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Reply on RC2 (Dr. F. Marra’s report) 

(Note: In the text below, Referees’ comments were copied verbatim in black.) 

We thank the Reviewer for the constructive feedback. In the following, we provide point-by-point 
responses in blue.  

This manuscript critics the use of non-asymptotic (NA) distributions of block maxima. The authors 
bring two main arguments to support their critic. The first is that NA require knowledge of the 
parent distribution and that, when this is known, there would be no need for deriving distributions 
of block maxima. The second is that the presence of serial correlation in the observations would 
decrease the potential advantage of NA. The manuscript then follows with some targeted 
comments to specific studies. The paper addresses a relevant topic, but the manuscript falls short 
at supporting its main conclusions. This is not due to technical errors, rather to a narrow (mono-
disciplinary) vision of the problems at hand (see main comments) and to an erroneous 
generalization of case-specific objections. Since all statistical models present advantages and 
disadvantages, which depend on how much the underlying assumptions are met/not met (or, to 
quote the statistician George Box: “all models are wrong, but some are useful”), I believe that the 
presented critics cannot be generalized to NA methods as a whole. Rather, they should be 
targeted to highlight specific aspects of NA methods that need attention and/or the specific NA 
approaches that need attention. 

Considering the main comments below, I believe the manuscript should be deeply revised before 
reconsideration. I am not sure this can be handled within a major revision, because the take-home 
messages would need important adjustments. The title should be revised to be more pertinent 
with the actual outcomes. This also pertains the title of some sections/subsections which border 
disrespectfulness (e.g., section 3, 4, 5). The manuscript is long and contains numerous repetitions. 
It includes unclear and/or incorrect reasoning in some sections, which prevent from fully 



understanding some parts (see comments 6 and 7 below). It could be halved in length without 
changing the message. 

All the references in this document can be found in the preprint of the manuscript. 

Given my lack of specific expertise, comment 6 was written with the help of a colleague expert in 
Bayesian statistics. 

I hope my comments are helpful. 

Kind regards, 

Francesco Marra 

Response We thank the Reviewer for the time devoted to our paper. We are also grateful to the 
Reviewer who acknowledges that the paper is technically correct, thus he necessarily agrees that 
our conclusions are also technically correct. As discussed below, we believe that such conclusions 
are also fully general, as they apply to any NA model, including the ones introduced by the Authors 
of this paper (see e.g., Serinaldi et al., 2020b and Lombardo et al., 2019). 

We agree that some concepts are sometimes repeated in the paper text, because we understand 
that they have been usually neglected in a huge amount of the literature dealing with NA models 
of block maxima (BM). Thus, we decided to follow the statement by the renowned physicist Arthur 
Leonard Schawlow: “Anything worth doing is worth doing twice”, or even repeated more times 
when it comes to statistical analyses. 

Main comments 

1. My main comment turns out to be a citation from the manuscript itself (line 694): “models and 
methods should be thought and used in the right context and for suitable purposes”. This 
sentence in the conclusions contradicts several of the arguments presented in the manuscript. The 
authors proceed for 30 pages (pages 1-30) repeatedly claiming that NA methods are ‘superfluous’. 
Only in lines 685-694 they contradict this argument stating that what they report in the 
manuscript “does not mean that they are not useful at all”. They then proceed listing what, in 
their view, are potentially useful applications of NA approaches and finish off with the citation I 
started with. I may add that the reported list of ‘useful’ applications is limited by the imagination 
of the authors (as shown by the sole presence of self-references in here) and, mostly, by the 
perspective they adopt. In this, it seems they forget the gap that there exists between theory and 
practice, between advancements in theory and practical use of extreme value distributions of any 
kind by hydrologists, risk modelers and end users in general. 

Response We kindly invite the Reviewer to read our paper more carefully. Indeed, it seems here 
that the Reviewer has extrapolated the meaning of some incomplete sentences out of their 
context giving rise to misunderstandings and wrong interpretations of the Authors’ statements.  

Actually, highlighting the difference between theory and practice is the very aim of our paper. 
Indeed, throughout the text, we always and purposely use periphrases like “little usefulness for 



practical applications”, “usefulness of NA models in practical applications”, “the problems 
concerning the use of NA models of BM for practical applications”, “call into question the practical 
use and usefulness of NA”, etc., etc., whereas L685-694 refer to usefulness of NA models in 
theoretical context, as should be obvious to everyone.  

