 1928; Von Mises, 1936; Gnedenko, 1943;

Jenkinson, 1955; Gumbel, 1958; Balkema and de Haan, 1974; Pickands III, 1975; Leadbetter, 1983; Smith, 1984; Davison

and Smith, 1990; Coles, 2001; Beirlant et al., 2006; Salvadori et al., 2007). EVT describes the extremal behavior of observed

phenomena by asymptotic probability distributions that are valid under certain assumptions about the parent process, such as

large sample sizes n (i.e. n→∞ to guarantee asymptotic convergence), independence, and distributional identity. However,20

hydro-climatic records are commonly quite short and hardly ever behave as independent and identically distributed random

variables. More often, hydro-climatic processes result from combinations of heterogeneous physical processes (e.g., Morrison

and Smith, 2002; Smith et al., 2011, 2018), they exhibit autocorrelation (e.g., Kantelhardt et al., 2006; Wang et al., 2007; Seri-

naldi, 2010; Labat et al., 2011; Papalexiou et al., 2011; Serinaldi and Kilsby, 2016b; Lombardo et al., 2017; Iliopoulou et al.,
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2018; Markonis et al., 2018; Serinaldi and Kilsby, 2018; Serinaldi et al., 2018, and references therein), and their behavior is25

better described by stochastic processes incorporating such properties (e.g., Serinaldi and Kilsby, 2014a; Serinaldi and Lom-

bardo, 2017a, b; Papalexiou, 2018; Koutsoyiannis, 2020; Papalexiou and Serinaldi, 2020; Papalexiou et al., 2021; Papalexiou,

2022; Serinaldi et al., 2022a, and references therein).

As a consequence, the lack of fulfillment of EVT assumptions affects the analysis of block maxima (BM) or over thresh-

old (OT) values, as the BM and OT sample selection generally yields short sample sizes and does not remove the effects30

of autocorrelation and possible heterogeneity of the generating mechanisms (see e.g., Koutsoyiannis, 2004; Iliopoulou and

Koutsoyiannis, 2019; Serinaldi et al., 2020b). Research in EVT has addressed these issues to some extent for the case of

asymptotic and sub-/pre-asymptotic methods for BM and OT processes (see Serinaldi et al. (2020b) and references therein for

an overview).

On the other hand, a parallel literature has focused on non-asymptotic (NA) approaches for BM, attempting to use as many35

observations as possible to infer the distribution of the largest values. NA distributions of BM include Todorovic distributions

and their special cases (e.g., Todorovic, 1970; Todorovic and Zelenhasic, 1970; Lombardo et al., 2019), the so-called Metasta-

tistical Extreme Value (MEV) distributions and their variants, such as Simplified MEV (SMEV; Marani and Ignaccolo, 2015;

Zorzetto et al., 2016; De Michele and Avanzi, 2018; Marra et al., 2018; De Michele, 2019; Marra et al., 2019; Hosseini et al.,

2020; Miniussi et al., 2020; Zorzetto and Marani, 2020).40

Serinaldi et al. (2020b) explained the conceptual and analytical relationships among the above-mentioned NA distributions

of BM in the context of compound distributions of order statistics, and introduced compound beta binomial distributions (βBC)

of BM of processes with stationary autocorrelation structure. βBC distributions allow one to avoid declustering procedures

required for instance by (S)MEV to obtain samples fulfilling the assumption of independence.

However, while βBC distributions allow for a correct interpretation of NA models of BM and their connections with their45

parent distributions, Serinaldi et al. (2020b) did not set out to comprehensively explore the usefulness or otherwise of NA
models of BM in practical analysis. In this study, we further explore and discuss the extent of redundancy of such models

with respect to their parent distributions as well as the actual lack of effectiveness of declustering procedures in the context of

NA-based analysis.

This paper falls in the class of so-called neutral (independent) validation/falsification studies (see e.g., Popper, 1959;50

Boulesteix et al., 2018, and references therein) aiming at independently checking the theoretical consistency in statistical

methods applied in analysis of hydro-climatic data (Lombardo et al., 2012, 2014, 2017, 2019; Serinaldi and Kilsby, 2016a;

Serinaldi et al., 2015, 2018, 2020a, b, 2022b). We put emphasis on the common but misleading habit of seeking for confir-

mation by iterating the application of a given method to observed data whose generating process is inherently unknown. In

fact, if a method is technically flawed, its output will always be consistent across applications but systematically incorrect. On55

the contrary, genuine neutral analysis calls into question the theory behind a method/model and checks it analytically and/or

against challenging controlled conditions via suitable Monte Carlo simulations.

This study is organized as follows. In Section 2, we briefly review the mainNA distributions of BM proposed in the literature

and their relationship with the corresponding distributions of the parent process. Section 3 recalls the rationale of performing
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extreme value analysis and explains why NA models of BM are conceptually redundant in this context. These aspects are60

further discussed in Section 4 using simple Monte Carlo simulations, and re-analyzing sea level data previously studied in the

literature. Monte Carlo experiments in Section 5 investigate the performance of some NA models of BM under independence

and serial dependence, the effectiveness of declustering methods proposed to deal with autocorrelated time series, and the

reliability of some results previously reported in the litarture. In Section 6, the problems concerning the use of NA models of

BM for practical applications are placed in the wider context of a questionable approach to applied statistics in hydro-climatic65

studies. Conclusions are summarized in Section 7.

2 Overview of NA distributions of BM

To support our discussion, we firstly recall some basic theoretical results, referring to Serinaldi et al. (2020b) and references

therein for more details about the analytical derivation of equations reported below. Under the assumption of identical proba-

bility distribution, BM are the largest order statistics (David and Nagaraja, 2004, p. 1) of a sequence of m random variables70

Z1, ...,Zm with the same cumulative distribution function (cdf) FZ(z). If these variables are also independent, the cdf of BM,

Y , in random samples of finite size m is

FY (z) =
m∑

i=m

(
m

i

)
F i

Z(z)[1−FZ(z)]m−i = Fm
Z (z)

=1−FB(m− 1;m,FZ(z))

=FB(0;m,1−FZ(z))

=Fβ(FZ(z);m,1), (1)

where FB and Fβ are the binomial and beta cdf’s, respectively. Under the assumption of serial dependence, the distribution

of BM in finite-size blocks is unknown as it depends on the m-dimensional joint distribution of the m variables forming a

block (Todorovic, 1970; Todorovic and Zelenhasic, 1970). Closed-form solutions do exist for the case of Markovian processes,75

whereby the joint distribution is bivariate (Lombardo et al., 2019). For high-order dependence structures, the NA distribution

of BM can be approximated by beta-binomial distribution βB (Serinaldi et al., 2020b, Section 2.2)

FY (z) =
B(α(z),m + β(z))

B(α(z),β(z))

=FβB(0;m,1−FZ(z),ρβB(FZ(z),ρ)), (2)

where FβB is the βB cdf, B(·, ·) is the complete beta function (Arnold et al., 1992, pp. 12-13), ρβB(z) is known as the ‘intra-

class’ or ‘intra-cluster’ correlation, which depends on FZ(z) and the autocorrelation function (ACF) of the parent process

{Zi}m
i=1, denoted as ρ. When the parent process Zi is serially uncorrelated (ρβB = 0), Eq. 2 yields Eq. 1 as a particular case.80
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The process Z is named ‘parent’ as it is the stochastic process whose distribution FZ appears in the expression of the distri-

bution of BM FY , and it could have a no strict physical meaning. For example, the parent process used to build the distribution

of BM for precipitation or stream flow sampled at a given time scale (e.g., daily) could be the process of observations over any

threshold guaranteeing the selection of at least one observation per block. Therefore, inter-arrival times of the observations z

are always smaller than or equal to the m time steps corresponding to the block size. As a limiting case, Z can obviously be85

the complete stream flow or rainfall process sampled at the finest time scale (e.g., daily).

As discussed in more depth in the next sections, every distribution of BM (asymptotic or non-asymptotic) provide just an

approximation of the upper tail of the distribution of the parent process. Eqs. 1 and 2 indicate that two parent processes can

have the exact marginal distribution, but the expression of the correspondingNAmodel of BM approximating the upper tail of

FZ might be different according to the presence or absence of serial dependence. In other words, serial dependence influences90

the patterns of the observations z within each block, and therefore the sequences of BM and the form of their NA distribution

FY . On the other hand, FZ is unaffected by serial dependence as it describes the distribution of Z, which do not imply any

operation (aggregation, average, or BM selection) over a time window (block).

The assumption of intra-/inter-block distributional identity can be relaxed by resorting to the concept of mixed/compound

distributions, which integrate (average) over the parameter space of the parent distribution, under the assumption that these95

parameters can change within/between each block (Marra et al., 2019; Serinaldi et al., 2020b). For instance, such changes/fluc-

tuations can reflect different physical generating mechanisms (e.g., convective and frontal weather systems generating storms

in different seasons) or inter-block sampling uncertainty related to still unidentified physical processes, which therefore need a

stochastic description. A general compact form of this class of models can be written as

FY (z) =
∞∑

l=0

∫

Ωθ

Gl(z;θ)g(l,θ)dθ = E [Gl(z;θ)] , (3)

where Gl(z;θ) = P[Z1 ≤ z ∧Z2 ≤ z ∧ ...∧Zl ≤ z|L = l,Θ = θ] is the joint distribution of the parent process accounting for100

intra-block dependence, Ωθ is the state space of parameter vector θ, and E [·] is the expectation operator. Gl is integrated (aver-

aged) over the number of observations L in each block of size m and the parameters Θ, which are treated as random variables

with joint probability density function (pdf) g(l,θ). Equation 3 is a generalization of Todorovic distributions incorporating

possible inter-block fluctuations of parameters of the joint distribution of parent process Z.

