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Abstract 24 
In response to flood risk, design flood estimation is a cornerstone of planning, infrastructure design, setting of 25 
insurance premiums and emergency response planning. Under stationary assumptions, flood guidance and the methods 26 
used in design flood estimation are firmly established in practice and mature in their theoretical foundations, but under 27 
climate change, guidance is still in its infancy. Human-caused climate change is influencing factors that contribute to 28 
flood risk such as rainfall extremes and soil moisture, and that there is a need for updated flood guidance. However, a 29 
barrier to updating flood guidance is the translation of the science into practical application. For example, most science 30 
focuses on examining trends in annual maximum flood events, or the application of non-stationary flood frequency 31 
analysis. Although this science is valuable, in practice design flood estimation focuses on exceedance probabilities 32 
much rarer than annual maximum events, such as the 1% annual exceedance probability event or even rarer, using 33 
rainfall-based procedures, at locations where there are little to no observations of streamflow. Here, we perform a 34 
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systematic review to summarise the state-of-the-art understanding of the impact of climate change on design flood 35 
estimation in the Australian context, while also drawing on international literature. In addition, a meta-analysis, 36 
whereby results from multiple studies are combined, is conducted for extreme rainfall to provide quantitative estimates 37 
of possible future changes. This information is described in the context of contemporary design flood estimation 38 
practice, to facilitate the inclusion of climate science into design flood estimation practice. 39 

1. Introduction 40 
Flood assessment provides critical information to evaluate the tolerability or acceptability of flood risks, and to support 41 
the development of risk management strategies. Flood risk reduction measures can be exercised through the 42 
construction of flood mitigation structures, zoning and development controls, and non-structural measures to better 43 
respond to floods when they do occur, for example through flood warning systems and emergency management 44 
planning. For hereon we adopt the term ‘risk’ to mean flood risk. Across the world, the associated hypothetical flood 45 
adopted for design and planning purposes for management of risk is termed the design flood (Jain and Singh, 2003). 46 
In Australia, the design flood is characterised in terms of an annual exceedance probability (AEP) rather than an annual 47 
recurrence interval (ARI) with the aim of better highlighting the annual risks that the community is exposed to. There 48 
are many different methods of estimating the design flood applicable for different AEPs, ranging from flood frequency 49 
analysis which use streamflow observations, to continuous simulation which use long sequences of rainfall 50 
observations, to those that use rainfall in event-based modelling through Intensity-Duration-Frequency (IDF) curves 51 
(in Australia termed Intensity-Frequency-Duration, or IFD curves) and/or Probable Maximum Precipitation (PMP) as 52 
inputs. Methods of design flood estimation are commonly stipulated by guiding documents; for example, The 53 
Guidelines of Determining Flood Flow Frequency – Bulletin 17C (England et al., 2019) in the U.S.A., the Flood 54 
Estimation Handbook (Institute of Hydrology, 1999) in the UK, and Australian Rainfall and Runoff (Ball et al., 2019a) 55 
in Australia. Such guidance documents, though not necessarily legally binding, are seen as representing best practice. 56 

Traditionally, the AEP, or flood quantile to which it corresponds, has been assumed to be static; however, with climate 57 
change, it is now recognised that the flood hazard is changing (Milly et al., 2008). A recent review of climate change 58 
guidance has found that several jurisdictions around the world are already incorporating climate change into their 59 
design flood guidance (Wasko et al., 2021b). For example, Belgium, Denmark, England, New Zealand, Scotland, 60 
Sweden, the UK, and Wales are all recommending the use of climate change adjustment factors for IFD rainfall 61 
intensities. Many countries also recommend higher climate change adjustment factors for rarer precipitation events, 62 
consistent with findings from various modelling studies that rarer events will intensify more with climate change 63 
(Gründemann et al., 2022; Pendergrass and Hartmann, 2014). Shorter duration storms are likely to intensify at a greater 64 
rate than longer duration storms (Fowler et al., 2021) and subsequently, some guidance, such as that from New Zealand 65 
and the UK, also accounts for storm duration in their climate change adjustment factors (Wasko et al., 2021b). 66 

Although substantial advances have been made in adjusting design flood estimation guidance to include climate 67 
change, there remains a disconnect between climate science and existing guidance. For example, although there are 68 
climate change adjustment techniques available for generating altered precipitation inputs, none of the guidance 69 
reviewed provided recommendations for adjusting rainfall sequences used in continuous simulation. Also, current 70 
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guidelines for estimation of probable maximum precipitation (PMP) assume a stationary climate (Salas et al., 2020) 71 
despite evidence to the contrary (Kunkel et al., 2013; Visser et al., 2022). Finally, while research has been undertaken 72 
into non-stationary flood frequency analysis, and the methods are relatively mature (Salas et al., 2018; Stedinger and 73 
Griffis, 2011), these have not been adopted in guidance. For example, Bulletin 17C assumes time-invariance (England 74 
et al., 2019).  75 

There are multiple reasons for the disconnect between the science and flood estimation practice. Although widely 76 
accepted in the scientific literature, the “chain-of-models” approach – whereby General Circulation Model (GCM) 77 
outputs are bias corrected and downscaled to create inputs for hazard modelling (Hakala et al., 2019) – has large 78 
uncertainties (Kundzewicz and Stakhiv, 2010; Lee et al., 2020), with the uncertainties often seen as a barrier for 79 
adoption (Wasko et al., 2021b). There are also disconnects between the methods employed in flood estimation and 80 
the climate science, with little research undertaken on the non-stationarity of other factors affecting the design flood 81 
estimate other than the peak rainfall depth (i.e. IFDs), such as the temporal and spatial pattern of rainfall or the 82 
influence of antecedent conditions on rainfall losses (Quintero et al., 2022). Finally, most climate science focuses on 83 
the annual maximum daily precipitation, often referred to as the ‘RX1 day index’ or Rx1D (Zhang et al., 2011), to 84 
measure changes in extremes, with standard climate models not adequately resolving the processes that govern sub-85 
daily rainfall extremes. In contrast, design flood estimation generally requires consideration of sub-daily rainfall totals 86 
and events much rarer than annual maxima.  87 

With a literature search finding no existing synthesis of climate science relevant to the specific needs of design flood 88 
estimation, here we undertake a systematic review of the latest science directly relevant to the inputs used in design 89 
flood estimation. Although we focus on science relevant to Australia, international literature is incorporated, as design 90 
flood estimation methods are used around the world. Finally, we combine the results from individual studies using the 91 
process of meta-analysis to assess the level of consensus of different sources of evidence relating specifically to the 92 
design flood estimation input of extreme rainfall under climate change. This review represents a critical step in 93 
updating flood guidance and translating scientific knowledge into design flood practice. This review aims to (a) serve 94 
as a template for scientific reviews as they relate to design flood estimation guidance updates, and (b) identify 95 
knowledge gaps in the scientific literature that are required by engineers who perform design flood estimation. 96 

2. Background to design flood estimation practice 97 
Common to all design flood estimation methods is the conversion of empirical data (either at-site or from analogous 98 
regions) to probability estimates, with the primary differences between methods relating to where in the causal chain 99 
of flooding the data are obtained, and where the probability model is fitted. To contextualise the systematic review 100 
this section briefly introduces the primary design flood estimation approaches, with Figure 1 showing the typical AEP 101 
that each method applies to. 102 

1. Flood frequency analysis (FFA): A flood frequency curve is derived by fitting a probability distribution such as 103 
an extreme value distribution to streamflow data, which is then subsequently used to estimate the design flood 104 
quantiles. This method is limited to catchments where streamflow data is available unless data can be transposed or 105 
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corrected. As flood records are typically in the order of decades, AEPs rarer than 1 in 50 are generally subject to 106 
considerable uncertainty. Hence, flood frequency analysis is often not used by practitioners as either at-site data is 107 
unavailable, the record is too short to estimate the target quantile, or there have been significant changes to the 108 
catchment over the period of record. Regional flood frequency analysis is an extension of flood frequency analysis 109 
where space is traded for time by pooling regional data to extend the applicability of this method to rarer events. 110 

2. Continuous simulation: Where long rainfall records are available, it may be possible to use a hydrologic model to 111 
simulate the streamflow of a catchment, at which point flood maxima are then extracted from the modelled output to 112 
derive flood quantiles using an appropriate probability model. Where long rainfall records are not available, the 113 
modelling can be forced by stochastically generated data. This approach is very useful in joint probability assessments 114 
where system performance varies over multiple temporal and spatial scales (e.g., multiple sewer overflows or the 115 
design of linear infrastructure), or in more volume-dependent systems comprised of compound storages. Due to its 116 
reliance on long rainfall sequences, continuous simulation, like flood frequency analysis, is only usually used to 117 
estimate more frequent flood events.  118 

3. Event-based (IFD) modelling: This is the most common method used for design flood estimation. A rainfall depth 119 
or intensity of given AEP and duration is sampled from an IFD curve and combined with the rainfall temporal patterns 120 
to create a design rainfall event (or “burst”) of a given duration. In some applications, it is preferable to consider 121 
design events based on complete storms, and thus it is necessary to augment the rainfall bursts derived from IFD 122 
curves with rainfalls that might be expected to occur prior (or subsequent) to the burst period. As the design storm 123 
rainfall is generally a point rainfall but applied over a catchment, an Areal Reduction Factor (ARF) is applied before 124 
the design event is used as an input to a model to estimate the runoff hydrograph. Rainfall that does not contribute to 125 
the flood hydrograph as it enters depressions in the catchment, is intercepted, or is infiltrated into the soil, is removed 126 
through a “loss” model. Finally, the hydrograph response may be modulated by the tail water conditions, where the 127 
sea level will modulate the catchment outflow. 128 

Due to the severe consequences of failures, critical infrastructure, such as dams or nuclear facilities, often need to be 129 
designed to withstand the largest event that is physically plausible, termed the Probable Maximum Flood (PMF). Like 130 
the above event-based modelling description, the PMF is derived from a rainfall event, but in this case the rainfall is 131 
the PMP. Most local jurisdictions follow the World Meteorological Organisation guidelines for estimating the PMP 132 
(WMO, 2009). The PMP is derived using observed “high efficiency” storms matched to a representative dew point 133 
temperature. The moisture (i.e., rainfall) in the storm is then maximised by assuming the same storm could occur with 134 
moisture equivalent to the maximum (persisting) dew point observed at that site.  135 
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 136 

Figure 1. The relevance of different flood estimation approaches as a function of AEP. The top panel presents a 137 
typical flood frequency curve where the flood magnitude increases with event rarity. The bottom panel shows the 138 

range of AEPs for which various flood estimation approaches show efficacy. Dashed lines represent lower efficacy 139 
while solid lines represent the higher efficacy. Figure adapted from James Ball et al. (2019). The PMP is used an 140 

input in event-based models to derive the PMF. 141 

The method adopted for design flood estimation depends on the problem being solved, the level of risk being designed 142 
for, and the available data. Most commonly, approaches based on event-based modelling are applied because data 143 
rarely exists at the location of interest, and if it does, it is often confounded by catchment non-stationary (e.g., 144 
urbanization, deforestation), or the record lengths are much shorter than the design AEP required.  145 

3. Methodology 146 
Systematic reviews represent a reproducible methodology for apprising the literature in the context of a specific topic 147 
or issue (Page et al., 2021). Reviews were undertaken for each of the three key flood estimation methods (flood 148 
frequency analysis, continuous simulation, and event-based modelling). To balance consistency between section 149 
authors and selection bias, each review section was assigned a lead author who was tasked with collecting scholarly 150 
articles from Scopus, with a secondary author tasked with reviewing the results of the systematic review. Articles 151 
were selected from 2011 onwards to ensure a broad coverage of evidence while ensuring that evidence is relatively 152 
contemporary. The literature search for each method of (or input to) design flood estimation contained different 153 
relevant keywords (see Supplementary Information for key words for each section). To limit the scope of the review 154 
geographically, searches were made for literature where either the title, abstract or keywords contained “Australia.” 155 
To constrain the review only to climate change, literature was also required to contain “change” in either the title, 156 
abstract or keywords (it was deemed that using “climate change” would be too restrictive). These criteria represent 157 
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the foundation of the review, and the publication base was further supplemented by other sources of information, 158 
particularly in cases where specific terminology was used (e.g., the term "Clausius-Clapeyron” in the context of 159 
extreme rainfall) or where knowledge existed of additional publications or international research not identified through 160 
the keyword searches. We note here that the impact of sea level rise was excluded from the requirements of the 161 
systematic review as it is not explicitly part of the Australia Rainfall and Runoff guidance related to climate change 162 
(Bates et al., 2019). 163 

To select relevant literature from the search results, articles were first filtered to remove duplicates. Following this, 164 
irrelevant articles based on a review of the abstracts, and then of the manuscript itself, were excluded. While the search 165 
terms aided inclusion in the systematic review, many studies were not relevant to the assessment of flood risk and 166 
were omitted. Finally, some additional studies (in particular, syntheses) were included based on the authors’ 167 
knowledge of the literature. Details of the searches and the full list of articles reviewed is provided in the 168 
Supplementary Information. 169 