The Reviewer is pointed to the distinction between practical and theoretical usage of NA models 
of BM, which is anticipated in L. 174-176, where we clearly state “This explains why NA have not 
received much attention and why the recently proposed compound NA models are of little practical 
usefulness, if any. Their usefulness is mainly theoretical, as they help explain the inherent 
differences between parent processes Z and BM processes Y, thus avoiding misconceptions and 
misinterpretation of different model outputs (see Serinaldi et al., 2020b).” 

Thus, it is quite evident that there is no contradiction at all.     

Furthermore, Reviewer’s remark does not consider the key point, that is, the argument supporting 
our conclusion about the practical uselessness of NA models of BM: “NA models of BM imply the 
preliminary definition of their conditional parent distributions, which explicitly appears in their 
expression. However, when such conditional parent distributions are known or estimated also the 
unconditional parent distribution is readily available, and the corresponding NA distribution of BM 
is no longer needed, as it is just an approximation of the upper tail of the parent”.  

In fact, several applications of NA methods follow the directions accepted as ‘useful’ by the 
authors, and other applications of NA methods follow directions that are useful, although not 
within the directions imagined by the authors.  

Response We disagree here with the Reviewer, as he seems to confuse practice with theory, 
namely theoretical and applied statistics. A clear understanding of such difference can be derived 
by reading (and comparing) for example Shao (2003; Mathematical Statistics) and Kottegoda and 
Rosso (2008; Applied Statistics for Civil and Environmental Engineers), among others.  

One notable example is the connection between physical processes and statistics, which can only 
exist in a NA model, given that real world physics is not asymptotic. It is my believe that physical 
processes should direct the statistics we use. The physics of the processes we are dealing with is 
not asymptotic.  

At this concern I must cite again the authors (lines 623- 624): “Historically, the main scientific 
progresses occurred when some one called into question widely accepted mainstream theories 
using arguments more solid than those of the superseded theories”. It almost seems we think alike 
on this point, although with different concepts for ‘mainstream’. 

Response We are sure we think alike with the Reviewer on several points to such an extent that he 
previously stated that our paper is technically correct. In other words, he says our work is correct 
according to a strict interpretation of the rules. That means that the Reviewer agrees on all the 
scientific rules we have extensively pointed out in the paper, where we also showed that such 
rules are unclear, misinterpreted or even neglected in a huge part of the literature. Then, we are 



more confident in our vision that we can claim we are providing a valuable contribution to the 
scientific community. Other than this, we are afraid we did not understand the first sentence of 
Reviewer’s remark, because: 

- “Physical” (natural, or manmade) processes are what we observe around us.  
- Physics (intended as a body of theories) and statistics are just modeling frameworks.  
- Concepts like “asymptotic” or “non-asymptotic”, “deterministic” or “non-deterministic”, 

can only refer to models not to “real world physics”, whatever it means. 
- Observation records are yet another thing, and they have finite size.   

If we say that “real world physics is not asymptotic”, we can also say, for instance, that “real world 
physics is not deterministic”: should we discard Newton’s classic mechanics because “real world 
physics” is not uncertainty-free? 

As stated by Morrison (2008) “The next hurdle [to get over in undergraduate mathematics] is the 
differences among observed reality, mathematical models, and computational realizations of 
mathematical models. Even a lot of accomplished scientists are not clear on these points... learning 
to cope with three things makes up the basics of a liberal scientific education: facts, abstractions, 
and the comparison of facts with abstractions... Understanding and ultimately research occurs only 
when facts are reduced to abstraction, the abstractions manipulated to make predictions, and the 
prediction compared with new facts”. 

Nowadays, it seems that there is a big confusion about basic epistemological and semiotic 
concepts, which are fundamental to make meaningful statements.  

2. One argument is that NA methods require the knowledge of the parent distribution and that 
when this is known, there would be no need for deriving a block maxima (BM) distribution. This is 
technically true but seems to neglect situations in which a BM distribution is helpful (even though, 
I agree, not technically essential). Some examples: empirical comparison with observations of BM 
only; fair comparison with estimates from EVT distributions; providing information that 
practitioners can use without changing habits. Doing these directly from the compound parent, 
although possible, would be troublesome and possibly confusing for non-experts. 