Since high-dimensional joint distributions Gl are difficult to handle and fit, the general model in Eq. 3 can be approxi-105

mated by a compound version of the βB distribution in Eq. 2 for high-order dependence structures, resulting in the following

compound βB model (βBC) (Serinaldi et al., 2020b, Section 5.2)

FY (z)∼= FβBC(z) :=
∞∑

l=0

∫

Ωρ

∫

Ωθ

FβB(0; l,1−FZ(z;θ),ρβB(FZ(z;θ),ρ))g(l,ρ,θ)dρdθ

=E [FβB(0; l,1−FZ(z;θ),ρβB(FZ(z;θ),ρ))] , (4)
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where FβBC is the βBC cdf, ρ is correlation matrix of the parent process Z, and Ωρ is its state space. Under the assumption of

independence (ρ = 0), the βB distribution reduces to a binomial distribution (which can also be written in the form of a beta

distribution), and Eq. 4 yields MEV models as special cases110

FY (z) =
∞∑

l=0

∫

Ωθ

FB(0; l,1−FZ(z;θ))g(l,θ)dθ

=
∞∑

l=0

∫

Ωθ

Fβ(FZ(z;θ); l,1)g(l,θ)dθ

=
∞∑

l=0

∫

Ωθ

F l
Z(z;θ)g(l,θ)dθ. (5)

Analogously to Eqs. 1 and 2, Eqs. 4 and 5 approximate the upper tail of the distribution of the parent process Z

FZ(z) =
∫

Ωθ

FZ(z;θ)g(θ)dθ (6)

which is itself a compound distribution (averaged over the parameter space) and should not be confused with the conditional

distributions FZ(z;θ), which depend on the parameters. FZ in Eq. 1 is also unaffected by serial correlation, which in turn115

changes the form of the corresponding NA distribution FY of BM. As mentioned above, we can have two parent processes

with identical FZ and different FY depending on the presence or absence of serial dependence. Eqs. 4 and 5 are quite general

and account not only for inter-block fluctuations via g(θ), but also intra-block variability (such as different physical generating

mechanisms and/or seasonal fluctuation acting at intra-block scale) assuming that the conditional distributions FZ(z;θ) are

compound/mixed, that is120

FZ(z;θ) =
∫

Ωϑ

FZ(z;ϑ,θ)g(ϑ;θ)dϑ, (7)

where g(ϑ;θ) describes the intra-block variability of ϑ (e.g., seasonal fluctuations or intra-annual weather systems’ switching)

conditioned on the inter-block status (e.g., El Niño/La Niña conditions spanning one or more years). Of course, g(ϑ;θ) reduces

to g(ϑ) if the intra-block fluctuations are assumed to be independent of inter-annual fluctuations. A typical example is the

common assumption of year-to-year invariant seasonal patterns.125

In the next sections, models in Eqs. 1, 2, 4 and 5 are compared with the corresponding parent distributions. We stress that

the models in Eqs. 4 and 5 must be compared with the corresponding compound parent distribution in Eq. 6, which accounts

for the same intra-/inter-block variability. It is worth noting that the following discussion is fully general and valid for any

NAmodel of BM requiring the preliminary knowledge/definition of FZ(z;θ) and its use in the expression of FY . Hereinafter,

the terms ‘NA model/distribution of BM’ and ‘NA model/distribution’ are used interchangeably to denote the same class of130

models.
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3 Modeling extreme values: asking ‘why’ before looking for ‘how’

Asymptotic distributions provided by EVT are the limit distributions of NA models under some assumptions concerning the

nature of the marginal distribution and dependence structure of the parent process Z. In particular, it is well known that the

Generalized Extreme Value (GEV) and Generalized Pareto (GP) distributions are the general asymptotes of the distributions135

of BM and peaks over thresholds (POT), respectively, under independence (or certain types of weak dependence) and distri-

butional identity (see e.g., Leadbetter et al., 1983; Coles, 2001). Therefore, EVT models are fairly general and relatively easy

to apply mainly because they do not require a precise knowledge of FZ (Leadbetter et al., 1983, p. 4), which instead explicitly

appears in the expression of any NA model. This aspect has already been stressed in standard handbooks of applied statistics

such as Mood et al. (1974, p. 258), who stated (using our notation and setting L = m) “One might wonder why we should140

be interested in an asymptotic distribution of Y when the exact distribution, which is given by FY (z) = Fm
Z (z), where FZ is

the c.d.f. [cumulative distribution function] sampled from, is known. The hope is that we will find an asymptotic distribution

which does not depend on the sampled c.d.f. FZ . We recall that the central-limit theorem gave an asymptotic distribution for

Z̄ [sample mean] which did not depend on the sampled distribution even though the exact distribution of Z̄ could be found.”

Bearing in mind that Z and Y are two different processes (Serinaldi et al., 2020b, Sect 3.2), the usefulness and widespread145

application of asymptotic EVT models of BM and POT stems from the fact that such distributions approximate (converge to)

the upper tail of the distribution of the parent process Z without needing to know FZ (under the above-mentioned assumptions)

and just requiring a limited amount of information (i.e., BM and/or POT observations) instead of complete time series. This is

paramount in practical applications as it allows the use of (i) a couple of general distributions (GEV and GP) supported by a

theory that clearly identifies the range of validity of such models, and (ii) data that are more easy to collect and widely available150

worldwide compared to complete time series. For example, meteorological services provide most of the historical information

on rainfall in terms of annual maximum values for specified durations to be used in the so-called intensity-duration-frequency

(IDF) analysis. In these cases, we do not know FZ and we cannot fit it either, as the data representing the whole rainfall process,

and therefore FZ , are not available. However, EVT states for instance that the GEV distribution asymptotically approximates

the upper tail of FZ independently of the form of FZ (under certain constraints) based on theoretical results concerning the155

asymptotic behavior of FY = Fm
Z . EVT distributions independent of the form of FZ are also useful when observations of Z

are available, but defining a reliable model for FZ is too difficult due to complexity of the hydro-climatic process of interest

and its generating mechanisms.

Unlike asymptotic models, NA distributions require the preliminary knowledge/fit of FZ , which explicitly appears in their

expression. However, if we already know FZ (or we have a good estimate of it), we no longer need any NA distribution of160

BM, as the latter provides just an approximation of the upper tail of the known/fitted FZ . We do not even need any asymptotic

model, and more generally any model of BM or POT, as these are just processes extracted from the parent process Z whose

distribution FZ already describes the whole state space, including the extreme values. The use of extreme value distributions

makes sense if and only if we do not have enough information on FZ . Otherwise, the latter provides all information needed to

6
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make statements about any quantile. In this context, Fm
Z only plays a functional/intermediate role in theoretical derivations to165

move from FZ to general asymptotic distributions independent of FZ , to be used when FZ is not available.

The same remarks hold true for any compound NA model such as βBC and its special cases. In fact, these models require

the preliminary inference of FZ to derive distributions (compound versions of Fm
Z ) that only approximate the upper tail of the

previously estimated FZ . It is easy to understand that such a procedure makes little sense in practical applications: why should

one search for an approximation of the upper tail of a distribution that is already known or fitted? The use of compound NA170

models is not even justified by their mixing nature, which allows for averaging inter-block fluctuations of parameters. In fact, as

further discussed below, such a mixing procedure can directly be applied to FZ , thus obtaining a compound distribution of the

parent process Z that can readily be used to make statements on any quantile, avoiding unnecessaryNA approximations of the

upper tail. This explains whyNA have not received much attention and why the recently proposed compoundNAmodels are

of little practical usefulness, if any. Their usefulness is mainly theoretical, as they help explain the inherent differences between175

parent processes Z and BM processes Y , thus avoiding misconceptions and misinterpretation of different model outputs (see

Serinaldi et al., 2020b).

4 Do we need NA distributions of BM in practical applications? Investigating circular reasoning and redundancy

Albeit the concepts discussed in Section 3 should be well-known and self-evident, they seem to be systematically neglected

in hydro-climatic literature dealing with NA models. Therefore, this section reports further discussion using some simple180

examples and real-world data re-analysis to highlight the relationship betweenNA models and the embedded distribution FZ ,

thus showing concretely how the former provide just a redundant approximation of the upper tail of the latter.

4.1 Estimation of T -year events: recalling basic concepts to avoid inconsistencies

The first example is freely inspired by the work of Mushtaq et al. (2022), who searched for an approach to select the most

suitable distribution FZ of ordinary stream flow peaks (i.e., the parent process Z) between Gamma and Log-normal to be used185

to build MEV distributions FY for annual maxima (AM, i.e., the BM process Y ). Here, we focus on the very primary logical

contradiction (circular reasoning) of attempting to find a distribution FZ to build FY as a function of FZ to approximate the

tail of FZ itself, which is already known exactly. In this respect, to keep the discussion as simple and focused as possible but

without loss of generality, we do not use compound models but assume that the parent process is independent and identically

distributed, following a Gamma distribution. Compound models and the issues related to some MEV technicalities (such as190

the declustering method used to obtain apparently independent ordinary events) will be discussed in the second example.

