Preprints
https://doi.org/10.5194/hess-2023-220
https://doi.org/10.5194/hess-2023-220
19 Sep 2023
 | 19 Sep 2023
Status: this preprint is currently under review for the journal HESS.

Check dam impact on sediment loads: example of the Guerbe River in the Swiss Alps – a catchment scale experiment

Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander C. Whittaker, Sebastien Castelltort, and Fritz Schlunegger

Abstract. The construction of check dams is a common human practice around the world where the aim is to reduce the damage by flooding events through mountain streams. However, quantifying the effectiveness of such engineering structures has remained very challenging and requires well-selected case studies, since the outcome of such an evaluation depends on site specific geometric, geologic, and climatic conditions. Conventionally, the check dams’ effectiveness has been estimated using information about how the bedload sediment flux in the stream changes after the check dams are constructed. A permanent lowering of the bedload flux not only points to a success in reducing the probability of sediment transport occurrence but also implies that the sediment input through the system is likely to decrease. Here, we applied two methods (Meyer-Peter Müller versus Recking approach) to estimate and compare the sediment transport in a mountain stream in Switzerland under engineered and non-engineered conditions. Whereas the first approach is a classical equation that is based on flume experiment data with a slope less than 0.02 m/m, the second approach (Recking) has been deviated based on bedload data acquired from active mountain streams under steeper conditions. We selected the Guerbe River situated in the Swiss Alps as a case study, which has been engineered since the end of the 19th century. This has resulted in more than 110 check dams along a c. 5 km reach where sediment has continuously been supplied from adjacent hillslopes, primarily by landsliding. We measured the riverbed grain size, topographic gradients, and river widths within selected segments along this reach. Additionally, a gauging station downstream of the check dams yielded information to calibrate the hydroclimatic situation for the study reach, thus yielding ideal conditions for our catchment-scale experiment. Using the acquired data and the historical runoff dataset covering the time interval between 2009 and 2021 and considering the current engineered conditions, we estimated a mean annual volume of transported bedload which ranges from 900 to 6’000 m3 yr−1. We then envisaged possible channel geometries before the check dams were constructed. We inferred (1) higher energy gradients which we averaged over the length of several check dams and which we considered as a proxy for the steeper river slope under natural conditions; (2) channel widths that are smaller than those measured today, thereby anticipating that the channel was more confined in the past due to the lateral supply of sediments through landsliding; and (3) larger grain size percentiles, which we consider to be similar to the values measured from preserved landslides in the region. Using such potential non-engineered scenarios as constraints, the two equations both point towards a larger sediment flux compared to the engineered state, although the results of these equations differed significantly in magntiude. Whereas the Recking approach returned estimates where the bedload sediment flux is c. 10 times larger in comparison with the current situation, the use of the Meyer-Peter Müller equation predicts an increase of c. 100 times in bedload fluxes for a state without check dams. These results suggest that the check dams in the Guerbe (Gürbe) River are highly efficient not only in regulating sediment transport by decreasing the probability of high sediment flux occurrence during torrential conditions, but also in stabilizing the channel bed by avoiding incision. The most likely consequence is a stabilization of the terrain around such structures by reducing the landslide occurrence.

Ariel Henrique do Prado et al.

Status: open (until 14 Nov 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Ariel Henrique do Prado et al.

Ariel Henrique do Prado et al.

Viewed

Total article views: 54 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
46 8 0 54 2 0 0
  • HTML: 46
  • PDF: 8
  • XML: 0
  • Total: 54
  • Supplement: 2
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 19 Sep 2023)
Cumulative views and downloads (calculated since 19 Sep 2023)

Viewed (geographical distribution)

Total article views: 54 (including HTML, PDF, and XML) Thereof 54 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Sep 2023
Download
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be c. 10 times larger in comparison with the current situation.