

1 2	Parameter dynamics of distributed hydrological model in simulating or forecasting flood processes of urbanizing watersheds
3 4	Yangbo Chen ^{1*} , Jun Liu ¹ , Liming Dong ¹
5 6 7 8	¹ School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
9 10	Correspondence to: Yangbo Chen (eescyb@mail.sysu.edu.cn), +86-138-26161264
11	Abstract: In the past decades, the world has experienced rapid urbanization and
12	observed the appearances of large amount urbanizing watersheds with enhanced
13	flooding, which has a constant changing land use/cover(LUC) types as the most
14	significant feature. Simulating and forecasting urbanizing watershed flood processes
15	faces great challenges, one is how to relate model parameters with the changing LUCs
16	to secure an accurately and reliable simulation and forecasting results. In this study, a
17	methodology for simulating and forecasting urbanizing watershed flood processes is
18	proposed, which employs Liuxihe model as the watershed hydrological model. This
19	methodology sets up the Liuxihe model with latest terrain properties, then derives
20	initial parameter look-up table based on terrain properties, and optimizes it if there is
21	observed hydrological data. If there is LUC changes, then the parameters are updated
22	with the changed LUCs based on the optimized parameter look-up tables. Case study
23	in a highly urbanizing watershed in the Pearl River Delta Area in southern China has
24	shown that this method acquires accurate and reliable flood processes simulation
25	results. Further more, this study has proven an assumption that the hydrological model
26	parameters are LUC stationary, i.e., with the LUC changes, the parameter look-up
27	table will not change, parameter look-up table optimized in a specific time with
28	current LUCs will not change even the LUCs changed. With this assumption, the
29	parameter look-up table only needs to be optimized once. This is a science question
30	that has not been not well answered yet by the scientific communities.
31	
32	Keywords: Flood simulation, flood forecasting, land use/cover change, Liuxihe model,

33 parameter optimization

34 **1 Introduction**

35	In this study, an urbanizing watershed is referred to a watershed with constant land
36	use/cover (LUC) changing, and has urban land (impervious surface) as its major or
37	significant LUC type. Urbanizing watersheds usually locate in the rapidly developing
38	or urbanizing area. For the past century, the world is in constant urbanization (He et
39	al., 2021; Addae and Dragicevic, 2023), and its urban population reached 50% in
40	2007 (United Nations, 2014). While for the developing countries, the urbanization
41	trend is still rapidly going (Huang et al., 2022; Xue et al., 2022). For example, intense
42	urbanization has occurred in India and Nigeria from 1970-2010, where 85% and 30%
43	of cropland area within ten km of urban areas converted to urban land respectively
44	(Guneralp et al., 2020). China also experienced a rapid urbanization since 1978, with
45	its urban population reached 55% in 2018 (Zhao et al., 2023; Fang and Wang, 2011).
46	China's urbanization is still going on and quick in some regions (Yu, 2021), with its
47	urban population projected to be 68% in 2050 (Development Research Foundation of
48	China, 2010). During this world urbanization process, lots of urbanizing watersheds
49	appeared worldwide, some of them already have very high urban land percentage over
50	50% (Wang and Chen, 2019), while others are still in its growing stage. For example,
51	in China's Pearl River Delta Area (PRDA) where the rapidest regional urbanization
52	was observed in China (Li et al., 2011), most of the watersheds have a higher than
53	30% urban land rate, with some over 50% already (Chen et al., 2015, Zhang et al.,
54	2015).

For an urbanizing watershed, rapid land use/cover (LUC) change, particularly the 56 converting of vegetated area (pervious surface) into urban land area (impervious 57 surface), is the most observed direct change caused by human activities. This change 58 59 induces increased surface runoff and peak flow, which was well observed and analyzed (Leopold, 1968; Hollis, 1975; Rose et al., 2001; Yang et al., 2016; Wang et al., 2022; 60 61 Zhao et al., 2023). Simulating watershed flood processes has long been the goal of the world hydrological communities, it is the prerequisite for flood mitigation project 62 design and flood forecasting. But for an urbanizing watershed, how to consider the 63 64 LUCs change in the simulation is still a great challenge.

65

Watershed hydrological models are the most employed tools for watershed flood 66 67 processes simulation and forecast, lumped models are widely used in the early stages 68 (Refsgaard et al., 1996; Chen et al., 2011), such as the Stanford model (Crawford et al., 1966), the Xinanjiang model (Zhao, 1977) and the ARNO model (Todini, 1996), only 69 70 list a few. Lumped models calibrate model parameters by using series hydrological data observed in the past, and the LUC change could not be reflected with model structure 71 72 or parameter, thus can only be used for simulating the past hydrological processes, not 73 the changing one. For this reason, lumped hydrological models are not the appropriate 74 models for simulating or forecasting urbanizing watersheds flood.

75

76 Physically based distributed hydrological models (PBDHMs) are the new

77 development of watershed hydrological models, as the terrain is divided into grid cells

- 78 (Freeze and Harlan, 1969; Abbott et al., 1986a, 1986b) and the runoff production and
- routing are calculated cell by cell, thus having the potential to better simulate

80	hydrological processes (Ambroise et al., 1996). Dozens of PBDHMs have been
81	proposed and widely used in scientific studies, including the SHE model (System
82	Hydrologue Europeen model) (Abbott et al., 1986a, b), the VIC model (variable
83	infiltration capacity model) (Liang et al., 1994), the WEP model (Water and Energy
84	transfer Process model) (Jia et al., 2001) and the Liuxihe model (Chen et al., 2011),
85	and many others. The most outstanding feature of PBDHMs is that model parameters
86	have physical meanings, and can be directly derived from the watershed terrain
87	properties, such as the elevation, soil type and LUC. A table is usually set up to define
88	the relationship between the parameters and the terrain properties, which is referred to
89	as the parameter look-up table. This gives PBDHMs potential to simulate or forecast
90	urbanizing watershed flood as it can relate model parameters with LUC changes.
91	
92	In the early study, look-up table is proposed based on limited local experiences and
93	laboratory experiments, which shows big uncertainty and impacts the model's
94	performance. Recent studies have shown that parameter optimization can improve
95	PBDHMs performances (Madsen, 2003; Smith et al., 2004; Pokhrel et al., 2012; Chen
96	et al., 2016), which was assumed previously that parameter optimization is not needed
97	for PBDHMs. Several methods have been proposed, such as the scalar method (Vieux
98	et al., 2003; Vieux, 2004) for Vflo model, the SCE algorithm for MIKE SHE (Madsen,
99	2003), the multi-objective genetic algorithm for WetSpa model (Shafii et al., 2009), the
100	SCE-UA algorithm (Xu et al., 2012) and the Particle Swam Optimization (PSO)
101	algorithm (Chen et al., 2016) for Liuxihe model. But these efforts were mainly carried

103 LUC changes.

104

105	For simulating or forecasting urbanizing watershed flood processes by using a PBDHM
106	big challenges still exist. The biggest one is how to acquire a reliable and accurate look-
107	up table, so to adjust parameters with changing LUCs. The second is a science question,
108	i.e., if a reliable and accurate look-up table could be set up, then should it be LUC
109	stationary? I.e., with the LUC changing, the look-up table should be changed
110	accordingly or not? There are two purposes for this study, the first is to propose a
111	methodology for simulating or forecasting urbanizing watershed flood processes by
112	using a PBDHM with satisfactory model performances, which can relate the model
113	parameters with the changing LUCs. This methodology employs Liuxihe model as the
114	PBDHM, and sets up the Liuxihe model with latest terrain properties; then proposes an
115	initial parameter look-up table based on current parameterization experiences, and
116	optimizes it if there is observed hydrological data. With parameter look-up table
117	optimization, the parameter look-up table is reliable and accurate. This methodology
118	solves the first challeng and has been tested in a highly urbanized watershed in southern
119	China.

