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Abstract 24 

In response to flood risk, design flood estimation is a cornerstone of planning, infrastructure design, setting of 25 

insurance premiums and emergency response planning. Under stationary assumptions, flood guidance and the methods 26 

used in design flood estimation are firmly established in practice and mature in their theoretical foundations, but under 27 

climate change, guidance is still in its infancy. Human-caused climate change is influencing factors that contribute to 28 

flood risk such as rainfall extremes and soil moisture, and there is a need for updated flood guidance. However, a 29 

barrier to updating flood guidance is the translation of the science into practical application. For example, most science 30 

pertaining to historical changes to flood risk focuses on examining trends in annual maximum flood events, or the 31 

application of non-stationary flood frequency analysis. Although this science is valuable, in practice design flood 32 

estimation focuses on exceedance probabilities much rarer than annual maximum events, such as the 1% annual 33 

exceedance probability event or even rarer, using rainfall-based procedures, at locations where there are little to no 34 
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observations of streamflow. Here, we perform a systematic review to summarise the state-of-the-art understanding of 35 

the impact of climate change on design flood estimation in the Australian context, while also drawing on international 36 

literature. In addition, a meta-analysis, whereby results from multiple studies are combined, is conducted for extreme 37 

rainfall to provide quantitative estimates of possible future changes. This information is described in the context of 38 

contemporary design flood estimation practice, to facilitate the inclusion of climate science into design flood 39 

estimation practice. 40 

1. Introduction 41 

Flood assessment provides critical information to evaluate the tolerability or acceptability of flood risks, and to support 42 

the development of risk management strategies. Flood risk reduction measures can be exercised through the 43 

construction of flood mitigation structures, zoning and development controls, and non-structural measures to better 44 

respond to floods when they do occur, for example through flood warning systems and emergency management 45 

planning. Here we adopt the term ‘risk’ to mean flood risk. Across the world, the associated hypothetical flood adopted 46 

for design and planning purposes for management of risk is termed the design flood (Jain and Singh, 2003). In 47 

Australia, the design flood is characterised in terms of an annual exceedance probability (AEP) rather than an annual 48 

recurrence interval (ARI) with the aim of better highlighting the annual risks that the community is exposed to. There 49 

are many different methods of estimating the design flood applicable for different AEPs, ranging from flood frequency 50 

analysis which use streamflow observations, to continuous simulation which use long sequences of rainfall 51 

observations, to those that use rainfall in event-based modelling through Intensity-Duration-Frequency (IDF) curves 52 

(in Australia termed Intensity-Frequency-Duration, or IFD curves) and/or Probable Maximum Precipitation (PMP) as 53 

inputs. Methods of design flood estimation are commonly stipulated by guiding documents; for example, The 54 

Guidelines of Determining Flood Flow Frequency – Bulletin 17C (England et al., 2019) in the U.S.A., the Flood 55 

Estimation Handbook (Institute of Hydrology, 1999) in the UK, and Australian Rainfall and Runoff (Ball et al., 2019a) 56 

in Australia. Such guidance documents, though not necessarily legally binding, are seen as representing best practice. 57 

Traditionally, the AEP, or flood quantile to which it corresponds, has been assumed to be static; however, with climate 58 

change, it is now recognised that the flood hazard is changing (Milly et al., 2008). The primary driver of this change 59 

in AEP to rainfall-induced flooding is the thermodynamic increase in extreme rainfall due to a 6-7%/°C increase in 60 

the saturation vapor pressure of the atmosphere, as dictated by the Clausius-Clapeyron (CC) relationship (Trenberth 61 

et al., 2003). Factors beyond the thermodynamic impact have been discussed in various reviews and commentaries 62 

(Fowler et al., 2021; Allen and Ingram, 2002; Pendergrass, 2018). The vertical lapse rate (i.e., atmospheric stability) 63 

increases as temperatures increase and rates of rainfall can decrease as the cloud base is lifted assuming moisture is 64 

unchanging. But if the moisture increases, then the opposite is true, with rain more easily triggered. In addition, there 65 

can be an increase in buoyancy creating stronger updrafts and deeper convection (referred to as super-CC scaling). 66 

Finally, dynamical drivers related to changes in the global circulation can act to change the occurrence of rainfall 67 

extremes by changing storm tracks and speeds, amplifying and dampening the thermodynamic influence on rainfall 68 

extremes depending on location and time of year (Emori and Brown, 2005; Pfahl et al., 2017; Chan et al., 2023). 69 

 70 
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A recent review of climate change guidance has found that several jurisdictions around the world are already 71 

incorporating climate change into their design flood guidance (Wasko et al., 2021b). For example, Belgium, Denmark, 72 

England, New Zealand, Scotland, Sweden, the UK, and Wales are all recommending the use of climate change 73 

adjustment factors for IFD rainfall intensities. Many countries also recommend higher climate change adjustment 74 

factors for rarer precipitation events, consistent with findings from various modelling studies that rarer events will 75 

intensify more with climate change (Gründemann et al., 2022; Pendergrass and Hartmann, 2014). Shorter duration 76 

storms are likely to intensify at a greater rate than longer duration storms (Fowler et al., 2021) and subsequently, some 77 

guidance, such as that from New Zealand and the UK, also accounts for storm duration in their climate change 78 

adjustment factors (Wasko et al., 2021b). 79 

Although substantial advances have been made in adjusting design flood estimation guidance to include climate 80 

change, there remains a disconnect between climate science and existing guidance. For example, although there are 81 

climate change adjustment techniques available for generating altered precipitation inputs, none of the guidance 82 

reviewed provided recommendations for adjusting rainfall sequences used in continuous simulation. Also, current 83 

guidelines for estimation of the PMP assume a stationary climate (Salas et al., 2020) despite evidence to the contrary 84 

(Kunkel et al., 2013; Visser et al., 2022). Finally, while research has been undertaken into non-stationary flood 85 

frequency analysis, and the underlying statistical theory is relatively mature (Salas et al., 2018; Stedinger and Griffis, 86 

2011), these have not been adopted in guidance. For example, Bulletin 17C assumes time-invariance (England et al., 87 

2019).  88 

There are multiple reasons for the disconnect between the science and flood estimation practice. Although widely 89 

accepted in the scientific literature, the “chain-of-models” approach – whereby General Circulation Model (GCM) 90 

outputs are bias corrected and downscaled to create inputs for hazard modelling (Hakala et al., 2019) – has large 91 

uncertainties (Kundzewicz and Stakhiv, 2010; Lee et al., 2020), with the uncertainties often seen as a barrier for 92 

adoption (Wasko et al., 2021b). Further, while much research has been undertaken on understanding the non-93 

stationarity of flooding, the research is not often directly comparable or translatable to the approaches and methods 94 

used in design flood estimation, for example in the case of temporal and spatial patterns of rainfall or the influence of 95 

antecedent conditions on rainfall losses (Quintero et al., 2022). Finally, most climate science focuses on the annual 96 

maximum daily precipitation, often referred to as the ‘RX1 day index’ or Rx1D (Zhang et al., 2011), to measure 97 

changes in extremes, with standard climate models not adequately resolving the processes that govern sub-daily 98 

rainfall extremes. In contrast, design flood estimation generally requires consideration of sub-daily rainfall totals and 99 

events much rarer than annual maxima.  100 

With a literature search finding no existing synthesis of climate science relevant to the specific needs of design flood 101 

estimation, here we undertake a systematic review of the latest science directly relevant to the inputs used in design 102 

flood estimation. Although we focus on science relevant to Australia, international literature is incorporated, as design 103 

flood estimation methods are used around the world. Finally, we combine the results from individual studies using the 104 

process of meta-analysis to assess the level of consensus of different sources of evidence relating specifically to the 105 

design flood estimation input of extreme rainfall under climate change. This review represents a critical step in 106 
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updating flood guidance and translating scientific knowledge into design flood practice. This review aims to (a) serve 107 

as a template for scientific reviews as they relate to design flood estimation guidance updates, and (b) identify 108 

knowledge gaps in the scientific literature that are required by engineers who perform design flood estimation. 109 

2. Design flood estimation practice 110 

To contextualise the systematic review and meta-analysis that follows in later sections, this section briefly introduces 111 

the primary design flood estimation approaches, with Figure 1 showing the typical AEP range that each method applies 112 

to. 113 

1. Flood frequency analysis (FFA): A flood frequency curve is derived by fitting a probability distribution such as 114 

an extreme value distribution to streamflow data, which is then subsequently used to estimate the design flood 115 

quantiles (Stedinger et al., 1993). This method is limited to catchments where streamflow data is available unless data 116 

can be transposed or corrected. As flood records are typically in the order of decades, AEPs rarer than approximately 117 

1 in 50 are generally subject to considerable uncertainty. Hence, flood frequency analysis is often not used by 118 

practitioners as either at-site data is unavailable, the record is too short to estimate the target quantile, or there have 119 

been significant changes to the catchment over the period of record. Regional flood frequency analysis is an extension 120 

of flood frequency analysis where space is traded for time by pooling regional data to extend the applicability of this 121 

method to rarer events (Hosking and Wallis, 1997). 122 

2. Continuous simulation: A hydrologic model is used to simulate the streamflow of a catchment with flood maxima 123 

then extracted from the modelled output to derive flood quantiles using an appropriate probability model (Boughton 124 

and Droop, 2003). Where rainfall records of sufficient length are not available to drive the hydrologic model, the 125 

modelling can be forced by stochastically generated data (e.g. Wilks, 1998). This approach is very useful in joint 126 

probability assessments where system performance varies over multiple temporal and spatial scales (e.g., multiple 127 

sewer overflows or the design of linear infrastructure), or in more volume-dependent systems comprised of compound 128 

storages. Due to its reliance on long rainfall sequences, continuous simulation, like flood frequency analysis, is usually 129 

only used to estimate more frequent flood events, with a further limitation being the difficulty in stochastically 130 

generating reliable sequences of rainfall data (Woldemeskel et al., 2016). 131 

3. Event-based (IFD) modelling: This is the most common method used for design flood estimation. A rainfall depth 132 

or intensity of given AEP and duration is sampled from an IFD curve and combined with rainfall temporal patterns to 133 

create a design rainfall event (or “burst”) of a given duration (see Chapter 14 of Chow et al., 1988). In some 134 

applications, it is preferable to consider design events based on complete storms, and thus it is necessary to augment 135 

the rainfall bursts derived from IFD curves with rainfalls that might be expected to occur prior (or subsequent) to the 136 

burst period. As the design storm rainfall is generally a point rainfall but applied over a catchment, an Areal Reduction 137 

Factor (ARF) is applied before the design rainfall event is used as an input to a model to estimate the runoff 138 

hydrograph. Rainfall that does not contribute to the flood hydrograph as it enters depressions in the catchment, is 139 

intercepted, or is infiltrated into the soil, is removed through a “loss” model. Finally, the hydrograph response may be 140 

modulated by the tail water conditions, where the sea level will modulate the catchment outflow. 141 
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Due to the severe consequences of failures, critical infrastructure, such as dams or nuclear facilities, often need to be 142 

designed to withstand the largest event that is physically plausible, termed the Probable Maximum Flood (PMF). Like 143 

the above event-based modelling description, the PMF is derived from a rainfall event, but in this case the rainfall is 144 

the PMP. Most local jurisdictions follow the World Meteorological Organisation guidelines for estimating the PMP 145 

(WMO, 2009). The PMP is derived using observed “high efficiency” storms matched to a representative dew point 146 

temperature. The moisture (i.e., rainfall) in the storm is then maximised by assuming the same storm could occur with 147 

moisture equivalent to the maximum (persisting) dew point observed at that site.  148 

 149 

Figure 1. The relevance of different flood estimation approaches as a function of AEP. The top panel presents a 150 

typical flood frequency curve where the flood magnitude increases with event rarity (AEP), with frequent events 151 

presented as events per year (EY). The bottom panel shows the range of event rarities for which various flood 152 

estimation approaches show utility. Dashed lines represent lower utility while solid lines represent higher utility. 153 

Figure adapted from James Ball et al. (2019). The PMP is used an input in event-based models to derive the PMF. 154 

The method adopted for design flood estimation depends on the problem being solved, the level of risk being designed 155 

for, and the available data. Flood frequency analysis is an important source of information when data are available 156 

and key assumptions (e.g. historical and future climatic and hydrological stationarity) are met, due to the implicit 157 

consideration of flood causing factors without a need for assumptions about joint interactions. However, most 158 

commonly, approaches based on event-based modelling are applied because flood data rarely exists at the location of 159 

interest, and if it does, it is often confounded by catchment non-stationary (e.g., urbanization, deforestation), or the 160 

record lengths are much shorter than the design AEP required.  161 
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3. Methodology 162 

Systematic reviews represent a reproducible methodology for appraising the literature in the context of a specific topic 163 

or issue (Page et al., 2021). Reviews were undertaken for each of the three key flood estimation methods (flood 164 

frequency analysis, continuous simulation, and event-based modelling). Each review section was assigned a lead 165 

author who was tasked with collecting scholarly articles from Scopus, with a secondary author tasked with reviewing 166 

the results of the systematic review to reduce selection bias. Articles were selected targeting the last decade to ensure 167 

a broad coverage of evidence while ensuring that evidence is relatively contemporary. The literature search for each 168 

method of (or input to) design flood estimation contained different relevant keywords (see Supplementary Information 169 

for key words for each section). To limit the scope of the review geographically, searches were made for literature 170 

where either the title, abstract, or keywords contained “Australia.” To constrain the review only to climate change, 171 

literature was also required to contain “change” in either the title, abstract, or keywords (it was deemed that using 172 