Response Again thanks to the Reviewer who thinks that our arguments are technically correct. 
Reviewer’s fairness is indeed greatly appreciated. Concerning the situations where models of BM 
(asymptotic or not) would be helpful, we refer to our paper’s Section 4, which already addresses 
Reviewer’s remarks: 

1) Rescaling compound parent distributions has a degree of complexity that is always less or 
equal to deriving the corresponding NA models for BM (see Section 4.1.1). 

2) Why should one compare (superpose) the distribution of a given process (e.g. streamflow) 
with the empirical (or a theoretical) distribution of annual maxima in a practical situation? 
Once we know the probability of (non)exceedance of a given streamflow value, this is all 
we need, indeed: 

a. If BM (annual maxima) are the only available data, NA models cannot be built. 



b. If we have enough data to build NA compound parent models, BM models are 
irrelevant. 

BM datasets are not of interest per se in any real-world application. They are only 
functional to rebuild the upper tail of the distribution of the parent process via 
distributions that hopefully do not require the (detailed) knowledge of the parent 
distribution (under suitable conditions). Other than that, BMs have no special purpose in 
practical applications, engineering design, management, etc.   

3) “fair comparison with estimates from EVT distributions”: Figures in the paper show fair 
comparisons among NA models of BM, NA parent models, and EVT models. More 
importantly, from a practical standpoint, once the parent model is available (and assumed 
to be reliable), any other model of BM (asymptotic or not) is just an approximation of its 
upper tail: as an approximation, it is always less accurate/correct than the parent models. 
Why should we build and compare two models of BM, when we already have a distribution 
that is superior by construction? Models of BM have no longer place once we decide to 
build/recover (compound) FZ. 

4) “providing information that practitioners can use without changing habits”: using parent 
distribution has at most the same degree of difficulty as using a POT distribution (such as 
the classic GP) in terms of derivation of return period or other summary statistics. 
Moreover, how can a practitioner be more comfortable with models that are more 
convoluted than their parent models?  

5) In our experience, “non-expert” and “practitioners” should be trained to properly use 
models and methods rather than providing them with more and more convoluted models 
that they do not know/understand and likely misuse due to apparent user-friendliness. On 
the other hand, if practitioners are well trained and can understand the nature and 
structure of compound NA models of BM, they will recognize that the parent models are 
the most straightforward option.   

3. The issue with serial correlation is important and could affect some applications of NA methods. 
I believe future NA applications (either for block maxima or directly from the parent distribution) 
should keep this in mind. In this, the paper is a relevant addition to the literature. Still, it falls short 
at supporting the adjective ‘superfluous’ that accompanies the reader. The importance of serial 
correlation depends on the type of variable one wants to examine and on how the variable is used 
in the model. It cannot be generalized to the application of NA methods as a whole. Incidentally, 
serial correlation also negates the assumptions of extreme value theory (EVT), with the effect of 
making the convergence much slower. Slow convergence actually suggests that NA methods 
should be used, making the reasoning circular and thus highlighting once again the complexity of 
the problem. 

Response We kindly reply to the Reviewer with the following points that are already included in 
our manuscript: 



1) We do not vaguely talk about serial correlation and dependence: we specifically show that 
“when declustering procedures are used to remove autocorrelation characterizing hydro-
climatic records, NA distributions of BM devised for independent data are strongly biased 
even if the original process exhibits low/moderate autocorrelation. On the other hand, NA 
distributions of BM accounting for autocorrelation are less biased but still of little practical 
usefulness” because they are yet approximations of the already available compound parent 
distributions. The NA models of BM are redundant in any condition (dependence, 
independence, stationarity, non-stationarity, or anything else). 

2) EVT can take some kind of dependence into account by e.g. extremal index. In other cases, 
such as the presence of strong dependence, EVT just says that the asymptotes can be 
different from GEV/GP. 