120

121 The second purpose is to answer the science question of parameter stationary. The authors assume that the model parameters are LUC stationary, i.e., with the LUC 122 changing, the parameter look-up table will not change, i.e., a parameter look-up table 123 124 optimized in a specific time with current LUCs will not change after the LUCs changed. 125 With this assumption, the parameter look-up table only needs to be optimized once. 126 This assumption has been proven by the simulation results in the case study, so to solve 127 the second challenge. The remaining parts of this article are organized into 4 sections. 128 Section 2 introduces the study watershed, the hydrological data, LUC change data and

- 129 terrain property data. Section 3 introduces the methodologies, including Liuxihe model
- 130 and its parameter look-up table determination. Section 4 introduces the results in the
- 131 case study watershed, and section 5 provides a discussion.

132 2 Study watershed and data

133 2.1 Study watershed

134 Songmushan Watershed(SW) is the upstream of Hanxishui River Basin(HRB) locating in Dongguan City in southern China. Songmushan Reservoir(SR) was built in the 135 middle stream of SW, and the watershed area controlled by SR is called as Songmushan 136 Reservoir Watershed (SRW) in this study. Originating from the Lotus Mountain, SRW 137 has a drainage area of 54.2 km², and a river length of 11.19 km. SRW was selected as 138 the study watershed bacause it is a typical urbanizing watershed in China, and 139 140 hydrological data in recent years for this study is also available. Fig. 1 shows the 141 location of SRW.

142

Fig. 1 is here

144

143

The major topography of SRW is gentle hills. This area enjoys a subtropical monsoon climate with frequent storms in the summer monsoon season. Average annual precipitation of SRW is 1674 mm, which caused serious flooding in the past. SRW has observed rapid urbanization in the past decade, which has created a high percentage of urbanized land. It is a typical watershed in the Pearl River Delta area that experiences considerable increasing both in flooding and urbanization.

151

152 Songmushan Reservoir was initially built for irrigation in 1958 as Dongguan City was

primarily an agriculture area at that time, and there was no systematical hydrological 153 observation until 2008. With China's reforming and opening, Dongguan City has been 154 developing very fast since 1987, and become an international metropolitan. Dongguan 155 156 City has been a highly urbanized area since then, and there is almost no agriculture anymore. For this reason, irrigation is not needed, and the reservoir has the new roles 157 158 of flood mitigation and water supply after a heavy flooding in 2006. In 2008, an 159 automatic hydrological data collecting system was built which includes 6 rain gauges (Fig. 1) and 1 water level gauge at the dam site. 160

161 2.2 Hydrological data

162 In this study, hydrological data of 13 flood events between 2008 and 2015 was obtained,

163 including precipitation of the 6 rain gauges and the reservoir inflow at one hour interval.

164 Table 1 shows the basic information of these flood events.

165

166

Table 1 is here

167 2.3 LUC change data

Chen et al. (2017) prepared a LUC dataset of the whole Dongguan City using the 168 Landsat series satellite remote sensing imagery (Irons et al., 2012, Tang et al., 2013). A 169 total of 12 imageries from 1987 to 2015 at an average 3-year interval were obtained, 170 171 and the SVM classifier algorithm (Vapnik, 1995) was employed to estimate the LUCs accordingly. LUC data at 1987, 1990, 1993, 1996, 1999, 2001, 2003, 2005, 2008, 2011, 172 2013 and 2015 were prepared for the whole Dongguan City. There are six LUC types, 173 including urban land (impervious surface), water body, forestry land, farmland, 174 grassland and bare land. LUCs of SRW in 2008, 2011, 2013 and 2015 were extracted 175 from this dataset, Fig. 2 shows these results. 176

178	Fig. 2 is here
179	
180	Urban land area of SRW was 18.62% in 2008, but reached 23.40%, 26.24% and 30.37%
181	in 2011, 2013 and 2015 respectively, this is a significant increasing in urban land under
182	urbanization, and this watershed could be regarded as an urbanizing watershed as its
183	LUCs was in constant changing from 2008 to 2015.
184	2.4 Terrain property data
185	Terrain property data is mainly used for model set up and initial model parameter
186	deriving, includes DEM, soil type and LUC type. DEM was prepared based on the
187	topography map surveyed recently by the local government agency, the spatial
188	resolution is at 30 m grid cell (Fig. 3(a)). The highest, lowest and mean elevation of the
189	watershed are 489 m, 9 m and 38.1 m respectively.
190	
191	Soil map was downloaded from the FAO world soil map dataset (www.isric.org) as
192	shown in Fig. 3(b). There are 4 soil types in the watershed, including urban land, water
193	body, ferric acrisols and cumulic anthrosols, with areal percentages of 1.0%, 14.0%,
194	67.0% and 18.0% respectively.
195	
196	Fig. 3 is here
197	
198	In this study, a new soil type, the urban land soil type is defined. For which, its land
199	use/cover is the urban land, but its real soil type beneath the surface could be any type.
200	In fact, it is a virtual soil type proposed to facilitate the runoff production. So the soil
201	type data in Fig. 3(b) needs to be adjusted based on this definition. Besides, the urban

202 land data in Fig. 3(b) was prepared by FAO in 1990, so it is out of date, and have been

- updated with the results of Fig. 2 in this study. The final soil types of SRW, adding the
 urban land soil type, is produced and shown in Fig. 4, the soil types in 2018, 2011, 2013
- and 2015 are different.
- 206 Fig. 4 is here

207 **3 Methodology**

208 3.1 Liuxihe model

The PBDHM employed in this study is the Liuxihe model, which is a physically based,
distributed hydrological model proposed for watershed flood forecasting (Chen, 2009;
Chen et al., 2011; Chen, 2017). But any PBDHMs which could relate its parameters
with LUCs could be employed.

213

Liuxihe model divides the watershed surface into grid cells, which are categorized as 214 hill slope cells, river channel cells and reservoir cells. For river channel cells and 215 216 reservoir cells, the watershed surface is water, runoff produced in these cells are equal to the net precipitation. The surfaces of hill slope cells are covered with different land 217 use/cover (LUC) types, so each hill slope cell has its unique LUC. Currently in Liuxihe 218 219 model, there is no urban land LUC type, only vegetated LUCs. Each hill slope cell also has its own soil type and elevation. LUC type, soil type and elevation are called 220221 watershed terrain properties in Liuxihe model. Runoff is produced first on cells, and 222 then routed to the watershed outlet via a routing network. Runoff production is 223 governed by the infiltration, and the soil type is the controlling terrain property for runoff production. Runoff routing is categorized as hill slope routing, river channel 224 225 routing and reservoir routing. The kinematical wave approximation is employed for hill 226 slope routing, while the diffusive wave approximation for river channel routing.

(1)

For Liuxihe model, there is no way to make runoff production and routing calculation for the urban land grid cells, so in this study, a module that can make this calculation is added. The urban land surface is impervious, the precipitation falls to this ground surface is regarded completely converted into surface runoff, and no precipitation is infiltrated to the soil beneath it. Runoff produced on cells with urban land surface is equal to precipitation fallen to the surface. The approach used to calculate runoff production is as below.

 $R_{i,t}=P_{i,t}-E_{i,t}$

Where R_{i,t}, P_{i,t} and E_{i,t} are surface runoff, precipitation and actual evaporation produced
on cell i at time t respectively, and the evaporation could be regarded as water surface
evaporation if there is surface runoff, otherwise it is zero.

239

235

As only the hill slope cell may have urban land surface, so the runoff routing on urban land cell is hill slope routing. In Liuxihe model, hill slope routing is solved by using kinematic wave approximation. For hill slope routing, the governing factors are the slope of the cell and the roughness coefficient of the surface. For the hill slope routing on urban land surface, the same approach is used but using different roughness coefficient. The above approaches for runoff production and routing on urban land cell has been developed and embedded into the currently used Liuxihe model software tool.