“climate change” would be too restrictive). These criteria represent the foundation of the review, and the publication 173 

base was further supplemented by other sources of information, particularly in cases where specific terminology was 174 

used (e.g., the term "Clausius-Clapeyron” in the context of extreme rainfall) or where knowledge existed of additional 175 

publications or international research not identified through the keyword searches. We note that the impact of factors 176 

related to sea level (Section 4.3.6), although included in the review, was excluded from the requirements of the 177 

systematic review as it is not explicitly part of Australia’s flood guidance as it relates to climate change (Bates et al., 178 

2019). Similarly, the introductory section on the processes affecting changes in extreme rainfall in Australia (Section 179 

4.3.1) was excluded from the stricter systematic review requirements. 180 

To select relevant literature from the search results, articles were first filtered to remove duplicates. Following this, 181 

irrelevant articles based on a review of the abstracts, and then of the manuscript itself, were excluded. While the search 182 

terms aided inclusion in the systematic review, many studies were not relevant to the assessment of flood risk and 183 

were omitted. Finally, some additional studies (in particular, syntheses) were included based on the author’s 184 

knowledge of the literature. Details of the searches (Table S1) and the full list of articles reviewed (Table S2) are 185 

provided in the Supplementary Information with a summary of the articles found by publication year as they relate to 186 

each of the systematic review topics provided in Figure 2.  187 
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 188 

Figure 2. Papers identified in the systematic review by publication year and review topic. Full details are provided 189 

in Table S2.  190 

Recognising the importance of IFD estimates in design flood estimation, and the large volume of available literature 191 

providing quantitative estimates of changes in extreme rainfall, an analysis was performed to understand the average 192 

magnitude of extreme rainfall change and associated uncertainty. The analysis borrows from meta-analysis techniques 193 

which quantitatively combine results from multiple studies (Field and Gillett, 2010) and uses structured expert-194 

elicitation methods consistent with those used by the IPCC (Zommers et al., 2020) as follows:  195 

1. Where possible extreme rainfall change was quantified per degree of global temperature change (i.e., the 196 

global mean, including ocean and land regions). Additionally, variation with storm duration, severity 197 

(i.e., AEP), and location were considered. Global mean temperature was chosen to ensure consistency 198 

with the IPCC projections and to be representative of the climatic drivers of changes in moisture sources. 199 

The exception to this was rainfall-temperature scaling studies, which use local temperature differences 200 

as a proxy for anthropogenic climate change. 201 

2. Assessment was made, through consensus between authors, whether there was enough evidence to 202 

calculate the magnitude of extreme rainfall change with varying storm duration, severity, and location – 203 

and what, if any, distinction was to be made for these factors. 204 

3. Co-authors independently used the collected evidence to determine their best estimate of the change in 205 

extreme rainfall as well as a likely range. Typically, each study was weighted by how confident each 206 

author was in the evidence presented in the study. This included consideration of the study methodology 207 

(e.g., observation-based studies, model-based studies) and various statistical considerations (e.g., sample 208 

size and/or representativeness over the spatial domain).  209 
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4. The best estimates from each author were then compared, and through a consensus process, a single 210 

central estimate was derived together with a likely (66%) range to represent assessment uncertainty. 211 

4. Synthesis of the literature and systematic review 212 

In this section, the literature is reviewed for each of the three key flood estimation methods (flood frequency analysis, 213 

continuous simulation, and event-based modelling). An overview of the implications of climate change on each 214 

method is first presented, followed by a systematic review using the keywords provided in the Supplementary 215 

Information. In the context of event-based (IFD) modelling, each of the inputs to the design flood estimate are 216 

reviewed. For extreme rainfalls, the systematic review is followed by the results of the meta-analysis. 217 

4.1 Flood frequency analysis  218 

4.1.1 Impact of climate change 219 
Flood frequency (or regional flood frequency) analysis generally uses annual maxima or threshold excess values of 220 

instantaneous flood data to derive a frequency curve by fitting an appropriate statistical model (Stedinger et al., 1993). 221 

Changes in flood maxima due to climate change are generally related back to changes in extreme precipitation. As 222 

temperature increases, so does the saturation water vapour of the atmosphere, leading to, all other things being equal, 223 

greater extreme precipitation, and hence pluvial flooding. However, flooding is dependent on the flood generating 224 

mechanism (Villarini and Wasko, 2021). In the absence of snowmelt, changes in antecedent conditions related to soil 225 

moisture and baseflow have been shown to modulate flood events (Berghuijs and Slater, 2023), with changes in soil 226 

moisture having a lesser impact on rarer floods (Ivancic and Shaw, 2015; Wasko and Nathan, 2019; Neri et al., 2019; 227 

Bennett et al., 2018). Where snow is present, warmer temperatures cause a reduction in the frequency of rain-on-snow 228 

flood events at lower elevations due to snowpack declines, whereas at higher elevations rain-on-snow events become 229 

more frequent due to a shift from snowfall to rain (Musselman et al., 2018).  230 

Across Australia, for frequent flood events in the order of annual maxima, more streamflow gauges show decreases 231 

in annual maxima than increases (Ishak et al., 2013; Zhang et al., 2016). There is a clear regional pattern, with 232 

decreases more likely in the extra-tropics, and increases more likely in the tropics. These changes have a strong 233 

correlation to changes in antecedent soil moisture and mean rainfall due to the expansion of the tropics (Wasko et al., 234 

2021c; Wasko and Nathan, 2019). However, there is a statistically significant increasing trend in the frequency of 235 

rarer floods since the late 19th century (Power and Callaghan, 2016) due to increases in extreme rainfall (Wasko and 236 

Nathan, 2019; Guerreiro et al., 2018). Where research examines changes in flood frequency for Australia, it is often 237 

related to changes in catchment conditions (Kemp et al., 2020) or interannual variability (McMahon and Kiem, 2018; 238 

Franks and Kuczera, 2002). Specifically related to climate change, most studies for Australia argue trends in annual 239 

maxima have implications for non-stationary flood frequency analysis (Ishak et al., 2014), but often fail to detect 240 

statistically significant trends (Ishak et al., 2013; Zhang et al., 2016) due to natural variability (Villarini and Wasko, 241 

2021).  242 

In a review of the projection of flooding with warmer temperatures, Wasko (2021) summarised the global literature 243 

on non-stationary flood frequency analysis. It was noted that non-stationary flood frequency analysis for climate 244 

change is typically performed using time-dependent parameters (e.g. Salas et al., 2018). Wasko (2021) also noted that 245 
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one of the shortcomings of non-stationary flood frequency analysis using a time covariate is the inability to project 246 

with confidence for climate change due to the lack of a causal relationship (see for example Faulkner et al. 2020). 247 

Hence it is argued that any non-stationary flood frequency analysis should ensure that the statistical model structure 248 

is representative of the processes controlling flooding (Schlef et al., 2018; Tramblay et al., 2014; Kim and Villarini, 249 

2023; Villarini and Wasko, 2021; Faulkner et al., 2020), with a framework for model construction provided in Schlef 250 

et al. (2018). Examples of physically motivated non-stationary frequency analysis from the global literature include 251 

using combinations of rainfall, potential evaporation, soil moisture, temperature, and large-scale drivers of moisture 252 

transport as covariates (Guo et al., 2023; Han et al., 2022; Tramblay et al., 2014; Schlef et al., 2018; Condon et al., 253 

2015; Kim and Villarini, 2023; Towler et al., 2010). In principle, this is similar to studies performed in the United 254 

States, which have used precipitation and temperature as covariates for non-stationary flood frequency analysis 255 

(Condon et al., 2015; Towler et al., 2010; Kim and Villarini, 2023). But even the use of physically-based covariates 256 

is problematic as the covariates may not capture the differing processes that affect rainfall and therefore flood changes, 257 

for example thermodynamic versus dynamical changes to extreme rainfall which vary with storm duration (Schlef et 258 

al., 2018). A final complication is that even if the changes in flood drivers are captured by the covariates there is no 259 

guarantee that these flood drivers will be those governing flooding in the future due to changes in the dominant flood 260 

mechanism (Chegwidden, Oriana et al., 2020; Zhang et al., 2022; Wasko, 2022). Possibly for the above reasons, there 261 

is little formal guidance for how to perform non-stationary flood frequency analysis. One of the most well-developed 262 

guidance documents on flood frequency analysis – Bulletin 17C (England et al., 2019) – while acknowledging the 263 

potential impacts of climate change on flood risk, does not explicitly give guidance for climate change, but instead 264 

refers the user to published literature for non-stationary flood frequency (Salas and Obeysekera, 2014; Stedinger and 265 

Griffis, 2011), leaving the door open for a variety of analyses based on “time-varying parameters or other appropriate 266 

techniques”. Indeed Ahmed et al. (2023) note there is a dearth of guidance on how to considerer non-stationarity in 267 

regional flood quantile estimation, arguing alongside other reviews (Zalnezhad et al., 2022) that further research is 268 

needed on the impacts of climate change on flood frequency analysis. 269 

4.1.2 Systematic review 270 
For Australia, the systematic review only yielded one manuscript. Using 105 catchments across the east coast of 271 

Australia, Han et al. (2022) fit a non-stationary regional flood frequency model using the covariates of catchment area, 272 

mean annual rainfall, mean annual potential evaporation, and rainfall intensity with a duration of 24 hours for a target 273 

return period/exceedance probability. The proposed method was found to be effective in capturing the differing trends 274 

with differing recurrence intervals, and projections were derived, with more sites having increases projected for rarer 275 

events (1 in 20 AEP) than for frequent events (1 in 2 AEP). 276 

4.2 Continuous simulation  277 

4.2.1. Impact of climate change 278 
Where streamflow data is not available, flood frequency curves can be derived from simulated streamflow using a 279 

rainfall-runoff model driven by long sequences of rainfall and evapotranspiration. The process of deriving flood 280 

frequency curves through continuous simulation often necessitates the use of a weather generator to stochastically 281 

generate the model inputs due to the long record lengths required for flood frequency estimation. For future climate 282 
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conditions, these model input time series are generally derived through downscaling methods (Fowler et al., 2007; 283 

Teutschbein and Seibert, 2012) where GCM outputs are bias corrected and downscaled to create realistic inputs for 284 

hydrologic (rainfall-runoff) models to simulate streamflow and consequently to derive flood frequency estimates. 285 

Examples of this include Norway’s flood guidance (Lawrence and Hisdal, 2011) and eFLaG in the UK (Hannaford et 286 

al., 2023), where the magnitude of a flow of a given exceedance probability is compared to a reference period to 287 

provide climate adjustment factors.  288 

While changes in the hydrologic cycle and mean rainfall are largely constrained by the availability of energy, extreme 289 

rainfall changes are constrained by moisture availability (Allen and Ingram, 2002). For Australia, increases in pan 290 

evaporation have been observed (Stephens et al., 2018b). For rainfall, longer dry spells between weather events are 291 

projected (Grose et al., 2020), with a shift from frontal rainfall to convective rainfall, particularly in the southern parts 292 

of the continent (Pepler et al., 2021). Rainfall events are expected to have, on average, a shorter storm duration (Wasko 293 

et al., 2021a) with greater peak rainfall (Visser et al., 2023), and slower movement (Kossin, 2018; Kahraman et al., 294 

2021). As a result, although the frequency of extreme rainfall events may decline, when they do occur, the extreme 295 

rainfall from the event is projected to increase (Grose et al., 2020) – with greater increases expected for more extreme 296 

events (Wasko et al., 2023). Hence, just accounting for mean or extreme rainfall changes in isolation is not sufficient 297 

and changes to the entire rainfall time series are required to study responses to climate change.  298 

4.2.2. Systematic review 299 
In climate literature the term “downscaling” is an umbrella term describing the conversion of coarse-resolution climate 300 

model outputs to catchment-scale relevant outputs. The systematic review focused on “downscaling” yielded three 301 

relevant manuscripts. In addition to these, one set of reports from the Australian Bureau of Meteorology was included 302 

(Assessment Reports). Using five GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and eight 303 

global hydrologic models, Gu et al. (2020) projected changes up to the 1 in 50 AEP flood using the ISI-MIP trend-304 

preserving bias correction method (Hempel et al., 2013). Frequent floods were projected to decrease across large parts 305 

of Australia, with some increases in the tropics. These patterns were amplified for rarer events, with decreases (or no 306 

change) projected for rarer floods across the southern part of the country. The Australian Bureau of Meteorology has 307 

published a dataset consisting of four CMIP5 GCMs and four downscaling methods gridded across the entire continent 308 

(Wilson et al., 2022; Peter et al., 2023). Using this data (Wilson et al., 2022; Peter et al., 2023) as an input to the 309 

AWRA-L daily water balance model (Frost et al., 2018) the annual maxima and 1 in 20 AEP flood events were 310 

projected to increase across most of the continent (Assessment Reports).  311 

Wasko et al. (2023) used the MRNBC and QME downscaling methods that were found to perform best for hydrologic 312 

variables (Vogel et al., 2023) in 301 locally calibrated catchment rainfall-runoff models across the continent. 313 

Decreases in frequent flooding up to the 1 in 5 AEP were projected across large parts of the continent, while for rarer 314 

events, the flood magnitude was projected to increase across the northern and eastern coasts. Differences in the results 315 

in this study and those above were attributed to (1) the use of rainfall-runoff models that were calibrated locally (i.e., 316 

different parameter set for each catchment) to flood frequency quantiles, whereas AWRA-L is calibrated to match 317 

dynamics of daily streamflow and satellite soil moisture and evapotranspiration across Australia simultaneously using 318 
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a single set of parameters (Frost et al., 2018), and (2) due to the different downscaling methods adopted (Wasko et al., 319 