Recognising the importance of IFD estimates in design flood estimation, and the large volume of available literature 170 
providing quantitative estimates of changes in extreme rainfall, an analysis was performed to understand the average 171 
effect size (change in extreme rainfall) and uncertainty intervals associated with this extreme rainfall. The analysis 172 
was inspired by meta-analysis techniques which quantitatively combine results from multiple studies (Field and 173 
Gillett, 2010) and used structured expert-elicitation methods consistent with those used by the IPCC (Zommers et al., 174 
2020) in the following approach:  175 

1. Where possible extreme rainfall change was quantified per degree of global temperature change (i.e., the 176 
global mean, including ocean and land regions), with variation to storm duration, severity (i.e., AEP), 177 
and location preserved. Global mean temperature was chosen to ensure consistency with the IPCC 178 
projections and to be representative of the climatic drivers of changes in moisture sources. The exception 179 
was for rainfall-temperature scaling studies, which use a local temperature as a proxy for anthropogenic 180 
climate change. 181 

2. Assessment was made, through consensus between authors, whether there was enough evidence to 182 
calculate the average effect size with varying storm duration, severity, and location – and what, if any, 183 
distinction was to be made for these factors. 184 

3. Co-authors independently used the collected evidence to determine their best estimate of the change in 185 
extreme rainfall as well as a likely range. Typically, each study weighted by how confident each author 186 
was in the evidence presented in the study. This included consideration of the study methodology (e.g., 187 
observation-based studies, model-based studies) and various statistical considerations (e.g., sample size 188 
and/or representativeness over the spatial domain).  189 

4. Each of the best estimates from each author were then compared, and through a consensus process, a 190 
single central estimate was derived together with a likely (66%) range to represent assessment 191 
uncertainty. 192 
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4. Synthesis of the literature and systematic review 193 
In this section, the literature is reviewed for each of the three key flood estimation methods (flood frequency analysis, 194 
continuous simulation, and event-based modelling). An overview of the implications of climate change on each 195 
method is first presented, followed by a systematic review using the keywords provided in the Supplementary 196 
Information. In the context of event-based (IFD) modelling each of the inputs to the design flood estimate are 197 
reviewed. For extreme rainfalls, the systematic review is followed by the results of the meta-analysis. 198 

4.1 Flood frequency analysis  199 
4.1.1 Impact of climate change 200 

Flood frequency analysis (or regional flood frequency analysis) generally uses annual maxima or threshold excess 201 
values of instantaneous flood data to derive a frequency curve by fitting an appropriate statistical model. Changes in 202 
flood maxima due to climate change are generally related back to changes in extreme precipitation. As temperature 203 
increases, so does the saturation water vapour of the atmosphere, leading to, all other things being equal, greater 204 
extreme precipitation, and hence pluvial flooding. However, flooding is dependent on the flood generating mechanism 205 
(Villarini and Wasko, 2021). In the absence of snowmelt, changes in antecedent soil moisture have been shown to 206 
modulate more frequent flooding while having a lesser impact on rarer floods, which are modulated by changes in 207 
extreme rainfall (Ivancic and Shaw, 2015; Wasko and Nathan, 2019; Neri et al., 2019; Bennett et al., 2018). Where 208 
snow is present, warmer temperatures cause a reduction in the frequency of rain-on-snow flood events at lower 209 
elevations due to snowpack declines, whereas at higher elevations rain-on-snow events become more frequent due to 210 
a shift from snowfall to rain (Musselman et al., 2018).  211 

Across Australia, for frequent flood events in the order of annual maxima, more streamflow gauges show decreases 212 
in annual maxima than increases (Ishak et al., 2013; Zhang et al., 2016). There is a clear regional pattern, with 213 
decreases more likely in the extra-tropics, and increases more likely in the tropics. These changes have a strong 214 
correlation to changes in antecedent soil moisture and mean rainfall due to the expansion of the tropics (Wasko et al., 215 
2021c; Wasko and Nathan, 2019). However, there is a statistically significant increasing trend in the frequency of 216 
rarer floods since the late 19th century (Power and Callaghan, 2016) due to increases in extreme rainfall (Wasko and 217 
Nathan, 2019; Guerreiro et al., 2018). Where research examines changes in flood frequency for Australia, it is often 218 
related to changes in catchment conditions (Kemp et al., 2020) or interannual variability (McMahon and Kiem, 2018; 219 
Franks and Kuczera, 2002). Specifically related to climate change, most studies for Australia argue trends in annual 220 
maxima have implications for non-stationary flood frequency analysis (Ishak et al., 2014), but often fail to detect 221 
statistically significant trends (Ishak et al., 2013; Zhang et al., 2016) due to natural variability (Villarini and Wasko, 222 
2021).  223 

In a review of the projection of flooding with warmer temperatures, Wasko (2021) summarised the global literature 224 
on non-stationary flood frequency analysis. It was noted that non-stationary flood frequency analysis for climate 225 
change is typically performed using time-dependent parameters (e.g. Salas et al., 2018). Wasko (2021) also noted that 226 
one of the shortcomings of non-stationary flood frequency analysis using a time covariate is the inability to project 227 
with confidence for climate change due to the lack of a causal relationship (see for example Faulkner et al. 2020). 228 
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Hence it is argued that any non-stationary flood frequency analysis should ensure that the statistical model structure 229 
is representative of the processes controlling flooding (Schlef et al., 2018; Tramblay et al., 2014; Kim and Villarini, 230 
2023; Villarini and Wasko, 2021), with a framework for model construction provided in Schlef et al. (2018). Examples 231 
of physically motivated non-stationary frequency analysis from the global literature include using combinations of 232 
rainfall, potential evaporation, soil moisture, temperature, and large-scale drivers of moisture transport as covariates 233 
(Guo et al., 2023; Han et al., 2022; Tramblay et al., 2014; Schlef et al., 2018; Condon et al., 2015; Kim and Villarini, 234 
2023; Towler et al., 2010). In principle, this is similar to studies performed in the United States, which have used 235 
precipitation and temperature as covariates for non-stationary flood frequency analysis (Condon et al., 2015; Towler 236 
et al., 2010; Kim and Villarini, 2023). But even the use of physically-based covariates is problematic as the covariates 237 
should capture the differing processes that affect rainfall changes (Schlef et al., 2018), while GCM simulations may 238 
not capture local flood controls (Villarini et al., 2015). A final complication is that, even if flood processes are captured 239 
by the covariates, these statistical associations may not remain constant with climate change (Chegwidden, Oriana et 240 
al., 2020; Zhang et al., 2022; Wasko, 2022). Possibly for the above reasons, there is little formal guidance for how to 241 
perform non-stationary flood frequency analysis. One of the most well-developed guidance documents on flood 242 
frequency analysis –Bulletin 17C (England et al., 2019) – while acknowledging the potential impacts of climate 243 
change on flood risk, does not explicitly give guidance for climate change, but instead refers the user to published 244 
literature for non-stationary flood frequency (Salas and Obeysekera, 2014; Stedinger and Griffis, 2011), leaving the 245 
door open for a variety of analyses based on “time-varying parameters or other appropriate techniques.” But Ahmed 246 
et al. (2023) note there is a dearth of guidance on how to considerer non-stationarity in regional flood quantile 247 
estimation, arguing alongside other reviews (Zalnezhad et al., 2022) that further research is needed on the impacts of 248 
climate change on flood frequency analysis. 249 

4.1.2 Systematic review 250 
For Australia, the systematic review only yielded one manuscript. Using 105 catchments across the east coast of 251 
Australia, Han et al. (2022) fit a non-stationary regional flood frequency model using the covariates of catchment area, 252 
mean annual rainfall, mean annual potential evaporation, and rainfall intensity with a duration of 24 hours for the 253 
target return period/exceedance probability. The proposed method is effective in capturing the differing trends with 254 
differing recurrence intervals, and projections are derived, with more sites having increases projected for rarer events 255 
(1 in 20 AEP) than for frequent events (1 in 2 AEP). 256 

4.2 Continuous simulation  257 
4.2.1. Impact of climate change 258 

Where streamflow data is not available, flood frequency curves can be derived from simulated streamflow using a 259 
rainfall-runoff model driven by long sequences of rainfall and evapotranspiration. The process of deriving flood 260 
frequency curves through continuous simulation often necessitates the use of a weather generator to stochastically 261 
generate the model inputs due to the long record lengths required for flood frequency estimation. For future climate 262 
conditions, these model input time series are generally derived through downscaling methods (Fowler et al., 2007; 263 
Teutschbein and Seibert, 2012) where GCM outputs are bias corrected and downscaled to create realistic inputs for 264 
hydrologic (rainfall-runoff) models to simulate streamflow and consequently to derive flood frequency estimates. 265 

https://doi.org/10.5194/hess-2023-232
Preprint. Discussion started: 10 October 2023
c© Author(s) 2023. CC BY 4.0 License.



   

9 
 

Examples of this include Norway’s flood guidance (Lawrence and Hisdal, 2011) and eFLaG in the UK (Hannaford et 266 
al., 2023), where the magnitude of a flow of a given exceedance probability is compared to a reference period to 267 
provide climate adjustment factors.  268 

While changes in the hydrologic cycle and mean rainfall are largely constrained by the availability of energy, extreme 269 
rainfall changes are constrained by moisture availability (Allen and Ingram, 2002). For Australia, increases in pan 270 
evaporation have been observed (Stephens et al., 2018b), while for rainfall, longer dry spells between weather events 271 
are projected (Grose et al., 2020), with a shift from frontal rainfall to convective rainfall, particularly in the southern 272 
parts of the continent (Pepler et al., 2021). Rainfall events are expected to have, on average, a shorter storm duration 273 
(Wasko et al., 2021a) with greater peak rainfall (Visser et al., 2023), and slower movement (Kossin, 2018; Kahraman 274 
et al., 2021). As a result, although the frequency of extreme rainfall events may decline, when they do occur, the 275 
extreme rainfall from the event is projected to increase (Grose et al., 2020) – with greater increases expected for more 276 
extreme events (Wasko et al., 2023). Hence, just accounting for mean or extreme rainfall changes in isolation is not 277 
sufficient and changes to the entire rainfall time series are required with climate change.  278 

4.2.2. Systematic review 279 
In climate literature the term “downscaling” is an umbrella term describing the conversion of coarse-resolution climate 280 
model outputs to catchment-scale relevant outputs. The systematic review focused on “downscaling” yielded three 281 
relevant manuscripts. In addition to these, one set of reports from the Australian Bureau of Meteorology was included 282 
(Assessment Reports). Using five GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and eight 283 
global hydrologic models, Gu et al. (2020) projected changes up to the 1 in 50 AEP flood using the ISI-MIP trend-284 
preserving bias correction method (Hempel et al., 2013). Frequent floods were projected to decrease across large parts 285 
of Australia, with some increases in the tropics. These patterns are amplified for rarer floods and again show decreases 286 
(or no change) projected across the southern part of the country. The Australian Bureau of Meteorology has published 287 
a dataset consisting of four CMIP5 GCMs and four downscaling methods gridded across the entire continent (Wilson 288 
et al., 2022; Peter et al., 2023). In contrast to Gu et al. (2020) using this data (Wilson et al., 2022; Peter et al., 2023) 289 
as input to the AWRA-L daily water balance model (Frost et al., 2018) the annual maxima and 1 in 20 AEP flood 290 
events were projected to increase across most of the continent (Assessment Reports).  291 

Wasko et al. (2023) used the MRNBC and QME downscaling methods that were found to perform best for hydrologic 292 
variables (Vogel et al., 2023) in 301 locally calibrated catchment rainfall-runoff models across the continent. 293 
Decreases in frequent flooding up to the 1 in 5 AEP were projected across large parts of the continent, while for rarer 294 
events, the flood magnitude was projected to increase across the northern and eastern coasts. Differences in the results 295 
were attributed to (1) the use of rainfall-runoff models that were calibrated locally (i.e., different parameter set for 296 
each catchment) to flood frequency quantiles, whereas AWRA-L is calibrated to match dynamics of daily streamflow 297 
and satellite soil moisture and evapotranspiration across Australia simultaneously using a single set of parameters 298 
(Frost et al., 2018), and (2) due to the different downscaling methods adopted (Wasko et al., 2023). Recent research 299 
has shown that, for hydrological applications, multi-variate bias correction that considers cross-correlations among 300 
variables, temporal auto-correlations, and biases at multiple time scales (daily to annual) performs the best  (Vogel et 301 
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al., 2023; Zhan et al., 2022). Further, both the bias correction and rainfall-runoff model calibration should be evaluated 302 
for the target statistics of interest (flood frequency in this case), while also ensuring they are representative of flood 303 
processes to guarantee robustness under change (Krysanova et al., 2018). Finally, Zhan et al. (2022) and Sharma et al. 304 
(2021), among others, note that the uncertainty and variability in climate projections, complexity in selecting data, as 305 
well as data processing, all hamper the adoption of climate data in continuous simulation. Indeed, Dale (2021) argues 306 
that one of the primary requirements for design flood estimation moving forward is “a standard, accepted approach 307 
for deriving time series rainfall that is representative of future climatic conditions for continuous simulation 308 
modelling”.  309 