247 **3.2 Liuxihe model parameter look-up table determination**

Liuxihe model is a distributed hydrological model, so each grid cell has its own parameters, i.e., 13 parameters (Chen et. al, 2011). The parameters in each grid cell are divided into 4 categories, including climate-based parameters, topography-based parameters, vegetation-based parameters and soil-based parameters (Chen et. al, 2016). The parameters' values are related to only one category terrain property of its grid cell,

i. e., climate-based parameters are only related to the climate condition, the topography-253 based parameters are only related to the topography, vegetation-based parameters are 254 only related to the land use/cover types, and the soil-based parameters are only related 255 256 to the soil types. There is only one climate-related parameter, i.e., the reference evaporation which is regarded as the same for all grid cells. There are two topography-257 258 based parameters, including flow directions and slopes for hill slope cells and river 259 channel cells. There are also two vegetation-based parameters, the evaporation coefficient and roughness. There are 8 soil-based parameters, including soil property 260 261 coefficient, soil thickness, hydraulic conductivity under saturated condition, soil water 262 contents under saturated condition, field condition, and wilting condition. There is one parameter for underground water routing which is regarded as the same for all grid cells, 263 264 and is also a soil-based parameter.

265

Liuxihe model takes two steps to determine model parameters, firstly deriving initial 266 parameter look-up tables from the watershed terrain property data, and then optimizing 267 them. For a specific watershed studied, Liuxihe model first proposes parameter look-268 up tables, which are two-dimensional tables referring the values of parameters with the 269 terrain properties, for example, with soil type Ferric Acrisols, the parameter value of 270 271 soil water content under saturated conditions is referred to as 46.1%. Based on these parameter look-up tables, the parameters of each grid cell could be determined 272 according to the grid cell's terrain properties, including DEM, LUCs and soil types. As 273 climate-based parameters take the same value for all grid cell, so there is no need for a 274 look-up table for the climate-based parameters. While the topography-based parameters 275 are calculated directly based on the DEM using the D8 method (O'Callaghan et al., 276 277 1984; Jensen et al., 1988), so there is no need for a look-up table for the topography-

- 278 based parameters also. Therefor there are two parameter look-up tables, one is for
- 279 vegetation-based parameters, and another is for soil-based parameters.
- 280

281 Liuxihe model proposed ways for determining the two parameter look-up tables. For the vegetation-based parameters look-up table, the referring values are decided from 282 283 laboratory experiments and local experiences, or even from references or results from 284 other watersheds. There are two vegetation-based parameters, the evaporation coefficient and roughness. For the soil-based parameters look-up table, Liuxihe model 285 286 employs the Soil Water Characteristics Hydraulic Properties Calculator (Arya et al., 1981) to calculate the referring values based on the soil texture, organic matter, gravel 287 content, salinity and compaction. With these parameters look-up table, based on its 288 289 terrain properties, the initial parameters for each grid cell could be derived. With this way, if the terrain properties of each grid cell are available, then the initial parameters 290 291 could be proposed.

292

As the initial parameters derived with the above method are highly experience-based, 293 and current parameterization experiences are very limited, so the initial parameters have 294 295 uncertainty, thus model performance could not be secured. To improve model performance, Liuxihe model optimizes the initial parameters by using optimization 296 algorithm, this is the second step of Liuxihe model parameters determination. From 297 past experiences of Liuxihe model parameterization, it has been found that parameter 298 optimization could largely improve the model's performance. Besides, in optimizing 299 model parameters, hydrological data from only one flood events is enough, not like 300 lumped hydrological mode, series of hydrological data is requirred. This is very 301 302 important for an urbanizing watershed as it usually has limited hydrological data, no

- 303 long series of hydrological data.
- 304

305 Currently two algorithms have been proposed for Liuxihe model parameter 306 optimization, one is SCE-UA algorithm (Xu et al., 2012), another is Particle Swam 307 Optimization (PSO) algorithm (Chen et al., 2016). In optimizing parameters, Liuxihe 308 model does not optimize all parameters of each grid cells, but optimizes the parameters 309 look-up tables. I.e., an adjusting coefficient for each terrain property is proposed, so the 310 optimized variables are limited, which makes the calculation practical, otherwise, even 311 with the fastest computers in the world, the optimization is not feasible.

312 **3.3 Dynamic parameter updating and parameter stationary**

313 For an urbanizing watershed, the terrain properties, particularly the LUCs are in constant changes, so after parameter look-up table is optimized based on hydrological 314 315 data from one specific flood event and terrian properties at a specific date, model parameters should be updated if the terrain properties changes, it is called in this study, 316 317 dynamic parameter updating, it is also the core concept of this study, that the model parameters are dynamically changing with terrain property changes. Only with this 318 319 dynamic parameter updating, the model performance can be secured. But this parameter updating is based on the assumption that the parameter look-up tables are LUCs 320 321 stationary, i.e., the look-up tables are not changed with the terrain property changing. 322 Otherwise, the updated parameters could not improve the model performance, or the parameter look-up table needs to be optimized again with the changed LUCs and new 323 324 observed hydrological data.

325

326 Do the parameter look-up tables change with the watershed terrain property changing,327 it is a science question that has not been answered and fully studied by the scientific

- 328 communities. The authors assume that the parameter look-up tables of Liuxihe model
 329 are LUC stationary, and the simulation results in the case study will validate this
 330 assumption.
- 331
- 332 **4 Results**

333 4.1 Liuxihe model set up

The DEM produced in this study with spatial resolution of 30 m is used to divide the

335 studied watershed into 62942 grid cells, which are further divided into 658 river cells,

53435 hill slope cells and 8849 reservoir cells, based on the method employed in

337 Liuxihe model. A 3-order river network is derived using the D8 method (O'Callaghan

et al., 1984; Jensen et al., 1988) and Strahler river ordering method (Strahler, 1957)

339 based on the DEM. The river network is further divided into 24 virtual sections based

340 on 4 virtual nodes. In the Liuxihe model, the virtual river cross section shape is

341 assumed trapezoidal, and the river size is estimated based on satellite remote sensing

342 images. The structure of the Liuxihe model for SRW set up in this study is shown in

- 343 Fig. 5. The time resolution of the Liuxihe model set up in SRW is 1 hour, the same
- 344 with that of the observed hydrological data. Precipitation from rain gauges is

interpolated to the grid cells by using the Thiesson Polygon method (Thiessen, 1911).

346

Fig. 5 is here

348

347

Flow directions and slopes are derived using the D8 method (O'Callaghan et al., 1984, Jensen et al., 1988) based on the DEM. The climate-based parameter, i.e., the potential evaporation is estimated as 5 mm/day for each grid cell according to daily evaporation observations in this region. According to previous studies of Liuxihe model

353	parameterization and references (Chen et al., 1995; Zhang et al., 2006, 2007; Guo et al.,
354	2010; Li et al., 2013), the initial look-up table for vegetation-based parameters is
355	proposed and listed in Table 2.
356	
357	Table 2 is here
358	
359	Based on past modeling studies (Zaradny, 1993; Anderson et al., 1996; Shen et al., 2007;
360	Zhang et al., 2015), the soil water content under wilting conditions takes 30% of the
361	soil water content under field conditions, and the soil porosity coefficient takes the
362	value of 2.5. Based on local experiences, the estimated soil layer thickness is listed in
363	Table 3. The Soil Water Characteristics Hydraulic Properties Calculator proposed by
364	Arya et al. (1981) is employed to calculate the soil water contents under saturation
365	condition and field condition, and the hydraulic conductivity under saturation
366	conditions, as listed in Table 3.
367	
368	Table 3 is here
369	
370	For grid cells with urban land soil type, all the soil-based parameters are set to zero.
371	This reflects the hydrological response of urban land soil type, i.e., the precipitation
372	falling onto urban land will be converted into surface runoff completely, no
373	precipitation will be infiltrated to the soil or stored on the surface.
374	
375	For Liuxihe model, hydrological data from only one flood event is needed for parameter
376	optimization, and Particle Swam Optimization(PSO) is the official optimization
377	algorithm, which has been tested and proven to be effective. In this study, hydrological