3) We do not say anywhere that NA methods should not be used: we say that NA models of 
BM are redundant in practical applications as they just approximate the upper tail of the 
already available NA parent distributions (Figs. 1 and 3), and both are biased under 
dependence and independence (Figs. 4 and 5).  

We do not even contrast asymptotic and NA distributions of BM: we show that the NA 
models of BM miss the main point that justifies the use of BM models, that is, no need of 
information about the precise nature of the parent distributions. 

4) There is no circular reasoning affecting asymptotic and NA models: if we have only BM, NA 
models cannot be defined. If we have complete data sets, we can build (compound) parent 
distributions and we do not need any NA model of BM. Alternatively, we can use EVT 
(asymptotic) models if we do not want (or cannot) fit a suitable parent model for some 
reason.  
Circular reasoning only affects NA models of BM (“children”) when compared to their 
compound parent (“parent”). Indeed, we generate the “parents” to give birth to 
“children”, then we use the “children” to recover part of the “DNA” of the parents, which is 
already known! This is circular reasoning. 
Conversely, “dependence” (and slow convergence) is just a technicality that can be 
addressed asymptotically or not. Moreover, EVT goes far beyond GEV and GP distributions. 
Circular reasoning concerns logical arguments rather than technicalities.   

We believe the relevance and importance of such concepts described above justifies their various 
repetitions throughout the text of our manuscript.  

4. Relatively large portions of the manuscript are dedicated to commenting specific works 
(sections 4.2, 5.3; 10 pages in total). Given that previous work, also by some of the authors 
(Serinaldi et al., 2020), and this work itself confirm that NA methods are formally correct, it is not 
fully clear how objections to specific works should affect NA methods in general. 

Response The Reviewer is kindly pointed to Section 4.2 of our manuscript, which clearly shows the 
redundancy and practical uselessness of NA models of BM: “being formally correct/incorrect”, 
“being biased/unbiased”, and “being useful/useless” are different things. For example: 



- Under serial dependence, the classical estimator of the correlation coefficient is (i) formally 
correct, (ii) biased, and (iii) only partially useful (as there are better estimators of linear 
dependence). 

- NA models of BM are (i) formally correct, (ii) biased, and (iii) practically useless in real 
world applications (data analysis). 

On the other hand, our Section 5.3 shows that the simulations used in the literature to support 
MEV models are formally incorrect as they confuse expected quantile functions and expected 
probability functions.   

While we refer to specific papers, our remarks are fully general: all NA models are redundant 
when compared with the corresponding (and known) NA parent models (Section 4.2), and all NA 
models (parent and BM) are biased because of their compound nature (Sections 5.1, 5.2 and 5.3).   

We are sure that the Reviewer is fully aware of the difference between general conclusions and 
case-specific conclusions. If he thinks that our statements are not general and/or not supported by 
our analyses, we will be glad to discuss possible counter examples that he can provide if he wants.  

Specific comments 

5. In section 3, the authors treat EVT as if it was the truth. Statistically it is, provided that the 
underlying assumptions are met. Among these the asymptotic assumption. In some relevant cases, 
convergence to the asymptote is (very) slow, such as the case of the powered exponential family 
of distributions. Notably, this is the case most relevant for precipitation, and precipitation is the 
main variable on which NA methods are confidently used (due to the relatively simpler relation 
with the underlying physics). In fact, in the case of precipitation tails from EVT are too heavy. This 
becomes clear when one tries to generate stochastic time series from a EVT distribution, and led 
to the development of a family of powered-exponential distributions for the generation of 
stochastic precipitation series (Papalexiou, 2022). These tails explain well the statistics of observed 
extremes, as shown by Marra et al. (2023) (more on this later). Overall, in that paper, we showed 
that GP tails from EVT and powered exponential tails from NA models can be indistinguishable, 
with the difference that the former are asymptotic distributions fitted to NA data. The message is 
once again that no model is perfect, and that different models may lead to similar answers, thus 
advancing our understanding of nature. 

Response We regret to say we disagree with the Reviewer here for the following two reason: 

- Section 3 does not treat EVT as the truth, whatever “truth” means. 
- “Statistically it is”? What does it mean that EVT is a statistical truth? 