2023). Recent research has shown that, for hydrological applications, multi-variate bias correction that considers 320 

cross-correlations among variables, temporal auto-correlations, and biases at multiple time scales (daily to annual) 321 

performs the best  (Vogel et al., 2023; Zhan et al., 2022; Robertson et al., 2023). Further, both the bias correction and 322 

rainfall-runoff model calibration should be evaluated for the target statistics of interest (flood frequency in this case), 323 

while also ensuring they are representative of the flood processes to guarantee robustness under change (Krysanova 324 

et al., 2018). Finally, Zhan et al. (2022) and Sharma et al. (2021), among others, note that the uncertainty and variability 325 

in climate projections, complexity in selecting data, as well as data processing, all hamper the adoption of climate data 326 

in continuous simulation. Indeed, Dale (2021) argues that one of the primary requirements for design flood estimation 327 

moving forward is “a standard, accepted approach for deriving time series rainfall that is representative of future 328 

climatic conditions for continuous simulation modelling”.  329 

4.3 Event-based (IFD) modelling 330 

4.3.1 Processes affecting changes in Australian extreme rainfall  331 
Before performing a systematic review of the complementary sources of knowledge that provide insight into how 332 

climate change could influence rainfall extremes, we first provide a background to the changes in Australian extreme 333 

rainfall, with this section excluded from the requirements of the systematic review. In Australia, extreme rainfall is 334 

typically associated with thunderstorms, cyclones, troughs or fronts (Dowdy and Catto, 2017; Pepler et al., 2021; 335 

Warren et al., 2021), including tropical cyclones (TCs) in northern Australia (Dare et al., 2012; Lavender and Abbs, 336 

2013; Villarini and Denniston, 2016; Bell et al., 2019), east coast lows (ECLs) in the east and southeast of Australia 337 

(Pepler and Dowdy, 2022; Dowdy et al., 2019) and thunderstorms (convective systems) throughout Australia (Dowdy, 338 

2020). Other physical processes leading to extreme rainfall occurrence include enhanced advection of moisture to a 339 

region, such as from atmospheric rivers – large narrow bands of water vapor (Wu et al., 2020; Reid et al., 2021; Black 340 

et al., 2021) – and the temporal compounding of hazards such as heatwaves impacting heavy rainfall occurrence 341 

(Sauter et al., 2023).  342 

Tropical cyclones (TCs) can impact on northern regions of Australia, particularly in near-coastal locations, with their 343 

occurrence generally from November to April (Chand et al., 2019). Although there is considerable interannual 344 

variability in the number of TCs that occur near Australia, including influences of large-scale drivers such as the El 345 

Niño-Southern Oscillation (ENSO), a significant downward trend in the frequency of observed Australian TCs has 346 

occurred in recent decades (Dowdy, 2014; Chand et al., 2019, 2022). Climate models also indicate that TC numbers 347 

in the Australian region are likely to continue decreasing in coming decades due to anthropogenic climate change 348 

(Walsh et al., 2016; Bell et al., 2019; Bhatia et al., 2018; CSIRO and Bureau of Meteorology, 2015). However, 349 

although fewer TCs are likely in a warmer world in general, this is more likely for non-severe TCs than severe TCs, 350 

with extreme rainfall from TCs likely to increase in intensity at rates that could exceed 6-7%/°C of warming (Walsh 351 

et al., 2016; Bhatia et al., 2018; Lighthill et al., 1993; Holland and Bruyère, 2014; Sobel et al., 2016; Emanuel, 2017; 352 

Parker et al., 2018; Patricola and Wehner, 2018; Wehner et al., 2018; Knutson et al., 2020, 2019; Vecchi et al., 2019; 353 

Kossin et al., 2020; Seneviratne et al., 2023). In addition to the frequency and severity, some studies have indicated a 354 

potential poleward shift of TCs (Kossin et al., 2014), but there are considerable uncertainties around whether or not 355 
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this is occurring (Knutson et al., 2019; Bell et al., 2019; Chand et al., 2019; Tauvale and Tsuboki, 2019). Finally, some 356 

studies have suggested a potential trend in the translational speed of TCs in a warming world (Kossin, 2018), while 357 

others have suggested this might not be a significant change (Lanzante, 2019; Moon et al., 2019; Yamaguchi et al., 358 

2020). 359 

East coast lows (ECLs) are cyclones near southeastern Australia that can be caused by both mid-latitude and tropical 360 

influences over a range of levels in the atmosphere. Fewer ECLs are likely to occur due to anthropogenic climate 361 

change, at a rate of about -10%/°C of global warming, with this change more likely for cooler months (Dowdy et al., 362 

2019; Pepler and Dowdy, 2022; Cavicchia et al., 2020). A recent study using RCM projections reported that the 363 

number of cyclones exceeding the current 95th percentile for maximum rain rate is expected to increase by more than 364 

25%/K in Australia’s eastern seaboard and Tasmania under a high emissions pathway (RCP8.5) by 2070–2099. Both 365 

the eastern seaboard and Tasmania are projected to have twice as many cyclones with heavy localised rain as in 1980–366 

2009 (Pepler and Dowdy, 2022). That study also found that about 90% of model simulations had at least one ECL in 367 

the period 2070–2099 with a higher maximum rain rate than any in the period 1980–2009 for southeast Australia and 368 

similarly for Tasmania. It is noted here that RCM projections are not at fine-enough scales to be convection-permitting 369 

and so may not necessarily capture some changes in rainfall efficiency associated with enhanced convective processes 370 

from increased atmospheric moisture capacity. 371 

Convective storms, such as severe thunderstorms, can cause relatively localised storms as well as mesoscale 372 

convective and linear systems (Hitchcock et al., 2021). As climate models have a limited ability to simulate fine-scale 373 

aspects associated with thunderstorms (e.g., Bergemann et al. 2022), projections are typically based on environmental 374 

conditions conducive to thunderstorm formation, such as convective available potential energy or other related 375 

atmospheric metrics associated with deep and moist convection. Projections using environmental conditions such as 376 

these have indicated a broad range of plausible changes in the frequency of thunderstorm environments for regions 377 

throughout Australia, including potential increases or decreases depending on the metric or model selections used 378 

(Allen et al., 2014; Brown and Dowdy, 2021). Some of the latest set of GCMs indicate an increase in convection-379 

related extreme rainfall over Australia relating to the Madden-Julian Oscillation (Liang et al., 2022). 380 

Using lightning observations as a proxy for convective storm occurrence, a decline in the number of thunderstorms 381 

during the cooler months of the year has been observed in parts of southern Australia (Bates et al., 2015). Another 382 

study based on rainfall observations and reanalysis data reported a trend since 1979 towards fewer thunderstorms for 383 

most regions of Australia, with the strongest and most significant trends in northern and central Australia during the 384 

spring and summer, in addition to increasing trends in thunderstorm frequency on the eastern seaboard (Dowdy, 2020). 385 

However, the total rainfall associated with thunderstorms increased in most regions over the same time period, such 386 

that the intensity of rainfall per thunderstorm increased at about 2-3 times the Clausius-Clapeyron rate (Dowdy, 2020). 387 

Importantly, most of southern Australia saw an increase in the frequency of thunderstorms associated with rainfall of 388 

at least 10 mm over the same period, particularly during the warm months (Pepler et al., 2021). That increase in rainfall 389 

intensity exceeding the Clausius-Clapeyron rate is broadly similar to some other studies based on observations and 390 
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modelling for Australia, including those focussed on short-duration extremes (Westra and Sisson, 2011; Bao et al., 391 

2017; Guerreiro et al., 2018; Ayat et al., 2022), with the larger increases tending to be in northern rather than in 392 

southern regions. These high rates of change in rainfall intensity can occur from changes in rainfall efficiency, which 393 

increases due to additional moisture capacity in a warmer atmosphere providing additional latent heat from 394 

condensation as energy in the convective processes – so-called super-CC scaling. This process is relevant for 395 

thunderstorms and TCs given the convective processes that provide energy for their formation and intensification, as 396 

well as ECLs that sometimes have mesoscale convective features embedded within their broader synoptic structure 397 

(Holland et al., 1987; Mills et al., 2010; Dowdy et al., 2019). 398 

Extratropical cyclones and fronts can also sometimes cause extreme rainfall in southern Australia. Recent studies have 399 

reported a trend towards fewer of these events, particularly during the cooler months of the year, including a reduction 400 

in the frequency of events that generate at least 10 mm of rainfall (Pepler et al., 2021). Projections of extratropical 401 

cyclones and fronts in this storm-track region of the Southern Hemisphere are broadly similar to the observed trends, 402 

with studies indicating a general reduction in frequency for this region, particularly during the cooler months of the 403 

year (Seneviratne et al., 2023; CSIRO and Bureau of Meteorology, 2015). The projections are also consistent with 404 

observed reductions in multi-day rainfall events (Fu et al., 2023; Dey et al., 2019), which tend to be associated with 405 

long-lived synoptic systems (i.e., at least 24 hours) such as extratropical cyclones.    406 

Finally, the frequency of atmospheric rivers in Australia increased over the 1979-2019 period in one study (Reid et 407 

al., 2022), and may increase in frequency in a warming climate, including near eastern Australia (Wang et al., 2023). 408 

For example, a recent study demonstrated how an atmospheric river contributed to extreme multiday rainfall and 409 

flooding in Sydney in March 2021, finding that, depending on the emission scenario, this type of atmospheric river 410 

could increase in frequency by about 50-100% around the end of this century (Reid et al., 2021), but projections have 411 

not been assessed in detail for elsewhere in Australia.   412 

In summary, more intense rainfall extremes associated with TCs are likely to occur for northern Australia during the 413 

warmer months of the year. For eastern Australia, fewer ECLs are likely to occur, but with an increase in the 414 

occurrence of ECLs that cause extreme precipitation. For southern Australia, fewer extratropical cyclones and fronts 415 

are likely to occur during the cooler months of the year, leading to a potential reduction in rainfall extremes during 416 

these months. Increases in moisture transport by atmospheric rivers has also been reported, with the frequency of 417 

strong atmospheric rivers potentially increasing by 50-100% in eastern Australia towards the end of this century. The 418 

increased water vapour capacity of the atmosphere in a warming world can increase rainfall efficiency in some cases, 419 

such as through enhanced latent heat from condensation contributing energy to the convective processes. This can 420 

lead to increases in the intensity of extreme rainfall that are notably larger in magnitude than the 6-7%/°C increase 421 

associated with the Clausius-Clapeyron relation. Studies have indicated that increased rainfall efficiency in the order 422 

of two or more times the Clausius-Clapeyron relationship rate are plausible for short-duration rainfall extremes in 423 

general for Australia (Guerreiro et al., 2018; Dowdy, 2020; Ayat et al., 2022). 424 
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4.3.2 Rainfall intensity  425 
4.3.1.1 Impact of climate change 426 

IFD curves are typically derived using statistical models, such as the Generalized Extreme Value (GEV) distribution, 427 

fitted to annual maximum rainfall across a range of durations and severities (AEPs). Anthropogenic changes in 428 

extreme rainfall, both in their intensity and frequency, will therefore lead to changes in IFDs (Milly et al., 2008). In 429 

the scientific literature, changes in extreme rainfalls are generally modelled using non-stationary frequency analysis 430 

with appropriate covariates. While this is an active area of research (Schlef et al., 2023; Wasko, 2021) it has the same 431 

shortcomings as non-stationary flood frequency analysis. Most studies use a time covariate to impart a temporal trend 432 

(Schlef et al., 2023). However, there is evidence that accounting for the different drivers of extreme rainfall, for 433 

example temperature for short duration rainfall, and climate modes such as the El Niño-Southern Oscillation (ENSO) 434 

and the Indian Ocean Dipole (IOD) for long duration rainfall, can improve model performance (Agilan and 435 

Umamahesh, 2015, 2017). This is consistent with the arguments put forward by Schlef et al. (2018) that covariates 436 

should capture the thermodynamic and dynamic processes that affect rainfall changes. For non-stationary frequency 437 

analysis, there is evidence emerging that GEV models should consider changes in both location and scale parameters 438 

(Prosdocimi and Kjeldsen, 2021; Jayaweera et al., 2023). Finally, Schlef et al. (2023) summarised that for non-439 

stationary IFD analysis “the majority of covariate-based studies focus on the historical period, effectively reducing 440 

the study to a sophisticated check for non-stationarity, rather than a framework for projection of non-stationary IDF 441 

curves” and hence their predictive ability remains untested (Schlef et al., 2023). 442 

Likely due to the difficulties in fitting non-stationary IFDs, the majority of climate change guidance for practitioners 443 

is to scale the IFD rainfall depth or intensity using a climate adjustment (or uplift) factor derived from an assessment 444 

of how extreme rainfalls are likely to change under climate change (Wasko et al., 2021b). Studies that assess potential 445 

changes in extreme rainfall can be roughly separated into three categories: (1) studies that assess historical trends; (2) 446 

studies that investigate the association of extreme rainfalls and temperature; and (3) studies that directly project 447 

changes in extreme rainfall using model experiments.  448 

4.3.1.2 Systematic review 449 

Our systematic review identified 40 manuscripts that quantified the relationship between temperature changes and 450 

rainfall intensity, with the manuscripts roughly evenly split between the above three approaches. Model-based 451 

projections were almost always focussed on daily to multi-day rainfall extremes, with the exception of two studies 452 

that employed regional models over small regions of Australia to provide projections of sub-daily rainfall (Mantegna 453 

et al., 2017; Herath et al., 2016). In contrast, scaling studies were more likely to assess sub-daily rainfall, and about 454 

half the papers assessing historical trends included sub-daily (usually hourly) rainfall. 455 

