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Abstract. Since the start of the 21st century, increasing focus has been put on drought and its wide range of environmental

and socioeconomic effects, particularly in the context of climate change. The detection of drought changes has been done at

different spatiotemporal scales and using different approaches with results that may not be fully comparable. This study aims to

analyze drought trends in the northwestern region of Italy, encompassing the Piedmont and Aosta Valley regions, characterized

by diverse topography and warming rates. The analysis is carried out over the last 60 years using the Standardized Precipita-5

tion Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) at 3- and 12-month timescales and deriving

drought events at the local and regional spatial scales. By leveraging on a continuous and spatially coherent precipitation and

temperature dataset, we explore the temporal and spatial variability of drought conditions and compare and contrust results

obtained with different approaches.

Our results reveal widespread drying trends in the region, with temperature playing a crucial role. SPEI indicates more ex-10

tensive and steeper negative trends than SPI due to temperature increases. However, the onset and cessation of drought events

are predominantly driven by precipitation anomalies, while temperature plays a key role in longer-term drought conditions.

Both SPI and SPEI indices identify consistently local and regional drought periods. In the 1990-2020 period, drought severity,

duration, and intensity have generally increased compared to the 1960-1990 period, even though the change is less significant

that the one obtained by analysing the indices themselves. Interestingly, the spatial scale of the analysis plays a significant15

role in interpreting these trends. Local drought characteristics are more influenced by temperature increases in SPEI, whereas

regional droughts are more affected by precipitation patterns, as seen in SPI, with more frequent short-term droughts aggregat-

ing into longer-term deficits. Drying trends are more pronounced in lower, less rugged areas, while alpine regions show fewer

drought trends. Interestingly, drought characteristics and trends are found to be more correlated to terrain ruggedness than to

mean elevation. Significantly, a clear drying trend is not found at a region-wide level but is instead found when considering ho-20

mogeneous areas defined by terrain ruggedness. Furthermore, changes in the number of drought episodes and in their severity,

duration and intensity are found to be correlated with terrain ruggedness at all time scales.

These findings emphasize the need for high-resolution, region-specific studies to better understand how droughts evolve in

complex terrains like the northwestern Italian Alps. Future research should investigate whether similar outcomes are found in

other regions and what are the potential causes. Together with this study, this is instrumental to evaluate how these trends may25

continue to evolve under projected climate change scenarios.
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1 Introduction

Drought is considered to be one of the main natural disasters, with widespread effects affecting large portions of the world’s

population (Wallemacq et al., 2015) and causing severe financial losses (García-León et al., 2021) and ecosystem impacts

(Crausbay et al., 2020). Drought also has both short- and long-term effects on water availability (IDMP, 2022), which are30

relevant when considering the global increase in water demand in the past and the predicted challenges in meeting that de-

mand in the future (Unesco, 2018; Wada et al., 2016; Burek et al., 2016). These drought-related phenomena are also likely to

become more impacting, as droughts are predicted to become more severe and frequent under climate change conditions (Dai,

2011, 2013; Trenberth et al., 2014; Ward et al., 2020; Pörtner et al., 2022). Understanding if and how changes will occur on a

local scale is thus necessary in order to develop adequate adaptation responses.35

Several studies on meteorological drought trends exist at the global and continental scales (e.g., Ault, 2020; Sergio M.

Vicente-Serrano, 2022; Brian Ayugi, 2022). Many studies have also been carried out in Northern Italy –often in the context of

the wider Mediterranean or alpine region– analyzing either precipitation series (Bordi and Sutera, 2002; Brunetti et al., 2002;

Hoerling et al., 2012; Haslinger and Blöschl, 2017; Pavan et al., 2019) or precipitation and temperature series (Hanel et al.,

2018; Falzoi et al., 2019; Arpa Piemonte and Regione Piemonte, 2020; Baronetti et al., 2020; Vogel et al., 2021). Overall, these40

studies have found an increase in meteorological drought occurrence in North-West Italy, particularly after the 1970s, even in

the cases in which recent drought events have not been found to be exceptional if compared to historical records (Haslinger and

Blöschl, 2017; Hanel et al., 2018). Despite some agreement about the changes in precipitation, the seasonality reported by the

studies differs significantly, with precipitation decrease found either in the winter (Brunetti et al., 2002; Hoerling et al., 2012)

or summer season (Haslinger et al., 2012; Hanel et al., 2018; Pavan et al., 2019). Among these studies, those also considering45

temperature values consistently showed rising temperatures, and thus a rise in evaporative demand, to be a main factor in

drought increase.