4.3 Event-based (IFD) modelling 310 
4.3.1 Processes affecting changes in Australian extreme rainfall  311 

Before discussing the various complementary sources of knowledge that can provide insight into how climate change 312 
could influence rainfall extremes, we first review the processes influencing changes in extreme rainfall. The primary 313 
driver of extreme rainfall increase is the thermodynamic impact,  a 6-7%/°C increase in the saturation vapor pressure 314 
of the atmosphere, as dictated by the Clausius-Clapeyron (CC) relationship (Trenberth et al., 2003). Factors beyond 315 
the thermodynamic impact have been discussed in various reviews and commentaries (Fowler et al., 2021; Allen and 316 
Ingram, 2002; Pendergrass, 2018) and are summarised here. In general, for shorter duration rainfalls, the vertical lapse 317 
rate (i.e., atmospheric stability) can affect the rate of rainfall. Atmospheric stability increases and rates of rainfall 318 
decrease as temperature increases and the cloud base is lifted assuming moisture is unchanging. But if the moisture 319 
increases, then the opposite is true, with rain more easily triggered. In addition, there can be an increase in buoyancy 320 
creating stronger updrafts and deeper convection (referred to as super-CC scaling). Finally, dynamical drivers related 321 
to changes in the global circulation can act to change the occurrence of rainfall extremes by changing storm tracks 322 
and speeds, both amplifying and dampening the thermodynamic influence on rainfall extremes (Emori and Brown, 323 
2005; Pfahl et al., 2017; Chan et al., 2023).  324 

For Australia, extreme rainfall is typically associated with thunderstorms, cyclones, troughs or fronts (Dowdy and 325 
Catto, 2017; Pepler et al., 2021; Warren et al., 2021), including tropical cyclones (TCs) in northern Australia (Dare et 326 
al., 2012; Lavender and Abbs, 2013; Villarini and Denniston, 2016; Bell et al., 2019), east coast lows (ECLs) in the 327 
east and southeast of Australia (Pepler and Dowdy, 2022; Dowdy et al., 2019) and thunderstorms (convective systems) 328 
throughout Australia (Dowdy, 2020). Other physical processes leading to extreme rainfall occurrence include 329 
enhanced advection of moisture to a region, such as from atmospheric rivers – large narrow bands of water vapor (Wu 330 
et al., 2020; Reid et al., 2021; Black et al., 2021), and the temporal compounding of hazards such as heatwaves 331 
impacting heavy rainfall occurrence (Sauter et al., 2023).  332 

Tropical cyclones (TCs) can impact on northern regions of Australia, particularly in near-coastal locations, with their 333 
occurrence generally from November to April (Chand et al., 2019). Although there is considerable interannual 334 
variability in the number of TCs that occur near Australia, including influences of large-scale drivers such as the El 335 
Niño-Southern Oscillation (ENSO), a significant downward trend in the frequency of observed Australian TCs has 336 
occurred in recent decades (Dowdy, 2014; Chand et al., 2019, 2022). Climate models also indicate that TC numbers 337 
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in the Australian region are likely to continue decreasing in coming decades due to anthropogenic climate change 338 
(Walsh et al., 2016; Bell et al., 2019; Bhatia et al., 2018; CSIRO and Bureau of Meteorology, 2015). However, 339 
although fewer TCs are likely in a warmer world in general, this is more likely for non-severe TCs than severe TCs, 340 
with extreme rainfall from TCs likely to increase in intensity at rates that could exceed 6-7%/°C of warming (Walsh 341 
et al., 2016; Bhatia et al., 2018; Lighthill et al., 1993; Holland and Bruyère, 2014; Sobel et al., 2016; Emanuel, 2017; 342 
Parker et al., 2018; Patricola and Wehner, 2018; Wehner et al., 2018; Knutson et al., 2020, 2019; Vecchi et al., 2019; 343 
Kossin et al., 2020; Seneviratne et al., 2023). In addition to the frequency and severity, some studies have indicated a 344 
potential poleward shift of TCs (Kossin et al., 2014), but there are considerable uncertainties around whether or not 345 
this is occurring (Knutson et al., 2019; Bell et al., 2019; Chand et al., 2019; Tauvale and Tsuboki, 2019). Finally, some 346 
studies have suggested a potential trend in the translational speed of TCs in a warming world (Kossin, 2018), while 347 
others have suggested this might not be a significant change (Lanzante, 2019; Moon et al., 2019; Yamaguchi et al., 348 
2020). 349 

East coast lows (ECLs) are cyclones near southeastern Australia that can be caused by both mid-latitude and tropical 350 
influences over a range of levels in the atmosphere. Fewer ECLs are likely to occur due to anthropogenic climate 351 
change, at a rate of about -10%/°C of global warming, with this change more likely for cooler months (Dowdy et al., 352 
2019; Pepler and Dowdy, 2022; Cavicchia et al., 2020). A recent study using RCM projections reported that the 353 
number of cyclones exceeding the current 95th percentile for maximum rain rate is expected to increase by more than 354 
25%/K in Australia’s eastern seaboard and Tasmania under a high emissions pathway (RCP8.5) by 2070–2099. Both 355 
the eastern seaboard and Tasmania are projected to have twice as many cyclones with heavy localised rain as in 1980–356 
2009 (Pepler and Dowdy, 2022). That study also found that about 90% of model simulations had at least one ECL in 357 
the period 2070–2099, with a higher maximum rain rate than any in the period 1980–2009 for southeast Australia and 358 
similarly for Tasmania. It is noted here that RCM projections are not at fine-enough scales to be convection-permitting 359 
and so may not necessarily capture some changes in rainfall efficiency associated with enhanced convective processes 360 
from increased atmospheric moisture capacity. 361 

Convective storms, such as severe thunderstorms, can cause relatively localised storms as well as mesoscale 362 
convective and linear systems (Hitchcock et al., 2021). As climate models have a limited ability to simulate fine-scale 363 
aspects associated with thunderstorms (e.g., Bergemann et al. 2022), projections are typically based on environmental 364 
conditions conducive to thunderstorm formation, such as convective available potential energy or other related 365 
atmospheric metrics associated with deep and moist convection. Projections using environmental conditions such as 366 
these have indicated a broad range of plausible changes in the frequency of thunderstorm environments for regions 367 
throughout Australia, including potential increases or decreases depending on the metric or model selections used 368 
(Allen et al., 2014; Brown and Dowdy, 2021). Some of the latest set of GCMs indicate an increase in convection-369 
related extreme rainfall over Australia relating to the Madden-Julian Oscillation (Liang et al., 2022). 370 

Using lightning observations as a proxy for convective storm occurrence, a decline in the number of thunderstorms 371 
during the cooler months of the year has been observed in parts of southern Australia, (Bates et al., 2015). Another 372 
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study based on rainfall observations and reanalysis data reported a trend since 1979 towards fewer thunderstorms for 373 
most regions of Australia, with the strongest and most significant trends in northern and central Australia during the 374 
spring and summer, in addition to increasing trends in thunderstorm frequency on the eastern seaboard (Dowdy, 2020). 375 
However, the total rainfall associated with thunderstorms increased in most regions over the same time period, such 376 
that the intensity of rainfall per thunderstorm increased at about 2-3 times the Clausius-Clapeyron rate (Dowdy, 2020). 377 
Importantly, most of southern Australia saw an increase in the frequency of thunderstorms associated with rainfall of 378 
at least 10 mm over the same period, particularly during the warm months (Pepler et al., 2021). That increase in rainfall 379 
intensity exceeding the Clausius Clapeyron rate is broadly similar to some other studies based on observations and 380 
modelling for Australia, including those focussed on short-duration extremes (Westra and Sisson, 2011; Bao et al., 381 
2017; Guerreiro et al., 2018; Ayat et al., 2022), with the larger increases tending to be in northern rather than in 382 
southern regions. These high rates of change in rainfall intensity can occur from changes in rainfall efficiency, which 383 
increases due to additional moisture capacity in a warmer atmosphere providing additional latent heat from 384 
condensation as energy in the convective processes – so-called super-CC scaling. This process is relevant for 385 
thunderstorms and TCs given the convective processes that provide energy for their formation and intensification, as 386 
well as ECLs that sometimes have mesoscale convective features embedded within their broader synoptic structure 387 
(Holland et al., 1987; Mills et al., 2010; Dowdy et al., 2019). 388 

Extratropical cyclones and fronts can also sometimes cause extreme rainfall in southern Australia. Recent studies have 389 
reported a trend towards fewer of these events, particularly during the cooler months of the year, including a reduction 390 
in the frequency of events that generate at least 10 mm of rainfall (Pepler et al., 2021). Projections of extratropical 391 
cyclones and fronts in this storm-track region of the Southern Hemisphere are broadly similar to the observed trends, 392 
with studies indicating a general reduction in frequency for this region, particularly during the cooler months of the 393 
year (Seneviratne et al., 2023; CSIRO and Bureau of Meteorology, 2015). The projections are also consistent with 394 
observed reductions in multi-day rainfall events (Fu et al., 2023; Dey et al., 2019), which tend to be associated with 395 
long-lived synoptic systems (i.e., at least 24 hours) such as extratropical cyclones.    396 

Finally, the frequency of atmospheric rivers in Australia increased over the 1979-2019 period in one study (Reid et 397 
al., 2022), and may increase in frequency in a warming climate, including near eastern Australia (Wang et al., 2023). 398 
For example, a recent study demonstrated how an atmospheric river contributed to extreme multiday rainfall and 399 
flooding in Sydney in March 2021, finding that, depending on the emission scenario, this type of atmospheric river 400 
could increase in frequency by about 50-100% around the end of this century (Reid et al., 2021), but projections have 401 
not been assessed in detail for elsewhere in Australia.   402 

In summary, more intense rainfall extremes associated with TCs are likely to occur for northern Australia during the 403 
warmer months of the year. For eastern Australia, fewer ECLs are likely to occur, but with an increase in the 404 
occurrence of ECLs that cause extreme precipitation. For southern Australia, fewer extratropical cyclones and fronts 405 
are likely to occur during the cooler months of the year, leading to a potential reduction in rainfall extremes during 406 
these months. Increases in moisture transport by atmospheric rivers has also been reported, with the frequency of 407 
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strong atmospheric rivers potentially increasing by 50-100% in eastern Australia towards the end of this century. The 408 
increased water vapour capacity of the atmosphere in a warming world can increase rainfall efficiency in some cases, 409 
such as through enhanced latent heat from condensation contributing energy to the convective processes. This can 410 
lead to increases in the intensity of extreme rainfall that are notably larger in magnitude than the 6-7%/°C increase 411 
associated with the Clausius Clapeyron relation. Studies have indicated that increased rainfall efficiency in the order 412 
of two or more times the Clausius Clapeyron relationship rate are plausible for short-duration rainfall extremes in 413 
general for Australia (Guerreiro et al., 2018; Dowdy, 2020; Ayat et al., 2022). 414 

4.3.2 Rainfall intensity  415 
4.3.1.1 Impact of climate change 416 

IFD curves are typically derived using statistical models, such as the Generalized Extreme Value (GEV) distribution, 417 
fitted to annual maximum rainfall across a range of durations to severities (AEPs). Anthropogenic changes in extreme 418 
rainfall, both in their intensity and frequency, will therefore lead to changes in IFDs (Milly et al., 2008). In the 419 
scientific literature, changes in extreme rainfalls are generally modelled using non-stationary frequency analysis with 420 
appropriate covariates. While this is an active area of research (Schlef et al., 2023; Wasko, 2021) it has the same 421 
shortcomings as non-stationary flood frequency analysis. Most studies use a time covariate to impart a temporal trend 422 
(Schlef et al., 2023). However, there is evidence that accounting for the different drivers of extreme rainfall, for 423 
example temperature for short duration rainfall, and climate modes such as the El Niño-Southern Oscillation (ENSO) 424 
and the Indian Ocean Dipole (IOD) for long duration rainfall, can improve model performance (Agilan and 425 
Umamahesh, 2015, 2017). This is consistent with the arguments put forward by Schlef et al. (2018) that covariates 426 
should capture the thermodynamic and dynamic processes that affect rainfall changes. For non-stationary frequency 427 
analysis, there is evidence emerging that GEV models should consider changes in both location and scale parameters 428 
(Prosdocimi and Kjeldsen, 2021; Jayaweera et al., 2023). Finally, Schlef et al. (2023) summarised that for non-429 
stationary IFD analysis “the majority of covariate-based studies focus on the historical period, effectively reducing 430 
the study to a sophisticated check for non-stationarity, rather than a framework for projection of non-stationary IDF 431 
curves” and hence their application to the future period remains untested (Schlef et al., 2023). 432 

Likely due to these difficulties in fitting non-stationary IFDs, the majority of climate change guidance for practitioners 433 
is to scale the IFD rainfall depth or intensity using a climate adjustment (or uplift) factor derived from an assessment 434 
of how extreme rainfalls are likely to change under climate change (Wasko et al., 2021b). Studies that assess potential 435 
changes in extreme rainfall can be roughly separated into three categories: (1) studies that assess historical trends; (2) 436 
studies that investigate the association of extreme rainfalls and temperature; and (3) studies that directly project 437 
changes in extreme rainfall using model experiments.  438 