Historical analysis of trends in high daily rainfall totals, such as the wettest day per year (Rx1D) or the 99th percentile 456 

of the daily rainfall distribution, find a range of trends depending on the region and years used (Dey et al., 2019; Du 457 

et al., 2019; Alexander and Arblaster, 2017; Sun et al., 2021; Liu et al., 2022a). Many older studies detected no 458 

significant trend or a decreasing trend in Rx1D (e.g., Hajani and Rahman, 2018), including some large negative trends 459 

when calculated for individual stations (Yilmaz and Perera, 2014; Chen et al., 2013). However, more recent studies 460 

that draw on larger volumes of stations or gridded data more commonly detect increasing trends in Rx1D, many of 461 
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which are close to 7%/K (Wasko and Nathan, 2019; Dey et al., 2019; Guerreiro et al., 2018). Increases are most 462 

apparent in the annual maximum intensity of events of no more than two days duration, which increased by between 463 

13% and 30% over the period 1911-2016 for different regions of Australia (Dey et al., 2019). Changes in rainfall 464 

intensity are less robust for longer duration rainfall events, with studies finding little change or even a decrease in the 465 

intensity of the wettest five-day rainfall (Rx5D) in southeast and southwestern Australia over the period since 1950 466 

(Du et al., 2019; Fu et al., 2023), although this result may be influenced by multidecadal variability including very 467 

high rainfall totals in the 1950 and 1970s. Decreases in long-duration rainfall events are most evident during the 468 

autumn and winter (Zheng et al., 2015), associated with extratropical weather systems (Pepler et al., 2020). While 469 

total rain days have decreased in many parts of Australia, the intensity of rainfall on wet days may have increased 470 

(Contractor et al., 2018), as has the average intensity of rainfall on days with thunderstorm activity (Dowdy, 2020).  471 

There is increasingly strong evidence suggesting that an increase in the intensity of sub-daily rainfall has already 472 

occurred. Guerreiro et al. (2018) found an average increase of 2.8 mm or 9.4% in the average wettest hour of the year 473 

between 1966–1989 and 1990–2013 across Australia, equivalent to 19.5%/K, with increases observed at most stations 474 

analysed. When divided into northern and southern Australia, trends were greater than 21%/K in the north, which has 475 

seen a large increase in total rain over the same period (Dey et al., 2019); however, even in southern Australia, 476 

increases were larger than those expected based on Clausius-Clapeyron for frequencies up to the seven wettest hours 477 

per year (7EY), and close to 14%/K for the wettest four hours per year (4EY). In Victoria, studies have found an 89% 478 

increase in the frequency of hourly rainfall > 18 mm/h (Osburn et al., 2021) between 1958-1985 and 1987-2014, as 479 

well as increases in hourly totals > 40 mm/h (Tolhurst et al., 2023). Yilmaz and Perera (2014) also found increasing 480 

trends in Melbourne rainfall intensities for durations of three hours or less between 1925-2010, with 1 in 2 AEP values 481 

5-7% higher when calculated using data from 1967-2010 versus 1925-1966 (~13-17%/K), though not all differences 482 

were statistically significant. In southeast Queensland and northeast New South Wales, increasing trends for annual 483 

maxima for events with a duration of less than 12 hours have been reported (Laz et al., 2014), while Chen et al. (2013) 484 

reported that the heaviest rainfalls at timescales of six minutes to six hours increased between the earlier and later 20th 485 

century by more than 20% in Melbourne, Sydney and Brisbane. Very large increases of ~20%/decade in sub-hourly 486 

rainfall have also been identified in Sydney using both radar and rain gauge data based on the short period of 1999-487 

2017 (Ayat et al., 2022). Trends tend to be strongest for convective rainfall, which has its largest contribution to short 488 

duration events and during the warm half of the year. For instance, heavy rainfall in Greater Sydney during the summer 489 

months increased by more than 6%/decade for all durations from six minutes to 48 h over 1966-2012 (Zheng et al., 490 

2015). 491 

Scaling studies typically use quantile regression on rainfall-temperature pairs or linear regression on extreme rainfall 492 

percentiles after grouping records by temperature classes to calculate the relationship between day-to-day temperature 493 

variability and the upper tail of the rainfall distribution, as represented by the 90th or 99th percentile of rainfall for a 494 

given temperature range (Wasko and Sharma, 2014). While early scaling studies used dry bulb air temperature, such 495 

approaches were sensitive to the cooling influence of rainfall on air temperature as well as the temporal and spatial 496 

scales of rainfall (Bao et al., 2017; Barbero et al., 2017) and often found negative scaling in the northern tropics 497 
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(Wasko et al., 2018). Recent studies have found more homogenous results by scaling against moisture availability, 498 

most commonly represented by the dewpoint temperature, as well as by accounting for intermittency in precipitation 499 

events (Visser et al., 2021; Schleiss, 2018). Studies typically find a median scaling over Australia of 7-8%/K for daily 500 

rainfall (Magan et al., 2020; Roderick et al., 2020; Bui et al., 2019; Wasko et al., 2018; Ali et al., 2021b; Visser et al., 501 

2020). This regional convergence to Clausius-Clapeyron scaling hides larger variability in the scaling at local station 502 

scales, ranging typically between 5-10%/K, although in the northern tropics many stations exhibit scaling greater than 503 

14%/K between rainfall and dewpoint temperature (Magan et al., 2020; Wasko et al., 2018).  504 

Scaling is typically stronger for sub-daily rainfall, with median scaling over Australia typically 8-10%/K and scaling 505 

in tropical regions frequently exceeding 14%/K (Wasko et al., 2018; Ali et al., 2021b; Visser et al., 2021). For rarer 506 

events, Wasko and Sharma (2017) used a stochastic weather generator conditioned on temperature and found hourly 507 

rainfall scaling for Sydney and Brisbane increased from 6-9%/K for an AEP of 1 in 2 to 10-12%/K for a 1 in 10 AEP 508 

and 18%/K for a 1 in 100 AEP, although the uncertainty ranges were large. Scaling rates exceeding 15%/K between 509 

dewpoint temperature and daily rainfall over Australia have also been calculated using a global 0.25° × 0.25° 510 

latitude/longitude resolution model (Zhang et al., 2019), although scaling in the Sydney region was ~4%/K for hourly 511 

rainfall using a 2 km convection permitting model (Li et al., 2018). 512 

GCMs are not expected to accurately simulate rainfall extremes due to deficiencies in representing the key phenomena 513 

responsible for extreme rainfall including convection and thunderstorms or tropical cyclones. This is particularly true 514 

of short-lived or sub-daily extremes, with GCMs better at simulating daily or longer extremes such as extratropical 515 

lows, which cause widespread and prolonged heavy rainfall (Kendon et al., 2017). Projections from CMIP5 models 516 

between 1986-2005 and the late 21st century (~2081-2100) indicate an increase in RX1D under a high emissions 517 

scenario (Alexander and Arblaster, 2017), with regional mean increases in RX1D ranging from 13% in Eastern 518 

Australia to 19% in Northern Australia (~4-6%/K) (Climate Change in Australia). A 4%/K increase in RX1D was also 519 

found by Chevuturi et al. (2018) when comparing a 2-degree warmer world with historical simulations, while Ju et al. 520 

(2021) found an 11% increase in RX1D in a 2-degree warmer world (5.5%/K). Models in the Coupled Model 521 

Intercomparison Project Phase 6 (CMIP6) simulate a slightly smaller change in RX1D, with a 6.2-7.3% increase in 522 

Rx1D for Australia between the preindustrial climate and the 2-degree warming level and a 10.3-11.2% increase by 3 523 

degrees (3-4%/K, Gutiérrez et al., 2021) and a 9.4% (~3%/K) increase in Rx1D by the end of the century (Grose et 524 

al., 2020). 525 

Results from regional climate models are broadly consistent with GCMs for daily rainfall, including a projected 526 

regional mean increase of 5.7%/K  in the 99th percentile of wet days using the NARCliM ensemble (Bao et al., 2017) 527 

and larger increases in the 99.5th (6.5%/K) and 99.9th (9.2%/K) percentiles. Pepler and Dowdy (2022) also found a 528 

4%/K increase in the frequency of days exceeding the 99.7th percentile using a CMIP5-based RCM ensemble, with 529 

the largest increases projected in Tasmania (12%/K), while Herold et al. (2021) reported a doubling in the frequency 530 

of current 1 in 20 AEP events by 2060-2079. Projected increases are smaller for multi-day rainfall, with a median 531 

increase in Rx5D of 10% (~3%/K) reported in Sillmann et al. (2013), 4%/K in Ju et al. (2021), and no significant 532 

change in Chen et al. (2014). While fewer studies have assessed changes to less frequent rainfall extremes, these are 533 
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typically larger than the increases projected for annual maxima. For instance, CMIP5 models simulate a 22-26% 534 

increase (7-8%/K) in the 1 in 20 AEP daily rainfall by the end of the 21st century (Climate Change in Australia), and 535 

statistically downscaled climate data project a similar 20% increase in the 1 in 50 AEP by the end of the century 536 

(6%/K; Wasko et al., 2023). Slightly smaller increases for the 1 in 10 AEP of 15.5% by the end of the century were 537 

found using CMIP6 models (~5%/K, Grose et al., 2020).  538 

Studies investigating the projection of sub-daily rainfall extremes are rare for Australia, but regional modelling for the 539 

Tasmanian region indicated increases of greater than 40% in AEP of 1 in 10 and rarer in a 2.9-degree warmer world; 540 

more than 14%/K (Mantegna et al., 2017). This is consistent with the stronger observed trends and scaling rates 541 

reported for rainfall of short durations. Projected increases are likely to be larger for convective extremes, which 542 

dominate sub-daily rainfall and are poorly simulated even in regional climate models. For example, Shields et al., 543 

(2016) projected a 12.5% increase in convective rain rates above the 95th percentile in the Australasian region using a 544 

0.5° × 0.5° latitude/longitude global model by the late 21st century (~4%/K) but no change in large-scale rainfall. 545 

Finally, regional model experiments also indicate increases of 15% in tropical cyclone rain rates per degree of SST 546 

increase (Bruyère et al., 2019).  547 

4.3.1.2 Meta-analysis 548 

Where possible, observed and projected changes were extracted from each paper or dataset. Absolute changes were 549 

converted to changes as a percent per degree of warming, with the global mean warming over the appropriate time 550 

period extracted either from the Berkeley Earth Surface Temperature dataset (Rohde and Hausfather, 2020), or the 551 

ensemble mean for the corresponding CMIP generation and emissions scenario. These quantitative results are 552 

summarised in Figure 3, with extended details provided in the Supplementary Data Table. The centre changes are 553 

central estimates of the change in extreme rainfall amount converted to %/K. The type of central estimate (median or 554 

mean) is indicated in the Supplementary Data Table. Minimum and maximum changes are the largest range of changes 555 

reported by each study; these are usually minima and maxima (for example across stations). It is noted that some 556 

papers are included in Figure 3 multiple times for different durations and exceedance percentiles.  557 
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 558 

Figure 3. Summary of extreme rainfall change standardised, where possible, in per degrees of global temperature 559 

change. Note that rainfall-temperature scaling studies use local temperatures. Dashed lines indicate Clausius-560 

Clapeyron (1×CC), 2×CC, and 3×CC scaling respectively. Diamonds indicate the central estimate of scaling and 561 

shaded bars indicate the range (where possible, the minimum to maximum) of scaling estimates. Diamonds are 562 

opaque for results in which there was higher confidence and transparent for estimates in which authors found 563 

“disqualifying features” that significantly lowered weighting in the meta-analysis. The few studies with AEPs 564 

between the values shown here were included in the nearest AEP for this plot. 565 

By consensus it was deemed that the results for the meta-analysis would focus on daily and hourly rainfall durations 566 

as the majority of studies focus on these two durations with studies and the mechanisms that cause extreme rainfall at 567 

the two durations are often distinct (albeit short duration extremes are often embedded in longer duration extremes). 568 

Studies investigating storm durations of 6 hours or less were grouped into the hourly rainfall duration, with studies 569 

with durations of greater than 6 hours grouped with the daily rainfall duration. The potential for rates of change to 570 

vary both by location and exceedance probability was also explored. In relation to changes by location, there is 571 

significant heterogeneity in the rainfall-generating mechanisms across the Australian landmass (Linacre and Geerts, 572 

1997). However, when comparing the published scaling rates across the different geographies, there was insufficient 573 

evidence to quantify the differences between regions, with a relative scarcity of studies in regions outside of the 574 

populated areas of eastern Australia, and few consistent methodologies applied to all of Australia. Similarly, although 575 

there is some evidence that rarer extremes are likely increasing more than frequent extremes, it was deemed there was 576 

not enough evidence to quantify this difference through the meta-analysis (see Figure 3). This was because of (1) the 577 

large variability of extreme rainfall changes between studies relative to the variability with AEP, and (2) where there 578 

appears to be a trend with AEP this is generally a result of a single study analysing multiple AEPs. Hence the 579 

uncertainty intervals in the meta-analysis were developed with the aim of encompassing much of the variability in the 580 

extreme rainfall changes across space and exceedance probability. 581 
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Multiple co-authors independently used the available evidence to determine their best estimates of a central scaling 582 

rate and the likely range of extreme rainfall change, for events rarer than the annual maxima up to the PMP. For both 583 

daily and hourly durations, each relevant study was assessed based on the type of evidence (i.e., trend, association, or 584 

projection), the study methodology, the number of sites analysed, the age of the study, its spatial extent, and theoretical 585 

considerations. The results of each co-author’s independent assessment are presented in Table S3. Following the 586 

independent analysis by the co-authors, a consensus was drawn between the participating co-authors with regard to 587 

the central (median) estimate and the likely range (66%) of extreme rainfall change. The consensus scaling rates and 588 

ranges are shown in Table 1. 589 

Table 1. Results of a meta-analysis presenting extreme rainfall change, using a multiple-lines-of-evidence approach 590 

that draws on the studies in the Supplementary Data Table. This synthesis is based on a review of all studies 591 

covering extremes from the annual maxima through to the probable maximum precipitation (PMP) event (see 592 

