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(Note: In the text below, Referees’ comments were copied verbatim in black.) 

Response We thank the Reviewer for the interesting feedback. Please find below our response to 
raised concerns. 

A classic choice in the statistical modelling of extremes is between (a) constructing a detailed 
model of an entire process, from which its extremal properties can be estimated, either 
analytically or more usually by numerical methods, or (b) direct modelling of the extremes 
themselves.  If adequate reliable data are available and the investigator has sufficient time, then 
approach (a) allows information from other sources (such as physical models) to be included at the 
modelling stage and has the benefit that estimates of all quantities, including extremes, stem from 
a single overall model and therefore are consistent.  However this approach is demanding of data 
and of time, and makes the implicit assumption that the details of the underlying process are 
relevant to the extremes.  Approach (b) is less demanding of data and avoids detailed modelling by 
applying the classical theorems of extreme-value theory (EVT) to block maxima or threshold 
exceedances for the phenomenon of interest.  Although originally developed for independent and 
identically distributed observations, these theorems have been shown to be robust to plausible 
types of dependence in the underlying data, and have been widely and generally successfully 
applied in environmental settings.  They can be regarded as semiparametric models, in the sense 
that they do not depend heavily on the underlying process.  A major concern is that they rely on 
limiting approximations (the GEV and GPD) that may fit data at observed levels satisfactorily but 
extrapolate poorly to unobserved levels.  Such models provide a simple and direct empirical 
approach to modelling extremes of the underlying phenomenon but it may be a struggle to 
incorporate physical constraints or other background knowledge into them.  



The paper under discussion can be viewed as a critique of a particular type (a) approach, namely 
metastatistical extreme-value (MEV) modelling, from the viewpoint of a classical type (b) 
approach, namely the fitting of GEV and GPD models to block maxima and threshold exceedances.   

Response We are grateful to the Reviewer for the thorough overview of statistical modelling of 
extremes. Anyway, we must clarify that in our work we do not compare asymptotic and non-
asymptotic (NA) models of block maxima (BM) from the point of view of asymptotic models (the 
latter are indeed not even mentioned in the abstract). We contrast models of BM with the 
corresponding compound parent distributions. As clearly stated in the paper the key message is: 

“We discussed their redundancy and practical uselessness in real-world analysis. This apparently 
bold statement relies on very basic facts: (i) the distribution FZ of a process Z provides all 
information about any quantile or summary statistics (extreme or not); (ii) extreme value 
distributions FY of BM corresponding to the parent process Z are just approximations of the tails of 
the distribution FZ, and they have a role only if FZ is unknown; and (iii) NA distributions require the 
preliminary knowledge/estimation of FZ; however, once FZ is known or fitted to data, NA 
distributions of BM are no longer needed, and their derivation is superfluous as FZ already provides 
all information. In this context, the use of asymptotic extreme value models is justified by the fact 
that they do not require the preliminary knowledge or estimate of FZ (under suitable conditions).”  

Asymptotic models are only mentioned in the paper to stress that their merit is to disconnect 
inference about the tails of the parent distribution from an accurate knowledge of the parent 
distribution itself (as mentioned by the Reviewer). Instead, NA models of BM require the 
preliminary inference of components (conditional marginals) that are sufficient to build the 
compound parent distribution. Therefore, NA models become useless as they provide just an 
approximation of the tails of a compound parent that is already completely defined. This is the 
message conveyed by Figs. 1 and 3 and Section 4. 

Since we aim at conveying this message, we think that targeting “much of the general text in the 
earlier sections for cuts” is not a good idea, as these sections contain the epistemological 
justification of our criticism. This is also needed because we strongly believe that conceptual 
reasoning is crucial even in a modern era focused on massive data analysis and technicalities, 
because they must be supported by preliminary epistemological reasoning.      

There are two main criticisms: 

that papers proposing MEV have done so by application to and illustration on `real data’, in which 
the true data-generating mechanism is unknown, which implies that it is impossible to compare 
the behaviour of different approaches under ideal conditions (when the target of inference is 
known); 

that in any case the comparisons are incorrect, because of confusion over the target of inference 
(see Figure 7).  Here the point is more subtle, but it is summarised in equation (16) of the paper.  
The point here is that if one is estimating a quantile function $Q_\theta(p)=F^{-1}(p;\theta)$ that 
depends on an unknown parameter $\theta$ and one will estimate $\theta$ from a single sample 



using an estimator $\hat\theta$, then the estimator of $Q_\theta(p)$ is $Q_{\hat\theta}(p)$, 
whose properties should be assessed over repeated sampling using independent replicates 
$Q_{\hat\theta_1}(p), \ldots, Q_{\hat\theta_S}(p)$ based on $S$ samples leading to estimates 
$\hat\theta_1,\ldots, \hat\theta_S$.   The average of these estimates would be $S^{-1} 
\sum_{s=1}^S Q_{\hat\theta_s}(p)$, i.e., the right-hand side of (16), rather than $Q_{\bar 
\hat\theta}(p)$ (the left-hand side of (16)), where $\bar\hat\theta$ is the average of the 
parameter estimates for the $S$ samples.  The paper under discussion illustrates the difference via 
the left- and right-hand panels of Figure 7.   