We do not think that such comment is related to the content of Section 3 of our paper. Let us 
summarize Section 3. Its title is “Modeling extreme values: asking ‘why’ before looking for ‘how’” 
because we noted that the literature on NA models of BM is so focused on convoluted 
transformations of the parent distributions FZ that it seems to miss the key point: for a process Z, 



FZ already provides all information about the probability of every quantile (extreme or not). We do 
not need any other distribution, which is necessarily less informative of FZ.  

Even the Reviewer’s remark seems to talk about “how” (convergence, Weibull distributions, 
simulations, etc.), and it does not focus on “why” we develop such models, which is instead the 
topic of Section 3.  

Distributions of BM have been studied as one hopes to get insights into the tails of FZ when FZ is 
not available for some reason (e.g., lack of data, or difficulty to reliably identify FZ). 

When FZ is available, we do not need any distributions of BM (either asymptotic or non-
asymptotic) to define the probability of any quantile. Indeed, in real world applications, we need 
the probability of z (discharge, rainfall, etc.), not the probability of BMs (streamflow AM, or rainfall 
AM).   

“One might wonder why we should be interested in an asymptotic distribution of Y when the exact 
distribution, which is given by FY(z) = FmZ (z), where FZ is the c.d.f. [cumulative distribution function] 
sampled from, is known. The hope is that we will find an asymptotic distribution which does not 
depend on the sampled c.d.f. FZ.” (Mood et al., 1974, p. 258). 

To summarize: 

1) The process of interest (rainfall, streamflow, etc.) is Z. 
2) The probability of any quantile is described by FZ. 
3) When FZ is known, we do not need anything else to calculate the probability of any z. 
4) When FZ is unknown: 

a. Asymptotic models of BM provide an approximation of the tails of FZ that does not 
require the (precise) knowledge of FZ. 

b. NA models of BM cannot be derived as they require the preliminary knowledge of 
FZ, which explicitly enters in their expression.  

Then, we highlight once again that searching for an approximation of the upper tail of FZ makes no 
sense if the whole FZ is already known: why should one build an inferior approximate model of a 
sub-process, when one already has a superior model describing the whole process? 

Supporters of NA models of BM always contrast these models with asymptotic models, without 
recognizing that the true competitors of NA models of BM are the parent distributions that need 
to be preliminarily identified for the derivation of NA models of BM. And parent models are always 
superior to any model of BM as they describe the whole state space of process Z, whereas models 
of BM (asymptotic or not) describe just a subset.   

For clarity, we further summarize the key points graphically in the figure below. 

 

    



Asymptotic or non-asymptotic models of BM 
(grey line) are just approximations of the 
upper tails of parent models (orange line). 

NA models of BM are redundant, as they 
require the preliminary identification of the 
parent distributions, which are more 
informative than their surrogate NA models 
of BM.  

The “querelle” between supporters of 
asymptotic models and NA models of BM is 
ill-posed: the competitors of NA models of 
BM are not the EVT models, but the more 
informative parent distributions required for 
their derivation (and appearing in their 
expression). 

(Compound) parent distributions of 
Z (orange line) are more informative 
than any and every asymptotic or 
non-asymptotic model of BM (grey 
line) as they describe the whole 
state space. 

    

 

    

 

 

 

 

6. Some concepts in Section 5.3.1 are misused. Montecarlo simulations (both in its standard term 
and in its Markov Chain variant) are numerical methods to compute integrals and expectation, 
sampling from a target distribution numerically and approximating the expectations via empirical 
average. However, the description provided by the authors is confused and, at least for what 
concern the different approaches to statistical inference (here the frequentist or classical 
paradigm and the Bayesian one), wrong. Montecarlo simulations in frequentist inference and 
Markov Chain Montecarlo (MCMC) in Bayesian inference target totally different objects. The 
authors correctly assess the role of Montecarlo simulations under a frequentist approach to 
statistics. Under this point of view there exists a true population’s characteristic (or statistics, using 
the authors term) that is estimated (intrinsically with some uncertainty) from a finite sample. The 
variability of the estimator (and not of the parameter that the estimator is targeting) can be 
assessed in many ways, e.g. exploiting Montecarlo sampling to mimic the repeated sampling 
principle thus allowing to construct frequentist confidence sets. In Bayesian inference, instead, do  
not exist a ‘true’ parameter of the population as this is consider a random variable itself. 
Consistently with this, the posterior distribution of any unknown, which is often approximated via 
MCMC sampling is the target of inference. While posterior summaries like the posterior mean are 
common, they represent fundamentally different entities from frequentist estimators. In Bayesian 
inference, MCMC draws are used to construct credible sets, intrinsically different from the notion 
of frequentist confidence sets. The uncertainty that the posterior is describing is not the same 
uncertainty that the estimator variance in frequentist inference (obtained in any way, including 
Montecarlo sampling) is describing. 