4.3.1.2 Systematic review 439 
Our systematic review identified 40 manuscripts that quantified the relationship between temperature changes and 440 
rainfall intensity, with the manuscripts roughly evenly split between the above three approaches. Projections were 441 
almost always focussed on daily to multi-day rainfall extremes, with the exception of two studies that employed 442 
regional models over small regions of Australia to provide projections of sub-daily rainfall (Mantegna et al., 2017; 443 
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Herath et al., 2016). In contrast, scaling studies were more likely to assess sub-daily rainfall, and about half the papers 444 
assessing historical trends included sub-daily (usually hourly) rainfall. 445 

Historical analysis of trends in high daily rainfall totals, such as the wettest day per year (Rx1D) or the 99th percentile 446 
of the daily rainfall distribution, find a range of trends depending on the region and years used (Dey et al., 2019; Du 447 
et al., 2019; Alexander and Arblaster, 2017; Sun et al., 2021; Liu et al., 2022a). Many older studies detected no 448 
significant trend or a decreasing trend in Rx1D (e.g., Hajani and Rahman, 2018), including some large negative trends 449 
when calculated for individual stations (Yilmaz and Perera, 2014; Chen et al., 2013). However, more recent studies 450 
that draw on larger volumes of stations or gridded data more commonly detect increasing trends in Rx1D, many of 451 
which are close to 7%/K (Wasko and Nathan, 2019; Dey et al., 2019; Guerreiro et al., 2018). Increases are most 452 
apparent in the annual maximum intensity of events of no more than two days duration, which increased by between 453 
13% and 30% over the period 1911-2016 for different regions of Australia (Dey et al., 2019). Changes in rainfall 454 
intensity are less robust for longer duration rainfall events, with studies finding little change or even a decrease in the 455 
intensity of the wettest five-day (Rx5D) period in southeast and southwestern Australia (Du et al., 2019; Fu et al., 456 
2023). Decreases in long-duration rainfall events are most evident during the autumn and winter (Zheng et al., 2015), 457 
associated with extratropical weather systems (Pepler et al., 2020). While total rain days have decreased in many parts 458 
of Australia, the intensity of rainfall on wet days may have increased (Contractor et al., 2018), as has the average 459 
intensity of rainfall on days with thunderstorm activity (Dowdy, 2020).  460 

There is increasingly strong evidence suggesting that an increase in the intensity of sub-daily rainfall has already 461 
occurred. Guerreiro et al. (2018) found an average increase of 2.8 mm or 9.4% in the average wettest hour of the year 462 
between 1966–1989 and 1990–2013 across Australia, equivalent to 19.5%/K, with increases observed at most stations 463 
analysed. When divided into northern and southern Australia, trends were greater than 21%/K in the north, which has 464 
seen a large increase in total rain over the same period (Dey et al., 2019); however, even in southern Australia, 465 
increases were larger than those expected based on Clausius-Clapeyron for frequencies up to the seven wettest hours 466 
(7EY) per year, and close to 14%/K for the wettest four hours per year. In Victoria, studies have found an 89% increase 467 
in the frequency of hourly rainfall > 18 mm/h (Osburn et al., 2021) between 1958-1985 and 1987-2014, as well as 468 
increases in hourly totals > 40 mm/h (Tolhurst et al., 2023). Yilmaz and Perera (2014) also found increasing trends in 469 
Melbourne rainfall intensities for durations of three hours or less between 1925-2010, with 1 in 2 AEP values 5-7% 470 
higher when calculated using data from 1967-2010 vs 1925-1966 (~13-17%/K), though not all differences were 471 
statistically significant.  In southeast Queensland and northeast New South Wales, increasing trends for annual maxima 472 
for events with a duration of less than 12 hours have been reported (Laz et al., 2014), while Chen et al. (2013) reported 473 
that the heaviest rainfalls at timescales of six minutes to six hours increased between the earlier and later 20th century 474 
by more than 20% in Melbourne, Sydney and Brisbane. Very large increases of ~20%/decade in sub-hourly rainfall 475 
have also been identified in Sydney using both radar and rain gauge data based on the short period of 1999-2017 (Ayat 476 
et al., 2022). Trends tend to be strongest for convective rainfall, which has its largest contribution to short duration 477 
events and during the warm half of the year. For instance, heavy rainfall in Greater Sydney during the summer months 478 
increased by more than 6%/decade for all durations from six minutes to 48 h over 1966-2012 (Zheng et al., 2015). 479 
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Scaling studies typically use quantile regression on rainfall-temperature pairs or linear regression on extreme rainfall 480 
percentiles after grouping records by temperature classes to calculate the relationship between day-to-day temperature 481 
variability and the upper tail of the rainfall distribution, as represented by the 90th or 99th percentile of rainfall at a 482 
given temperature (Wasko and Sharma, 2014). While early scaling studies used dry bulb air temperature, such 483 
approaches were sensitive to the cooling influence of rainfall on air temperature as well as the temporal and spatial 484 
scales of rainfall (Bao et al., 2017; Barbero et al., 2017), and often found negative scaling in the northern tropics 485 
(Wasko et al., 2018). More recent studies have found more homogenous results by scaling against moisture 486 
availability, most commonly the dewpoint temperature, as well as accounting for intermittency in precipitation events 487 
(Visser et al., 2021; Schleiss, 2018). Studies typically find a median scaling over Australia of 7-8%/K for daily rainfall 488 
(Magan et al., 2020; Roderick et al., 2020; Bui et al., 2019; Wasko et al., 2018; Ali et al., 2021b; Visser et al., 2020). 489 
This regional convergence to Clausius-Clapeyron scaling hides larger variability in the scaling at local station scales, 490 
ranging typically between 5-10%/K, although in the northern tropics many stations exhibit scaling greater than 14%/K 491 
between rainfall and dewpoint temperature (Magan et al., 2020; Wasko et al., 2018).  492 

Scaling is typically stronger for sub-daily rainfall, with median scaling over Australia typically 8-10%/K and scaling 493 
in tropical regions frequently exceeding 14%/K (Wasko et al., 2018; Ali et al., 2021b; Visser et al., 2021). For rarer 494 
events, Wasko and Sharma (2017) used a stochastic weather generator conditioned on temperature and found hourly 495 
rainfall scaling for Sydney and Brisbane increased from 6-9%/K for an AEP of 1 in 2 to 10-12%/K for a 1 in 10 AEP 496 
and 18%/K for a 1 in 100 AEP, although the uncertainty ranges were large. Scaling rates exceeding 15%/K between 497 
dewpoint temperature and daily rainfall over Australia have also been calculated using a global 0.25° × 0.25° 498 
latitude/longitude resolution model (Zhang et al., 2019), although scaling in the Sydney region was ~4%/K for hourly 499 
rainfall using a 2 km convection permitting model (Li et al., 2018). 500 

GCMs are not expected to accurately simulate rainfall extremes due to deficiencies at representing the key phenomena 501 
responsible for extreme rainfall including convection and thunderstorms or tropical cyclones. This is particularly true 502 
of short-lived or sub-daily extremes, with GCMs better at simulating daily or longer extremes such as extratropical 503 
lows, which cause widespread and prolonged heavy rainfall Kendon et al., 2017). Projections from CMIP5 models 504 
between 1986-2005 and the late 21st century (~2081-2100) indicate an increase in RX1D under a high emissions 505 
scenario (Alexander and Arblaster, 2017), with regional mean increases in RX1D ranging from 13% in Eastern 506 
Australia to 19% in Northern Australia (~4-6%/K) (Climate Change in Australia). A 4%/K increase in RX1D was also 507 
found by Chevuturi et al. (2018) when comparing a 2-degree warmer world with historical simulations, while Ju et al. 508 
(2021) found an 11% increase in RX1D in a 2-degree warmer world (5.5%/K). Models in the Coupled Model 509 
Intercomparison Project Phase 6 (CMIP6) simulate a slightly smaller change in RX1D, with a 6.2-7.3% increase in 510 
Rx1D for Australia between the preindustrial climate and the 2-degree warming level and a 10.3-11.2% increase by 3 511 
degrees (3-4%/K, Gutiérrez et al., 2021) and a 9.4% (~3%/K) increase in Rx1D by the end of the century (Grose et 512 
al., 2020). 513 

Results from regional climate models are broadly consistent with GCMs for daily rainfall, including a projected 514 
regional mean increase of 5.7%/K  in the 99th percentile of wet days using the NARCliM ensemble (Bao et al., 2017) 515 

https://doi.org/10.5194/hess-2023-232
Preprint. Discussion started: 10 October 2023
c© Author(s) 2023. CC BY 4.0 License.



   

16 
 

and larger increases in the 99.5th (6.5%/K) and 99.9th (9.2%/K) percentiles. Pepler and Dowdy (2022) also found a 516 
4%/K increase in the frequency of days exceeding the 99.7th percentile using a CMIP5-based RCM ensemble, with 517 
the largest increases projected in Tasmania (12%/K), while Herold et al. (2021) reported a doubling in the frequency 518 
of current 1 in 20 AEP events by 2060-2079. Projected increases are smaller for multi-day rainfall, with a median 519 
increase in Rx5D of 10% (~3%/K) reported in Sillmann et al. (2013), 4%/K in Ju et al. (2021), and no significant 520 
change in Chen et al. (2014). While fewer studies have assessed changes to less frequent rainfall extremes, these are 521 
typically larger than the increases projected for annual maxima. For instance, CMIP5 models simulate a 22-26% 522 
increase (7-8%/K) in the 1 in 20 AEP daily rainfall by the end of the 21st century (Climate Change in Australia), and 523 
statistically downscaled climate data project a similar 20% increase in the 1 in 50 AEP by the end of the century 524 
(6%/K; Wasko et al., 2023). Slightly smaller increases for the 1 in 10 AEP of 15.5% by the end of the century were 525 
found using CMIP6 models (~5%/K, Grose et al., 2020).  526 

Studies investigating the projection of sub-daily rainfall extremes are rare for Australia, but regional modelling for the 527 
Tasmanian region indicated increases of greater than 40% in AEP of 1 in 10 and rarer in a 2.9-degree warmer world; 528 
more than 14%/K (Mantegna et al., 2017). This is consistent with the stronger observed trends and scaling rates 529 
reported for rainfall of short durations. Projected increases are likely to be larger for convective extremes, which 530 
dominate sub-daily rainfall and are poorly simulated even in regional climate models. For example, Shields et al., 531 
(2016) projected a 12.5% increase in convective rain rates above the 95th percentile in the Australasian region using a 532 
0.5° × 0.5° latitude/longitude global model by the late 21st century (~4%/K) but no change in large-scale rainfall. 533 
Finally, regional model experiments also indicate increases of 15% in tropical cyclone rain rates per degree of SST 534 
increase (Bruyère et al., 2019).  535 

4.3.1.2 Meta-analysis 536 
Where possible, observed or projected changes were extracted from each paper or dataset. Absolute changes were 537 
converted to changes as a percent per degree of warming, with the global mean warming over the appropriate time 538 
period extracted either from the Berkeley Earth Surface Temperature dataset (Rohde and Hausfather, 2020), or the 539 
ensemble mean for the corresponding CMIP generation and emissions scenario. These quantitative results are 540 
summarised in Figure 2, with extended details provided in the Supplementary Table. The centre changes are central 541 
estimates changes in extreme rainfall amounts converted to %/K. The type of central estimate (median or mean) is 542 
indicated in the Supplementary Table. Minimum and maximum changes are the largest range of changes reported by 543 
each study; these are usually minima and maxima (for example across stations). It is noted that some papers are 544 
included in Figure 2 multiple times for different durations and exceedance percentiles.  545 
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 546 

Figure 2. Summary of extreme rainfall change standardised, where possible, in per degrees of global temperature 547 
change. Note that rainfall-temperature scaling studies use local temperatures. Dashed lines indicate Clausius-548 
Clapeyron (CC), 2xCC, and 3xCC scaling respectively. Diamonds indicate the central estimate of scaling and 549 
shaded bars indicate the range (where possible the minimum to maximum) of scaling estimates. Diamonds are 550 
opaque for results in which there was higher confidence and transparent for estimates in which authors found 551 
“disqualifying features” that significantly lowered weighting in the meta-analysis. The few studies with AEPs 552 

between the values shown here were included in the nearest AEP for this plot. 553 

By consensus, it was deemed that the results for the meta-analysis would focus on daily and hourly rainfall durations 554 
as the majority of studies focus on these two durations. Additionally, the mechanisms that cause extreme rainfall at 555 
the two durations are often distinct (albeit noting that short duration extremes are often embedded in longer duration 556 
extremes). The potential for rates of change to vary both by location and exceedance probability was also explored. 557 
In relation to changes by location, it is well known that there is significant heterogeneity in the rainfall-generating 558 
mechanisms across the Australian landmass. However, when comparing the published scaling rates across the different 559 
geographies, there was insufficient evidence to quantify the differences between regions, with a relative scarcity of 560 
studies in regions outside of the populated areas of eastern Australia, and few consistent methodologies applied to all 561 
of Australia. Similarly, although there is some evidence that rarer extremes are likely increasing more than frequent 562 
extremes, it was deemed there was not enough evidence to quantify this difference through the meta-analysis (See 563 
Figure 2). This was because of (1) the large variability of extreme rainfall changes between studies relative to the 564 
variability with AEP, and (2) where there appears to be a trend with AEP this is generally a result of a single study 565 
analysing multiple AEPs. Hence for the proposed uncertainty intervals were developed to encompass much of the 566 
variability across space and by exceedance probability. 567 
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Multiple co-authors independently used the available evidence to determine their best estimates of central scaling rates 568 
and the likely range of extreme rainfall change, for events rarer than the annual maxima up to the PMP. For both daily 569 
and hourly durations, each relevant study was assigned a weight, where the weights across the studies summed to one. 570 
The weights were assigned based on the type of evidence (I.e., trend, association, or projection), the study 571 
methodology, the number of sites analysed, the age of the study and its spatial extent, and theoretical considerations. 572 
These weights were then used to obtain a best estimate of the change in extreme rainfall. A consensus was drawn 573 
between the participating co-authors with regard to the central (median) estimate and the likely range (66%) of extreme 574 
rainfall change. The consensus scaling rates and ranges are shown in Table 1. 575 