Section 4.3.3 for further information on the PMP). The estimates are presented per degree global temperature 593 

change.  594 

 <=1 hr >1 hr and <24 hr >=24 hr 

Central (median) 

estimate 

15%/K Interpolation zone 8%/K 

‘Likely’ range 

(corresponding to ~66% 

range) 

7%-28%/K Interpolation zone 2%-15%/K 

 595 

Weightings given by individual authors reflected the following findings. At daily timescales, RCM projections and 596 

scaling approaches typically had higher scaling rates than GCM projections, likely due to deficiencies in GCMs 597 

representing key extreme rainfall generation processes. Moreover, many observational studies used few sites with 598 

limited spatial coverage. In most studies using historical data across larger extents and recent periods, results were 599 

between 4-10%/K, with a central estimate of 8%/K for rarer events (e.g., 1 in 100 AEP), noting also that a greater 600 

weight was given to those global and Australia-wide studies. The likely range encompasses small but non-negative 601 

changes, which are most likely due to changes relevant to more frequent, multi-day events of 72+ hour duration. The 602 

likely range also encompasses potential scaling of at least twice the Clausius-Clapeyron rate, most likely for rarer 603 

events such as 1 in 100 AEP and for locations in northern Australia. 604 

For sub-daily timescales, estimates of change are predominantly based on historical observations (trends), due to a 605 

relative paucity of projection information. These studies suggest that changes below the Clausius-Clapeyron rate of 606 

7%/K are unlikely, with potential changes in excess of 15%/K observed for rarer events. This is broadly consistent 607 

with the single available regional model study (Mantegna et al., 2017), which had projected increases of 16%/K for a 608 

1 in 10 AEP and 29%/K for 1 in 100 AEP. Slightly weaker changes are found in scaling studies compared to the other 609 

lines of evidence, with the tropics again showing evidence of greater increases compared to the south. The likely range 610 

hence incorporates this spatial inhomogeneity noting that greater uncertainty exists on the upper estimate of change 611 

than the lower estimate. While the meta-analysis central estimate of 15%/K is based on the best available information, 612 
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there is an urgent need for more detailed assessment of changes in sub-daily rainfall in a changing climate using 613 

convection-permitting models.  614 

4.3.3 Probable maximum precipitation 615 
4.3.3.1 Impact of climate change 616 

The PMP is defined as the greatest depth of precipitation meteorologically possible under modern meteorological 617 

conditions for a given duration occurring over a catchment area or a storm area of a given size, at a certain time of the 618 

year (WMO, 2009). It needs to be recognised that this theoretical definition differs from its “operational estimate,” 619 

which is based on a set of simplifying assumptions and calculated from an observational sample of 620 

hydrometeorological extremes (Schaefer, 1994). Hence, in Australia and elsewhere, successive estimates of the PMP 621 

adopted for design purposes have increased over time as methods and data sets change (Bureau of Meteorology, 2003). 622 

As a result, PMP estimates for climate change are heavily dependent on the operational methods employed.  623 

The methods used to derive operational PMP estimates can be broadly divided into statistical methods and 624 

hydrometeorological methods. Statistical methods are commonly used in engineering studies as they can be applied 625 

with little effort and do not require hydrometeorological expertise. The most widely used statistical approach was 626 

developed by Hershfield (1965) and is based on enveloping the observations obtained from a large number of rainfall 627 

gauges to extrapolate a simple 2-parameter (Gumbel) distribution. Hydrometeorological methods used to derive 628 

operational estimates include approaches based on the maximisation of local storm data, referred to as in-situ 629 

maximisation, the transposition of extreme storms nearby to the catchment with similar topography, known as storm 630 

transposition, and the enveloping of storm data over a large region after adjusting for differing moisture availability 631 

and topography, known as generalised methods. Generalised methods differ from the in-situ and transposition methods 632 

in that they use all available data over a large region and include adjustments for moisture availability and differing 633 

topographic effects on rainfall depth. Generalised PMP methods are employed in Australia as well as a number of 634 

other countries, including New Zealand (Thompson and Tomlinson, 1995), India (Rakhecha and Kennedy, 1985), 635 

China (Gu et al., 2022), and the USA (England et al., 2020). For Australia, the storm transposition zone varies with 636 

climate region as the mechanisms driving extreme rainfall vary. 637 

In generalised hydrometeorological methods, the PMP event is assumed to originate from the simultaneous occurrence 638 

of a maximum amount of moisture (moisture maximisation) and a maximum conversion rate of moisture to 639 

precipitation (storm efficiency). Moisture maximisation involves multiplying observed storm precipitation depths by 640 

the ratio of the seasonal maximum precipitable water for the storm location to the representative precipitable water 641 

for the storm, with the precipitable water estimated from surface dewpoint data assuming saturation and pseudo 642 

adiabatic conditions. This assumes that in a large sample of storms recorded over a long period at least one storm 643 

operates near maximum efficiency.  644 

Potential increases in future daily PMP estimates are predominantly founded on projected increases in atmospheric 645 

water vapor, which have been found to closely follow temperature changes with an approximate Clausius-Clapeyron 646 

relationship of 7% per 1°C warming (noting that this does not consider potential changes in rainfall efficiency). While 647 

the WMO manual (WMO, 2009) makes no allowance for long-term climatic trends, one of the most comprehensive 648 
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studies that examined changes in maximum water vapour concentrations across the globe found increases in 649 

atmospheric water vapor of 20%–30% by the end of the century (Kunkel et al., 2013), approximately consistent with 650 

the Clausius-Clapeyron relationship. Kunkel et al. (2013) adopted a “hybrid” approach that merged traditional 651 

hydrometeorological PMP methods with outputs from an ensemble of seven GCMs, an approach that is seen as an 652 

advance on traditional PMP estimates as it incorporates simulated historical and future climate model data (Salas et 653 

al., 2020). They found that the PMP will change by an amount comparable to the mean water vapour changes, with 654 

little evidence for changes in storm efficiency (Kunkel et al., 2013); however it is noted that GCMs do not simulate 655 

many of the key process that could lead to changes in storm efficiency. The relatively minor importance of changes 656 

in storm efficiency compared to precipitable water under climate change was also found by Ben Alaya et al. (2020), 657 

who based their conclusions on an analysis of non-stationarity in a bivariate model of precipitable water and storm 658 

efficiency using temperature as a covariate.  659 

Since Kunkel et al. (2013), many other hybrid approaches have been applied using either global or regional climate 660 

models, and similar results have been found for catchment- or region-specific studies in northern America (Beauchamp 661 

et al., 2013; Chen et al., 2017; Cyphers et al., 2022; Clavet-Gaumont et al., 2017; Rousseau et al., 2014; Rouhani and 662 

Leconte, 2020; Labonté-Raymond et al., 2020), Chile (Lagos-Zúñiga and Vargas M., 2014), and Korea (Lee et al., 663 

2016). While one study projected decreases in the PMP using a hybrid modelling approach, it was based on a single 664 

GCM model (CanESM2) and the projections were for a region in the southeast of the Caspian Sea (Afzali-Gorouh et 665 

al., 2022). Other region-specific studies have applied physically-based approaches using regional atmospheric models 666 

and found results that are consistent with the Clausius-Clapeyron relationship in north America (Ishida et al., 2018; 667 

Gangrade et al., 2018; Rastogi et al., 2017), China (Liu et al., 2022b), and Chile (Lagos-Zúñiga and Vargas M., 2014). 668 

Statistical methods based on Hershfield (1965) have also been used to assess the non-stationarity of PMP estimates, 669 

where a recent study (Sarkar and Maity, 2020) used a global reanalysis data set to conclude that global PMP estimates 670 

have increased by an average of 25% over the world between the periods of 1948-1977 and 1978-2012. These changes 671 

are appreciably larger (e.g., about quadruple) than what would be expected from the Clausius-Clapeyron relationship, 672 

though differences between statistical and hydrometeorological methods are evident in other studies in Canada 673 

(Labonté-Raymond et al., 2020), India (Sarkar and Maity, 2020), Vietnam (Kawagoe and Sarukkalige, 2019) and the 674 

USA (Lee and Singh, 2020). The degree of conservatism associated with the statistical method (i.e., the tendency to 675 

produce high estimates) is heavily dependent on the robustness of the envelope curves. Given the lack of physical 676 

reasoning in the statistical method, it is difficult to reconcile differences with estimates derived using 677 

hydrometeorological concepts. This is also true of generalised methods, which in principle do not vary with storm 678 

duration, with research into changes in the PMP with climate change largely using daily rainfall data. 679 

4.3.3.2 Systematic review 680 

A systematic search yielded one recent paper relevant to projected changes in operational PMP estimates for Australia 681 

(Visser et al., 2022), with Salas et al. (2020) summarising existing methods and findings. Visser et al. (2022) undertook 682 

an analysis of moisture availability, comprising dewpoint data from 30 synoptic stations across Australia covering the 683 

period from 1960 to 2018 and 3-hourly ERA5 reanalysis data covering the period from 1979 to the present (Hersbach 684 
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et al., 2020). It was found that the annual maximum persisting dewpoints have increased leading to increased PMP 685 

estimates. Projections of dewpoint temperature were used to derive future PMP estimates across Australia using the 686 

ACCESS-CM2 model. The projected results showed increases of 4%-29% (average of 13%) by 2100 for SSP1-2.6 687 

and 12-55% (average of 33%) for SPP5-8.5 (Visser et al., 2022). If global temperature increases are used, these 688 

changes translate to average increases slightly greater than the Clausius-Clapeyron relationship (e.g., 8.9%/K for 689 

SSP5-8.5). 690 

Jakob et al. (2009) investigated how the local moisture availability, storm type, depth-duration-area curves and relative 691 

storm efficiency used in deriving operational PMP estimates might be changing over time, and how the identified 692 

changes have impacted the PMP estimates. The analysis was based on data from 38 locations across Australia from a 693 

combination of upper-air (radiosonde) and surface dewpoint observations. No large-scale significant changes in 694 

moisture availability were found, though significant increases were found along parts of the east coast, as well as a 695 

region in south-eastern Australia with summer decreases. When comparing moisture availability for a historical 696 

climate period (1981-2000) and the next few decades using outputs from a single global climate model, they found 697 

the 90th percentile values increased from the 2020s to the 2050s and the 2090s, however they also found some evidence 698 

for lower extreme moisture availability in some regions. Similar to the above studies, they found little evidence for 699 

significant changes in storm efficiency, depth-duration-area curves, or storm types, and no significant changes were 700 

found in generalised rainfall depths (again noting that such global models are not expected to simulate some of the 701 

key rainfall generation processes). The results obtained by Jakob et al. (2009) are not inconsistent with those of Visser 702 

et al. (2022), but the difference in conclusions may be explained by the longer and more extensive data sets used by 703 

Visser et al. (2022) and the updated global climate model outputs used to project the dewpoint temperatures.  704 

Despite this compelling evidence, there is no formal recommendation for increases in PMP estimates with the Manual 705 

on Estimation of Probable Maximum Precipitation (WMO, 2009) in their chapter on “PMP and Climate Change” 706 

summarising the results of Jakob et al. (2009). To the best of the authors’ knowledge, no agency responsible for 707 

providing operational PMP estimates for design purposes anywhere in the world has yet provided uplift factors to 708 

ensure that the PMP estimates based on historic observations are relevant to future conditions, despite the majority of 709 

studies into impact of climate change on the PMP finding the PMP is likely to be increasing at the CC rate for daily 710 

rainfall. 711 

4.3.4 Temporal and spatial patterns  712 
4.3.4.1 Impact of climate change 713 

The temporal and spatial patterns of extreme rainfall have long been recognised as important factors in determining 714 

the magnitude of a flood event (Herrera et al., 2023). Conceptually, as weather systems change and storms intensify 715 

due to increases in temperature, changes in both the temporal and spatial pattern of rainfall are expected with 716 

anthropogenic climate change. Given that sub-daily rainfalls are expected to intensify more than daily rainfalls 717 

(Section 4.2.1) this implies that storm temporal patterns will also intensify. In the design flood paradigm, once a 718 

rainfall depth has been estimated from the appropriate IFD relationship, a temporal profile is used to distribute the 719 

total rainfall across the storm duration. When the rainfall distribution across the storm duration is less uniform, higher 720 
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flood peaks will generally occur (Ball, 1994). For example, front or rear loaded storms, where more than 50% of the 721 

total rainfall falls in either the first half or the second half of the storm respectively (Visser et al., 2023), can have 722 

differing impacts on flood peaks through their interactions with any storage (natural or constructed) in the catchment. 723 

In the context of design flood estimation, as the underlying data for the IFD relationships is point rainfall, the influence 724 

of spatial scale on average rainfall intensities is considered through ARFs. For small catchments the point rainfall 725 

provides a reasonable approximation of the catchment average rainfall. However, for larger catchments, it is less likely 726 

that the most intense rainfall in a storm will occur over the whole catchment and the catchment average rainfall for 727 

any particular event will be lower than the point rainfall represented by the IFD relationship. ARFs represent this 728 

expected rainfall reduction, with the reduction dependent on the catchment area, storm duration, and frequency.  729 