Concerning the first example, we firstly discuss the above mentioned contradiction (circular reasoning) from a conceptual

perspective and then provide visual illustration by Monte Carlo simulations.

7
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4.1.1 The logic behind the estimation of return levels and the role of FZ and FY

For the sake of illustration, let us suppose we have a hypothetical stream flow process sampled at daily time scale, and we are195

interested in estimating a flow value exceeded on average every T years, i.e., the so-called T -year return level corresponding to

T -year return period (see e.g., Eichner et al., 2006; Serinaldi, 2015; Volpi et al., 2015, and references therein). Under the ideal

situation that infinitely long records are available and therefore FZ and FY are known exactly, one can use the distribution of the

parent process FZ and determine the T -year return level as the quantile zp that is exceeded with probability p = 1/(365T ), i.e.,

the value exceeded on average once in T years = 365T days (leaving aside leap years). Since zp is a quantile of the distribution200

FZ , which describes the parent process at its finest available resolution (here, daily), it is unaffected by possible autocorrelation

and clustering of T -year events (see Bunde et al., 2004, 2005; Serinaldi et al., 2020b, for an in-depth discussion). Note that this

is the definition applied in the literature to compute the exact T -year return level used to assess the accuracy of NA models

(see e.g., Marani and Ignaccolo, 2015; Marra et al., 2018).

However, real world records rarely span more than a few decades, and data are not enough to obtain FZ (and FY ) and205

determine directly the T -year return level for high values of T such as 100 or 1000 years. Therefore, an alternative approach

is based on the distribution of AM, i.e., BM within relatively short intervals (i.e., 365 days). Of course, a virtually infinite

sequence of BM defines their exact distribution. Such a distribution allows an approximate estimation of the T -year return

level as the quantile that is exceeded with probability 1/T because one year is the finest time scale of AM. In other words, FY

cannot provide information about events occurring more often than once in m days (e.g., once per year for AM), as this is the210

finest sampling frequency of BM for blocks of size m. This estimation of T -year based on BM involves the joint exceedance

probability within each block described by the intra-block joint distribution Gl (see Section 2), and therefore it is affected by

autocorrelation (see Eichner et al., 2006, for a detailed discussion).

Therefore, the distributions of AM commonly used in hydro-climatology are only approximations of the upper tail of FZ ,

and their estimation is justified if FZ is unknown. This can happen if (i) we have no regular records of the parent process215

to reliably estimate FZ , or (ii) a faithful parametrization of FZ is not so easy to determine due to the difficulties to account

for various characteristics of the underlying process, such as cyclo-stationarity, different physical generating mechanisms, and

other possibly unknown factors. In these cases, EVT comes into play stating for instance that, under certain assumptions, the

distribution of BM within relatively short intervals (e.g., 365 days) converges to one of the three asymptotic extreme value

models summarized by GEV distribution independently of the exact form of FZ . Of course, the approximate/partial fulfillment220

of EVT assumptions affects convergence. For example, autocorrelation and lack of distributional identity slow convergence

down (Koutsoyiannis, 2004; Eichner et al., 2006; Serinaldi et al., 2020b), and sometimes prevent it, resulting in degenerate

models. These remarks explain why asymptotic models are so powerful tools widely applied in any discipline dealing with

extreme values.
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4.1.2 Visualizing the relationship between of FZ and FY225

A simple example with graphical illustration can help better clarify the difference between FZ and FY (see Serinaldi et al.,

2020b, Section 3.2 for a formal discussion based on theoretical arguments). Let us assume that we have 365 · 105 observations

of an independent process Z following a Gamma distribution with shape and scale parameters κ = σ = 2, representing for

instance 105 years of daily records of a hypothetical stream flow process (or a generic hydro-climatic process). These data

allow one to build the empirical version of FZ and FY and the corresponding pdf’s fZ and fY . In particular, Fig. 1 shows230

the empirical pdf’s (Fig. 1a-c) and the return level plots (i.e., return level vs. return period; Fig. 1d-f) for two sub-samples of

size 365 ·100 and 365 ·500 (i.e., 100 and 500 years, respectively), and the whole data set (10000 years). Figure 1 also displays

the theoretical Gamma pdf and return level curves as well as empirical and theoretical 100-year quantile (vertical lines). The

T -year return levels are computed as the (1− 1
T ) ·100% quantiles of the empirical cdf of AM and the (1− µ

T ) ·100% quantiles

of the theoretical and empirical cdf of the process Z, where µ = 1/365 can be interpreted as the inter-arrival time (in years)235

between two records of Z.

For T greater than∼= 20 years, the upper tail of the empirical FY (fY ) matches that of the empirical FZ (fZ). This matching

and convergence to the upper tail of the theoretical FZ (fZ) improve as the sample size increases. This behavior is further

stressed focusing on the 100-year return levels (vertical lines in Fig. 1). It should be noted that the discrepancies between FY

and FZ for T < 20 years do not depend on the sample size. Instead, they are related to the different nature of the processes Y240

and Z, and their magnitude also depends on autocorrelation when data are correlated (see Serinaldi et al., 2020b, Sect 3.2, for

a theoretical discussion). Both distributions provide very close estimates of the 100-year return level for each sample size, and

the accuracy obviously improves as the sample size increases. Moreover, Fig. 1 provides an intuitive (albeit very simplified)

explanation of why EVT models of BM work when FZ is not available and EVT assumptions are fulfilled.

From Fig. 1, it is evident that we do not need any model for Y if we already have a model for the parent Z. Since NA245

distributions require the preliminary definition/fit of a model for FZ , they have no practical usefulness, as the preliminarily

fitted FZ already provides all the information to make statements on both ordinary and extreme events/quantiles. In this

respect, defining NA distributions from FZ is only an unnecessary and redundant step yielding just an approximation of the

embedded FZ . These issues are further discussed in the next section reviewing a real-world data analysis previously reported

in the literature.250

4.2 Re-analysis of sea level data

In this section, we further illustrate the foregoing concepts by re-analyzing two sea-level time series already studied by Caruso

and Marani (2022). These data refer to hourly sea-level records from the tide gauge of Hornbæk (Denmark) and Newlyn (United

Kingdom), spanning 122 years (1891-2012) and 102 years (1915-2016), respectively. Data are freely available from University

of Hawaii Sea Level Center (UHSLC) repository (Caldwell et al., 2015, http://uhslc.soest.hawaii.edu/data/?rquh745a/). For the255

sake of consistency with the original work, we removed years with less than six months of water level observations and days

with less than 24 hours of data (see Caruso and Marani, 2022). This resulted in 120 and 100 years of data for Hornbæk and
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Figure 1. Probability density functions (a-c) and return level plots (return period vs. return level; d-f) of samples of varying size (365 ·
{100,500,10000}) and corresponding BM (with block size m = 365) drawn from a Gamma distribution. The diagrams show the relationship

between parent distribution and distribution of BM along with the convergence of the upper tails of the empirical distribution toward the

theoretical counterparts. The abscissa of dashed vertical lines indicates the value of the theoretical 100-year return level (gray lines) and its

estimates from samples of the parent process Z (blue lines) and the corresponding BM process Y (red lines).
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Newlyn gauges, respectively. Moreover, time series are pre-processed by filtering out the time-varying mean sea level (m.s.l.)

computed using the average of daily levels for each calendar year. Thus, the filtered time series retain the contributions from

astronomical tides and storm surges.260

Daily maxima are used as the basis for extreme value analysis, which is performed by three different approaches: (i) GEV

distribution of AM, (ii) GP distribution of POT, and (iii) GP-based MEV of peaks over moderate threshold (i.e., the so-

called ordinary events). These extreme value models assume that the underlying process is a collection of independent random

variables. Since sea levels are a typical example of autocorrelated process, data are preliminarily declustered by selecting

peaks that are separated by at least 30 days, to obtain (approximately) independent samples. In more detail, Caruso and Marani265

(2022) adopted “a threshold lag of 30 d, which yielded the minimum estimation error under the MEVD approach”. Therefore,

declustered data are used to extract AM, and POT samples over optimal statistical thresholds (Bernardara et al., 2014). Caruso

and Marani (2022) selected the GP threshold for POT by studying the stability of the GP shape parameter (Coles, 2001, p. 83),

while they chose the moderate threshold of GP distributions entering MEV “by testing different threshold values and evaluating

the goodness of fit of the distribution using diagnostic graphical plots”.270

Before presenting results of extreme value analysis, it is worth noting that:

1. The extraction of independent data from correlated samples is referred to as ‘physical declustering’ (Bernardara et al.,

2014). Its algorithms rely on physical properties of the process of interest (e.g., the lifetime of the weather systems

generating a storm over an area) and/or properties of the occurrence process (e.g., statistics of the (inter-)arrival times

of rainfall storms). In this respect, a threshold selection based on “the minimum estimation error under the MEVD275

approach” does not only require iterative fitting of MEV components, but also contrasts with the rationale of physical

declustering whose algorithms should be unrelated to the subsequent analysis and models involved. In other words,

physical declustering should guarantee only independence of the extracted sample and not the goodness-of-fit of a

specific model (GP, MEV, or anything else).