378	data from flood event 20080625 is used for parameter optimization, and PSO algorithm
379	is employed to optimize the parameters, while LUCs in 2008 is used. The optimized
380	parameter look-up tables are called parameter-20080625-2008 to distinguish
381	parameters optimized with different hydrological data and LUCs in different year. In
382	parameter-20080625-2008, the first number is the flood event number with its
383	hydrological data being used for parameter optimization, while the second one is the
384	year of the LUCs which is used in the parameter optimization. I.e., Parameter-
385	20080625-2008 is the optimized parameters by using hydrological data from flood
386	event 20080625 and LUCs in 2008. Fig. 6 shows the evolution results of parameters,
387	adaptive values and evaluation indices during the parameter optimization process.
388	
389	Fig. 6 is here
390	
391	With 9 evolution, the model parameters approached their optimal values, and the
392	simulated hydrograph with optimized parameters fits the observed flood event well as
393	shown in Fig 6(d), this means the PSO algorithm has good performance for Liuxihe
394	model parameter optimization.
395	
396	From the result of Fig 6(a), it has been found that the initial value of soil property
397	coefficient is quite different from its optimized value, but with the optimization of PSO
398	algorithm, its optimized value is obtained, this implies that the PSO algorithm has good
399	convergence, and well suits Liuxihe model parameter optimization.
400	4.2 Flood simulation with Parameter-20080625-2008
100	
401	With the above optimized Parameter-20080625-2008, the other 12 flood events were

402 simulated, while in this sumulation, the LUCs in 2018 are used for all the 12 flood

16/ 39

403	events, that means the parameters are regarded not changed during the watereshed
404	urbanization, and the model parameters are not updated dynamically with the LUC
405	changing. Four evaluation indices, including Nash-Sutcliffe coefficient, mean relative
406	error, peak flow error and peak flow timing error, has been calculated and listed in Table
407	4, the simulated hydrographs are shown in Fig. 7.
408	
409	Table 4 is here
410	
411	Fig. 7 is here
412	
413	From the results shown in Table 4 and Fig. 7, it has been found that for all the 12 flood
414	events, the simulated hydrographs are similar with the observations in shape. In average
415	for all the 12 flood events, the Nash-Sutcliffe coefficient is 0.79, the mean relative error
416	is 63.91%, the peak flow error is 19.47%, while the peak flow timing error is -0.58 hour.
417	From these results, the flood processes of SRW have been simulated reasonable by
418	Liuxihe model set up in this study.
419	
420	From the above results, we also find that the four evaluation indices get worse with
421	time goes. For example, the average peak flow error for flood events in 2008 and 2009
422	is 6.7%, 35.88% in 2011, 17.15% in 2013 and 2014, and 27.87% in 2015, in general,
423	the average peak flow error gets bigger as time goes. For the Nash-Sutcliffe coefficient,
424	those in 2008 and 2009, in 2011, in 2013 and 2014, and in 2015 are 0.835, 0.775, 0.753
425	and 0.76, a similar trend with peak flow error. Based on these results, it can be proposed
426	that the model parameters should have changed with time going, i.e., with LUC changes,
427	and the model parameters need to be adjusted with the changing LUCs. To verify this

428 opnion, the dynamical parameter updating is tested in the follow-up section.

429

430 **4.3 Flood simulation with dynamic updating to parameter-20080625-2008**

431 Based on the dynamic parameter updating method proposed in this study, parameters used for simulating flood events in 2011, in 2013 and 2014, in 2015 are updated with 432 433 the LUCs in 2011, 2013 and 2015 respectively based on parameter-20080625-2008. The dynamically updated model parameters in 2011, 2013 and 2015 are different from 434 435 each other, so are from parameter-20080625-2008, which is called parameter-436 20080625-2008-updated. With these parameters, 8 flood events(parameters for the 437 flood events in 2008 and 2009 are not updated) are simulated again, the four evaluation 438 indices have been calculated and listed in Table 5, the simulated hydrographs are shown 439 in Fig. 7 also to make comparison with those results simulated with no parameter 440 updating.

441

442

Table 5 is here

443

From the results shown in Fig. 7 and Tabel 5, it has been found that the model 444 performance has been improved with dynamic parameter updating. For example, for all 445 446 the 8 flood events, the simulated hydrographs fit those of the observations better than those simulated with no parameter updating. The Nash-Sutcliffe coefficients of all the 447 simulated flood events with updated parameters gets higher, except those of flood event 448 449 no. 20150520 and 20150720. The average Nash-Sutcliffe coefficient increasing is 0.764, a 0.3% incrasing. While for the peak flow error, all flood events have observed 450 decreasing, the average decreasing is 66.81%, a very significant model performance 451 452 imporvement. These results imply that with dynamical parameter updating, Liuxihe

model has a much better performance in simulating the flood events of SRW, i.e., model
parameters are in dynamic changing with the LUC changing, and dynamical parameter
updating with the LUC changing is needed. This confirms the dynamic characteristics
of model parameters.

458 **5 Discussions**

459 **5.1 Effect of parameter optimization on model performance**

To test the effectiveness of parameter optimization, the 12 flood events are simulated 460 with the initial parameters, and the results are shown in Fig 8, to make comparision, the 461 simulated hydrographs with dynamically updated parameters are also shown. From the 462 results it could be found that the simulation results with initial and dynamically updated 463 parameters are quite different. Though both the simulated hydrographs have similar 464 patterns, but the flows simulated with the initial parameters are generally much lower 465 than the observations, and those simulated with the dynamically updated parameters 466 well fit the observation. 467

468

Fig. 8 is here

470

469

The four evaluation indices of the 12 flood events is calculated and listed in Table 6. Compared with the simulation with initial parameter, the simulation with dynamically updated parameters has been improved much based on these evaluation indices. Among them, the average Nash-Sutcliffe coefficient increased 68.2%, correlation coefficient increased 3.2%, peak flow error reduced 86.4%, water balance coefficient increased 45.8%. These results show that parameter optimization is needed and feasible even for distributed hydrological model.

478

479

Table 6 is here

480

481 **5.2 Parameter stationary**

In above sections, the dynamic parameter updating was based on the optimized 482 parameter look-up tables with LUCs in 2018. There appears a question, should the look-483 up table be optimized with the latest LUCs, not the LUCs at a specific time? I.e., is the 484 485 look-up table no-stationary to LUCs during urbanization. If yes, then the look-up table 486 needs to be optimized with the latest LUCs, and done again when there is significant 487 LUC change. Otherwise, the look-up table can be optimized with LUCs at any time, and there is no need to optimize it very often. To answer this question, in this study, the 488 parameters were optimized with LUCs in 2011, 2013 and 2015 also, and the 489 hydrological data used for parameter optimization were from flood events 20110516, 490 20130815 and 20150520 respectively, these parameters are called parameter-491 492 20110516-2011, parameter-20130815-2013, and parameter-20150520-2015 respectively. Then the parameters are dynamically updated with latest LUCs, and are 493 called parameter-20110516-2011-updated and parameter-20130815-2013-updated 494 respectively, there is not parameter-20150520-2015-updated. I. e., dynamical parameter 495 496 updating is time forward, not time backward. For example, parameter-20110516-2011updated only update parameters with LUCs in 2013 and 2015, not in 2008 and 2011; 497 parameter-20130815-2013-updated only update parameters with LUCs in 2015, not in 498 499 2008, 2011 and 2013, so there is not parameter-20150520-2015-updated. The dynamically optimized and updated parameters are then employed to simulate the flood 500 events, and the results are shown in Fig. 9. The four evaluation indices are calculated 501 502 and listed in table 7.