Table 1. Results of meta-analysis presenting extreme rainfall change, using a multiple-lines-of-evidence approach 576 
that draws on the studies in the Supplementary Table. This synthesis is based on a review of all studies covering 577 

extremes from the annual maxima through to the probable maximum precipitation (PMP) event (see Section 4.3.3 578 
for further information on the PMP). The estimates are presented per degree global temperature change.  579 

 <=1 hr >1 hr and <24 hr >=24 hr 
Central (median) 
estimate 

15%/K Interpolation zone 8%/K 

‘Likely’ range 
(corresponding to ~66% 
range) 

7%-28%/K Interpolation zone 2%-15%/K 

 580 

Weightings given by individual authors reflected the following findings. At daily timescales, RCM projections and 581 
scaling approaches typically had higher scaling rates than GCM projections, likely due to deficiencies in GCMs 582 
representing key extreme rainfall generation processes. Moreover, many observational studies used few sites with 583 
limited spatial coverage. In most studies using historical data across larger regions (global or Australia wide) and 584 
recent periods, results were between 4-10%/K, with a central estimate of 8%/K for rarer events (e.g., 1 in 100 AEP), 585 
noting also that a greater weight was given to those global and Australia-wide studies. The likely range encompasses 586 
small but non-negative changes, which are most likely due to changes relevant to more frequent, multi-day events of 587 
72+ hour duration. The likely range also encompasses potential scaling of at least twice the Clausius-Clapeyron rate, 588 
most likely for rarer events such as 1 in 100 AEP and for locations in northern Australia. 589 

For sub-daily timescales, estimates of change are predominantly based on historical observations (trends), due to a 590 
relative paucity of projection information. These studies suggest that changes below the Clausius-Clapeyron rate of 591 
7%/K are unlikely, with potential changes in excess of 15%/K observed for rarer events. This is broadly consistent 592 
with the single available regional model study (Mantegna et al., 2017), which had projected increases of 16%/K for a 593 
1 in 10 AEP and 29%/K for 1 in 100 AEP. Slightly weaker changes are found in scaling studies compared to the other 594 
lines of evidence, with the tropics again showing evidence of greater increases compared to the south. The likely range 595 
hence incorporates this spatial inhomogeneity noting that greater uncertainty exists on the upper estimate of change 596 
than the lower estimate. While the meta-analysis central estimate of 15%/K is based on the best available information, 597 
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there is an urgent need for more detailed assessment of changes in sub-daily rainfall in a changing climate using 598 
convection-permitting models.  599 

4.3.3 Probable maximum precipitation 600 
4.3.3.1 Impact of climate change 601 

The PMP is defined as the greatest depth of precipitation meteorologically possible under modern meteorological 602 
conditions for a given duration occurring over a catchment area or a storm area of a given size, at a certain time of the 603 
year (WMO, 2009). It needs to be recognised that this theoretical definition differs from its “operational estimate,” 604 
which is based on a set of simplifying assumptions and calculated from an observational sample of 605 
hydrometeorological extremes (Schaefer, 1994). Hence, in Australia and elsewhere, successive estimates of the PMP 606 
adopted for design purposes have increased over time as methods and data sets change (Bureau of Meteorology, 2003). 607 
As a result, changing PMP estimates for climate change is heavily dependent on the operational methods employed.  608 

The methods used to derive operational PMP estimates can be broadly divided into statistical methods and 609 
hydrometeorological methods. Statistical methods are commonly used in engineering studies as they can be applied 610 
with little effort and do not require hydrometeorological expertise. The most widely used statistical approach was 611 
developed by Hershfield (1965) and is based on enveloping the observations obtained from a large number of rainfall 612 
gauges to extrapolate a simple 2-parameter (Gumbel) distribution. Hydrometeorological methods used to derive 613 
operational estimates include approaches based on the maximisation of local storm data, referred to as in-situ 614 
maximisation, the transposition of extreme storms nearby to the catchment with similar topography, known as storm 615 
transposition, and the enveloping of storm data over a large region after adjusting for differing moisture availability 616 
and topography, known as generalised methods. Generalised methods differ from the in-situ and transposition methods 617 
in that they use all available data over a large region and include adjustments for moisture availability and differing 618 
topographic effects on rainfall depth. Generalised PMP methods are employed in Australia as well as a number of 619 
other countries, including New Zealand (Thompson and Tomlinson, 1995), India (Rakhecha and Kennedy, 1985), 620 
China (Gu et al., 2022), and the USA (England et al., 2020). For Australia, the storm transposition zone varies with 621 
climate region as the mechanisms driving extreme rainfall vary. 622 

In generalised hydrometeorological methods, the PMP event is assumed to originate from the simultaneous occurrence 623 
of a maximum amount of moisture (moisture maximisation) and a maximum conversion rate of moisture to 624 
precipitation (storm efficiency). Moisture maximisation involves multiplying observed storm precipitation depths by 625 
the ratio of the seasonal maximum precipitable water for the storm location to the representative precipitable water 626 
for the storm, with the precipitable water estimated from surface dewpoint data assuming saturation and pseudo 627 
adiabatic conditions. This assumes that in a large sample of storms recorded over a long period at least one storm 628 
operates near maximum efficiency.  629 

Potential increases in future daily PMP estimates are predominantly founded on projected increases in atmospheric 630 
water vapor, which have been found to closely follow temperature changes with an approximate Clausius-Clapeyron 631 
relationship of 7% per 1°C warming (noting that this does not consider potential changes in rainfall efficiency). While 632 
the WMO manual (WMO, 2009) makes no allowance for long-term climatic trends, one of the most comprehensive 633 
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studies that examined changes in maximum water vapour concentrations across the globe found increases in 634 
atmospheric water vapor of 20%–30% by the end of the century (Kunkel et al., 2013), approximately consistent with 635 
the CC relationship. Kunkel et al. (2013) adopted a “hybrid” approach that merged traditional hydrometeorological 636 
PMP methods with outputs from an ensemble of seven GCMs, an approach that is seen as an advance on traditional 637 
PMP estimates as it incorporates simulated historical and future climate model data (Salas et al., 2020). They found 638 
that the PMP will change by an amount comparable to the mean water vapour changes, with little evidence for changes 639 
in storm efficiency (Kunkel et al., 2013); however it is noted that GCMs do not simulate many of the key process that 640 
could lead to changes in storm efficiency. The relatively minor importance of changes in storm efficiency compared 641 
to precipitable water under climate change was also found by Ben Alaya et al. (2020), who based their conclusions on 642 
an analysis of non-stationarity in a bivariate model of precipitable water and storm efficiency using temperature as a 643 
covariate.  644 

Since Kunkel et al. (2013), many other hybrid approaches have been applied using either global or regional climate 645 
models, and similar results have been found for catchment- or region-specific studies in northern America (Beauchamp 646 
et al., 2013; Chen et al., 2017; Cyphers et al., 2022; Clavet-Gaumont et al., 2017; Rousseau et al., 2014; Rouhani and 647 
Leconte, 2020; Labonté-Raymond et al., 2020), Chile (Lagos-Zúñiga and Vargas M., 2014), and Korea (Lee et al., 648 
2016). While one study projected decreases in the PMP using a hybrid modelling approach, it was based on a single 649 
GCM model (CanESM2) and the projections were for a region in the southeast of the Caspian Sea (Afzali-Gorouh et 650 
al., 2022). Other region-specific studies have applied physically-based approaches using regional atmospheric models 651 
and found results that are consistent with the Clausius-Clapeyron relationship in north America (Ishida et al., 2018; 652 
Gangrade et al., 2018; Rastogi et al., 2017), China (Liu et al., 2022b), and Chile (Lagos-Zúñiga and Vargas M., 2014). 653 

Statistical methods based on Hershfield (1965) have also been used to assess the non-stationarity of PMP estimates, 654 
where a recent study (Sarkar and Maity, 2020) used a global reanalysis data set to conclude that global PMP estimates 655 
have increased by an average of 25% over the world between the periods of 1948-1977 and 1978-2012. These changes 656 
are appreciably larger (e.g., about quadruple) than what would be expected from the Clausius-Clapeyron relationship, 657 
though differences between statistical and hydrometeorological methods are evident in other studies in Canada 658 
(Labonté-Raymond et al., 2020), India (Sarkar and Maity, 2020), Vietnam (Kawagoe and Sarukkalige, 2019) and the 659 
USA (Lee and Singh, 2020). The degree of conservatism associated with the statistical method (i.e., the tendency to 660 
produce high estimates) is heavily dependent on the robustness of the envelope curves. Given the lack of physical 661 
reasoning in the statistical method, it is difficult to reconcile differences with estimates derived using 662 
hydrometeorological concepts. This is also true of generalised methods, which in principle do not vary with storm 663 
duration, with research into changes in the PMP with climate change largely using daily rainfall data. 664 

4.3.3.2 Systematic review 665 
A systematic search yielded one recent paper relevant to projected changes in operational PMP estimates for Australia 666 
(Visser et al., 2022), with Salas et al. (2020) summarising existing methods and findings. Visser et al. (2022) undertook 667 
an analysis of moisture availability, comprising dewpoint data from 30 synoptic stations across Australia covering the 668 
period from 1960 to 2018 and 3-hourly ERA5 reanalysis data covering the period from 1979 to the present (Hersbach 669 
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et al., 2020). It was found that the annual maximum persisting dewpoints have increased leading to increased PMP 670 
estimates. Projections of dewpoint temperature were used to derive future PMP estimates across Australia using the 671 
ACCESS-CM2 model. The projected results showed increases of 4%-29% (average of 13%) by 2100 for SSP1-2.6 672 
and 12-55% (average of 33%) for SPP5-8.5 (Visser et al., 2022). If global temperature increases are used, these 673 
changes translate to average increases slightly greater than the Clausius-Clapeyron relationship (e.g., 8.9%/K for 674 
SSP5-8.5). 675 

Jakob et al. (2009) investigated how the local moisture availability, storm type, depth-duration-area curves and relative 676 
storm efficiency used in deriving operational PMP estimates might be changing over time, and how the identified 677 
changes have impacted the PMP estimates. The analysis was based on data from 38 locations across Australia from a 678 
combination of upper-air (radiosonde) and surface dewpoint observations. No large-scale significant changes in 679 
moisture availability were found, though significant increases were found along parts of the east coast, as well as a 680 
region in south-eastern Australia with summer decreases. When comparing moisture availability for a historical 681 
climate period (1981-2000) and the next few decades using outputs from a single global climate model, they found 682 
the 90th percentile values increased from the 2020s to the 2050s and the 2090s, however they also found some evidence 683 
for lower extreme moisture availability in some regions. Similar to the above studies, they found little evidence for 684 
significant changes in storm efficiency, depth-duration-area curves, or storm types, and no significant changes were 685 
found in generalised rainfall depths (again noting that such global models are not expected to simulate some of the 686 
key rainfall generation processes). The results obtained by Jakob et al. (2009) are not inconsistent with those of Visser 687 
et al. (2022), but the difference in conclusions may be explained by the longer and more extensive data sets used by 688 
Visser et al. (2022) and the updated global climate model outputs used to project the dewpoint temperatures.  689 

Despite this compelling evidence, there is no formal recommendation for increases in PMP estimates with the Manual 690 
on Estimation of Probable Maximum Precipitation (WMO, 2009) in their chapter on “PMP and Climate Change” 691 
summarising the results of Jakob et al. (2009). To the best of the authors’ knowledge, no agency responsible for 692 
providing operational PMP estimates for design purposes anywhere in the world has yet provided uplift factors to 693 
ensure that the PMP estimates based on historic observations are relevant to future conditions, despite the majority of 694 
studies into impact of climate change on the PMP finding the PMP is likely to be increasing at the CC rate for daily 695 
rainfall. 696 