4.3.4.2 Systematic review 730 

Some limited research has been undertaken with respect to changes to temporal patterns and spatial patterns of design 731 

rainfalls, primarily using scaling relationships calculated from observed data, while there exists some limited 732 

modelling via dynamic downscaling for the Sydney region. A total of seven papers were found as part of the systematic 733 

review. The findings to date suggest that temporal patterns are becoming more front-loaded (greater percentage of 734 

precipitation falling earlier in the storm) with higher temperatures. There is also an increase in the proportion of rain 735 

falling in the wettest period of the storm, leading to increased peakiness (less uniformity) of the temporal patterns.  736 

Temporal pattern changes have been analysed in two main ways. The first is broadly based on the average variability 737 

method, whereby the changes in the proportion of rainfall within a period are calculated. For example, Wasko and 738 

Sharma (2015a) found for 1 hour storm bursts, the highest 12-minute period had a median scaling of 2.1% per degree 739 

temperature increase for Australia. The scaling rate was dependent on the duration of the storm and the latitude of the 740 

station. Wasko and Sharma (2015b) identified 500 one-hour bursts for five stations, stratified them into five 741 

temperature bins and calculated the temporal pattern using the average variability method for each bin. In general, the 742 

highest temperature bin had peakier (i.e., less uniform) temporal patterns than the lowest temperature bin. Wasko and 743 

Sharma (2017) also used the average variability method to calculate the scaling of temporal patterns. These later 744 

analyses were based on first fitting a stochastic rainfall generation model to historical observations, and then using 745 

regression models to explore the relationships between the rainfall generation model parameters and temperature. For 746 

simulations representing the end of the 21st century under RCP8.5, the peak rainfall fraction in the temporal patterns 747 

increased from 40% to 50% for two models that were fitted separately for Brisbane and Sydney.  748 

Australia’s flood guidance (Ball et al., 2019a) has moved away from using the average variability method for temporal 749 

patterns, and instead now provides an ensemble of temporal patterns for design rainfall analyses. Consistent with this 750 

approach, Visser et al. (2023) provide the most comprehensive analyses of scaling relationships for temporal patterns 751 

for Australia. From an original database of 1489 rainfall gauges 151 stations had sufficient data for scaling analysis, 752 

and trends could be calculated for 55 locations from 1960-2016, with 28 stations having coincident temperature and 753 

precipitation data. It was found that storms have historically become more front-loaded, with storms also becoming 754 

more front-loaded when the coincident temperature was higher. There is a strong regional pattern in the proportion of 755 

front-loaded events, ranging from 50% of events in the south of Australia to close to 70% of events in the tropics. 756 
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Scaling relationships for the temporal patterns were found to be stronger when related to temperature rather than dew 757 

point temperature.  758 

The only study to directly calculate ARFs in the context of climate change is Li et al. (2015). In this work, ARFs were 759 

calculated for the Sydney region using a high-resolution RCM. It was found that for 1hr storms ARFs would increase 760 

(i.e., larger future storms) whilst for longer durations (6 to 72 hr) ARFs would decrease, with the largest decreases for 761 

large catchment areas and the rarest events. But as this analysis was based on a single climate model applied over a 762 

limited geographical domain it is not possible to generalise these results. Calculating ARFs from the RCM also 763 

assumed that the point rainfall to 4 km2 ARF would not change in the future (as 4 km2 was the resolution of the RCM 764 

so smaller area ARFs could not be calculated).  765 

Other studies have analysed changes to spatial patterns of storms, but further work will be required to relate their 766 

findings to methods such as ARFs used with design rainfalls. Wasko et al. (2016) found that the effective radius of 767 

storms decreased with temperature at over 80% of the stations analysed in Australia using quantile regression for 768 

storms above the 90th percentile. For stations classified as temperate, this decrease in effective radius was despite an 769 

increase in peak precipitation, which suggested that moisture was being redistributed from the edge of the storms to 770 

the centre. Li et al. (2018) reproduced these results for the Sydney region using RCM simulations. However, in both 771 

studies the storms were limited to radii of 50 km and were assumed to be circular. Li et al. (2018) pointed out that 772 

there were good opportunities to use RCM simulations to analyse changes in storm advection and not limiting the 773 

analyses to circular storms. 774 

Finally, Han et al. (2020) used copulas to analyse the spatial dependence of monthly maximum rainfalls. They found 775 

that around 40% of the stations had decreasing trends in connectivity and that the overall average connectivity was 776 

lower for storms associated with higher dewpoint temperatures, particularly in southern Australia. However, the 777 

analyses were not seasonally stratified and therefore it is not clear if the findings could also be explained by the 778 

seasonally different rainfall mechanisms. Although evidence is emerging for temporal and spatial clustering of storm 779 

events both in Australia and globally (e.g., Chan et al., 2023; Chang et al., 2016; Ghanghas et al., 2023; Kahraman et 780 

al., 2021; Tan and Shao, 2017), the evidence for changes in the spatial pattern of precipitation, compared to changes 781 

in the temporal pattern of precipitation, remains weaker. 782 

4.3.5 Antecedent wetness  783 
4.3.5.1 Impact of climate change 784 

When rainfall falls on a catchment, there is a range of different runoff processes that lead to catchment runoff and 785 

subsequent streamflow. These runoff processes include infiltration excess or Hortonian overland flow, saturation 786 

excess runoff, variable source area, partial area runoff, subsurface storm flow, and impervious area runoff. In 787 

modelling these runoff processes in design flood estimation, the rainfall is partitioned into direct flow or runoff, which, 788 

along with baseflow, contributes to the observed flood hydrograph, and rainfall losses that do not influence the flood 789 

event’s hydrograph. Rainfall losses primarily result from: 1) interception by vegetation and man-made surfaces which 790 

are eventually evaporated 2) depression storage on the land surface ranging in size from soil-particle-sized depressions 791 
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to lakes; and 3) infiltrated water stored in the soil, which may later contribute to baseflow (Hill and Thomson, 2019; 792 

Pilgrim and Cordery, 1993; O’Shea et al., 2021). 793 

Physically, rainfall losses are largely influenced by antecedent soil moisture and soil properties, which govern the 794 

hydraulic gradient of the soil and thus affect the rate of infiltration (Liu et al., 2011; Bennett et al., 2018). Antecedent 795 

soil moisture is a strong modulator of the flood response (Tramblay et al., 2010; Pathiraja et al., 2012; Woldemeskel 796 

and Sharma, 2016; Wasko et al., 2020; Brocca et al., 2009; Quintero et al., 2022) and is influenced by variability at 797 

multi-annual and multi-decadal time scales (Kiem and Verdon-Kidd, 2013). Incorporating information regarding 798 

antecedent soil moisture into loss models (refer Section 2) has also been shown to improve flood estimates (Cordery, 799 

1970; Tramblay et al., 2010; Sunwoo and Choi, 2017; Bahramian et al., 2023); these loss models have been 800 

incorporated into the Australia’s flood guidance (Hill et al., 2016).  801 

To model the flood response in event-based flood routing models, it is necessary to conceptualise rainfall losses and 802 

employ a mathematically explicit representation. More complex loss models, such as Horton’s method, conceptualise 803 

the infiltration as decreasing exponentially as the soil saturates, whereas the Green-Ampt method assumes a sharp 804 

wetting front exists in the soil column, separating a saturated upper soil layer from the underlying soil layer that 805 

contains some initial moisture content (Rossman, 2010). Research has also explored the merits of hybrid methods 806 

where continuous simulation is used to condition the initial state of the catchment before modelling the discrete flood 807 

event using an event-based flood model (Heneker et al., 2003; Sheikh et al., 2009; Li et al., 2014; Yu et al., 2019; 808 

Stephens et al., 2018a). Despite authors arguing that loss models should involve modelling physical representations 809 

of the runoff process (Kemp and Daniell, 2016), there has been limited adoption in practice of more complex 810 

approaches to loss modelling (Paquet et al., 2013). This is because the benefits of estimating rainfall losses relevant 811 

to floods using physical process-based models are limited due to their complexity and incomplete understanding of 812 

runoff generation processes as well as the inadequate availability of hydrological data (Pilgrim and Cordery, 1993). 813 

For example, complex fully-distributed models often seek to resolve processes at spatial and temporal scales for which 814 

data is limited or unavailable, and consequently such models are more liable to overfitting, leading to poor predictive 815 

capabilities. As a result, parsimonious lumped models of rainfall loss are commonly employed. 816 

Amongst the most used parsimonious lumped models of rainfall loss are the initial loss continuing loss model (ILCL), 817 

the Probability Distributed Model (PDM), the Soil Conservation Service Curve Number (SCS-CN) and the initial loss 818 

proportional loss (ILPL) model (Pilgrim and Cordery, 1993; O’Shea et al., 2021; US Army Cops of Engineers, 2000). 819 

Broadly, these models divide losses into an initial loss, whereby all rainfall is infiltrated into the soil, up to a point at 820 

which the hydrograph rises and the rainfall begins contributing to the runoff response and the loss becomes a fractional 821 

amount of the rainfall. The parameters of these models are typically calibrated using historical rainfall and streamflow 822 

data (e.g., Brown et al., 2022; Clayton, 2012; Gamage et al., 2015) with either a central tendency value (i.e., mean or 823 

median), or a probabilistic distribution of loss parameters adopted for deterministic design flood estimation approaches  824 

(Rahman et al., 2002; Zhang et al., 2023; Nathan et al., 2003; Gamage et al., 2013; Loveridge and Rahman, 2021; 825 

Ishak and Rahman, 2006).  826 
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Under climate change, it has been shown that antecedent soil moisture is changing (Berg et al., 2017; Seneviratne et 827 

al., 2010; Wasko et al., 2021a) and will likely continue to change due to a range of factors. These factors include 828 

increased temperatures, increased rainfall variability, changes in drought duration and frequency (Ukkola et al., 2020), 829 

and changes to the persistence of large-scale ocean-atmospheric mechanisms such as increased persistence of La Niña 830 

(Geng et al., 2023). Any changes in the antecedent soil moisture due to climate change will impact on the resultant 831 

design flood estimate (Ivancic and Shaw, 2015; O’Shea et al., 2021; Quintero et al., 2022).  832 

4.3.5.2 Systematic review 833 

While there is ample evidence that climate change will alter antecedent soil moisture conditions, which in turn 834 

modulate flood responses and hence rainfall losses, there have been few studies quantifying how climate change will 835 

affect rainfall loss parameter values. A systematic review found several studies that have assessed the impact of trends 836 

in antecedent moisture conditions and rainfall losses on floods (Earl et al., 2023; Loveridge and Rahman, 2013). 837 

However, we found only two studies projecting rainfall losses, where overall rainfall losses (Ho et al., 2022) and 838 

rainfall loss parameters (Ho et al., 2023, 2022) were projected under climate change. These studies examined the 839 

relationships between total rainfall losses and the parameters of the ILCL rainfall loss model in relation to antecedent 840 

soil moisture in largely unregulated catchments across Australia. These studies focused on the ILCL model as it was 841 

found to be unbiased in modelling rarer events than those used in calibration, a common practice in design flood 842 

estimation (O’Shea et al., 2021). Ho et al. (2023) found a consistent negative linear relationship between the loss 843 

parameters and antecedent soil moisture, where increased antecedent soil moisture was associated with decreased 844 

losses. For locations where the relationships between the loss parameters and antecedent moisture conditions were 845 

statistically significant, projections of the loss parameter values were made using projections of antecedent soil 846 

moisture developed by the Australian Bureau of Meteorology (Srikanthan et al., 2022; Wilson et al., 2022; Vogel et 847 

al., 2023). On average, by the end of the century and under RCP 8.5, initial losses were projected to increase by 848 

5.0 mm (9%) with the interquartile range of the change from 3.3 to 6.3 mm (6%-12%). Continuing losses were 849 

projected to increase on average by 0.45 mm/hr (13%), with an interquartile range of the change of 0.18 to 0.6 mm/hr 850 

(8%-23%). To remain consistent with the meta-analysis methodology the above changes, on a per catchment basis, 851 

were standardised using global mean temperature and pooled across Natural Resource Management Regions (Figure 852 

S1, Figure S2). Following this, the scaling factors were pooled across RCP to produce the scaling rates shown in 853 

Table 2. Here it was deemed that the variability between regions (refer to Figure 2 from Ho et al. (2023)) was sufficient 854 

to respect regional differences, with events greater or equal to an annual maxima partial duration series adopted for 855 

the development of soil moisture-loss relationships.  856 

Table 2. Median scaling factors for loss parameters together presented per degree global temperature change for 857 
clusters of Natural Resource Management Regions (CSIRO and Bureau of Meteorology, 2015), adapted from Ho et 858 

al. (2023). The ‘likely’ range (corresponding to ~66% range) is presented in parenthesis. 859 

 Natural Resource Management Region IL (%/°C) CL (%/°C) 

Southern and South-Western Flatlands 4.5 (2.0-7.1) 5.6 (2.5-8.7) 

Murray Basin 3.1 (1.0-5.7) 6.7 (1.5-12.1) 

Southern Slopes 3.9 (1.5-7.2) 8.5 (2.9-15.7) 
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East Coast 2.0 (0.6-4.3) 3.8 (1.1-8.0) 

Central Slopes 1.1 (0.4-2.2) 2.0 (-0.5-7.5)  

Wet Tropics 0.8 (-0.4-2.0) 1.4 (-0.1-4.8) 