Response We thank the Bayesian statistician involved by the Reviewer for his/her overview about 
the scope of MC simulations, and the difference between frequentist confidence intervals and 
Bayesian credible intervals. We are fully aware of such concepts, being already familiar with the 
explanations provided by e.g. Nicholas Metropolis, Arianna and Marshall Rosenbluth, Stanisław 
Ulam, and Edward Teller in their original papers on MC, or Bernardo and Smith (2000), Gelman et 
al. (2003), or Robert (2007) in their Bayesian books, etc., being left alone the original De Finetti’s 
works on subjective probability.  

However, we must stress here that section 5.3.1 and the whole paper have nothing to do with 
Bayesianism or the “46656 varieties of Bayesians” (Good, 1971, Am Stat 25:62–63). 



Our paper does not report any credible interval or Bayesian analysis. In the first paragraph of 
Section 5.3.1, we just state that simulation methods have several applications, and one of them is 
“to obtain posterior distributions of model parameters with unknown mathematical form”, that is, 
when closed form of posterior distribution is not available, which is the most common case in data 
analysis. 

Summarizing a multi-model ensemble is a general problem that is fully independent of the 
inferential strategy, as multiple models can result from sampling uncertainty analysis in 
frequentist fashion, from posterior distributions in Bayesian inference, or just from multiple 
physical models (with different model structure) without involving any statistical inference. The 
third paragraph in Section 5.3.1 states that the problem of summarizing multiple models is well 
known for instance in Bayesian literature just because the typical output is a set of models 
corresponding to parameter sets usually sampled via MCMC. And this has nothing to do with the 
difference between credible intervals and confidence intervals, which should be indeed well 
known to anyone who uses applied statistics to “play” with data. 

Finally, the third and last entry of the term “Bayesian” is in L. 646, where we discuss “predictive 
distribution”. However, also in this case, Bayesian inference/theorem does not apply whatsoever, 
as predictive distributions are just an application of the total probability theorem and 
marginalization.   

In this respect, we endorse the following statement by Christakos (2010): “when an investigator 
was asked if he is a “Bayesian” or a “non-Bayesian,” he responded that he is an “opportunist,” 
meaning that he would use whatever approach works best for the given in situ conditions”. 

Additionally, Bayesian model averaging is a well-known and successful concept that is not related 
to the summarization of the (MCMC approximated) posterior distribution of any kind. 

Response Indeed, we do not apply and do not even mention “Bayesian model averaging” 
anywhere in the paper.   

Despite stemming from confusing arguments about basic concept of frequentist and Bayesian 
inference, the discussion starting from eq. (10) to the end of Section 5.3.1 is correct. However, it is 
a mere consequence of eq. (17) and deserves less space. Perhaps lines 453-485 can be removed 
and the subsequent text rearranged. 

Response Thanks indeed to the Reviewer and his Bayesian colleague for stressing once again the 
correctness of our paper. We believe indeed that the discussion after Equation 10 is correct 
because its premises are correct, as they are fully general, and do not refer and are not limited to 
frequentist or Bayesian inference: they refer to how one can summarize multiple models, and this 
has nothing to do with the specific inferential procedure (often, involved models are not even 
statistical). 



Lines 453-485 are necessary to introduce predictive and median quantile/probability functions 
that play a key role in the interpretation of results in Section 5.3.2 (as explicitly stated in L. 450-
451). 

Clearly, Section 5.3.1 must be read in the context as clearly recommended in L. 449-451. 