Response Thanks again for this interesting comment. However, as mentioned above, our main 
concern comes from introducing NA models (not only MEV, but also our own models in Eq. 4) 
neglecting the epistemological justification of EVT (asymptotic) models.  

In real-life problems, we mainly need the probability of values taken by processes such as 
discharge, precipitation intensity/depth, water level, etc. We do not need or look for the 
probability BM or POT of such processes. We focus on BM or POT for convenience, as these sub-
processes can conveniently be described by a couple of distributions that do not require the 
knowledge of the parent process (under suitable conditions). 

Since NA models of BM do not exhibit this disconnection, they automatically lose the only practical 
advantage of using “sub-optimal” BM and POT processes. 

All the technical inconsistencies discussed throughout the paper are just a consequence of missing 
these epistemological concepts, reducing the development of new models to a mechanistic 
exercise focusing on “how” to do that, but missing the fundamental preliminary step, i.e. “why” 
we develop new models! This is the meaning of (the title of) Section 3: “Modeling extreme values: 
asking ‘why’ before looking for ‘how’”. 

The literature on NA models reveals that these concepts are widely overlooked and, perhaps, need 
to be recalled as we did in the manuscript. 

(Though the discussion at lines 532-535 leaves it unclear how the `median GEV/Gumbel’ curves 
are computed — the median for each $p$, giving a result that would not corresponding to any 
single quantile function, or what?  And if the median, why not the mean?). 

Response 

Median GEV/Gumbel probability and quantile functions are obtained by Eq. 14 and 15.  

We state “Therefore, to be consistent with EVT, the ensemble of GEV and Gumbel distributions 
should be summarized using a transformation, such as the median, that retains the expected 
GEV/Gumbel shape.” In this respect, we devote the preliminary sub-section 5.3.1 to explain why 
the mean provides biased summary of MC ensembles, whereas rank-based summary statistics, 
such as the median, are insensitive to non-linear transformations linking parameters, FZ, and Z, 
and are therefore more appropriate to preserve the shape of the distribution. To further explore 
such concepts, a graphical representation is shown in figure below (with self-explanatory labels); it 



refers to GEV distribution with shape parameter equal to 0.1, sample size equal to 50, and 3000 Monte 
Carlo replications to assess sampling uncertainty. 
 

  

Moreover, we introduced Section 5.3.1 by explicitly stating that “We anticipate that the foregoing 
discrepancies depend on the misuse of methods used to summarize multi-model ensembles. Thus, 
before describing Monte Carlo experiments and their outcome, we need to recall some theoretical 
concepts that are required to correctly interpret numerical results.” 

Therefore, the text already cares about the reader’s understanding of the discussion. As 
mentioned above, specific sentences in the text are consistent with the premises reported in the 
introducing sections.   

Both of these criticisms seem to me to be correct, and they should in my view embarrass the 
reviewers of the original MEV papers and the journals that published them. 

Response We believe that the objective statement by an independent Reviewer about the 
correctness of our criticisms is fitting to the task for the Authors of this paper, who have honed 
their research over the years to the very aims of mapping out and understanding theoretical 
consistency in analysis of geophysical data, without getting much consensus for that. Therefore, 
the Reviewer has our genuine thanks for providing us with such an important comment in 
acknowledgement of our work. Other than that, we agree with the Reviewer that “new” methods 
could sometimes be uncritically accepted in scientific journals and then routinely applied by the 
scientific community without double-checking their theoretical basis, taking for granted that they 
are conceptually/formally correct just because they are published once somewhere. 

I found the paper to be quite poorly written, to the point of unclarity in numerous places, 
including lines 405 (`the spreader …’?), 429 (` …, or better, …’?) or 524 (what is a predictive 
quantile function of a predictive quantile function?), and with many minor errors.  Examples of the 
latter are that (i) the Beirlant et al book cited at line 18 was published in 2004, not 2006, and (ii) 