503	
504	Table 7 is here
505 506	Fig. 9 is here
507	
508	Both the simulated flood hydrographs with and without dynamic parameters optimizing
509	and updating have no obvious differences, so based on the above methods and results,
510	it can be concluded that the parameters are stationary during the urbanization, i.e.,
511	during the LUC changing period. There is no need to optimize the look-up table very
512	often with rapid LUC changing, parameter optimization and updating is most important
513	5.3 Impact of LUC changes on flood responses
514	Based on the above results, it could be found that with the LUC changes, the flood
515	response changes also. To quantitatively analysis this effect, the peak flow and urban
516	land area rate of flood events from 2011 to 2015 are extracted from the above results
517	and listed in Table 8. The values with no-update are the simulated values with
518	parameter-20080625-2008, while the ones with update are the simulated values with
519	parameter-20080625-2008-update.
520	
521	Table 8 is here
522 523	From the results, it could be found that from 2008 to 2011, the SRW observed an urban
524	land rate change from 18.62% to 23.4%, a 25.67% increasing. For flood event
525	20110516, with the same precipitaion, the peak flow will change from $87.08 \text{ m}^3/\text{s}$ to
526	99.42 m ³ /s, having a 14.2% increasing. While for flood event 201100808, the peak flow
527	change is from 103.68 m ³ /s to 117.21 m ³ /s, having a 13.1% increasing. Both these
528	events are light flood, the peak flow increasing has similar magnitude.

- 529 But from 2008 to 2013, the SRW observed an urban land rate increasing of 40.92%. 530 For flood event 20130815, which is regarded as a heavy flood event, the peak flow 531 increasing is 9.0%, while for flood event 20140511, the peak flow increasing is 12.8%, 532 for flood event 20140819, this is 14.6%. The latter two flood events are regarded as 533 medium. With these results, it can be concluded that the much heavier of the flood 534 magnitude, the more increasing of peak flow.
- 535

From 2008 to 2015, the SRW observed an urban land rate increasing of 63.10%. For 536 537 flood event 20150520, which is regarded as a light flood event, and flood events 538 20150523 and 20150720, which are regarded as a medium flood event, the peak flow increasing are 56.3%, 18.5%, and 12.2% respectively. This implies that for the light 539 540 flood event, the peak flow increases much more. Based on this analysis, with the 541 increasing of the urban land area rate, the peak flow of a flood event will increase, and the light flood event has the most peak flow increasing, while the heavy one has the 542 543 least peak flow increasing.

544

545 6 Conclusions

546 In this study, a method is proposed for accurately simulating flood processes of urbanizing watersheds that appear during the world urbanization process, which 547 employs the Liuxihe model, a physically based distributed hydrological model as the 548 549 flood simulation tool. This method first derives initial parameter look-up tables, and then optimizes it, and dynamically updates the parameter with the changing LUCs to 550 551 improve the model performance. A case study has been carried out in the Songmushan Reservoir Watershed, a highly urbanizing watershed in the Pearl River Delta Area in 552 553 southern China which experienced rapid urbanization in the past decade. Based on the results, following conclusions have been proposed. 554

555	
556	1. The methodology proposed in this study could be used for simulating and forcasting
557	urbanizing watershed flood processes with good model performance.
558	
559	2. For an urbanizing watershed, terrain properties are in changing, and model
560	parameters are in changing also due to terrain properties changing, this is called
561	model parameter dynamics. Model parameters should be updated with the LUC
562	changes.
563	
564	3. Parameter look-up table of physicall based distributed hydrological model is LUC
565	stationary, i.e., the parameter look-up table only needs to be determined once during
566	the watershed urbanization.
567	
568	4. With same precipitation, flood peak flow will increase due to urban land rate
569	increases. The much heavier the precipitation, the less increasing of the peak flow.
570	
571	5. Parameter optimization is effective and needed in controlling parameter uncertainty
572	for physically based distributed hydrological model.
573	
574	Competing interests: The contact author has declared that none of the authors
575	has any competing interests.
576	

- 577 Acknowledgements: This study was supported by the National Natural Science
- 578 Foundation of China (NSFC) (no. 51961125206), and the Science and Technology
- 579 Program of Guangdong Province (no. 2020B1515120079).

581 **References**

582	[1] Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O E. O J. C. Bathurst, J. A. Cunge,
583	P. E. Oring the Twentieth Five-year Plan Period ter optHydrologue Europeen,
584	'SHE', a: History and Philosophy of a Physically-based, Distributed Modelling
585	System. J. Hydrol., 87, 45-59.
586	[2] Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O E. O J. C. Bathurst, J. A. Cunge,
587	P. E. Otributed Modelling System. J. lan Period ter optHydrologue Europeen,
588	'SHE', b: Structure of a Physically based, distributed modeling System. J. Hydrol.,
589	87, 61-77.
590	[3] Addae, B. and Dragicevic, S.: Modelling global urban land-use change process
591	using spherical cellular automata, Geojournal, 88, 2737-2754, 10.1007/s10708-
592	022-10776-4, 2023.
593	[4] Ambroise, B.; Beven, K.; Freer, J. Toward a generalization of the TOPMODEL
594	concepts: Topographic indices of hydrologic similarity. Water Resour. Res. 1996,
595	32, 2135–2145.
596	[5] Anderson, A. N., A. B. McBratney and K. E. FitzPatric, 1996. A soil mass, surface
597	and spectral fractal dimensions estimated from thin section photographs. Soil Sci.
598	Soc. Am. J., 60, 962-969.
599	https://doi.org/10.2136/sssaj1996.03615995006000040002x
600	[6] Arya, L.M., and J. F. Paris, 1981. A physioempirical model to predict the soil
601	moisture characteristic from particle-size distribution and bulk density data. Soil
602	Sci. Soc. Am. J., 45, 1023-1030.
603	https://doi.org/10.2136/sssaj1981.03615995004500060004x
604	[7] Chen H, Mao S. 1995. Calculation and Verification of an Universal Water Surface
605	Evaporation Coefficient Formula. Advances in Water Science 6(2):116-120.
606	https://doi.org/10.14042/j.cnki.32.1309.1995.02.005
607	[8] Chen, Y., 2009. Liuxihe Model, Beijing, Science Press, 198 pp.
608	[9] Chen, Y., Q. W. Ren, F. H. Huang, H. J. Xu, and I. Cluckie, 2011. Liuxihe Model
609	and its modeling to river basin flood. J. Hydr. Eng., 16, 33-50.
610	[10] Chen, Y., H. Zhou, H. Zhang, G. Du, J. Zhou, 2015. Urban flood risk warning
611	under rapid urbanization, Environmental Research 139(5):3-10.
612	[11] Chen, Y., J. Li, and H. Xu, 2016. Improving flood forecasting capability of
613	physically based distributed hydrological model by parameter optimization.
614	Hydrol. Earth Syst. Sci., 20, 375-392. https://doi.org/10.5194/hess-20-375-2016
615	[12] Chen, Y., 2017. Distributed Hydrological Models, in Handbook of
616	Hydrometeorological Ensemble Forecasting, Q. Duan et al. (eds.), 1-12,
617	https://doi.org/10.100//9/8-3-042-4045/-3_23-1.
618	[13] Chen, Y., I. Zhang, P. Dou, L. Dong, and H. Chen, 2017. Error sources and post
619	an Landast remote consing imagent with SVM. Remote Sensing Technology and
020 621	Application in process https://doi.org/10.11972/j.jcgp.1004.0222.2017.5.0202
021 (22	Application, in press. https://doi.org/10.116/5/J.issii.1004-0525.201/.5.0695
622	[14] Crawford, N. H., and K. K. Linsley, 1966. Digital simulation in hydrology,
623	Stanford Watershed Model IV. Stanford Univ. Dep. Civ. Eng, Tech. Rep. 39.
624	[15] Development Research Foundation of China, 2010. Development Report of
625	China. People's Publishing, Beijing.
626	[16] Fang, C., D. Wang, 2011. Comprehensive development measuring and improving
627	roadmap of China's urbanization quality. Geogr. Res. 30(11):1931-1945.
628	https://doi.org/10.3724/SP.J.1011.2011.00211