 7. Section 5.3.2 is not clear. Specifically, I could not grasp whether the objection concerns (a) the 
average from the synthetic timeseries of the Montecarlo samples, or (b) the average in the MEV 
formulation. Are the authors claiming that the figure in Marani and Ignaccolo draws something 
different from what is claimed, or that the MEV framework is incorrect? The suggested changes in 
Fig. 7 indicate that we are in case (a). Should this be the case, the entire section 5.3 would be a 
direct comment to Marani and Ignaccolo (2015) that not necessarily pertain NA methods in 
general, but only the Montecarlo sampling in here. Should (b) be the case, it is not clear why 
section 5.3.1 is there and why all the distributions (not only MEV) change in figure 7. Even in this 
case, the comment would not pertain NA methods in general. 

Response The justification of the analysis in Section 5.3.2 is explicitly and clearly stated at the 
beginning of Section 5.3: “Therefore, we re-run Monte Carlo simulations described by Marani and 
Ignaccolo (2015) to understand the reason of such a disagreement [with simulations in Section 5.1 
(reproducing those of Marra et al. (2018))]. We anticipate that the foregoing discrepancies depend 
on the misuse of methods used to summarize multi-model ensembles. Thus, before describing 
Monte Carlo experiments and their outcome, we need to recall some theoretical concepts that are 
required to correctly interpret numerical results.” 

The message of results in Section 5.3.2 is indeed very simple: 

- NA models (BM and parent) are biased thus confirming results in sections 5.1 and 5.2. 

- These results contrast with those of Marani and Ignaccolo (2015), which are affected by incorrect 
use of multi-model averaging over S and Ω𝜽𝜽𝑆𝑆. 

- Since results reported by Marani and Ignaccolo (2015), including apparent lack of bias, are 
routinely used to justify the goodness of NA models of BM (due to supposed better performance 
with respect to EVT models), Section 5.3.2 shows that such arguments are not valid. 

To conclude, our concerns refer to both options (a) and (b), which are not mutually exclusive, even 
though we must rephrase them for the sake of correctness. We state that the figures in Marani 
and Ignaccolo show something different from what is claimed, and that the MEV framework and 
any NA model (BM or parent) is biased (… not “incorrect”). Indeed, in statistical modelling there is 
no “free lunch”: what we gain in reduced variance, we lose in increased bias, and vice versa.  
However, NA models are routinely described in the literature missing their bias, which 
disappeared in the incorrect diagrams reported in a paper that is usually cited as a starting point 
for these NA models of BM (neglecting numerical errors, lack of correspondence between figures 
and text, etc.).    



8. In section 6, the authors briefly comment on a paper of mine in which NA (Weibull) and 
asymptotic (GP) tails are compared for the case of precipitation. They quickly dismiss our study 
claiming that we used a low threshold “out of its range of validity”. We reported results for 
threshold equal to the 95-th percentile for consistence with the Weibull model, but we clearly 
stated that “Results derived from higher thresholds such as the 98-th percentile used by Serinaldi 
and Kilsby (2014) are qualitatively analogous but characterized by larger uncertainties” (Marra et 
al., 2023). For reference, I report here the same as figure 3 in Marra et al. (2023) as it was 
obtained using a threshold equal to the 98-th percentile (Figure 1 below). As it can be seen, the 
instances in which GP provide too heavy or too light tails are even increased when using the 98-th 
percentile with respect to the 95-th percentile case (please refer to Marra et al., 2023). This is 
because in addition to theoretical convergence issues (what the authors focus on), there are 
important (practical) issues with stochastic (sampling) uncertainty. 

Response We disagree with the Reviewer here, because the foregoing remark starts from 
premises or statements that are attributed to our paper even though they do not appear 
anywhere.  

Furthermore, we do not dismiss any paper: we call into question the interpretation of Fig. 5 (not 
Fig. 3!) in Marra et al. (2023), which has practical consequences as clearly stated in L. 571-592. The 
Reviewer interpreted that figure (reported below for convenience) as follows:  