2. Goodness-of-fit concerns statistical optimization, which aims at setting a threshold that guarantees the convergence/fit280

of the POT sample to an extreme value model. For the GP model, such a threshold should provide “the best compromise

between the convergence of [POT distribution toward] a GP distribution (bias minimization) and the necessity to keep

enough data for the estimation of its parameters (variance minimization)” (Bernardara et al., 2014). In the present case,

such a statistical threshold should not be required as the physical threshold was already selected to yield “the minimum

estimation error under the MEVD approach” (Caruso and Marani, 2022). In fact, for Hornbæk and Newlyn data sets, the285

thresholds used by Caruso and Marani (2022) (i.e., 40 and 250 cm, respectively) lead to discard approximately only the

13% of the complete desclustered sample. Therefore, for the sake of comparison, we applied MEV on both the original

desclustered data and their over-threshold sub-samples.

For both data sets, Fig. 2 shows the time series of AM (Fig. 2a,d), POT for GP (Fig. 2b,e), and POT for MEV (Fig. 2c,f)

along with the complete sample of daily maxima. Note that the sizes of POT samples are slightly different from those reported290
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Figure 2. Detrended sea levels (gray line) for the gauging sites of Newlyn (UK) and Hornbæk (Denmark), and AM values for GEV analysis

(a,d), POT used for GP analysis (b,e), and over threshold events used for fitting MEV and Compound parent models (c,f). ‘Detrended’ refers

to sea level time series preliminarily filtered by removing the time-varying mean sea level.

by Caruso and Marani (2022). This is likely due to slightly different implementation of declustering algorithm, which involves

some technicalities such as the treatment of not available values.

Figure 3 reports results of extreme value analysis in terms of return level plots. Figure 3a shows the empirical return level

plot of AM sample used to fit the GEV distribution and that of the corresponding declustered sample used to extract AM values.
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Figure 3. Return level diagrams (return period (in years) vs. return level) resulting from extreme value analysis of Newlyn data (a-d) and

Hornbæk data (e-h). All panels report empirical return level diagrams of AM as a common reference. Panels (a,e) report empirical return

level diagrams of the parent sample of declustered data along with the theoretical return level diagram of fitted GEV model. Panels (b,f) refer

to POT sample and the corresponding GP model. Panels (c,g) and (d,h) show results for MEV and Compound parent distributions applied to

over threshold data and complete declustered sample, respectively.

The values of return period used to build these diagrams are estimated as T = µ
1−Fn

, where Fn is the empirical cdf of AM or295

declustered sample, and µ is the average inter-arrival time between two observations of a (discrete-time) process of interest,

i.e., µ = 1 for AM and µ = E[1/L] for the complete declustered sample, where the random variable L denotes the varying

number of events (or peaks) per year. Figures 3a and 3e are analogous to Fig. 1, and convey the same message but for real

world-data, that is, the distribution of AM is just an approximation converging to the distribution of the parent sample for large

quantiles (upper tail).300

When using POT values over the threshold optimizing the GP fitting (Fig. 3b,f), we get a similar message: the distribution of

AM is an approximation of the upper tail of the distribution of POT, which play a role similar to that of parent sample in NA
models of BM. In fact, the GP-based analysis of POT does not require the subsequent derivation of the distribution of AM to

make inference on return levels, as the return period (in years) of any quantile is computed as T = µ̂
1−FGP

, where FGP is the GP

cdf and µ̂ is the estimate of the average inter-arrival time between two POT observations. Even though this remark can seem305

trivial, it plays a key role to understand the redundancy of NA distributions.
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MEV models require to preliminarily fit a model for values above a moderate threshold (or all available independent declus-

tered data), which is our parent distribution FZ , and therefore deriving the distribution of the annual maxima FY as a function

of FZ . Figures 3c, 3d, 3g, and 3h show both the empirical cdf’s of AM and parent sample, and their theoretical counterpart,

i.e., the GP-based MEV model and the compound GP parent. As for GEV, the MEV distribution is just an approximation of the310

upper tail of the fitted compound parent. However, in this case, we already have a model for the parent process, and therefore

we do not need any distribution of AM, as the fitted compound FZ already provides all information required for inferential

purposes. In other words, MEV cannot provide correct probability of low/moderate quantiles (as every extreme value model

of BM), and it cannot add any information compared to corresponding fitted compound parent FZ . Once FZ is available, any

other model of any sub-process (such as AM or POT) is less informative or redundant, at most.315

Figures 3c, 3d, 3g, and 3h also show that the claimed goodness of fit of MEV models is not related to its nature of distribution

of AM, but to the fact that it is a compound distribution. In fact, MEV tails match those of the corresponding compound parent

distributions. When we have a good compound model FZ integrating (i.e., averaging) seasonal fluctuations and other forcing

factors (such as different generating mechanisms of rainfall, storms, flood, or storm surges), the corresponding NA model is

no longer needed as it can at most be as accurate as the corresponding compound FZ .320

The use of NA distributions is not even justified to make inference in terms of return period and return levels. In fact, a

compound FZ can be used to compute return levels in the same way as one uses GP distributions, calculating the return period

as T = µ̂
1−FZ

, where µ̂ is the estimate of the average inter-arrival time between two observations in the sample of values above

a moderate threshold (as for the case in Fig. 3c and 3g) or in the complete sample of independent declustered data (as for the

case in Fig. 3d and 3h). In general, FZ does not require deriving the corresponding NA model for AM to make inference in325

terms of return period (expressed in years), in the same way as GP-based inference for POT does not require the corresponding

GEV model of AM.

5 Smoke and mirrors on the water extremes: a matter of compound distributions, neglected dependence, and misuse

of multi-model ensemble averaging

The discussion in Sections 3 and 4 was based on conceptual arguments, simplified numerical examples, and real-world data330

re-analysis with simple visual assessment. However, to be consistent with the scientific method, new models and methods

should be validated/falsified against challenging and controlled conditions before being applied to real-world data coming

from inherently unknown processes (Serinaldi et al., 2020a, 2022b). To this aim, we set up three Monte Carlo experiments.

The first experiment replicates and expands the numerical simulations reported by Marra et al. (2018) with the aim to provide

independent validation and further evidence about the redundancy of NA models (here, MEV) when dealing with serially335

independent processes. The second experiment investigates the effect of autocorrelation on NA-based analysis, evaluating

the effectiveness of declustering algorithms based on threshold lags as well as the use of βBC models accounting for serial

correlation without declustering. The third experiment replicates and expands some of the Monte Carlo simulations reported
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by Marani and Ignaccolo (2015) to support the introduction of MEV models. In this case, the aim is to explain the apparent

discrepancies between results in Marani and Ignaccolo (2015) and those in Marra et al. (2018).340

5.1 Monte Carlo experiment 1: serially independent processes

The first experiment consists of simulating S = 1000 time series of ordinary events mimicking 3, 5, 10, 20, and 50 years

of records. Each year comprises l events drawn from a random variable L following Gaussian distribution with mean µL ∈
{10,50,100}, and standard deviation σL = 0.3µL. Marra et al. (2018) chose the range of µL and σL based on exploratory

analysis of hourly rainfall data collected over the contiguous United States. Ordinary events are simulated from Weibull distri-345

butions with shape parameter κ ∈ {0.8,1.25} and scale parameter λ = 1. The κ values represent the typical range of variability

of the observed rainfall data studied by Marra et al. (2018), while constant λ is chosen for easier interpretation of results. The

simulated time series are used to estimate the 100-year return levels. The reference 100-year return level is empirically obtained

from 105 years of simulated samples, and the performance of GEV, GP, and MEV is checked in terms of multiplicative bias

Bk =
x̂k

xref
, (8)

where x̂k is the estimate of the target statistics (here, 100-year return level) for the kth Monte Carlo simulation (with k =350

1, ...,S), and xref is the reference (true) value.

We note that the use of a Gaussian distribution with infinite support can generate physically inconsistent negative number

of events in some years. Moreover, simulating integer values from a continuous distribution requires rounding off. In these

cases, more appropriate models for discrete random variables defined in [0,∞), such as binomial, beta-binomial, Poisson,

or geometric should be used. The reference 100-year return level can be computed as the (1− 1
100 ) · 100% quantile of the355

empirical cdf of AM or the (1− µ̂
100 ) ·100% quantile of the empirical cdf of the complete time series of ordinary events, where

µ̂ is the estimate of the average inter-arrival time (in years) between two ordinary events. For large samples, the former estimate

converges to the latter for T values greater than a few years (e.g., 3-5 years for independent data; see Fig. 1) or much more for

serially dependent processes (see Serinaldi et al., 2020b, Sect 3.2). In any case, the most accurate estimate of the T -year return

level for every value of T is given by the distribution FZ of the parent process, thus making the derivation of the distribution360

FY of AM superfluous, if the latter requires the preliminary definition of the former.