629	[17] Freeze, R. A., and R. L. Harlan, 1969. Blueprint for a physically-based, digitally
630	simulated, hydrologic response model. J. Hydrol., 9, 237-258.
631	https://doi.org/10.1016/0022-1694(69)90020-1
632	[18]Guo, H., Y. Hua, X. Bai, 2010. Hydrological Effects of Litter on Different Forest
633	Stands and Study about Surface Roughness Coefficient. Journal of Soil and Water
634	Conservation, 24(2), 179-183. https://doi.org/10.3724/SP.J.1238.2010.00474
635	[19] Guneralp, B., Reba, M., Hales, B. U., Wentz, E. A., and Seto, K. C.: Trends in urban
636	land expansion, density, and land transitions from 1970 to 2010: a global synthesis,
637	Environmental Research Letters, 15, 10.1088/1748-9326/ab6669, 2020.
638	[20] He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B. A.: Future global
639	urban water scarcity and potential solutions, Nature Communications, 12, 4667,
640	10.1038/s41467-021-25026-3, 2021.
641	[21]Hollis, G. E., 1975. The effect of urbanization on floods of different recurrence
642	interval. Water Resour. Res., $11(3)$, $431-435$.
643	https://doi.org/10.1029/WK0111003p00431
644 645	[22] Huang, J., Tang, T., Tang, T., Fang, Z., and Wang, H.: Kisk assessment of urban reinstorm flood disaster based on land use/land cover simulation. Hydrological
645 646	Processes 36 e14771 https://doi.org/10.1002/hyp.14771.2022
647	[23] Irons J. R. J. Dwver, J. A. Barsi 2012. The next Landsat satellite: the Landsat
648	data continuity mission. Remote Sensing of Environment. 122, 11-21.
649	https://doi.org/10.1016/j.rse.2011.08.026
650	[24] Jensen, S. K. and J. O. dominggue, 1998. Extracting Topographic Structure from
651	Digital Elevation Data for Geographic Information System Analysis.
652	Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600.
653	https://doi.org/10.1109/36.7721
654	[25] Jia, Y., G. Ni, and Y. Kawahara, 2001. Development of WEP model and its
655	application to an urban watershed. Hydrol. Process. 15: 2175–2194.
656	https://doi.org/10.1002/hyp.275
657	[26] Leopold, L. B., 1968. Hydrology for urban land planningA guidebook on the
658	hydrologic effects of urban land use. U.S. Geol. Surv. Circ., 554, 18 pp.
659	[27] Li, W., S. Chen, G. Chen, 2011. Urbanization signatures in strong versus weak
660	precipitation over the Pearl River Delta metropolitan regions of China.
661	Environmental Research Letters 6034020. https://doi.org/10.1088/1748-
662	9326/6/3/034020.
663	[28]Li, Y., J. Zhang, R. Hao, et al., 2013. Effect of Different Land Use Types on Soil
664	Anti-scourability and Roughness in Loess Area of Western Shanxi Province.
665	Journal of Soil and Water Conservation, 27(4), 1-6.
666	https://doi.org/10.13870/j.cnki.stbcxb.2013.04.016
667	[29] Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994. A simple
668	hydrologically based model of land surface water and energy fluxes for general
669	circulation models. J. Geophys. Res., 99(D7),14415-14428.
670	https://doi.org/10.1029/94JD00483
671	[30] Madsen, H., 2003. Parameter estimation in distributed hydrological catchment
672	modelling using automatic calibration with multiple objectives. Advances in
673	Water Resources, 26, 205-216. https://doi.org/10.1016/S0309-1708(02)00092-1
674	[31]O'Callaghan, J., and D. M. Mark, 1984. The extraction of drainage networks
675	from digital elevation data, Comput. Vis. Graph. Image Process. 28(3). 323-344.
015	

676	https://doi.org/10.1016/s0734-189x(84)80011-0
677	[32] Pokhrel, P., K. K. Yilmaz, H. V. Gupta, 2012. Multiple-criteria calibration of a
678	distributed watershed model using spatial regularization and response signatures.
679	J. Hydrol., 418-419, 49-602. https://doi.org/10.1016/j.jhydrol.2008.12.004
680	[33] Refsgaard, J.C., B. Storm, 1996. Construction, calibration and validation of
681	hydrological models. In: Abbott, M.B., Refsgaard, J.C. (Eds.), Distributed
682	Hydrological Modelling. Kluwer Academic, pp. 41-54.
683	https://doi.org/10.1007/978-94-009-0257-2_3
684	[34] Rose, S., N. E. Peters, 2001. Effects of urbanization on streamflow in the Atlanta
685	area (Georgia, USA): a comparative hydrological Approach. Hydrological
686	Processes 15(8), 1141-1157.
687	[35] Shafii, M. and F. D. Smedt, 2009. Multi-objective calibration of a distributed
688	hydrological model (WetSpa) using a genetic algorithm. Hydrol. Earth Syst. Sci.,
689	13, 2137-2149. https://doi.org/10.5194/hessd-6-243-2009
690	[36] Shen, S., S. Guze, 2007. Conversion Coefficient between Small Evaporation Pan
691	and Theoretically Calculated Water Surface Evaporation in China. Journal of
692	Nanjing Institute of Meteorology, 30(4), 561-565.
693	https://doi.org/10.3354/ame01297
694	[37] Smith, M. B., DJ. Seo, V. I. Koren, S. Reed, Z. Zhang, QY. Duan, S. Cong, F.
695	Moreda, R. Anderson, 2004. The distributed model intercomparison project
696	(DMIP): motivation and experiment design. J. Hydrol., 298 (1-4), 4-26.
697	https://doi.org/10.1016/j.jhydrol.2004.05.001
698	[38] Strahler, A. N., 1957. Quantitative Analysis of watershed Geomorphology.
699	Transactions of the American Geophysical Union, 35(6), 913-920.
700	https://doi.org/10.1029/TR038i006p00913
701	[39] Tang, H. Q., F. Xu, 2013. Analysis of new characteristics of the first Landsat 8
702	image and their Ecoenvironmental significance. Acta Ecol. Sinica, 33 (11), 3249-
703	3257. https://doi.org/10.5846/stxb201305030912
704	[40] Todini, E., 1996. The ARNO rainfall-runoff model. J. Hydrol. 175:339–382.
705	https://doi.org/10.1016/S0022-1694(96)80016-3
706	[41] Thiessen, A. H., 1911. Climatological data for July, 1911[J]. Monthly Weather
707	Review, 39:1082-1084.
708	[42] United Nations, 2014. World urbanization prospects: the 2014 revision :
709	highlights, 2014, New York, USA.
710	[43] Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer-Verlag,
711	NewYork. https://doi.org/10.1007/978-1-4757-2440-0
712	[44] Vieux, B. E., F. G. Moreda, 2003. Ordered physics-based parameter adjustment
713	of a distributed model. In: Duan, Q., Sorooshian, S., Gupta, H.V., Rousseau,
714	A.N., Turcotte, R. (Eds.), Advances in Calibration of Watershed Models. Water
715	Science and Application Series, vol. 6. American Geophysical Union, pp. 267-
716	281. https://doi.org/10.1029/WS006p0267
717	[45] Vieux, B. E., Z. Cui, and A. Gaur, 2004. Evaluation of a physics-based distributed
718	hydrologic model for flood forecasting. Journal of Hydrology 298:155-177, 2004.
719	https://doi.org/10.1016/j.jhydrol.2004.03.035