4.3.4 Temporal and spatial patterns  697 
4.3.4.1 Impact of climate change 698 

The temporal and spatial patterns of extreme rainfall have long been recognised as important factors in determining 699 
the magnitude of a flood event (Herrera et al., 2023). Conceptually, as weather systems change and storms intensify 700 
due to increases in temperature, changes in both the temporal and spatial pattern of rainfall are expected with 701 
anthropogenic climate change. Given that sub-daily rainfalls are expected to intensify more than daily rainfall (Section 702 
4.2.1) this implies that storm temporal patterns will also intensify. In the design flood paradigm, once a rainfall depth 703 
has been estimated from the appropriate IFD relationship, a temporal profile is used to distribute the total rainfall 704 
across the storm duration. When the rainfall distribution across the storm duration is less uniform, higher flood peaks 705 
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will generally occur (Ball, 1994). For example, front or rear loaded storms, where more than 50% of the total rainfall 706 
falls in either the first half or the second half of the storm respectively (Visser et al., 2023), can have differing impacts 707 
on flood peaks through their interactions with any storage (natural or constructed) in the catchment. 708 

In the context of design flood estimation, as the underlying data for the IFD relationships is point rainfall, the influence 709 
of spatial scale on average rainfall intensities is considered through ARFs. For small catchments the point rainfall 710 
provides a reasonable approximation of the catchment average rainfall. However, for larger catchments, it is less likely 711 
that the most intense rainfall in a storm will occur over the whole catchment and the catchment average rainfall for 712 
any particular event will be lower than the point rainfall represented by the IFD relationship. ARFs represent this 713 
expected rainfall reduction, with the reduction dependent on the catchment area, storm duration and frequency.  714 

4.3.4.2 Systematic review 715 
Some limited research has been undertaken with respect to changes to temporal patterns and spatial patterns of design 716 
rainfalls, primarily using scaling relationships calculated from observed data, while there exists some limited 717 
modelling via dynamic downscaling for the Sydney region. A total of seven papers were found as part of the systematic 718 
review. The findings to date suggest that temporal patterns are becoming more front-loaded (greater percentage of 719 
precipitation falling earlier in the storm) with higher temperatures. There is also an increase in the proportion of rain 720 
falling in the wettest period of the storm, leading to increased peakiness (less uniformity) of the temporal patterns.  721 

Temporal pattern changes have been analysed in two main ways. The first is broadly based on the average variability 722 
method, whereby the changes in the proportion of rainfall within a period are calculated. For example, Wasko and 723 
Sharma (2015a) found for 1 hour storm bursts, the highest 12-minute period had a median scaling of 2.1% per degree 724 
temperature increase for Australia. The scaling rate was dependent on the duration of the storm and the latitude of the 725 
station. Wasko and Sharma (2015b) identified 500 one-hour bursts for five stations, stratified them into five 726 
temperature bins and calculated the temporal pattern using the average variability method for each bin. In general, the 727 
highest temperature bin had peakier (i.e., less uniform) temporal patterns than the lowest temperature bin. Wasko and 728 
Sharma (2017) also used the average variability method to calculate the scaling of temporal patterns. These later 729 
analyses were based on first fitting a stochastic rainfall generation model to historical observations, and then using 730 
regression models to explore the relationships between the rainfall generation model parameters and temperature. For 731 
simulations representing the end of the 21st century under RCP8.5, the peak rainfall fraction in the temporal patterns 732 
increased from 40% to 50% for two models that were fitted separately for Brisbane and Sydney.  733 

Australia’s flood guidance (Ball et al., 2019a) has moved away from using the average variability method for temporal 734 
patterns, and instead now provides an ensemble of temporal patterns for design rainfall analyses. Consistent with this 735 
approach, Visser et al. (2023) provide the most comprehensive analyses of scaling relationships for temporal patterns 736 
for Australia. From an original database of 1489 rainfall gauges 151 stations had sufficient data for scaling analysis, 737 
and trends could be calculated for 55 locations from 1960-2016, with 28 stations having coincident temperature and 738 
precipitation data. It was found that storms have tended to become more front-loaded, with storms also tending to 739 
become more front-loaded when the coincident temperature was higher. There is a strong regional pattern in the 740 
proportion of front-loaded events, ranging from 50% of events in the south of Australia to close to 70% of events in 741 
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the tropics. Scaling relationships for the temporal patterns were found to be stronger when related to temperature 742 
rather than dew point temperature.  743 

The only study to directly calculate ARFs in the context of climate change is Li et al., (2015). In this work, ARFs were 744 
calculated for the Sydney region using a high-resolution RCM. It was found that for 1hr storms ARFs would increase 745 
(i.e., larger future storms) whilst for longer durations (6 to 72 hr) ARFs would decrease, with the largest decreases for 746 
large catchment areas and the rarest events. But as this analysis was based on a single climate model applied over a 747 
limited geographical domain it is not possible to generalise these results. Calculating ARFs from the RCM also 748 
assumed that the point rainfall to 4 km2 ARF would not change in the future (as 4 km2 was the resolution of the RCM 749 
so smaller area ARFs could not be calculated).  750 

Other studies have analysed changes to spatial patterns of storms, but further work will be required to relate their 751 
findings to methods such as ARFs used with design rainfalls. Wasko et al. (2016) found that the effective radius of 752 
storms decreased with temperature at over 80% of the stations analysed in Australia using quantile regression for 753 
storms above the 90th percentile. For stations classified as temperate, this decrease in effective radius was despite an 754 
increase in peak precipitation, which suggested that moisture was being redistributed from the edge of the storms to 755 
the centre. Li et al. (2018) reproduced these results for the Sydney region using RCM simulations. However, in both 756 
studies the storms were limited to radii of 50 km and were assumed to be circular. Li et al. (2018) pointed out that 757 
there were good opportunities to use RCM simulations to analyse changes in storm advection and not limiting the 758 
analyses to circular storms. 759 

Finally, Han et al. (2020) used copulas to analyse the spatial dependence of monthly maximum rainfalls. They found 760 
that around 40% of the stations had decreasing trends in connectivity and that the overall average connectivity was 761 
lower for storms associated with higher dewpoint temperatures, particularly in southern Australia. However, the 762 
analyses were not seasonally stratified and therefore it is not clear if the findings could also be explained by the 763 
seasonally different rainfall mechanisms. Although evidence is emerging for temporal and spatial clustering of storm 764 
events both in Australia and globally (e.g., Chan et al., 2023; Chang et al., 2016; Ghanghas et al., 2023; Kahraman et 765 
al., 2021; Tan and Shao, 2017), the evidence for changes in the spatial pattern of precipitation, compared to changes 766 
in the temporal pattern of precipitation, remains weaker. 767 

4.3.5 Antecedent wetness  768 
4.3.5.1 Impact of climate change 769 

When rainfall falls on a catchment, there a range of different runoff processes that lead to catchment runoff and 770 
subsequent streamflow. These runoff processes include infiltration excess or Hortonian overland flow, saturation 771 
excess runoff, variable source area, partial area runoff, subsurface storm flow, and impervious area runoff. In 772 
modelling these runoff processes in design flood estimation, the rainfall is partitioned into direct flow or runoff, which, 773 
along with baseflow, contributes to the observed flood hydrograph, and rainfall losses that do not influence the flood 774 
event’s hydrograph. Rainfall losses primarily result from: 1) interception by vegetation and man-made surfaces which 775 
are eventually evaporated 2) depression storage on the land surface ranging in size from soil-particle-sized depressions 776 
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to lakes; and 3) infiltrated water stored in the soil, which may later contribute to baseflow (Hill and Thomson, 2019; 777 
Pilgrim and Cordery, 1993; O’Shea et al., 2021). 778 

Physically, rainfall losses are largely influenced by antecedent soil moisture and soil properties, which govern the 779 
hydraulic gradient of the soil and thus affect the rate of infiltration (Liu et al., 2011; Bennett et al., 2018). Antecedent 780 
soil moisture is a strong modulator of the flood response (Tramblay et al., 2010; Pathiraja et al., 2012; Woldemeskel 781 
and Sharma, 2016; Wasko et al., 2020; Brocca et al., 2009; Quintero et al., 2022) and is influenced by variability at 782 
multi-annual and multi-decadal time scales (Kiem and Verdon-Kidd, 2013). Incorporating information regarding 783 
antecedent soil moisture into loss models has also been shown to improve flood estimates (Cordery, 1970; Tramblay 784 
et al., 2010; Sunwoo and Choi, 2017; Bahramian et al., 2023); these loss models have been incorporated into the 785 
Australia’s flood guidance (Hill et al., 2016).  786 

To model the flood response in event-based flood routing models, it is necessary to conceptualise rainfall losses and 787 
employ a mathematically explicit representation. More complex loss models, such as Horton’s method, conceptualise 788 
the infiltration as decreasing exponentially as the soil saturates, whereas the Green-Ampt method assumes a sharp 789 
wetting front exists in the soil column, separating a saturated upper soil layer from the underlying soil layer that 790 
contains some initial moisture content (Rossman, 2010). Research has also explored the merits of hybrid methods 791 
where continuous simulation is used to condition the initial state of the catchment before modelling the discrete flood 792 
event using an event-based flood model (Heneker et al., 2003; Sheikh et al., 2009; Li et al., 2014; Yu et al., 2019; 793 
Stephens et al., 2018a). Despite authors arguing that loss models should involve modelling physical representations 794 
of the runoff process (Kemp and Daniell, 2016), there has been limited adoption in practice of more complex 795 
approaches to loss modelling (Paquet et al., 2013). This is because the benefits of estimating rainfall losses relevant 796 
to floods using physical process-based models are limited due to their complexity and incomplete understanding of 797 
runoff generation processes as well as the inadequate availability of hydrological data (Pilgrim and Cordery, 1993). 798 
For example, complex fully-distributed models often seek to resolve processes at spatial and temporal scales for which 799 
data is limited or unavailable, and consequently such models are more liable to overfitting, leading to poor predictive 800 
capabilities. As a result, parsimonious lumped models of rainfall loss are commonly employed. 801 

Amongst the most used parsimonious lumped models of rainfall loss are the initial loss continuing loss model (ILCL), 802 
the Probability Distributed Model (PDM), the Soil Conservation Service Curve Number (SCS-CN) and the initial loss 803 
proportional loss (ILPL) model (Pilgrim and Cordery, 1993; O’Shea et al., 2021; US Army Cops of Engineers, 2000). 804 
Broadly, these models divide losses into an initial loss, whereby all rainfall is infiltrated into the soil, up to a point at 805 
which the hydrograph rises and the rainfall begins contributing to the runoff response and the loss becomes a fractional 806 
amount of the rainfall. The parameters of these models are typically calibrated using historical rainfall and streamflow 807 
data (e.g., Brown et al., 2022; Clayton, 2012; Gamage et al., 2015) with either a central tendency value (i.e., mean or 808 
median), or a probabilistic distribution of loss parameters adopted for deterministic design flood estimation approaches  809 
(Rahman et al., 2002; Zhang et al., 2023; Nathan et al., 2003; Gamage et al., 2013; Loveridge and Rahman, 2021; 810 
Ishak and Rahman, 2006).  811 
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Under climate change, it has been shown that antecedent soil moisture is changing (Berg et al., 2017; Seneviratne et 812 
al., 2010; Wasko et al., 2021a) and will likely continue to change due to a range of factors. These factors include 813 
increased temperatures, increased rainfall variability and changes in drought duration and frequency (Ukkola et al., 814 
2020), and changes to the persistence of large-scale ocean-atmospheric mechanisms such as increased persistence of 815 
La Niña (Geng et al., 2023). Any changes in the antecedent soil moisture due to climate change will impact on the 816 
resultant design flood estimate (Ivancic and Shaw, 2015; O’Shea et al., 2021; Quintero et al., 2022).  817 

4.3.5.2 Systematic review 818 
While there is ample evidence that climate change will alter antecedent soil moisture conditions, which in turn 819 
modulate flood responses and hence rainfall losses, there have been few studies quantifying how climate change will 820 
affect rainfall loss parameter values. A systematic review found several studies that have assessed the impact of trends 821 
in antecedent moisture conditions and rainfall losses on floods (Earl et al., 2023; Loveridge and Rahman, 2013). 822 
However, we found only two studies projecting rainfall losses, where overall rainfall losses (Ho et al., 2022) and 823 
rainfall loss parameters (Ho et al., 2023, 2022) were projected under climate change. These studies examined the 824 
relationships between total rainfall losses and the parameters of the ILCL rainfall loss model in relation to antecedent 825 
soil moisture in largely unregulated catchments across Australia. Ho et al. (2023) found a consistent negative linear 826 
relationship between the loss parameters and antecedent soil moisture, where increased antecedent soil moisture was 827 
associated with decreased losses. For locations where the relationships between the loss parameters and antecedent 828 
moisture conditions were statistically significant, projections of the loss parameter values were made using projections 829 
of antecedent soil moisture developed by the Australian Bureau of Meteorology (Srikanthan et al., 2022; Wilson et 830 
al., 2022; Vogel et al., 2023). On average, by the end of the century and under RCP 8.5, initial losses were projected 831 
to increase by 5.0 mm (9%) with the interquartile range of the change from 3.3 to 6.3 mm (6%-12%). Continuing 832 
losses were projected to increase on average by 0.45 mm/hr (13%), with an interquartile range of the change of 0.18 833 
to 0.6 mm/hr (8%-23%). To remain consistent with the meta-analysis methodology the above changes, on a per 834 
catchment basis, were standardised using global mean temperature and pooled across Natural Resource Management 835 
Regions (Figure S3, Figure S4). Follow the scaling factors were pooled across RCP to produce the scaling rates shown 836 
in Table 2. Here it was deemed that the variability between regions (refer to Figure 2 from Ho et al. (2023)) was 837 
sufficient to respect regional differences, with events greater or equal to an annual maxima partial duration series 838 
adopted for the development of soil moisture-loss relationships.  839 