stating on line 476 that the distribution of an order statistic is beta is incorrect — the beta 
distribution represents variables on a finite interval, and clearly this does not apply to order 
statistics from, say, a Gaussian sample (did the authors mean that the distribution of an order 
statistic can be represented _using_ that of a beta random variable?), (iii) equation (17), the left-
hand side of which is a function of $z$, while the right-hand side is a number (as the expectation 
of $Z$ is a constant), and (iv) at line 461, where results from a simulation study are `eventually 
used to build confidence intervals’ — but in a simulation study the truth is known, so confidence 
intervals are not needed — as a confidence interval is based on a single sample, we have to guess 
that the authors mean that their $S$ return level estimates will be used to compute quantiles of a 
distribution.  The paper is full of inaccuracies of this sort, so the reader is continually wondering `is 
that correct?’ and concluding `not quite’; this does not give confidence in the main results.   It is 
the role of the authors to produce a well-crafted article, not that of a reviewer, so I will not give 
more examples (it would take many pages to list them all), but generally I found the writing to be 
unclear, long-winded, and in need of a careful review by a native English-speaker (see, e.g., line 
514).  Reducing the paper radically by revising and trimming the text throughout would improve it.  
I would also target much of the general text in the earlier sections for cuts, since it is mostly not 
germane to the criticism of the MEV work.  A 15-page paper in the current format would make the 
main points more clearly and should be more readable.   

Response We will double-check language and presentation. Concerning the specific points: 

- “predictive quantile function”: the full sentence states that “the predictive quantile 
functions (over S samples) of the predictive quantile functions (over nY samples) 
associated to MEV structure”. 
Predictive quantile functions are just ensemble averages: Figure 7 just shows the 
ensemble averages over S samples of the ensemble averages over the nY quantile 
functions contributing to the MEV quantile function. In other words, there are two 
levels of compounding (let us say hierarchy): the first one is related to the derivation of 
MEV (which is itself a predictive distribution integrating the inter-block variability of 
parameters), while the second one is related to the derivation of the predictive version 
of MEV, integrating (averaging) over the S MEV functions. 
Thus, the curves in Figure 7 are ensembles of ensembles, where the average is taken 
firstly over nY parent quantile functions and therefore over S MEV quantile functions. 
This is formalized in L. 525, where we state “In more detail, 𝑧𝑧𝑝𝑝,𝑄𝑄� ≅

𝐸𝐸𝑆𝑆[𝐸𝐸Ω𝜃𝜃𝑆𝑆[𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊
𝑙𝑙 −1(𝑝𝑝|𝜃𝜃𝑆𝑆)]]…” 

(i) We will fix the typo in the BibTex entry of Beirlant et al., thanks. 
(ii) We understand Reviewer’s concern and we will clarify this point in the revised text as 

follows.  Under i.i.d. assumption, order statistics have a binomial distribution (which is 
equivalent to a beta) in the sense described by Equation 1 (see also David and 
Nagarajah 2003, pp.9-10). In other words, the distribution of the order statistics is a 
beta distribution of the variable Fz(Z), or equivalently a so-called beta-extended 
distribution of Z (Eugene et al. 2002), which is also known as generalized beta-G 



distribution, where “G” denotes generalized classes, such as exponentiated-G or 
Kumaraswamy-G (e.g., Tahir and Cordeiro, 2016).  
Therefore, from Eq. 1 and the expression reported in L.476, it should be clear that the 
range of the distribution is not bounded. 

(iii) Thanks, we will double-check notation and fix these typos. 
(iv) We believe a sentence cannot be extrapolated from the context. We state: “Monte 

Carlo simulations are usually used to study the uncertainty affecting estimates based on 
finite-size samples (that provide incomplete information about the underlying process) 
or to approximate population distributions (or statistics) when mathematical closed-
form expressions are not available. Examples of these applications are the experiments 
reported in Sections 5.1 and 5.2… In all cases, the primary output of Monte Carlo 
simulations is a set of parameters identifying a set of models (multi-model ensemble) 
that is then used to estimate the target statistics of interest. For example, simulations 
of S finite-size samples in Sections 5.1 and 5.2 are used to fit a set of S GEV distributions. 
These are then used to calculate a set of S 100-year return levels, which are eventually 
used to build confidence intervals”  
The sentence refers to the use of MC to build confidence intervals describing the 
uncertainty of estimates from finite-size samples.  

To summarize, we will fix the above issues by double-checking notation and typos and adding 
some minor details. Anyway, we also think that these issues are far from being sufficient to call 
into question the overall content of the paper. 

Concerning the length of the paper, we believe the message of the first part of the paper is very 
important despite its simplicity and iteration throughout the text. We do believe that in a shorter 
version such message could be easily neglected or misinterpreted. 

We also highlight the content from Section 4.1.1 to 5.2 (i.e., L. 178-437), where we discuss key 
points such as the interpretation of the relationship between parent models and models of BM, 
the effect of serial correlation, and provide examples by simulations and data re-analysis. The 
content of the paper goes far beyond Sections 3 and 5.3, we will stress this in the revised 
manuscript.   
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