720	[46] Xu, H., Y. Chen, B. Zeng, J. He, Z. Liao, 2012. Application of SCE-UA
721	Algorithm to Parameter Optimization of Liuxihe Model. Tropical Geography,
722	32(1), 32-37. https://doi.org/10.13284/j.cnki.rddl.001586
723	[47] Xue, J., Wang, Q., and Zhang, M.: A review of non-point source water pollution
724	modeling for the urban-rural transitional areas of China: Research status and
725	prospect, Science of The Total Environment, 826, 154146,
726	https://doi.org/10.1016/j.scitotenv.2022.154146, 2022.
727	[48] Yang, L., Smith, J.A., Baeck, M.L., Zhang, Y., 2016: Flash flooding in small
728	urban watersheds: Storm event hydrologic response. Water Resources Research,
729	52 (6), pp. 4571-4589. https://doi.org/10.1002/2015WR018326
730	[49] Yu, B.: Ecological effects of new-type urbanization in China, Renewable and
731	Sustainable Energy Reviews, 135, 110239,
732	https://doi.org/10.1016/j.rser.2020.110239, 2021.
733	[50] Wang, H. and Chen, Y.: Identifying Key Hydrological Processes in Highly
734	Urbanized Watersheds for Flood Forecasting with a Distributed Hydrological
735	Model, 10.3390/w11081641, 2019.
736	[51] Wang, Y. H., Li, C. L., Liu, M., Cui, Q., Wang, H., Lv, J. S., Li, B. L., Xiong, Z.
737	P., and Hu, Y. M.: Spatial characteristics and driving factors of urban flooding in
738	Chinese megacities, Journal of Hydrology, 613, 10.1016/j.jhydrol.2022.128464,
739	2022.
740	[52]Zaradny, H., 1993.Groundwater Flow in Saturated and Unsaturated Soil. Now
741	York: A A Balkema.
742	[53] Zhang, S., D. Xu, Y. Li, 2006. An optimized inverse model used to estimate
743	Kostiakov infiltration parameters and Manning's roughness coefficient based on
744	SGA and SRFR model: I Establishment. Shuili Xuebao 37(11):1297-1302.
745	https://doi.org/10.3321/j.issn:0559-9350.2006.11.003
746	[54] Zhang, S., D. Xu, Y. Li, 2007. Optimized inverse model used to estimate Kostiakov
747	infiltration parameters and Manning's roughness coefficient based on SGA and
748	SRFR model: II Application. Shulli Xuebao 38(4):402-408.
749	https://doi.org/10.13243/j.cnki.sixb.200/.04.004
750	[55] Zhang, H., Y. Chen, J. Zhou, 2015. Assessing the long-term impact of
752	International Journal of Remote Sensing 36(21): 5336-5352
753	https://doi org/10.1080/01431161.2015.1094834
754	[56] Zhang, M., Y. Liu, L. Wang, 2015. Inversion on Channel Roughness for
755	Hydrodynamic Model by Using Quantum-Behaved Particle Swarm
756	Optimization. Yellow River 37(2):26-29.
757	https://doi.org/10.3969 /j.issn.1000-1379.2015.02.008
758	[57] Zhao, R. J., 1977. Flood Forecasting Method for Humid Regions of China. East
759	China College of Hydraulic Engineering, Nanjing, China.
760	[58] Zhao, Y., Xia, J., Xu, Z., Qiao, Y., Shen, J., and Ye, C.: Impact of Urbanization
761	on Regional Rainfall-Runoff Processes: Case Study in Jinan City, China,
762	10.3390/rs15092383, 2023.
763	
764	

767

Fig. 1 Location of Songmushan Reservoir Watershed(SRW)

768

769

770

29/ 39

30/ 39

787

20080625-2008-updated

791

parameters

Fig. 9 Simulated flood hydrographs with dynamic parameter optimizing and updating.
* optimal-update (2008-2011) represents simulation results based on the 2008 LUC
optimization parameters and the 2011 LUC updated parameters.

797 Tables

798 799

Table 1 Brief information of flood events

Flood event no.	Start time (yyyymmddhh)	End time (yyyymmddhh)	Total rainfall (mm)	Peak flow (m ³ /s)	Flood magnitude*
20080419	2008041910	2008042018	110.6	111.1	light
20080612	2008061219	2008061412	271.0	328.6	heavy
20080625	2008062500	2008062623	360.3	445.8	heavy
20090523	2009052304	2009052401	104.4	133.3	light
20090609	2009060900	2009060916	127.7	158.3	medium
20110516	2011051608	2011051702	60.1	102.8	light
20110808	2011080811	2011080900	48.6	136.1	light
20130815	2013081517	2013081823	351.3	254.7	heavy
20140511	2014051103	2014051122	110.7	208.3	medium
20140819	2014081914	2014082018	98.0	158.3	medium
20150520	2015052009	2015052103	90.1	141.7	light
20150523	2015052305	2015052404	100.9	194.4	medium
20150720	2015072022	2015072119	171.8	208.3	medium

800 * Flood magnitude is a qualitative measurement to the flood based on the peak flow of

a flood event. I.e., for a flood event, if its peak flow is below 150 m³/s, then it's flood

802 magnitude is light. On the other hand, if its peak flow is over 250 m³/s, it's flood

803 magnitude is heavy. For other flood events, it's medium.

- 804
- 805
- 806

Table 2 Initial look-up table for vegetation-based parameters

Vegetation	Evaporation coefficient	Roughness
Forestry land	0.7	0.55
Grassland	0.6	0.18
Urban land	1.0	0.01
Bare land	0.4	0.12
Farmland	0.55	0.36

807

Table 3 Initial look-up table for soil-based parameters

Soil type	Soil water content under saturated conditions (%)	Soil water content under field capacity conditions (%)	$ \begin{array}{c} \text{Soil hydraulic} \\ \text{conductivity} \\ \text{under saturated} \\ \text{conditions} \\ (mm \cdot h^{-1}) \end{array} $	Soil layer thickness (mm)
Urban land	0	0	0	0
Ferric Acrisols	46.1	26.5	20.78	1500
Cumulic Anthrosols	45.8	35.3	2.81	850

Table 4 Evaluation indices of simulated flood events with Parameter-20080625-2008

Flood event no.	Nash-Sutcliffe coefficient	Mean relative error (%)	Peak flow error (%)	Peak flow timing error/hour
20080419	0.93	31.29	0.49	0
20080612	0.70	38.83	0.94	-1
20090523	0.81	144.10	23.96	-1
20090609	0.90	24.60	1.41	0
20110516	0.77	189.10	15.27	0
20110808	0.78	52.65	56.48	0
20130815	0.80	97.98	7.71	-2
20140511	0.80	48.54	13.99	0
20140819	0.66	36.06	29.75	-1
20150520	0.69	43.34	36.58	-1
20150523	0.78	39.52	32.85	-1
20150720	0.81	20.87	14.19	0
average	0.79	63.91	19.47	-0.58