Table 2. Median scaling factors for loss parameters together presented per degree global temperature change for 840 
clusters of Natural Resource Management Regions (CSIRO and Bureau of Meteorology, 2015), adapted from Ho et 841 

al. (2023). The ‘likely’ range (corresponding to ~66% range) is presented in parenthesis. 842 

 Natural Resource Management Region IL (%/°C) CL (%/°C) 
Southern and South-Western Flatlands 4.5 (2.0-7.1) 5.6 (2.5-8.7) 
Murray Basin 3.1 (1.0-5.7) 6.7 (1.5-12.1) 
Southern Slopes 3.9 (1.5-7.2) 8.5 (2.9-15.7) 
East Coast 2.0 (0.6-4.3) 3.8 (1.1-8.0) 
Central Slopes 1.1 (0.4-2.2) 2.0 (-0.5-7.5)  
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Wet Tropics 0.8 (-0.4-2.0) 1.4 (-0.1-4.8) 
Monsoonal North 2.4 (1.0-5.4) 4.4 (3.1-9.5) 

 843 

4.3.6 Sea level factors 844 
At the coastal terminus of a catchment, sea levels can modulate flooding, and hence incorporating the appropriate sea 845 
level variations in the tail water boundary conditions is an important consideration for coastal and estuarine flood 846 
modelling. Moreover, research has shown that extreme rainfall and storm surge processes are statistically dependent, 847 
and therefore their interaction needs to be taken into account (Zheng et al., 2013). Despite this, changes in the sea 848 
level are not covered in Australia’s flood estimation guidance (Bates et al., 2019). 849 

Coastal sea levels vary due to multiple processes that operate on different time and space scales, ranging from 850 
astronomical tides and storm surges to long-term sea-level rise due to global warming (McInnes et al., 2016). 851 
Astronomical tides occur on a predictable and recurring basis, with relatively consistent frequency. Storm surges, on 852 
the other hand, are less frequent and, because they occur in conjunction with severe weather events with low 853 
atmospheric pressure, storm surge intensity is related to the strength of the storm. For coastal flooding, the same 854 
weather systems that cause storm surges can also produce high rainfall totals and the potential for compound flooding 855 
along the coast  (Bevacqua et al., 2019; Collins et al., 2019; Zheng et al., 2013).  856 

Both observed and modelled results (Wu et al., 2018; Zheng et al., 2013; Bevacqua et al., 2020) indicate that the 857 
dependence between storm surges and extreme rainfalls is strongest in the north and northwest of Australia, followed 858 
by the west and northeast of Australia. It is weak and/or statistically not significant on the northeastern tip of 859 
Queensland, along the southeast coast of Western Australia, along small parts of the South Australian coastline, and 860 
along the eastern part of the Victorian coast near Bass Strait. As the co-occurrence of extreme rainfall with extreme 861 
storm surge is similar to the co-occurrence of runoff with storm surge (Bevacqua et al., 2020), methods for 862 
incorporating this dependence are in included in Australia’s flood guidance (Westra et al., 2019) – despite sea level 863 
rise not being included. In the northern part of the continent, coincident extremes are most likely due to the occurrence 864 
of tropical cyclones. Along the southwest and southern coastline, coincident extremes are most likely due to 865 
extratropical lows and associated cold frontal systems during the winter half year. Along the southeast coast, 866 
coincident events are most likely due to cut-off lows or frontal systems (Wu et al., 2018).  867 

While coincident flood studies have focussed on the coincidence of rainfall or runoff events with storm surges or 868 
storm tides, other factors can also affect regional sea level variability on differing time scales. For example, coastally-869 
trapped waves (CTWs) can cause sea level variability along Australia's extratropical coastline on timescales from 870 
weeks to months, with amplitudes correlating with continental shelf width and ranging from 0.7 m along the south 871 
coast to 0.05–0.10 m along the east coast (Eliot and Pattiaratchi, 2010; Woodham et al., 2013). In some locations, 872 
seasonal-scale sea level variations are an important consideration. For example, the Gulf of Carpentaria experiences 873 
a significant annual sea level range of about 0.8 m, which is driven mainly by the seasonal reversal of the prevailing 874 
winds. On interannual time scales the El Niño-Southern Oscillation causes sea level variations with higher (lower) 875 

https://doi.org/10.5194/hess-2023-232
Preprint. Discussion started: 10 October 2023
c© Author(s) 2023. CC BY 4.0 License.



   

27 
 

than average sea levels during La Niña’s (El Niño’s), which have a maximum range in the Gulf of Carpentaria and 876 
decrease in magnitude with distance anticlockwise around the coastline (White et al., 2014; McInnes et al., 2016).   877 

Sea-level rise (SLR) is increasing the frequency of coastal flooding (Hague et al., 2023). Over the period from 2007 878 
to 2018 sea levels rose at an average rate of 3.6 ± 1.7 mm/yr based on a global network of tide gauge records, and 879 
3.8 ± 0.3 mm/yr based on satellite altimeters (Wang et al., 2021). Over the period 1993-2018 in the same two datasets, 880 
the rates of SLR were 0.063 ± 0.120 and 0.053 ± 0.026 mm/yr2, respectively, indicating that SLR is accelerating 881 
(Wang et al., 2021). In Australia, the rate of SLR based on Australian gauges from the ANCHORS dataset, with at 882 
least 50 years of data over 1966 to 2019, was 1.94 mm/yr, and over 1993 to 2019 was 3.74 mm/yr (Hague et al., 2022). 883 
With the increase in the flood frequency over the observational record, mainly because SLR is increasing the height 884 
of the tides with ongoing SLR, flooding events will become increasingly predictable (Hague et al., 2023). 885 

Table 3. Sea-level rise (m) relative to 1995-2014 for CMIP6 and associated 5-95% confidence intervals (Source: 886 
Table 9.9 in Fox-Kemper et al. (2021)). 887 

Scenario 2050 2100 2150 
SSP1-1.9 0.18 (0.15-0.23) 0.38 (0.28–0.55) 0.57 (0.37–0.86) 
SSP1-2.6 0.19 (0.16-0.25) 0.44 (0.32–0.62) 0.68 (0.46–0.99) 
SSP2-4.5 0.20 (0.17-0.26) 0.56 (0.44–0.76) 0.92 (0.66–1.33) 
SSP3-7.0 0.22 (0.18-0.27) 0.68 (0.55–0.90) 0.92 (0.66–1.33) 
SSP5-8.5 0.23 (0.20-0.29) 0.77 (0.63–1.01) 1.98 (0.98–4.82) 
SSP5-8.5* 0.24 (0.20-0.40) 0.88 (0.63–1.60) 1.98 (0.98–4.82) 

*includes additional ‘low confidence’ processes 888 

Projections of future SLR provided by the IPCC in its Sixth Assessment (AR6) report for a set of future greenhouse 889 
gas emission pathways termed SSPs (Fox-Kemper et al., 2021) are summarised for the years 2100 and 2150 in Table 890 
3, along with their associated uncertainties. Note this only refers to mean sea level changes; processes associated with 891 
extreme sea levels such as storm surge and wave set-up that may be used in design flood estimation are not included. 892 
The processes included in the projections are assessed by the IPCC to be of ‘medium confidence’ and include changes 893 
due to thermal expansion, the mass balance of glaciers and ice sheets, and terrestrial water storage. The IPCC also 894 
provide scenarios they assess to have ‘low confidence’ of occurring on the time scales considered, such as dynamical 895 
processes that could lead to more rapid disintegration of the ice sheets (DeConto and Pollard, 2016; Fox-Kemper et 896 
al., 2021).  897 

Changes to weather and circulation patterns will also potentially change storm surge and wave patterns, altering 898 
compound flooding. For example, Colberg et al. (2019) investigated changes in extreme sea levels around Australia 899 
by forcing a hydrodynamic model with winds and surface pressure from four GCMs run with an RCP 8.5 emission 900 
scenario over the periods 1981-1991 and 2081–2099. The largest positive extreme sea-level changes were found over 901 
the Gulf of Carpentaria due to changes in the northwest monsoon, while mainly negative changes in seasonal 902 
maximum sea levels up to -5.0 cm were found along Australia’s southern coastline due to the projected southward 903 
movement of the subtropical ridge and associated cold frontal systems, with these results broadly consistent with other 904 
studies (Colberg and McInnes, 2012; Vousdoukas et al., 2018). Extreme coastal sea levels are also affected by wave 905 
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breaking processes that cause wave setup (O’Grady et al., 2019), with the 1 in 100 AEP wave height projected to 906 
increase by 5 to 15% over the Southern Ocean by the end of the 21st century (2081-2100), compared to the 1979–2005 907 
period (Meucci et al., 2020). Finally, coastal erosion of sandy shorelines and estuaries under SLR will also contribute 908 
to changes in coastal flooding patterns. Historical coastline movement around the Australian coast has been evaluated 909 
through analysis of satellite images using a technique to filter satellite pixels to a consistent tide datum (Bishop-Taylor 910 
et al., 2019, 2021). Over 22% of Australia’s non-rocky coastline shows trends of both significant coastal retreat or 911 
growth since 1988, with most change (15.8%) occurring at rates greater than 0.5 m/yr.  912 

5. Discussion 913 
From this systematic review on climate change science relevant to design flood estimation in Australia, it emerged 914 
that most published research relates to changes in extreme rainfall intensity, and hence the IFDs and PMPs that are 915 
used in event-based modelling. Here we aim to resolve the understanding of changes in extreme rainfall with 916 
methodologies applied for design flood estimation. Following this, factors that were beyond the scope of this review 917 
are acknowledged and a summary of future research priorities are presented. 918 

5.1 Aligning evidence of changes in extreme rainfall with design flood estimation 919 
Although we were unable to quantify the increase in extreme rainfall across a range of frequencies, studies  using 920 
rainfall-temperature scaling (Wasko and Sharma, 2017b), historical trends (Wasko and Nathan, 2019; Jayaweera et 921 
al., 2023), and climate change projections (Pendergrass and Hartmann, 2014; Pendergrass, 2018; Carey-Smith et al., 922 
2018), all show that the rate of rainfall increase with increasing rarity. Operational methods employed to estimate 923 
PMPs are restricted to the consideration of thermodynamic increases in the moisture holding capacity through changes 924 
in the moisture adjustment factor (Visser et al., 2022). However, short duration extremes (sub-daily) have been shown 925 
to increase at rates greater than CC scaling both for Australia (presented herein) and globally (Fowler et al., 2021). 926 
There is no obvious physical explanation for why changes to sub-daily PMP estimates should differ from other studies 927 
on sub-daily extreme precipitation. Synthesising the evidence, it appears that (1) increases in long duration extreme 928 
rainfalls should plateau to a rate of increase commensurate with the PMP, which is likely to be increasing at the CC 929 
rate for daily rainfall; and (2) increases in short duration rainfall, in the absence of research into changes in PMP for 930 
sub-daily durations, should increase at the rate of the short duration rainfall extremes. It is plausible that PMPs will 931 
increase in line with short duration rainfall extremes due to an increase in storm efficiency, which is a well-established 932 
mechanism in short duration rainfall due to latent heat release increasing buoyancy (Lenderink et al., 2019). Further 933 
increases above those simply owing to thermodynamics are also possible due to reductions in the speed of lateral 934 
storm movement.  935 

It is clear that increases in the order of 2-3 times the CC rate are a possibility for design rainfalls throughout Australia, 936 
with greater potential increases in the north than in the south. This is generally related to the occurrence of convective 937 
storms, such as severe thunderstorms that can cause short duration (e.g., less than about 6 hours) localised extreme 938 
rainfall. Although current Australian climate modelling studies are generally not able to simulate the processes 939 
relevant to these convective rainfall extremes, as they are not run at convection-permitting scales, the observation-940 
based increases are broadly consistent with theoretical expectations based on increased rainfall efficiency from 941 
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increased condensation for enhanced convection. Changes greater than the CC rate due to more efficient convective 942 
processes can also be relevant for annual maxima longer than that of typical thunderstorms. For example, the highest 943 
recorded daily rainfall at Adelaide occurred over a period of only two hours due to a thunderstorm (Ashcroft et al. 944 
2019). This means that increases greater than the CC rate may also be plausible for more widespread and longer 945 
duration rainfall extremes, such as multiday-duration events associated with TCs in near-coastal northern regions and 946 
ECLs in eastern and south-eastern regions that sometimes contain deep moist convection (Callaghan and Power, 947 
2014).  948 