Monsoonal North 2.4 (1.0-5.4) 4.4 (3.1-9.5) 

 860 

4.3.6 Sea level factors 861 
At the coastal terminus of a catchment, sea levels can modulate flooding, and hence incorporating the appropriate sea 862 

level variations in the tail water boundary conditions is an important consideration for coastal and estuarine flood 863 

modelling. Moreover, research has shown that extreme rainfall and storm surge processes are statistically dependent, 864 

and therefore their interaction needs to be taken into account (Zheng et al., 2013). Here, the literature related to the 865 

impact of climate change on factors related to sea level rise are briefly reviewed, but as changes in the sea level are 866 

not covered in Australia’s flood estimation guidance (Bates et al., 2019), a systemic review was not performed.  867 

Coastal sea levels vary due to multiple processes that operate on different time and space scales, ranging from 868 

astronomical tides and storm surges to long-term sea-level rise due to global warming (McInnes et al., 2016). 869 

Astronomical tides occur on a predictable and recurring basis, with relatively consistent frequency. Storm surges, on 870 

the other hand, are less frequent and, because they occur in conjunction with severe weather events with low 871 

atmospheric pressure, storm surge intensity is related to the strength of the storm. For coastal flooding, the same 872 

weather systems that cause storm surges can also produce high rainfall totals and the potential for compound flooding 873 

along the coast  (Bevacqua et al., 2019; Collins et al., 2019; Zheng et al., 2013).  874 

Both observed and modelled results (Wu et al., 2018; Zheng et al., 2013; Bevacqua et al., 2020) indicate that the 875 

dependence between storm surges and extreme rainfalls is strongest in the north and northwest of Australia, followed 876 

by the west and northeast of Australia. It is weak and/or statistically not significant on the northeastern tip of 877 

Queensland, along the southeast coast of Western Australia, along small parts of the South Australian coastline, and 878 

along the eastern part of the Victorian coast near Bass Strait. As the co-occurrence of extreme rainfall with extreme 879 

storm surge is similar to the co-occurrence of runoff with storm surge (Bevacqua et al., 2020), methods for 880 

incorporating this dependence are in included in Australia’s flood guidance (Westra et al., 2019) – despite sea level 881 

rise not being included. In the northern part of the continent, coincident extremes are most likely due to the occurrence 882 

of tropical cyclones. Along the southwest and southern coastline, coincident extremes are most likely due to 883 

extratropical lows and associated cold frontal systems during the winter half year. Along the southeast coast, 884 

coincident events are most likely due to cut-off lows or frontal systems (Wu et al., 2018).  885 

While studies have focussed on the coincidence of rainfall or runoff events with storm surges or storm tides, other 886 

factors can also affect regional sea level variability on differing time scales. For example, coastally-trapped waves 887 

(CTWs) can cause sea level variability along Australia's extratropical coastline on timescales from weeks to months, 888 

with amplitudes correlating with continental shelf width and ranging from 0.7 m along the south coast to 0.05–0.10 m 889 

along the east coast (Eliot and Pattiaratchi, 2010; Woodham et al., 2013). In some locations, seasonal-scale sea level 890 
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variations are an important consideration. For example, the Gulf of Carpentaria experiences a significant annual sea 891 

level range of about 0.8 m, which is driven mainly by the seasonal reversal of the prevailing winds. On interannual 892 

time scales the El Niño-Southern Oscillation causes sea level variations with higher (lower) than average sea levels 893 

during La Niña’s (El Niño’s), which have a maximum range in the Gulf of Carpentaria and decrease in magnitude 894 

with distance anticlockwise around the coastline (White et al., 2014; McInnes et al., 2016).   895 

Sea-level rise (SLR) is increasing the frequency of coastal flooding (Hague et al., 2023). Over the period from 2007 896 

to 2018 sea levels rose at an average rate of 3.6 ± 1.7 mm/yr based on a global network of tide gauge records, and 897 

3.8 ± 0.3 mm/yr based on satellite altimeters (Wang et al., 2021). Over the period 1993-2018 in the same two datasets, 898 

the rates of SLR were 0.063 ± 0.120 and 0.053 ± 0.026 mm/yr2, respectively, indicating that SLR is accelerating 899 

(Wang et al., 2021). In Australia, the rate of SLR based on Australian gauges from the ANCHORS dataset, with at 900 

least 50 years of data over 1966 to 2019, was 1.94 mm/yr, and over 1993 to 2019 was 3.74 mm/yr (Hague et al., 2022). 901 

With the increase in the flood frequency over the observational record, mainly because SLR is increasing the height 902 

of the tides with ongoing SLR, flooding events will become increasingly predictable (Hague et al., 2023). 903 

Table 3. Sea-level rise (m) relative to 1995-2014 for CMIP6 and associated likely (66%) confidence intervals 904 
(Source: Table 9.9 in Fox-Kemper et al. (2021)). 905 

Scenario 2050 2100 2150 

SSP1-1.9 0.18 (0.15-0.23) 0.38 (0.28–0.55) 0.57 (0.37–0.86) 

SSP1-2.6 0.19 (0.16-0.25) 0.44 (0.32–0.62) 0.68 (0.46–0.99) 

SSP2-4.5 0.20 (0.17-0.26) 0.56 (0.44–0.76) 0.92 (0.66–1.33) 

SSP3-7.0 0.22 (0.18-0.27) 0.68 (0.55–0.90) 0.92 (0.66–1.33) 

SSP5-8.5 0.23 (0.20-0.29) 0.77 (0.63–1.01) 1.98 (0.98–4.82) 

SSP5-8.5* 0.24 (0.20-0.40) 0.88 (0.63–1.60) 1.98 (0.98–4.82) 

*includes additional ‘low confidence’ processes 906 

Projections of future SLR provided by the IPCC in its Sixth Assessment (AR6) report for a set of future greenhouse 907 

gas emission pathways termed SSPs (Fox-Kemper et al., 2021) are summarised for the years 2050, 2100 and 2150 in 908 

Table 3, along with their associated uncertainties. Note this only refers to mean sea level changes; processes associated 909 

with extreme sea levels such as storm surge and wave set-up that may be used in design flood estimation are not 910 

included. The processes included in the projections are assessed by the IPCC to be of ‘medium confidence’ and include 911 

changes due to thermal expansion, the mass balance of glaciers and ice sheets, and terrestrial water storage. The IPCC 912 

also provide scenarios they assess with ‘low confidence’ of occurring on the time scales considered, such as dynamical 913 

processes that could lead to more rapid disintegration of the ice sheets (DeConto and Pollard, 2016; Fox-Kemper et 914 

al., 2021).  915 

Changes to weather and circulation patterns will also potentially change storm surge and wave patterns, altering 916 

compound flooding. For example, Colberg et al. (2019) investigated changes in extreme sea levels around Australia 917 

by forcing a hydrodynamic model with winds and surface pressure from four GCMs run with an RCP 8.5 emission 918 

scenario over the periods 1981-1991 and 2081–2099. The largest positive extreme sea-level changes were found over 919 

the Gulf of Carpentaria due to changes in the northwest monsoon, while mainly negative changes in seasonal 920 
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maximum sea levels up to -5.0 cm were found along Australia’s southern coastline due to the projected southward 921 

movement of the subtropical ridge and associated cold frontal systems, with these results broadly consistent with other 922 

studies (Colberg and McInnes, 2012; Vousdoukas et al., 2018). Extreme coastal sea levels are also affected by wave 923 

breaking processes that cause wave setup (O’Grady et al., 2019), with the 1 in 100 AEP wave height projected to 924 

increase by 5 to 15% over the Southern Ocean by the end of the 21st century (2081-2100), compared to the 1979–2005 925 

period (Meucci et al., 2020). Finally, coastal erosion of sandy shorelines and estuaries under SLR will also contribute 926 

to changes in coastal flooding patterns. Historical coastline movement around the Australian coast has been evaluated 927 

through analysis of satellite images using a technique to filter satellite pixels to a consistent tide datum (Bishop-Taylor 928 

et al., 2019, 2021). Over 22% of Australia’s non-rocky coastline shows trends of significant coastal retreat or growth 929 

since 1988, with most change (15.8%) occurring at rates greater than 0.5 m/yr.  930 

5. Discussion 931 

From this systematic review on climate change science relevant to design flood estimation in Australia, it emerged 932 

that most published research relates to changes in extreme rainfall intensity, and hence the IFDs and PMPs that are 933 

used in event-based modelling. Here we aim to resolve the understanding of changes in extreme rainfall with 934 

methodologies applied for design flood estimation. Following this, our methods are discussed, and finally factors that 935 

were beyond the scope of this review are acknowledged and a summary of future research priorities is presented. 936 

5.1 Alignment of evidence for changes in extreme rainfall with design flood estimation 937 
Although we were unable to quantify the increases in extreme rainfall across a range of frequencies, studies using 938 

rainfall-temperature scaling (Wasko and Sharma, 2017b), historical trends (Wasko and Nathan, 2019; Jayaweera et 939 

al., 2023), and climate change projections (Pendergrass and Hartmann, 2014; Pendergrass, 2018; Carey-Smith et al., 940 

2018), all show that the rate of rainfall increase becomes greater with increasing rarity. Operational methods employed 941 

to estimate PMPs are restricted to the consideration of thermodynamic increases in the moisture holding capacity 942 

through changes in the moisture adjustment factor (Visser et al., 2022). However, short duration extremes (sub-daily) 943 

have been shown to increase at rates greater than CC scaling both for Australia (presented herein) and globally (Fowler 944 

et al., 2021). There is no obvious physical explanation for why changes to sub-daily PMP estimates should differ from 945 

other studies on sub-daily extreme precipitation. Synthesising the evidence, it appears that (1) increases in rare long 946 

duration rainfalls should plateau to a rate of increase commensurate with the PMP, which is likely to be increasing at 947 

the CC rate for daily rainfall; and (2) increases in short duration PMPs, in the absence of research into changes in PMP 948 

for sub-daily durations, should increase at the rate of short duration rainfall extremes. It is plausible that PMPs will 949 

increase in line with short duration rainfall extremes due to an increase in storm efficiency, which is a well-established 950 

mechanism in short duration rainfall due to latent heat release increasing buoyancy (Lenderink et al., 2019). Further, 951 

increases in rainfall intensities above those simply owing to thermodynamics are also possible due to reductions in the 952 

speed of lateral storm movement.  953 

It is clear that increases in the order of 2-3 times the CC rate are a possibility for design rainfalls throughout Australia, 954 

with greater potential increases in the north than in the south. This is generally related to the occurrence of convective 955 

storms, such as severe thunderstorms that can cause short duration (e.g., less than about 6 hours) localised extreme 956 
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rainfall. Although current Australian climate modelling studies are generally not able to simulate the processes 957 

relevant to these convective rainfall extremes, as they are not run at convection-permitting scales, the observation-958 

based increases are broadly consistent with theoretical expectations based on increased rainfall efficiency from 959 

increased condensation for enhanced convection. Changes greater than the CC rate due to more efficient convective 960 

processes can also be relevant for annual maxima longer than that of typical thunderstorms. For example, the highest 961 

recorded daily rainfall at Adelaide occurred over a period of only two hours due to a thunderstorm (Ashcroft et al. 962 

2019). This means that increases greater than the CC rate may also be plausible for more widespread and longer 963 

duration rainfall extremes, such as multiday-duration events associated with TCs in near-coastal northern regions and 964 

ECLs in eastern and south-eastern regions that sometimes contain deep moist convection (Callaghan and Power, 965 

2014).  966 

5.2 Systematic review and meta-analysis considerations 967 
We have attempted to minimise biases where possible. Consistent with the IPCC methodologies, a multiple-lines-of-968 

evidence approach was adopted considering historical changes, future projections, and physical argumentation. As 969 

such, inherent methodological biases, such as issues associated with hypothesis testing favouring the null hypothesis, 970 

would only apply to a proportion of the evidence. Next, analyses to inform assessment reports such as the IPCC often 971 

present projections separately from any claims of significance and are not required to demonstrate originality of 972 

contribution; therefore, these studies are less likely to be affected by both the hypothesis testing and publication biases 973 

- noting that hypothesis testing bias and publication bias would be expected to act in opposing ways. Finally, researcher 974 

biases were addressed by having two researchers independently evaluate each reference for their area, and by adopting 975 

a systematic review framework so that publications are not just chosen on the basis of a researcher’s prior knowledge 976 

or expectation. This was also addressed in the meta-analysis by sensitivity testing the results through multiple 977 

researchers independently weighting evidence. The outcomes of the per-researcher analyses were consistently similar 978 

(Table S3).  979 

In addition to the review biases, the limitations of each line of empirical evidence need to be acknowledged. It can be 980 

difficult to identify a climate change signal in observational records, firstly due to the small signal to noise ratio, but 981 

secondly due to the difficulty of obtaining high quality instrumental data (Hall et al., 2014). For example, it is difficult 982 

to detect a statistically significant change resulting from Clausius-Clapeyron scaling at a single rain gauge based on 983 

observed warming rates and typical record lengths (Westra et al., 2013), such that the absence of a statistically 984 

significant result does not necessarily imply the absence of a trend. Single site studies were hence given low weighting 985 

in the meta-analysis. Further, it needs to be acknowledged that a historical trend can only be extrapolated to the future 986 

by assuming the causal relationship remains unchanged, which may not be true (Wasko, 2022; Zhang et al., 2022). 987 