	Flood event no	Parameter	Nash- Sutcliffe	Correlation	Relative error	Peak flow	Water balance	Peak flow timing
		No undeted	coefficient	0.000	(%)	error (%)	coefficient	error/hour
		Induted	0.769	0.889	189.10	15.30	1.17	0
	20110516	Difference	0.812	0.922	186.70	3.30	1.27	0
		Junerence	0.043	0.033	-2.40	-12.00	0.10	0
		Increase(%)	5.600	3.700	1.27	-78.43	8.40	0
		No-updated	0.784	0.919	57.30	23.80	1.01	0
	20110808	Difference	0.806	0.914	62.70	13.90	1.08	0
		Difference	0.022	-0.005	5.40	-9.90	0.07	0
		Increase(%)	2.800	-0.500	9.42	-41.60	7.10	0
		No-updated	0.802	0.921	97.90	7.70	0.78	-2
	20130815	Updated	0.813	0.915	93.40	0.60	0.84	-2
		Difference	0.011	-0.006	-4.50	-7.10	0.05	0
		Increase(%)	1.400	-0.700	4.60	-92.21	6.90	0
		No-updated	0.804	0.900	48.50	13.90	1.08	0
	20140511	Updated	0.819	0.921	52.40	3.00	1.20	0
4	20140311	Difference	0.015	0.021	3.90	-10.90	0.11	0
		Increase(%)	1.900	2.300	8.04	-78.42	10.40	0
		No-updated	0.659	0.865	36.10	29.80	0.83	-1
	20140910	Updated	0.689	0.849	33.60	19.50	0.92	-1
	20140819	Difference	0.030	-0.016	-2.50	-10.30	0.09	0
		Increase(%)	4.600	-1.800	6.93	-34.56	10.50	0
		No-updated	0.691	0.873	43.30	36.60	0.80	-1
	20150520	Updated	0.683	0.837	46.20	0.90	1.01	-1
	20130320	Difference	-0.008	-0.036	2.90	-35.70	0.21	0
		Increase(%)	-1.200	-4.100	6.70	-97.54	26.40	0
		No-updated	0.782	0.959	39.50	32.80	0.73	-1
	20150522	Updated	0.823	0.932	42.60	20.40	0.83	-1
	20150523	Difference	0.041	-0.027	3.10	-12.40	0.09	0
		Increase(%)	5.200	-2.800	7.85	-37.80	12.70	0
		No-updated	0.810	0.914	20.90	14.20	1.05	0
		Updated	0.666	0.889	29.70	3.70	1.15	-1
	20150720	Difference	-0.144	-0.025	8.80	-10.50	0.10	-1
		Increase(%)	-17.800	-2.700	42.11	-73.94	9.70	0
		No-updated	0.763	0.905	66.58	21.76	0.93	-0.63
		Updated	0.764	0.897	68.41	8.16	1.03	-0.75
	average	Difference	0.001	-0.008	1.84	-13.60	0.10	-0.13
		Increase(%)	0.313	-0.825	10.86	-66.81	11.51	20.00

Table 5 Evaluation indices of simulated flood events with parameter-20080625-2008 updated

833

834

835

83.

836 837

837

838

Flood event Nash-Sutcliffe Mean relative Peak flow Peak flow timing Parameter coefficient error (%) error/hour no. error (%) 0.604 0.507 initial 0.310 0 updated 0.928 0.313 0.005 0 20080419 difference(%) 53.6 1.0 -99.0 0.0 0.010 0.559 0.708 -1 initial 0.701 0.388 0.009 -1 20080612 updated 6910.0 -30.6 -98.7 0.0 difference(%) 0.304 1.489 0.628 -1 initial 20090523 updated 0.809 1.441 0.239 -1 difference(%) 166.1 -3.2 -61.9 0.0 0.335 0.385 0.611 initial 0 20090609 updated 0.897 0.246 0.014 0 167.8 -36.1 -97.7 0.0 difference(%) 0.636 1.831 0.481 0 initial 20110516 updated 0.812 1.867 0.033 0 difference(%) 27.7 2.0 -93.1 0.0 0.482 0.526 0.568 initial 0 20110808 updated 0.806 0.627 0.139 0 difference(%) 67.2 19.2 -75.5 0.0 initial 0.476 1.038 0.543 -2 0.813 0.934 0.006 -2 20130815 updated difference(%) 70.8 -10.0 -98.9 0.0 0.548 initial 0.432 0.556 0 0.819 0.524 0.030 20140511 updated 0 difference(%) 49.5 21.3 -94.6 0.0 initial 0.398 0.412 0.573 -1 updated 0.689 0.336 0.195 -1 20140819 difference(%) 73.1 -18.4 -66.0 0.0 initial 0.576 0.513 0.269 -1 updated 0.683 0.009 0.462 -1 20150520 difference(%) 18.6 -9.9 -96.7 0.0 initial 0.518 0.413 0.550 -1 0.823 0.426 0.204 updated -1 20150523 difference(%) 58.9 3.1 -62.9 0.0 initial 0.724 0.222 0.439 -1

840 Table 6 The evaluation indices of simulated flood events with initial and dynamically

841

updated parameters

842

20150720

average

updated

difference(%)

initial

updated

difference(%)

843

844

0.666

-8.0

0.468

0.787

68.2

0.297

33.8

0.678

0.655

-2.3

0.037

-91.6

0.536

0.077

-86.4

-1

0.0

-0.667

-0.667

0.0

845 Table 7 Evaluation indices of simulated flood events with dynamic parameter

846

optimizing and updating

Flood	Optim	Nash-	Correlation	Relative	Peak	Water	Peak flow
event no.	izing	Sutcliffe	confiniant	error	flow	balance	timing
	year	coefficient	coefficient	(%)	error (%)	coefficient	error/hour
20110516	2008	0.812	0.922	1.867	0.033	1.269	0
20110510	2011	0.845	0.934	1.724	0.019	1.231	0
20110808	2008	0.806	0.914	0.627	0.139	1.076	0
20110808	2011	0.780	0.909	0.621	0.206	0.997	0
	2008	0.813	0.915	0.934	0.006	0.838	-2
20130815	2011	0.789	0.909	0.962	0.032	0.799	-2
	2013	0.797	0.908	0.922	0.028	0.822	-2
	2008	0.819	0.921	0.524	0.030	1.195	0
20140511	2011	0.839	0.923	0.487	0.091	1.127	0
	2013	0.828	0.923	0.512	0.031	1.181	0
	2008	0.689	0.849	0.336	0.195	0.918	-1
20140819	2011	0.662	0.844	0.329	0.231	0.871	-1
	2013	0.675	0.841	0.332	0.186	0.904	-1
	2008	0.683	0.837	0.462	0.009	1.006	-1
20150520	2011	0.663	0.825	0.451	0.006	0.979	-1
20150520	2013	0.658	0.821	0.455	0.009	0.966	-1
	2015	0.677	0.837	0.455	0.011	1.018	-1
	2008	0.823	0.932	0.426	0.204	0.826	-1
20150522	2011	0.776	0.918	0.465	0.246	0.784	-1
20130323	2013	0.803	0.923	0.452	0.211	0.814	-1
	2015	0.806	0.923	0.449	0.207	0.816	-1
	2008	0.666	0.889	0.297	0.037	1.151	-1
20150720	2011	0.721	0.883	0.288	0.097	1.084	-1
20130720	2013	0.659	0.885	0.304	0.033	1.144	-1
	2015	0.657	0.885	0.304	0.032	1.145	-1

847

848 849

Table 8 impact of urbanization on peak flow

Flood	Pe	ak flow (m	³ /s)	Urban	ization ra	te (%)*
event no.	no-update	update	increase(%)	no-update	update	increase(%)
20110516	87.08	99.42	14.2	18.62	23.4	25.67
20110808	103.68	117.21	13.1	18.62	23.4	25.67
20130815	235.08	256.19	9.0	18.62	26.24	40.92
20140511	179.18	202.07	12.8	18.62	26.24	40.92
20140819	111.23	127.43	14.6	18.62	26.24	40.92
20150520	89.85	140.44	56.3	18.62	30.37	63.10
20150523	130.58	154.72	18.5	18.62	30.37	63.10
20150720	178.78	200.59	12.2	18.62	30.37	63.10

^{850 *}Urbanization rate is the rate of urban land area to the whole watershed area.

851

852