5.2 Systematic review and meta-analysis considerations 949 
We have attempted to minimise biases where possible. Consistent with the IPCC methodologies, a multiple-lines-of-950 
evidence approach was adopted  considering historical changes, future projections, and physical argumentation. As 951 
such, inherent methodological biases, such as issues associated with hypothesis testing favouring the null hypothesis, 952 
would only apply to a proportion of the evidence. Next, analyses to inform assessment reports such as the IPCC and 953 
CCIA often present projections separately from any claims of significance and are not required to demonstrate 954 
originality of contribution; therefore, these studies are less likely to be affected by both the hypothesis testing and 955 
publication biases - noting that hypothesis testing bias and publication bias would be expected to act in opposing ways. 956 
Finally, researcher biases were addressed by having two researchers independently evaluate each reference for their 957 
area, and by adopting a systematic review framework so that publications are not just chosen on the basis of a 958 
researcher’s prior knowledge or expectation. This was also addressed in the meta-analysis by sensitivity testing the 959 
results through multiple researchers independently weighting evidence. The outcomes of the per-researcher analyses 960 
were consistently similar.  961 

In addition to the review biases, the limitations of each line of empirical evidence need to be acknowledged. It can be 962 
difficult to identify a climate change signal in observational records, firstly due to the small signal to noise ratio, but 963 
secondly due to the difficulty of obtaining high quality instrumental data (Hall et al., 2014). For example, it is difficult 964 
to detect a statistically significant change resulting from Clausius-Clapeyron scaling at a single rain gauge based on 965 
observed warming rates and typical record lengths (Westra et al., 2013), such that the absence of a statistically 966 
significant result does not necessarily imply the absence of a trend. Single site studies were hence given low weighting 967 
in the meta-analysis. Further, it needs to be acknowledged that a historical trend can only be extrapolated to the future 968 
by assuming the causal relationship remains unchanged, which may not be true (Wasko, 2022; Zhang et al., 2022). 969 
The second line of evidence was the empirical relationship between day-to-day variability in rainfall and surface air 970 
or dew-point temperature for high quantiles of the distribution. Although robust relationships have now been 971 
established globally (Ali et al., 2018, 2021a, b), debate remains over the use of these day-to-day scaling relationships 972 
for projection as near-surface conditions may not reflect key factors in rainfall production, such as potential future 973 
changes in the vertical temperature profile of the atmosphere or changes to rainfall efficiency. The limitations of the 974 
above two sources of evidence can be somewhat overcome by the third line of evidence, that is, climate modelling 975 
which explicitly models atmospheric conditions; however, it needs to be acknowledged that not all processes related 976 
to rainfall are resolved (François et al., 2019). Global as well as many regional climate models have large spatial scales 977 
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compared to some of the physical processes associated with rainfall (e.g., localised convection) and struggle to 978 
represent some aspects of rainfall occurrence (e.g., short-duration convective rainfall extremes, such as produced by 979 
thunderstorms). Hence, recommendations here are based on an expert evaluation that has combined all the key lines 980 
of evidence, recognising the known limitations of any single line of evidence. 981 

5.3 Factors omitted and recommendations for future work 982 
This review focussed on a set of salient factors relevant to design flood estimation, and hence there are some aspects 983 
that are not covered. Australia has three small regions located in the south-east of the country that currently sustain 984 
snowpacks over the winter period: the Snowy Mountains region in southern New South Wales, the Victorian Alps, 985 
and the Tasmania highlands. Studies of the contribution of rain-on-snow events to flood risks have been undertaken 986 
using simple water budget approaches (Stephens et al., 2016; Nathan and Bowles, 1997). While rain-on-snow events 987 
dominated the generation of more frequent floods (≥ 1 in 50 AEP), they were less important for more extreme events. 988 
The key engineering design focus in these regions is related to the overtopping risks of hydroelectric dams; and as 989 
such, snowmelt floods are considered a localised issue for Australia and are not covered in the national flood guidelines 990 
(Ball et al., 2019a). 991 

Design flood practice in Australia, as elsewhere in the world, generally adopts areal lumped temporal patterns in 992 
combination with a fixed spatial pattern. The information available to characterise this variability is very limited and 993 
this dearth of evidence poses problems for design flood estimation under stationarity assumptions and limits our ability 994 
to estimate the impacts of climate change on flood risks. With climate change, it is important to correctly reflect 995 
changes in spatial and temporal correlation structures and transition probabilities, particularly for large catchments, 996 
which are sensitive to spatial variability in rainfalls, or for such applications as the design of linear infrastructure such 997 
as railways and major highways (Le et al., 2019). It can be expected that the only way the impacts of climate change 998 
can be considered on the spatio-temporal patterns of extreme rainfall is through a combination of physical modelling 999 
(e.g., Chang et al. 2016) and careful regional pooling (e.g., Visser et al. 2023). Finally, it is also worth noting that no 1000 
attention is given to the impact of climate change on factors exogenous to storm climatic drivers. An example of this 1001 
is the assessment of water levels in dams, or surcharge flooding from sewer networks. Climate change impacts are the 1002 
result of a complex mix of water demands and water management strategies (not to mention longer-term climatic 1003 
conditions) that are not a function of storm events, but such analyses require tailored approaches for which it is difficult 1004 
to provide general guidance. 1005 

While there remains a need for guidance on how to perform flood frequency analysis and continuous simulation under 1006 
climate change, a lack of consensus remains on how best to perform these, a point noted by previous authors (Schlef 1007 
et al., 2023). Although recent research has shown that bias-correcting for changes to long-term persistence (interannual 1008 
variability) is critical for hydrological studies (Vogel et al., 2023), a standard approach for deriving time series rainfalls 1009 
under climate change remains a research priority (Dale, 2021). While event-based methods allow the adjustment for 1010 
climate change of the primary flood drivers, it remains a research gap to understand under climate change to which 1011 
drivers the design flood estimate is most sensitive to – a problem that may lend itself to being addressed by 1012 
sensitivity/stress testing (Hannaford et al., 2023) or applying a storyline approach in flood estimation (de Bruijn et al., 1013 
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2016; Shepherd et al., 2018; Hazeleger et al., 2015) but this requires an understanding of the causal mechanisms of 1014 
flood events which remains limited in Australia (Wasko and Guo, 2022). 1015 

Finally, the development of climate models with the ability to resolve convection processes in other parts of the world 1016 
(Chan et al., 2020, 2016) suggests the potential for improved simulations and projections of short duration rainfall 1017 
extremes in Australia. Improved projections of short duration extreme rainfalls would be particularly valuable given 1018 
the understanding that these events are increasing at a greater rate than long duration rainfalls. However, a substantial 1019 
constraint to modelling convection processes are the computationally intensive modelling efforts required to cover the 1020 
geographic expanse of Australia. 1021 

6. Summary and conclusions 1022 
This paper describes a review of the scientific literature as it relates to the impact of climate change on design flood 1023 
estimation for Australia. To ensure the review is reproducible and to minimise the potential for bias, we adopted the 1024 
framework of a systematic review. To be included, studies needed to pertain to either flood risk drivers or a measure 1025 
of the flood hazard itself; how these are impacted on by climate change; and be relevant to Australia. As design flood 1026 
estimation is undertaken using similar methods across the world, knowledge from relevant international research was 1027 
included in addition to the systematic review, particularly in instances where local evidence was limited. The 1028 
conclusions of this systematic review, as they relate to the methods for design flood estimation, are described below 1029 
and summarised in Table 4: 1030 

1. There is a general absence of a scientifically defensible methodology for performing flood frequency analysis 1031 
in the context of projections for a future climate. The projection of a historical temporal trend is not 1032 
recommended, with many studies arguing that any non-stationary flood frequency analysis should ensure 1033 
that the statistical model structure is representative of the processes controlling flooding. But as flood 1034 
processes change with climate change, and with historical data likely to be influenced by other drivers such 1035 
as land-use change, extrapolating historical trends into the future is not considered a viable method for 1036 
developing future estimates of flood risk.  1037 

2. The use of continuous simulation for flood frequency projections requires downscaling and bias-correction 1038 
of GCM outputs to derive hydrologic inputs such as rainfall that represent a future climate. Due to the 1039 
complexity in extracting GCM data and appropriately transforming the GCM data to the local scale, 1040 
approaches of projecting flood frequency through continuous simulation are likely to, at least in the near 1041 
term, remain limited to research applications. Dale (2021) notes that a standard approach for deriving time 1042 
series rainfalls under climate change remains a research priority. If continuous simulation is to be applied, 1043 
careful attention needs to be paid to ensuring downscaling and bias-correction methodologies accurately 1044 
correct both extreme rainfall and long-term variability (persistence) characteristics that are important to 1045 
hydrological applications (Vogel et al., 2023). 1046 

3. The primary input into event-based modelling is the IFD rainfall. The IPCC states that the frequency and 1047 
intensity of heavy precipitation events have likely increased due to climate change (Seneviratne et al., 2023). 1048 
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Here we find that both daily and sub-daily rainfall are increasing with warming, with the rate of increase 1049 
greater for shorter durations. Moreover, there is emerging evidence that the rarer the rainfall, the greater 1050 
increase, and that increases in sub-daily rainfall extremes are greater in the tropics. However, there is 1051 
currently not enough quantitative evidence across different exceedance probabilities or geographic zones to 1052 
quantify projections of extreme rainfall across different regions of Australia. 1053 

4. Both literature from Australia and across the world provides a consensus view that the PMP is likely 1054 
increasing at the CC rate for daily rainfall. Despite no research on changes in the PMP at the sub-daily scale, 1055 
it appears extreme rainfall increases plateau with increasing severity (Pendergrass, 2018). Hence, as storms 1056 
intensify with climate change due to latent heat release, it can be assumed that changes above the CC scaling 1057 
rate for the rarest of extreme rainfalls at the sub-daily scale can be a taken as representative of changes to the 1058 
PMP for similar durations. 1059 

5. Evidence exists to suggest that temporal patterns will become more front loaded and intense with climate 1060 
change, but evidence for changes in spatial patterns is not conclusive, with changes likely to vary with 1061 
weather system. Currently, there is no adopted methodology for how to incorporate these changes into design 1062 
flood estimation, or assessment of the impact incorporating such changes will have on the design flood 1063 
estimate. 1064 

6. With climate change, across Australia, catchment soil moisture conditions prior to an extreme rainfall event 1065 
are largely becoming drier and hence losses are projected to increase (Ho et al., 2023). These changes in 1066 
antecedent moisture conditions have been shown to modulate both historical and future frequent floods, with 1067 
the impact on rarer floods diminished (Wasko and Nathan, 2019; Wasko et al., 2023).  1068 

7. Sea levels have risen across Australia, impacting estuarine flooding, and resulting in much of Australia’s 1069 
coastline retreating. With future increases in sea level projected with global warming, estuarine flooding 1070 
events will become increasingly predictable. However, the changes to the interaction between coastal sea 1071 
levels and pluvial riverine flooding remain poorly understood. 1072 
 1073 

Table 4. Conclusions of systematic review of climate change science relevant to Australian design flood 1074 
estimation. 1075 

Method Quantity Findings 
Flood frequency 
analysis 

Streamflow No defensible methods were identified for factoring in climate change 
into flood frequency estimates.  

Continuous 
simulation 

Rainfall and 
evaporation 

At present, there are limited studies that describe how to generate 
realistic time series of weather suitable for flood risk estimation. 
Further research is required before there is a continuous simulation 
method suitable for standard practice in design flood estimation. 

Event-based 
estimation 

Extreme rainfall 
(up to and 
including the PMP) 

Heavy precipitation events have increased and will continue to 
increase due to climate change, with the highest rates of increase 
associated with short-duration rainfall. Australia-wide estimates 
(including a central estimate and 'likely’ range) are provided in Table 
1, varying by duration. Whilst there is reason to believe that scaling 
rates will vary both geographically (with higher rates in the north of 
Australia) and by exceedance probability (with higher rates for rarer 
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events), insufficient evidence was available to quantify the 
differences in projected changes with location and AEP. It is, 
however, likely that these changes are within the uncertainty intervals 
provided in Table 1.  

 Temporal patterns Temporal patterns may become more front-loaded, with increases in 
peak intensities with climate change, but research on the impact of 
these changes on design flood estimation is lacking. 

 Areal reduction 
factors 

Evidence for changes in spatial patterns with climate change is not 
conclusive. 

 Antecedent 
conditions 

For Australia there is evidence of drying antecedent conditions, 
meaning increased losses in design flood estimation, but this research 
has not yet been translated for use in design flood estimation. 

 Sea level 
interaction 

Whilst there is significant evidence that sea levels are increasing and 
will continue to increase due to climate change, the changes to the 
interaction between high ocean levels (due to the combination of high 
astronomic tides and storm surges) and heavy rainfall events remains 
poorly understood. 

 1076 

To synthesise findings for changes in rainfall intensity quantitatively, a meta-analysis was performed. The uncertainty 1077 
presented in the meta-analysis serves to demonstrate that a single line of evidence is not sufficient for deciding on the 1078 
impact of climate change. As studies vary widely in the approaches and assumptions, multiple lines of evidence should 1079 
be considered in decision making related to climate change, and the latest climate science reviewed in decision making. 1080 
Although Australia is not a climatically homogenous nation, there does not exist enough information to distinguish 1081 
extreme rainfall changes regionally, highlighting the need for continental-scale, high-resolution (convection-1082 
permitting) modelling efforts to help understand the impact of climate change on extreme rainfalls. Nevertheless, there 1083 
is now a large body of work on changes to flood drivers as a result of climate change, and whilst significant uncertainty 1084 
remains, this work can be used to form the basis for producing improved methods for defensible estimates of future 1085 
flood risk.  1086 
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