Results are reported as diagrams of the 5%, 50%, and 95% quantiles of multiplicative bias versus number of years. As

expected, Fig. 4 is in perfect agreement with Figure 7 in Marra et al. (2018), and leads to the same overall conclusions: MEV

exhibits positive bias compared to GEV and GP, but smaller variance. However, Fig. 4 provides an additional result concerning

the performance of the compound parent distribution corresponding to MEV, and shows that both models yield almost identical365

results apart from unavoidable sampling fluctuations in the estimation of the 5% and 95% quantiles on 1000 simulated values

of bias B. As discussed in Sections 3 and 4, MEV (or more generally NA distributions) does not add any information with

respect to the parent distribution appearing in MEV formulas. Therefore, once a distribution is selected to describe the ordinary
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Figure 4. Multiplicative bias for the 100-year return levels obtained from 1000 synthetic samples of varying record length (i.e., number of

block/years) and varying number of ordinary events per block/year (10, 50, 100) drawn from Weibull distribution with shape parameters

κ = 0.8 (a-c) and 1.25 (d-f). The reference 100-year return levels are empirically obtained from a 105-year record. Solid lines represent

the median bias, while shaded areas (for GEV and MEV) and dashed lines (for GP and Compound parent) represent the 95% Monte Carlo

confidence intervals.

events (here, Weibull), its compound version is enough to make statements on any quantile, providing more information than

the derived compound NA models, which approximate only the upper tail of the (embedded) parent distribution.370
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5.2 Monte Carlo experiment 2: serially dependent processes

This Monte Carlo experiment is designed to study the effect of autocorrelation on NA-based inference. Time series of ordi-

nary events mimicking 3, 5, 10, 20, and 50 years of daily records (i.e., 365 records per year) are simulated S = 1000 times to

estimate 100-year return levels. The marginal distributions are the same used in the first experiment, i.e., Weibull with shape

parameter κ ∈ {0.8,1.25} and scale parameter λ = 1. Autocorrelation is modeled by a first-order autoregressive (AR(1)) pro-375

cess with parameter ρ1 ∈ {0.3,0.6,0.9}, corresponding to weak, moderate, and relatively high autocorrelation. Weibull-AR(1)

time series are generated by CoSMoS framework, which enables the simulation of correlated processes with desired marginal

distribution and ACF (Papalexiou, 2018, 2022; Papalexiou and Serinaldi, 2020; Papalexiou et al., 2021, 2023).

Extreme value analysis is performed by GEV for AM, GP for POT of preliminarily declustered data, Weibull-based MEV

for declustered data, Weibull-based βBC for the complete time series. Declustering is based on time lag, selecting the first380

lag τ0 such that the empirical ACF becomes smaller than twice the 99% quantile of the sampling distribution of the ACF

values under independence. Although this approach is slightly different from that used by Marra et al. (2018), the rationale is

the same and it yields τ0 values that guarantee sufficiently long inter-arrival times as well as a suitable number of events per

block for the considered AR(1) ACFs and sample sizes. Sub-sets of ordinary events used for MEV analysis are then defined as

peaks separated by time intervals≥ τ0. POT for GP analysis are extracted from these sub-sets, while AM for GEV analysis are385

selected from the original sample, assuming their inter-annual independence. Of course, βBC analysis uses the complete data

set and does not require any preliminary declustering procedure as it explicitly accounts for autocorrelation.

Figure 5 compares results of GEV, GP and MEV analysis. For ρ1 = 0.3, values of bias B are similar to those obtained for

the previous experiment in Section 5.1 with µL = 100 (Fig. 4). This is expected as low values of ρ1 correspond to rapidly

decreasing ACF and therefore τ0
∼= 2− 3 time steps, corresponding to sample sizes of ordinary events between about 120 and390

180. For ρ1 = 0.6 and 0.9, τ0 increases to 4-6 and 15-30 time steps, respectively, corresponding to sample sizes of 60-90 and

12-24 ordinary events. The progressively reduced sample size increases MEV uncertainty, which becomes similar to that of

GEV and GP models. More importantly, MEV bias dramatically increases with ρ1 and number of years (blocks). The effect of

ρ1 is easy to interpret in terms of reduced sample size resulting from declustering with larger τ0. On the other hand, the effect

of the number of years could appear counter-intuitive as one would expect more accuracy when a larger number of years is395

available.

Marra et al. (2018) ascribe this behavior “to uncertain estimation of the weight of the tail of the ordinary events distribution

when few data points are used for the fit”. However, this would not be sufficient to explain why the smallest bias corresponds

to small numbers of available years, and thus overall smaller samples. The actual issue is the combination of the (average)

number of intra-block peaks (or intra-block sample size; here, l or µL), the number of blocks (here, the number of years nY ),400

and the compounding procedure characterizing MEV.

For fixed nY , small intra-block sample size l results in great variability of Weibull parameters estimated in each block,

which in turn results in heavier tails of compound distributions. As l increases, the inter-block variability of Weibull parameters

decreases and the compound distribution resulting from averaging a set of similar Weibull distributions becomes closer and
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Figure 5. Multiplicative bias for the 100-year return levels obtained from 1000 synthetic samples of varying record length (i.e., num-

ber of block/years) from Weibull-AR(1) process with Weibull shape parameters κ = 0.8 (a-c) and 1.25 (d-f), and AR(1) parameter

ρ ∈ {0.3,0.6,0.9}. The reference 100-year return levels are empirically obtained from a 105-year record. Solid lines represent the median

bias, while shaded areas (for GEV and MEV) and dashed lines (for GP and Compound parent) represent the 95% Monte Carlo confidence

intervals. MEV and Compound parent distributions are fitted to preliminarily declustered data.
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closer to the theoretical Weibull used to simulate. In other words, the compounding mechanism works better in those cases in405

which it is less required, i.e., when the inter-block variability is small and model averaging (of very similar models fitted on

each block) is less justified and useful. On the other hand, when model averaging could be more justified, i.e., when there is

substantial uncertainty of the sampling parameters, the spreader is the sampling distribution of parameters the heavier is the

tail of the resulting compound distribution, whose shape departs from that of the (true) theoretical distribution.

For given µL, when the number of years nY is small, compound NA models average a small number of components410

F
lj
j , with j = 1, ...,nY (e.g., we have three components for nY = 3 years). In a Monte Carlo experiment, averaging a few

heterogeneous components results in a set of heterogeneous compound distributions whose differences tend to compensate

on average. Therefore, the Monte Carlo ensembles of compound distributions exhibit high variability and small bias. As nY

increases, the number of averaging components F
lj
j increases, providing a more accurate picture of the inter-block variability

that is incorporated in the compound distributions. This results in Monte Carlo ensembles of compound distributions with415

more homogeneous and systematically heavier tails than those of the compound models resulting from small nY . Therefore,

the Monte Carlo ensemble exhibits lower variance and higher bias as nY increases for a given µL.

As for Fig. 4, Fig. 5 also reports results for the compound distribution of ordinary events, which are almost indistinguishable

from those of MEV analysis. Overall, Fig. 5 further confirms the redundancy of MEV models (and more generally,NAmodels)

once we have a compound parent distribution, which has to be estimated in any case to derive NA distributions. Moreover,420

uncorrelated ordinary events resulting from declustering procedures do not guarantee convergence of compound distributions

(MEV or parent) to the true distribution. In fact, bias is generally much larger than that of GEV and GP estimates, although the

intra-block sample size is generally much larger than that of AM and POT, and the compound distributions have a much larger

number of parameters (from 6 to 100, resulting from two-parameter Weibull fitted to one-year blocks over three to 50 years).

Figure 6 compares results of GEV and GP analysis with those of βBC and compound parent models. Since βBC models425

(and the corresponding compound parent) use the complete time series instead of declustered data, uncertainty and bias are

smaller than those of MEV models (and the corresponding compound parent). Therefore, while time lag declustering seems

to yield apparently independent events, the resulting data sets do not provide a faithful description of the upper tail of the true

generating process, or better, MEV models do no make a suitable use of these declustered samples. Declustering has negative

effects independently of the intensity of autocorrelation. Of course, larger bias and uncertainty correspond to higher ρ1 values430

in both MEV and βBC analysis. In fact, MEV is affected by significant decrease of sample size due to declustering, while

βBC suffers from underestimation of ACF, which requires large sample sizes to be reliably estimated (see e.g., Koutsoyiannis

and Montanari, 2007; Serinaldi and Kilsby, 2016a). It is worth noting that the GEV and GP results are rather insensitive to

autocorrelation. This is expected as the underlying joint dependence structure of AR(1) processes is a Gaussian copula, which

is characterized by asymptotic tail independence and therefore complaint with EVT assumptions. Similarly to Fig. 4 and 5,435

Fig. 6 shows that the βBC model and the corresponding compound parent match (apart from discrepancies due to the issues

mentioned above), confirming the redundancy of NA models.
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Figure 6. Multiplicative bias for the 100-year return levels obtained from 1000 synthetic samples of varying record length (i.e., num-

ber of block/years) from Weibull-AR(1) process with Weibull shape parameters κ = 0.8 (a-c) and 1.25 (d-f), and AR(1) parameter

ρ ∈ {0.3,0.6,0.9}. The reference 100-year return levels are empirically obtained from a 105-year record. Solid lines represent the median

bias, while shaded areas (for GEV and MEV) and dashed lines (for GP and Compound parent) represent the 95% Monte Carlo confidence

intervals. βBC and Compound parent distributions are fitted to complete autocorrelated time series.
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5.3 Monte Carlo experiment 3: reviewing simulations of Marani and Ignaccolo (2015)

Figure 4 shows that MEV and its compound parent distribution yield a median multiplicative bias BM
∼= 1.25 for 100-year

return levels estimated from nY = 50 years (blocks) of data drawn from Weibull distributions with shape parameter κ = 0.8 and440

average number of events per block µL ∈ {50,100}. On the other hand, BM
∼= 1.0 for GEV and GP distributions. For a similar

setup (i.e., nY = 50, κ = 0.82, and µL ∈ {30,100}), Marani and Ignaccolo (2015) reported probability plots (probability vs.

quantiles) and relative error

Rk =
x̂k −xref

xref
, (9)

where x̂k is the estimate of the target statistics for the kth Monte Carlo simulation (with k = 1, ...,S), and xref the reference

(true) value. They found that MEV is almost unbiased, with average relative error R̄ =
∑

Rk

S
∼= 0, while GEV exhibits bias,445

with R̄∼= 5% and ∼= 30% for the 100-year and 1000-year return levels, respectively. On the other hand, for the 100-year return

level, simulations in Section 5.1 (reproducing those of Marra et al. (2018)) yield R̄∼= 25% for MEV and R̄∼= 0 for GEV.