“the errors for maxima sampled from GP tails strongly depend on the left-censoring threshold and 
tend to be too heavy-tailed for θ ≤ 0.90. The accuracy of GP tails in reproducing the statistics of 
observed maxima is comparable to the one of Weibull tails only for thresholds θ > 0.9. Second, GP* 
tails estimated from synthetic Weibull-distributed data, are virtually indistinguishable from the GP 
tails estimated from real observations (dashed blue). As predicted by EVT, GP tails tend to provide 
similar estimates upon asymptotic conditions (here represented by θGP = 0.95; see also Serinaldi 
and Kilsby, 2014) and the difference in L-moment ratios between non-asymptotic Weibull tails and 
GP tails decreases with increasing threshold (Fig. 5c). Crucially, the difference between L-moment 
ratios of annual maxima emerging from GP and GP* tails (dashed) are virtually indistinguishable 
also for high thresholds such as θ = 0.95, and smaller than the differences between L-moment 
ratios of annual maxima emerging from GP and Weibull tails (Fig. 5c). Estimating GP tails from 
observations is equivalent to estimating GP tails from Weibull data.” 

 
 



Fig. 5. Error in L-skewness (a) and L-kurtosis (b) of annual maxima estimated from MC samples of 103 years of non-asymptotic Weibull tails (WEI, 
red) and GP tails (blue) with respect to observed annual maxima; solid lines and shaded areas represent, respectively, median and 90% confidence 
interval across the stations; dashed blue lines show the median for the case of GP tail model estimated from the synthetic Weibull tails (GP*); 
shaded grey areas in (a) and (b) quantify the stochastic uncertainty due to the available data record in presence of non-asymptotic Weibull tails. (c) 
Difference between L-skewness (purple) and L-kurtosis (green) derived from GP and Weibull tails (solid lines for the median, shaded areas for the 
90% confidence interval) and from GP tails and GP* estimated from the synthetic Weibull tails (dashed, only the median is shown). 

 

This behavior is expected because, as we state in the paper, “The natural interpretation of these 
results would be that the Weibull distribution is a good model FZ for the parent process Z (positive 
rainfall or rainfall over low/moderate thresholds) confirming previous results reported in the 
literature, while GP model works well for exceedances over high thresholds (as postulated by EVT), 
and does not work well (as expected) for low/moderate thresholds, that is, outside its range of 
validity.” 

The poor performance of positive rainfall with GP behavior up to moderately high threshold is not 
a limitation of GP, but an effect of using GP for “the body of the distribution”. These diagrams (and 
the overall results reported by Marra et al.) do not call for a renewed consideration of 
nonasymptotic statistics (NA models of BM) for the description of extremes. They just translate in 
the following conclusions: “(i) use GEV if only BM are available (e.g., AM from hydrologic reports), 
and (ii) use FZ (e.g., (compound) Weibull) if you have information on Z, which can be either the 
process of all positive rainfall or rainfall over arbitrary low/moderate thresholds if the latter is 
deemed easier to fit. In the latter case, calculate the T-year return levels as the (1− μ/T) · 100% 
quantiles of FZ, where μ is the (mean) inter-arrival time (in years) between two observations of Z 
(e.g., Serinaldi, 2015; Volpi et al., 2019). 

Such a plain reasoning highlights that there is no need to build an additional distribution of BM 
(i.e., SMEV, MEV or whatever else), in the same way we do not need to define the GEV distribution 
of AM once we already inferred a GP model of POT.” 

Once (compound) Weibull (or anything else) is identified as an acceptable model for all positive 
rainfall or rainfall over arbitrary low/moderate thresholds, the behavior of any quantile (extreme 
or not) is completely described by this distribution. We do not need any other asymptotic or NA 
models of whatever surrogate process. 

9. The manuscript presents numerous self-citations.  

Response See our reply on CC1. 

10.Incidentally, as a user of NA methods, I never claimed they are ‘superlative’. They are as good 
as other models are: they offer advantages in some situations and disadvantages in others. 

Response Thanks for this comment. We understand the Reviewer’s point and in fact we never 
stated that the Reviewer claimed that NA models are superlative. 

In our paper (and several previous papers of ours), we only criticize methods and/or other papers, 
not their Authors. However, we also understand that sometimes researchers tend to “fall in love” 



and/or identify themselves with models and methods that they use and promote, especially if they 
do that for a long time.   

We are confident that the reader can distinguish the different roles played by tone, style, and 
content in a written text, and therefore the intended meaning of the question “Superlative or 
superfluous?” in the paper title. 

 

 

 