The second line of evidence was the empirical relationship between day-to-day variability in rainfall and surface air 988 

or dew-point temperature for high quantiles of the distribution. Although robust relationships have now been 989 

established globally (Ali et al., 2018, 2021a, b), debate remains over the use of these scaling relationships for 990 

projection as near-surface conditions may not reflect key factors in rainfall production, such as potential future changes 991 

in the vertical temperature profile of the atmosphere or changes to rainfall efficiency. The limitations of the above two 992 
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sources of evidence can be somewhat overcome by the third line of evidence, that is, climate modelling which 993 

explicitly models atmospheric conditions; however, it needs to be acknowledged that not all processes related to 994 

rainfall are resolved (François et al., 2019). Global as well as many regional climate models have large spatial scales 995 

compared to some of the physical processes associated with rainfall (e.g., localised convection) and struggle to 996 

represent some aspects of rainfall occurrence (e.g., short-duration convective rainfall extremes, such as produced by 997 

thunderstorms). Hence, recommendations here are based on an expert evaluation that has combined all the key lines 998 

of evidence, recognising the known limitations of any single line of evidence. 999 

Many jurisdictions rely on the best and most up to date climate change estimates for their climate change flood 1000 

guidance which may come from a single line of evidence such as climate modelling (Chan et al., 2023b; Wasko et al., 1001 

2021b). Using a single line of evidence such as climate modelling has the advantage of maintaining consistency in the 1002 

evidence used for deriving uplift factors between storm durations, rarities, and across diverse climatic regions. Without 1003 

consensus in Australia on the best line of evidence, the aim of the systematic review and metanalysis was to translate 1004 

existing scientific knowledge from multiple lines of evidence to practical flood guidance under climate change. Meta-1005 

analyses are common place in the medical sciences (Field and Gillett, 2010), but to date we are unaware of applications 1006 

of meta-analyses in the assessment of changes to extreme rainfall due to climate change. The lack of standardised 1007 

practices to reporting quantitative results including consistent approaches to reporting standard errors in the physical 1008 

sciences (as opposed to medical sciences) represents a burden to performing meta-analyses. Here this was overcome 1009 

by standardising individual lines of evidence on global temperature. However, combining individual studies relies on 1010 

subjectivity of the experts involved in synthesising the available information. The authors involved in the meta-1011 

analysis represented a wide range of backgrounds including hydrology, climate science, and meteorology, with each 1012 

individual adopting an independent method of synthesis. The similarity of the final best estimates of change between 1013 

the individual authors gives credence to the robustness of the results (Table S3). This suggests the methods here could 1014 

be used to synthesise available evidence for similar studies to transfer scientific knowledge to engineering guidance.  1015 

5.3 Factors omitted and recommendations for future work 1016 
This review focussed on a set of salient factors relevant to design flood estimation, and hence there are some aspects 1017 

that are not covered. Australia has three small regions located in the south-east of the country that currently sustain 1018 

snowpacks over the winter period: the Snowy Mountains region in southern New South Wales, the Victorian Alps, 1019 

and the Tasmania highlands. Studies of the contribution of rain-on-snow events to flood risks have been undertaken 1020 

using simple water budget approaches (Stephens et al., 2016; Nathan and Bowles, 1997). While rain-on-snow events 1021 

dominated the generation of more frequent floods (≥ 1 in 50 AEP), they were less important for more extreme events. 1022 

The key engineering design focus in these regions is related to the overtopping risks of hydroelectric dams; and as 1023 

such, snowmelt floods are considered a localised issue for Australia and are not covered in the national flood guidelines 1024 

(Ball et al., 2019a). 1025 

Design flood practice in Australia, as elsewhere in the world, generally adopts areal lumped temporal patterns in 1026 

combination with a fixed spatial pattern. The information available to characterise this variability is very limited and 1027 

this dearth of evidence poses problems for design flood estimation under stationarity assumptions and limits our ability 1028 
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to estimate the impacts of climate change on flood risks. With climate change, it is important to correctly reflect 1029 

changes in spatial and temporal correlation structures and transition probabilities, particularly for large catchments, 1030 

which are sensitive to spatial variability in rainfalls, or for such applications as the design of linear infrastructure such 1031 

as railways and major highways (Le et al., 2019). It can be expected that the only way the impacts of climate change 1032 

can be considered on the spatio-temporal patterns of extreme rainfall is through a combination of physical modelling 1033 

(e.g., Chang et al. 2016) and careful regional pooling (e.g., Visser et al. 2023). Finally, it is also worth noting that no 1034 

attention is given to the impact of climate change on factors exogenous to storm climatic drivers. An example of this 1035 

is the assessment of water levels in dams, or surcharge flooding from sewer networks. Climate change impacts for 1036 

such assessments are the result of a complex mix of water demands and water management strategies (not to mention 1037 

longer-term climatic conditions) that are not a function of storm events, with such analyses requiring tailored 1038 

approaches for which it is difficult to provide general guidance. 1039 

There is a need for guidance on how to perform flood frequency analysis and continuous simulation under climate 1040 

change, but a lack of consensus remains on how best to perform these (Schlef et al., 2023). While non-stationary flood 1041 

frequency analysis is an attractive prospect due to its use of observed flood data, extrapolating historical trends into 1042 

the future is not justifiable. Rather, Faulkner et al. (2020) advise the use of non-stationary flood frequency analysis as 1043 

a means for obtaining current day estimates. In the case of continuous simulation, stochastically generating reliable 1044 

rainfall sequences remains challenging (Woldemeskel et al., 2016), and under climate change a standard approach for 1045 

deriving rainfall time series remains a research priority (Dale, 2021). Recent research has shown that bias-correcting 1046 

for changes to long-term persistence (interannual variability) is critical for climate change impact studies (Vogel et 1047 

al., 2023; Robertson et al., 2023) and this should be considered moving forward. While event-based methods allow 1048 

the adjustment of the primary flood drivers for climate change, a gap remains to understand under climate change 1049 

which drivers the design flood estimate is most sensitive to, and hence which should be factored for climate change. 1050 

Identifying the drivers with the strongest effects could be addressed by sensitivity/stress testing (Hannaford et al., 1051 

2023) or applying a storyline approach in flood estimation (de Bruijn et al., 2016; Shepherd et al., 2018; Hazeleger et 1052 

al., 2015). This would require an understanding of the causal mechanisms of flood events which remains limited in 1053 

Australia (Wasko and Guo, 2022). 1054 

Finally, the development of climate models with the ability to resolve convection processes in other parts of the world 1055 

(Chan et al., 2020, 2016) suggests the potential for improved simulations and projections of short duration rainfall 1056 

extremes in Australia. Improved projections of short duration extreme rainfalls would be particularly valuable given 1057 

the understanding that these events are increasing at a greater rate than long duration rainfalls. However, a substantial 1058 

constraint to modelling convection processes are the computationally intensive modelling efforts required to cover the 1059 

geographic expanse of Australia. 1060 

6. Summary and conclusions 1061 

This paper describes a review of the scientific literature as it relates to the impact of climate change on design flood 1062 

estimation for Australia. To ensure the review is reproducible and to minimise the potential for bias, we adopted the 1063 
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framework of a systematic review. To be included, studies needed to pertain to either flood risk drivers or a measure 1064 

of the flood hazard itself; how these are impacted on by climate change; and be relevant to Australia. As design flood 1065 

estimation is undertaken using similar methods across the world, knowledge from relevant international research was 1066 

included in addition to the systematic review, particularly in instances where local evidence was limited. The 1067 

conclusions of this systematic review, as they relate to the methods for design flood estimation, are described below 1068 

and summarised in Table 4: 1069 

1. There is a general absence of a scientifically defensible methodology for performing flood frequency analysis 1070 

in the context of projections for a future climate. The extrapolation of a historical temporal trend is not 1071 

recommended, with many studies arguing that any non-stationary flood frequency analysis should ensure 1072 

that the statistical model structure is representative of the processes controlling flooding. But as flood 1073 

processes change with climate change, and with historical data likely to be influenced by other drivers such 1074 

as land-use change, extrapolating historical trends into the future is not considered a viable method for 1075 

developing future estimates of flood risk.  1076 

2. The use of continuous simulation for flood frequency projections requires downscaling and bias-correction 1077 

of GCM outputs to derive hydrologic inputs such as rainfall that represent a future climate. Due to the 1078 

complexity in extracting GCM data and appropriately transforming the GCM data to the local scale, 1079 

approaches of projecting flood frequency through continuous simulation are likely to, at least in the near 1080 

term, remain limited to research applications. Dale (2021) notes that a standard approach for deriving time 1081 

series rainfalls under climate change remains a research priority. If continuous simulation is to be applied, 1082 

careful attention needs to be paid to ensuring downscaling and bias-correction methodologies accurately 1083 

correct both extreme rainfall and long-term variability (persistence) characteristics that are important to 1084 

hydrological applications (Vogel et al., 2023; Robertson et al., 2023). 1085 

3. The primary input into event-based modelling is the IFD rainfall. The IPCC states that the frequency and 1086 

intensity of heavy precipitation events have likely increased due to climate change (Seneviratne et al., 2023). 1087 

Here we find that both daily and sub-daily rainfall are increasing with warming, with the rate of increase 1088 

greater for shorter durations. Moreover, there is emerging evidence that the rarer the rainfall, the greater 1089 

increase, and that increases in sub-daily rainfall extremes are greater in the tropics. However, there is 1090 

currently not enough quantitative evidence across different exceedance probabilities or geographic zones to 1091 

quantify projections of extreme rainfall across different regions of Australia. 1092 

4. Both literature from Australia and across the world provides a consensus view that the PMP is likely 1093 

increasing at the CC rate for daily rainfall. Despite no research on changes in the PMP at the sub-daily scale, 1094 

it appears extreme rainfall increases plateau with increasing severity (Pendergrass, 2018). Hence, as storms 1095 

intensify with climate change due to latent heat release, it can be assumed that changes above the CC scaling 1096 

rate for the rarest of extreme rainfalls at the sub-daily scale can be a taken as representative of changes to the 1097 

PMP for similar durations. 1098 

5. Evidence exists to suggest that temporal patterns will become more front loaded and intense with climate 1099 

change, but evidence for changes in spatial patterns is not conclusive, with changes likely to vary with 1100 
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weather system. Currently, there is no adopted methodology for how to incorporate these changes into design 1101 

flood estimation, or assessment of the impact incorporating such changes will have on the design flood 1102 

estimate. 1103 

6. With climate change, across Australia, catchment soil moisture conditions prior to an extreme rainfall event 1104 

are largely becoming drier and hence losses are projected to increase (Ho et al., 2023). These changes in 1105 

antecedent moisture conditions have been shown to modulate both historical and future frequent floods with  1106 

a lesser impact on rarer floods (Wasko and Nathan, 2019; Wasko et al., 2023).  1107 

7. Sea levels have risen across Australia, impacting estuarine flooding, and resulting in much of Australia’s 1108 

coastline retreating. With future increases in sea level projected with global warming, estuarine flooding 1109 

events will become increasingly predictable. However, the changes to the interaction between coastal sea 1110 

levels and pluvial riverine flooding remain poorly understood. 1111 

 1112 

Table 4. Conclusions of systematic review of climate change science relevant to Australian design flood 1113 

estimation. 1114 

Method Quantity Findings 

Flood frequency 

analysis 

Streamflow No defensible methods were identified for factoring in climate change 

into flood frequency estimates.  

Continuous 

simulation 

Rainfall and 

evaporation 

At present, there are limited studies that describe how to generate 

realistic time series of weather suitable for flood risk estimation. 

Further research is required before there is a continuous simulation 

method suitable for standard practice in design flood estimation. 

Event-based 

estimation 

Extreme rainfall 

(up to and 

including the PMP) 

Heavy precipitation events have increased and will continue to 

increase due to climate change, with the highest rates of increase 

associated with short-duration rainfall. Australia-wide estimates 

(including a central estimate and 'likely’ range) are provided in Table 

1, varying by duration. Whilst there is reason to believe that scaling 

rates will vary both geographically (with higher rates in the north of 

Australia) and by exceedance probability (with higher rates for rarer 

events), insufficient evidence was available to quantify the 

differences in projected changes with location and AEP. It is, 

however, likely that these changes are within the uncertainty intervals 

provided in Table 1.  

 Temporal patterns Temporal patterns may become more front-loaded, with increases in 

peak intensities with climate change, but research on the impact of 

these changes on design flood estimation is lacking. 

 Areal reduction 

factors 

Evidence for changes in spatial patterns with climate change is not 

conclusive. 

 Antecedent 

conditions 

For Australia there is evidence of drying antecedent conditions, 

meaning increased losses in design flood estimation. 

 Sea level 

interaction 

Whilst there is significant evidence that sea levels are increasing and 

will continue to increase due to climate change, the changes to the 

interaction between high ocean levels (due to the combination of high 

astronomic tides and storm surges) and heavy rainfall events remains 

poorly understood. 

 1115 
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To synthesise findings for changes in rainfall intensity quantitatively, a meta-analysis was performed. The uncertainty 1116 

presented in the meta-analysis serves to demonstrate that a single line of evidence is not sufficient for deciding on the 1117 

impact of climate change. As studies vary widely in the approaches and assumptions, multiple lines of evidence should 1118 

be considered in decision making related to climate change, and the latest climate science reviewed in decision making. 1119 

Although Australia is not a climatically homogenous nation, there does not exist enough information to distinguish 1120 

extreme rainfall changes regionally, highlighting the need for continental-scale, high-resolution (convection-1121 

permitting) modelling efforts to help understand the impact of climate change on extreme rainfalls. Nevertheless, there 1122 

is now a large body of work on changes to flood drivers as a result of climate change, and whilst significant uncertainty 1123 

remains, this work can be used to form the basis for producing improved methods for defensible estimates of future 1124 

flood risk.  1125 
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