Therefore, we re-run Monte Carlo simulations described by Marani and Ignaccolo (2015) to understand the reason of such a

disagreement. We anticipate that the foregoing discrepancies depend on the misuse of methods used to summarize multi-model

ensembles. Thus, before describing Monte Carlo experiments and their outcome, we need to recall some theoretical concepts450

that are required to correctly interpret numerical results.

5.3.1 Summarizing multi-model ensembles: some overlooked concepts

Monte Carlo simulations are usually used to study the uncertainty affecting estimates based on finite-size samples (that provide

incomplete information about the underlying process) or to approximate population distributions (or statistics) when mathemat-

ical closed-form expressions are not available. Examples of these applications are the experiments reported in Sections 5.1 and455

5.2, and the Markov Chain Monte Carlo (MCMC) simulations performed in Bayesian inference to obtain posterior distributions

of model parameters with unknown mathematical form.

In all cases, the primary output of Monte Carlo simulations is a set of parameters identifying a set of models (multi-model

ensemble) that is then used to estimate the target statistics of interest. For example, simulations of S finite-size samples in

Sections 5.1 and 5.2 are used to fit a set of S GEV distributions. These are then used to calculate a set of S 100-year return460

levels, which are eventually used to build confidence intervals.

However, a multi-model ensemble can be summarized in many different fashions. This aspect is quite known in Bayesian

inference where MCMC posterior distribution of model parameters yields a set of models, and these models need to be sum-

marized in some way to obtain a representative point estimate of a statistic of interest (e.g., Renard et al., 2013; Fawcett and

Walshaw, 2016; Fawcett and Green, 2018). Let S be the number of Monte Carlo replications, F (z|θk) (with k = 1, ...,S) the465

kth member of the Monte Carlo multi-model ensemble (e.g., the kth Weibull distribution fitted to the kth simulated sample), zp

a target quantile with nonexceedance probability p, and let define the quantile function as the inverse of the cdf, Q = F−1. A

representative point estimate of zp can be for instance the mode of the S quantiles zp,k = Q(p|θk) = F−1(p|θk).
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More popular point estimates of zp (or whatever statistics) rely on the definition of so-called predictive distributions and

predictive quantile functions. The sampling predictive cdf reads as470

F̄ (z) :=
1
S

S∑

k=1

F (z|θk)

∼=EΩθ
[F (z|θ)], (10)

and the corresponding quantile with specified nonexceedance probability p is given by

zp,F̄ =

{
z :

1
S

S∑

k=1

F (z|θk) = F̄ (z) = p

}

=F̄−1(p). (11)

The sampling predictive quantile function reads as

Q̄(p) :=
1
S

S∑

k=1

Q(p|θk)

∼=EΩθ
[Q(p|θ)] = EΩθ

[F−1(p|θ)], (12)

resulting in predictive quantile estimates

zp,Q̄ =
1
S

S∑

k=1

F−1(p|θk)

=F−1(p). (13)

Let us denote the empirical cdf and quantile function of the S sampled quantiles zp,k as FS and QS , respectively. Recalling

that the distribution of zp can be approximated by the distribution of order statistics, and the latter is a beta distribution (see475

Eq. 1), we can write FS(zp)∼= Fβ(F (z)|pS′,(1− p)S′), where S′ = S + 1. Therefore, the foregoing zp estimators can be

complemented by the median estimator defined as

zp,M ={z : P[Zp,k ≤ z] = FS(zp) = 0.5}

=F−1
S (0.5)∼= F−1

(
F−1

β (0.5|pS′,(1− p)S′)
)

. (14)

Similarly, we can also define the median probability of a fixed quantile zp from an ensemble of cdfs as follows

pM ={p : QS(0.5) = zp}

={p : FS(zp) = 0.5}
∼={p : Fβ(F (zp)|pS′,(1− p)S′) = 0.5} (15)480

The foregoing formulas indicate that the three zp estimators obviously represent different quantities. Focusing on zp,F̄ and

zp,Q̄, and comparing Eqs. 11 and 13 we have that

F̄−1(p) ̸= F−1(p). (16)
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Eq. 16 is the sampling counterpart of Q(E[F (zp)]) ̸= E[Q(F (zp))]≡ E[Zp], which in turn follows from the well-known gen-

eral inequality485

E[F (z)] ̸= F (E[Z]), (17)

stating that the distribution of the expected value of Z is different from the expected distribution of Z. In fact, since F is

commonly a nonlinear transformation of Z (as well as of the parameters θ), it hinders the interchangeability of the (linear)

expectation operator E. In passing, such an inequality also partly caused a long ‘querelle’ on plotting position formulas (see

e.g., Makkonen, 2008; Cook, 2012; Makkonen et al., 2013).490

On the other hand, zp,M is the only estimator that guarantees the identity between the zp estimates obtained from ensembles

of Q or F functions. This property depends on the fact that the median (as well as every quantile) is a rank-based (central

tendency) index, and ranking is a transformation that does not depend on absolute values, and therefore passes unaffected

trough nonlinear monotonic functions such as Q and F . This means that the median parameters θM correspond to zp,M and

pM. This property does not hold for the expectation operator E. In fact, generally F (zp|E[θ]) ̸= E[F (zp|θ)].495

The foregoing concepts and properties play a key role for the correct interpretation of results reported in the next section.

5.3.2 Numerical simulations: the consequences of overlooking theory

Marani and Ignaccolo (2015) supported the introduction of MEV by five Monte Carlo experiments (referred to as cases ‘A’,

‘B’, ‘C’, ‘A2’, and ‘B2’), comparing the accuracy of MEV to that of standard asymptotic models of BM (i.e., Gumbel and GEV

distributions). For the cases ‘B’ and ‘B2’, Marani and Ignaccolo (2015) did not provide enough information to enable their500

replication. Therefore, we focused on cases ‘A’, ‘C’, and ‘A2’, which are sufficient to support our discussion. Case ‘A’ consists

of simulating S = 1000 samples from a Weibull distribution with scale parameter equal to 7.3, shape parameter κ = 0.82,

number of blocks (years) nY = 50, and number of events per block (here, wet days per year) l = 100. Case ‘C’ is similar to

‘A’, the only difference being that the number of events per block is drawn from a uniform distribution U(21,50). The setup of

case ‘A2’ is similar to that of ‘A’; however, it explores the effect of varying l from 10 to 200 by steps of 10 events per block.505

Therefore, Gumbel, GEV, and MEV distributions of BM are fitted to each of the S samples. For the cases ‘A’ and ‘C’, the

accuracy of the three models is assessed by comparing “the ensemble average distributions, ζMEV(y), ζGEV(y), ζGUM(y) as

the means of the distributions of Y computed over the 1000 synthetic time series” (Marani and Ignaccolo, 2015). For the case

‘A2’, the three models are evaluated in terms of average relative error R̄ of the estimates of the 100- and 1000-year return

levels. The reference (true) return levels are empirically obtained from 106 years of simulated samples.510

Figures 7a-c reproduce Figures 3a,c in Marani and Ignaccolo (2015). For the case ‘A’, we used both κ = 0.82 and 0.73 as the

original parametrization cannot reproduce results of Figure 3a in Marani and Ignaccolo (2015). In fact, analyzing the original

Figure 3a, the reference 100- and 1000-year return levels should be close to 150 and 210, respectively, while κ = 0.82 yields

values close to 109 e 143, which in turn are consistent with case ‘C’. Therefore, we used κ = 0.73 to obtain a figure as close as

possible to the original one. Nonetheless, the exact value of κ is inconsequential in the following discussion, and we use both515

κ = 0.82 and 0.73 for completeness.
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Figure 7. Probability plots (probability vs. quantile) showing different models for AM Y resulting from the Monte Carlo experiments denoted

as cases ‘A’ (a,b,d,e) and ‘C’ (c,f) (see main text for details about the simulation setup). Panels (a-c) reproduce results reported in Marani and

Ignaccolo (2015, Figures 3a,c), while panels (d-f) show the revised version with corrections accounting for inconsistencies in the calculation

of compound quantiles and misuse of multi-model ensemble averaging.
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The key aspects in Fig. 7a-c are (i) the perfect match of MEV and its compound parent, confirming the redundancy of NA
models when their parents are already known, and (ii) the accuracy of MEV and its compound parent against the prominent

bias of GEV, which contrasts results reported by Marra et al. (2018) and in the previous sections. The reason of such a discrep-

ancy is that Fig. 7a-c (and Figure 3a in Marani and Ignaccolo (2015)) do not show what they are supposed to do, thus making520

the comparison unfair and misleading. In fact, contrary to the description in Marani and Ignaccolo (2015), the MEV curves in

Fig. 7a-c do not refer to the predictive MEV obtained by averaging S MEV distributions according to Eqs. 10 and 11. Instead,

recalling that MEV is itself a predictive distribution (i.e., the average of multiple components F
lj
j , with j = 1, ...,nY ; see Sec-

tion 2), MEV curves in Fig. 7a-c refer to the predictive quantile functions (over S samples) of the predictive quantile functions

(over nY samples) associated to MEV structure. In other words, Fig. 7a-c report the pairs (zp,Q̄,p) instead of the claimed525

(zp,F̄ , F̄ ), and these pairs differ from each other (see Section 5.3.1). In more detail, zp,Q̄
∼= ES [EΩθS

[(F l
WEI)

−1(p|θS)]], while

the figure should show zp,F̄ obtained by inverting F̄ ∼= ES [FMEV] = ES [EΩθS
[(F l

WEI)(zp|θS)]].

On the other hand, Fig. 7a-c (and Figures 3a,c in Marani and Ignaccolo (2015)) correctly show the predictive distributions

of Gumbel and GEV. However, this hinders a fair comparison. In fact, EVT states that the asymptotic model of BM is a GEV

distribution (under suitable conditions) and not the compound version of GEV resulting from averaging S GEV models. Such530

a compound GEV distribution has always a larger variance and heavier tails than its classical GEV counterpart (see discussion

in Section 6). Therefore, to be consistent with EVT, the ensemble of GEV and Gumbel distributions should be summarized

using a transformation, such as the median, that retains the expected GEV/Gumbel shape. Figures 7d-f show the median GEV

and Gumbel distributions along with the actual predictive MEV (as it should be). Results in Fig. 7d-f are fully consistent with

those reported by Marra et al. (2018) and in Sections 5.1 and 5.2, confirming the low bias of asymptotic models and the natural535

tendency of compound distributions to exhibit heavier tails than their components and their generating processes. Moreover,

the perfect agreement of the upper tail of MEV and that of compound parent distributions in Fig. 7d-f further confirms (if still

needed after many examples) the redundancy ofNAmodels once their parent distributions are defined, which means that such

models are useless in practical applications.

Similar remarks hold for the case ‘A2’. Results in Fig. 8a,b are close to those reported by Marani and Ignaccolo (2015)540

in their Figure 4a, with MEV showing R̄∼= 0 for both 100- and 1000-year quantiles, and GEV showing R̄∼= 0 for 100-year

return level and R̄∼= 5% for 1000-year return level. Gumbel distribution yields slightly negative R̄ for both return levels with

smaller values for higher κ, which corresponds to a generating Weibull distribution closer to exponential, thus allowing faster

convergence to the first asymptotic distribution of EVT. As for the cases ‘A’ and ‘C’, these results are affected by mixing

predictive distributions and predictive quantile functions as well as the improper use of the former to summarize the ensemble545

of GEV and Gumbel models. Figures 8c,d show R̄ values corresponding to true predictive MEV and median GEV and Gumbel

distributions preserving distribution shape. As expected, the GEV model correctly describes BM, while the compound structure

of MEV yields heavier tails. Once again, results from MEV and compound parent are almost indistinguishable due to the

redundancy of MEV (and any NA model in general).

The work by Marani and Ignaccolo (2015) also suffers from several mismatches between text and figures. For example,550

concerning the case ‘A2’ and the corresponding Figure 4a, they state “GEV approach systematically overestimates the 100-yr
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Figure 8. Relative errors for 100- and 1000-year return levels resulting from the Monte Carlo experiment denoted as case ‘A2’ (see main text

for details about the simulation setup). Panels (a,b) reproduce results reported in Marani and Ignaccolo (2015, Figure 4a) for κ ∈ {0.73,0.82},

while panels (c,d) show the revised version with corrections accounting for inconsistencies in the calculation of compound quantiles and

misuse of multi-model ensemble averaging.

extreme rainfall intensity by 5% even for large numbers of wet days. The Gumbel approach systematically underestimates

the 100-yr extreme rainfall intensity by about 5%. For the 1000-years return period intensities, the GEV approach severely

overestimates actual extreme events (minimum relative error is 30% for n = 200 events/year) whereas the Gumbel approach

yields underestimation errors of about 10%”. However, in contrast with the text, their Figure 4a shows that GEV has R̄∼= 0555

for 100-year return level, and R̄∼= 10% for the 1000-year return level, while Gumbel distributions have R̄∼=−15% and ∼=
−30% for the 100- and 1000-year return levels, respectively. Concerning the case ‘B2’ and the corresponding Figure 4b, any

interpretation is impossible as Figure 4b in Marani and Ignaccolo (2015) reports “Root Mean Square % Error” whereas the

text refers to R̄, and it is not even clear if Figure 4b actually refers to the case ‘B2’.
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6 Discussion560

The proposal of NA models as an alternative to classic EVT models suffers from some problems that seem to be quite

widespread in the hydrological literature dealing with statistical methods (see e.g., discussions in Serinaldi and Kilsby, 2015;

Serinaldi et al., 2018, 2020a, 2022b):

1. Data analysis should be supported by preliminary scrutiny of its rationale, allowing for instance the recognition of the

‘circular reasoning’ affecting practical use ofNA models of BM. Extreme value models are powerful tools if applied in565

the right context according to their motivation and assumptions. Their usefulness relies on the fact that they provide an

approximate description of the upper (or lower) tails of the distribution of parent processes when the latter is unknown

and there are no data (or data are not enough) to reliably estimate it. NA models of BM contradict this principle. In

fact, NA models require the preliminary estimation of a parent distribution FZ to build a surrogate distribution FY that

approximates a tail of FZ , neglecting that FZ is already known/fitted.570

For example, Marra et al. (2023) studied the distribution of worldwide daily rainfall data over low/moderate thresholds

showing that a Weibull model provides a good fit and reproduces L-moments of AM even when AM are excluded

from calibration. Conversely, using GP tails provides the same results only over the 95% threshold and overestimates

the heaviness of the upper tail when the GP model is assumed for low/moderate thresholds (in agreement with results

reported by Serinaldi and Kilsby (2014b) about Multiple Threshold Method (Deidda, 2010)). The natural interpretation575

of these results would be that the Weibull distribution is a good model FZ for the parent process Z (positive rainfall or

rainfall over low/moderate thresholds) confirming previous results reported in the literature, while GP model works well

for exceedances over high thresholds (as postulated by EVT), and does not work well (as expected) for low/moderate

thresholds, that is, outside its range of validity. Recalling the theoretical link between GP and GEV, this also means that

the latter is a good model for rainfall BM.580

For practical applications, this should translate into the following recommendations: (i) use GEV if only BM are available

(e.g., AM from hydrologic reports), and (ii) use FZ (e.g., (compound) Weibull) if you have information on Z, which

can be either the process of all positive rainfall or rainfall over arbitrary low/moderate thresholds if the latter is deemed

easier to fit. In the latter case, calculate the T -year return levels as the (1− µ
T ) · 100% quantiles of FZ , where µ is the

(mean) inter-arrival time (in years) between two observations of Z (e.g., Serinaldi, 2015; Volpi et al., 2019).585

Such a plain reasoning highlights that there is no need to build an additional distribution of BM (i.e., (compound) F l
Z),

in the same way we do not need to define the GEV distribution of AM once we already inferred a GP model of POT.

Nonetheless, Marra et al. (2023) interpreted their results as evidence to support NA models of BM, missing that the

fitted Weibull distributions over zero, low or moderate thresholds are conceptually similar to each other and can be used

directly to make inference about any desired quantile without deriving redundant models of BM (here, exponentiated590

Weibull).
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2. New methods need to be suitably validated before being applied. Actually, applications to real-world data are often

improperly used as validation. Proper validation/falsification requires the use of processes with known properties that

match or contrast the model assumptions. For example,NAmodels, such as (S)MEV, have only been assessed for parent

processes with known marginal distributions under independence (e.g., Marra et al., 2018), while the effect of depen-595

dence and the effectiveness of declustering were not checked. We encourage modelers to perform proper Monte Carlo

simulations, as suitable methods are readily available for such a kind of analysis (e.g., Serinaldi and Lombardo, 2017a, b;

Papalexiou, 2018; Serinaldi and Kilsby, 2018; Koutsoyiannis, 2020; Papalexiou and Serinaldi, 2020; Papalexiou et al.,

2021; Papalexiou, 2022, among others). Of course, numerical experiments should be supported by the necessary the-

oretical knowledge allowing correct implementation and interpretation, and preventing inconsistencies such as those600

discussed for instance in Section 5.3.

On the other hand, proper validation was replaced by quite an extensive use of cross-validation exercises on observed

data (e.g., Miniussi and Marani, 2020; Mushtaq et al., 2022), which might however be misleading because:

(a) Hydro-climatic records come from processes with inherently unknown properties as only estimates of the variables

of interest are available.605

(b) Cross-validation is usually performed on short time series (commonly, a few years of data), and model estimates

(from shorter calibration sub-sets) are compared with sample estimates (from shorter verification sub-sets), which

might be not representative of the true value of the target statistics. Cross-validation relies on the assumptions

that the calibration sub-sets are representative of the population, and out-of-sample sub-sets come from the same

population. However, for autocorrelated processes, very long time series might be required to explore the state space610

of the studied process, thus meaning that the observed series might be not representative, especially when focusing

on extreme values. In hydro-climatic processes, this issue is exacerbated by the effect of long term fluctuations

characterizing the climate system at local and global spatial scales.

(c) Standard bootstrap resampling used in cross-validation might also be misleading. In fact, it provides correct results

under the assumption that the state space is explored under independence and therefore relatively short samples are615

enough to give reliable picture of the range of possible outcomes. If the hypothesis of independence is not valid,

the observed values might cover a sub-set of the state space, and the standard bootstrap commonly applied in MEV

literature just conceals this fact.

3. Often, inappropriate validation and iterated application to real-world data generate quite an extensive literature confus-

ing numerical artifacts with physical properties (see e.g., Serinaldi and Kilsby, 2016a; Serinaldi et al., 2020a, 2022b, for620

paradigmatic examples). Such a literature is often improperly used to support a given method by arguments like ‘there is

such a strong scientific body of literature demonstrating the technical advantages of these approaches’. However, consen-

sus is not a scientific argument. Historically, the main scientific progresses occurred when some one called into question

widely accepted mainstream theories using arguments more solid than those of the superseded theories. Consensus is

even more questionable when a method is iteratively applied without a necessary neutral/independent validation. The625
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literature on NA models tends to suffer from these problems, and our discussion in Section 5.3 illustrates how these

models have been iteratively applied without the above-mentioned independent analysis. It is quite common reading sen-

tences such as ‘these new approaches have been shown to be practically useful under real conditions, that are showing

their practical advantage over traditional methods’. Such a kind of statements do not provide any technical information

about either the relationship between the distribution of BM and POT and their corresponding parent or the rationale and630

effects of compounding multiple models, or the difference between the parametrization of GEV and NA models, for

instance. Moreover, if a method is biased, as shown in the previous sections, multiple applications to real-world data do

not make it unbiased.

4. Often, (seemingly) new methods are not put in their broader context, and are denoted by uninformative names, thus

concealing their nature and hindering correct interpretation. In particular, NA distributions are just special versions of635

the class of compound distributions (e.g., Dubey, 1970; van Montfort and van Putten, 2002)

f̃(x) =
∫

Ωθ

f(x,θ)dθ

=
∫

Ωθ

f(x|θ)f(θ)dθ

=EΩθ
[f(x|θ)], (18)

where f̃(x) is the marginal pdf of a generic variable X , f(θ) is the pdf of the parameter vector θ of the distribution

f(x|θ), and Ωθ is the state space of θ when it is treated as a random variable Θ. The variance V[X] of f̃(x) is always

greater than that of its components f(x|θ), as it is (e.g., Karlis and Xekalaki, 2005)

V[X] = EΩθ
[VX|θ[X]] + VΩθ

[EX|θ[X]]. (19)

Compound distributions have been presented in the literature under various names and contexts, such as ‘superstatistics’640

in physics and hydrology (Beck, 2001; Porporato et al., 2006; De Michele and Avanzi, 2018), ‘predictive distributions’

in theoretical and applied statistics (Benjamin and Cornell, 1970; Wood and Rodríguez-Iturbe, 1975; Stedinger, 1983;

Bernardo and Smith, 1994; Kuczera, 1999; Coles, 2001; Cox et al., 2002; Gelman et al., 2004; Renard et al., 2013;

Fawcett and Walshaw, 2016; Fawcett and Green, 2018), or without introducing any specific name (Koutsoyiannis, 2004;

Allamano et al., 2011; Botto et al., 2014; Yadav et al., 2021). In more detail, Eq. 18 “might be referred to as the645

prior (Bayesian) distribution or the posterior (Bayesian) distribution on X , depending on whether a prior or posterior

distribution of θ is used to determine f̃(x)” (Benjamin and Cornell, 1970, pp. 632-633). f(θ) can be analytical (e.g.,

Skellam, 1948; Moran, 1968; Dubey, 1970; Hisakado et al., 2006), or empirical, resulting from Monte Carlo simulations,

bootstrap resampling, or estimation from multiple sub-samples, such as in the case of βBC or MEV inference.

However, using our notation, f̃(x) “can be interpreted as a weighted average of all possible distributions f(x|θ) which650

are associated with different values of θ. In this sense [Equation 18] can be interpreted as an application of the total
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probability theorem... In any event we note that the unknown parameter will not appear in f̃(x), as it has been “integrated

out” of the equation. We also note that as more and more data become available, the distribution of θ will be becoming

more and more concentrated about the true value of the parameter. We should generally expect the distribution f̃(x) to

be wider, e.g., to have a larger variance, than the true f(x), since the former incorporates both inherent and statistical655

uncertainty” (Benjamin and Cornell, 1970, pp. 632-633).

In other words, NA models, such as βBC and MEV, are just the output of what is often referred to as multi-model

ensemble averaging (e.g., Burnham and Anderson, 2002; Giorgi and Mearns, 2002, and references therein). The inherent

nature of compounding/averaging procedures explains the tendency of NA models to yield f̃(x) with tails heavier than

those of the true underlying distribution f(x), and progressive convergence of f̃(x) to f(x) as the (block) sample size660

increases and f(θ) becomes more and more concentrated around the true value of the parameter(s). It also clarifies that

the properties ofNAmodels of BM depend on being compound models rather than extreme value models. In fact, same

results can be obtained by directly compounding the distributions of the parent process without any additional derivation

of the corresponding distributions of BM. Furthermore, recognizing the rationale of compound models allows us to

understand that the BM process is different from the parent one, and the distribution of the former is useful only if latter665

is not available. Finally, as shown in Section 5.3, understanding the nature of compounding procedures is fundamental

to correctly summarize and interpret multi-model outputs.

7 Conclusions

This study presented an inquiry on non-asymptotic (NA) distributions FY of block maxima (BM) Y , which was motivated by

their increasing use in data analysis without a necessary preliminary validation/falsification under controlled conditions, and670

a deep discussion of their rationale and relationship with the distribution FZ of the generating process Z. We discussed their

redundancy and practical uselessness in real-world analysis. This apparently bold statement relies on very basic facts: (i) the

distribution FZ of a process Z provides all information about any quantile or summary statistics (extreme or not); (ii) extreme

value distributions FY of BM corresponding to the parent process Z are just approximations of the tails of the distribution FZ ,

and they have a role only if FZ is unknown; and (iii) NA distributions require the preliminary knowledge/estimation of FZ ;675

however, once FZ is known or fitted to data, NA distributions of BM are no longer needed, and their derivation is superfluous

as FZ already provides all information. In this context, the use of asymptotic extreme value models is justified by the fact that

they do not require the preliminary knowledge or estimate of FZ (under suitable conditions).

While the foregoing logical arguments should be sufficient to call into question the practical use and usefulness of NA
models, we further demonstrated these issues by simplified examples, re-analysis of real-world data, and suitable Monte Carlo680

simulations. The aim was to support conceptual statements with numerical experiments that are easy to reproduce and can

independently be checked. In this way, debate can be based on technical counter-arguments and proper analysis of data drawn

from processes with known properties, avoiding the ‘consensus’ argument, and resetting the discussion about NA models

within the boundaries of the scientific method.
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Of course, the questionable usefulness of NA models in practical applications does not mean that they are not useful at685

all. As shown in this study and by Serinaldi et al. (2020b), NA formulation clarifies the inherent relationship between the

distribution of BM (FY ) and that of their generating process (FZ), thus shedding light on some inferential aspects from a

theoretical point of view. For example, NA formulation highlights that the difference between return periods/levels estimated

from FY and FZ does not depend on sample size (as incorrectly stated in the literature) but on the theoretical difference

of the processes Y and Z, and cannot be reduced. NA expressions also allow a better understanding of the mechanism of690

compounding distributions to account for multiple generating processes, showing the dualism of additive and multiplicative

mixing in the derivation of FY from FZ (Serinaldi et al., 2020b). In principle, NA models incorporating dependence are also

the basis for the theoretical study of the corresponding asymptotic models free from preliminary definition of FZ .

To conclude, models and methods should be thought and used in the right context and for suitable purposes. Reliability

of models must rely on a careful preliminary analysis of their consistency with logic, theory, data, processes analyzed, and695

problem at hand. A cautious approach should start from the assumption that a new model is likely questionable in terms of

novelty (it can already exist, perhaps under a different name in different disciplines), theoretical correctness, and practical

usefulness. Therefore, model developers should perform a deep literature review (possibly extended to other disciplines),

clearly understand rationale, assumptions, and purpose of the model, and attempt model falsification rather than validation.

New models should be tested under controlled challenging conditions. We believe that these recommendations are cornerstones700

of a rigorous scientific inquiry and are too often neglected. Calling into question the practical usefulness ofNAmodels of BM

is precisely an application of that investigation method.
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