Besides drought trends in wider areas, interest in regional expressions of climate change has also been growing. One of the

most investigated regional phenomena is the enhancement of warming rates with elevation, or elevation-dependent warming,

explored both on the basis of surface measurement (Mountain Research Initiative EDW Working Group, 2015, e.g., ) and of50

climate models (e.g., Palazzi et al., 2019). In general, despite conflicting results regarding the presence of an elevation effect

on warming rates and the lack of adequate climate data for mountainous regions, a consensus on enhanced warming rates at

higher altitudes emerges (Rangwala and Miller, 2012; Pepin et al., 2022). The change of orographic precipitation gradients,

i.e. the elevation-dependent precipitation change, have also been widely investigated, with less consensus on the results. A

comprehensive meta-analysis of both in-situ studies of precipitation data from mountainous regions (including the Alps) and55

of global gridded databases from the early 1950s to the late 2010s reported a relative decrease in precipitation compared to

lowlands, although without high confidence (Pepin et al., 2022). Furthermore, analyses such as Giorgi et al. (2016) have shown

the importance of the spatial resolution in understanding processes in topographically complex regions, reporting that increases

in summer precipitation in higher elevation areas of the Alpine range could only be detected by dense observation networks

and described by high-resolution regional climate models.60
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Several studies on meteorological droughts are based on evaluating drought indices, such as SPI (Standardized Precipita-

tion Index) and SPEI (Standardized Precipitation Evapotranspiration Index), giving a statistical interpretation of the temporal

variability of meteorological data. Besides the temporal variability of wetting/drying events, droughts are further characterized

by the duration and intensity of these events, which are relevant and independent indicators of drought characteristics. Less

investigated is the spatial variability in drought characteristics and the change in indices obtained by averaging over different65

areas (Haslinger et al., 2012) and possibly leading to different outcomes in terms of drought magnitude and trends. The spa-

tial dimension is relevant not only when larger or smaller regions experience the adverse effects of droughts but also when

droughts occur on complex terrains, ranging from lowlands, to hills and mountains. In this case, drought characteristics may

differ among terrains and drought impacts may be diversified. Elevation is thus a main factor to be considered to describe this

complexity but may not be the only one.70

Given these considerations, in this study, we aim to tackle the following research questions:

1. Are there temporal trends in drought indices such as SPI and SPEI, and how do these trends translate into changes in the

characteristics of drought events, in terms of duration, severity, and intensity?

2. Is there a relationship between drought trends and topographical characteristics of the landscape? And if so, is elevation

the topographical variable most correlated to these trends?75

3. Do these conclusions change if drought events are defined at different spatial scales?

To investigate these questions, an area such as the western Po river basin is particularly fit. The region is part of the European

Alps that divides the Mediterranean and Continental Europe, with opposite projected changes in precipitation and different

responses to climate oscillations. Also, the region comprises both wide plains, hilly areas, and high mountains, with possible

effects of elevation gradients and topography on drought characteristics and trends. Despite the presence, as detailed above,80

of studies on drought in the chosen region, these lacked either the needed spatial resolution or the focus on different choices

for drought characterization and on possible effects of terrain characteristics on drought conditions. A gridded data set of

precipitation and temperature values obtained from gauging stations distributed at different elevations throughout the domain

and spanning more than 60 years is analyzed by calculating the SPI and SPEI at a 3 month and 12 month time scale. The index

series are analyzed in order to find trends in drought conditions, as well as changes in drought event characteristics (duration,85

severity, intensity) both at point and areal scale. Sections 2.1 and 3 describe the study area, the meteorological dataset and

further data, and the analysis methods, including the SPI and SPEI indices. In Section 4 the results obtained from each analysis

are reported, while in Section 5 the general conclusion derived from the study are discussed.
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Figure 1. Map of the study area, including elevation, river network, mean annual precipitation and mean temperature values.

2 Data

2.1 Study area90

The considered area includes the Piedmont region and the Aosta valley (Figure 1), located in the north-west of Italy, measuring

more than 28000 km2 and together representing the head of the Po river basin. Orographically, it is mainly a mountainous area

surrounded by the Alpine chain, with mountain reliefs occupying half of the area and with the highest peaks lying in the Aosta

Valley, while the plains lie in the central and eastern part of the region.

The area’s reliefs play a key role in defining the area’s climate variability (Arpa Piemonte, 2007): continental air masses from95

the Po plain, moist currents from the Mediterranean sea and north-western Atlantic currents interact with the reliefs leading

to a complex and spatially variable climate (Ciccarelli et al., 2008). Annual precipitation ranges from 700 to more than 1700

mm, with a mean of 1000 mm. Annual precipitation is lowest in the central-west area and in north-western Aosta Valley, while

highest in the norther area (Figure 1). Seasonality in precipitations is bimodal, with maxima in spring and autumn, and minima

in summer and winter. For most of the region (close to 90%) winter is the season with minimum precipitation, and only in the100

south-west area the minimum is in summer; for the western and southern side of the territory (close to 60% of the overall area)

the maximum precipitations occur in autumn, while for the central-eastern part they occur in spring (Perosino and Zaccara,

2006). Mean annual temperatures range from slightly over 13°C near the eastern border to slightly under -3.6°C at highest

altitudes, closely following the altitude of the area.
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2.2 Meteorological data source and processing105

The data used in the analysis is obtained from the North Western Italy Optimal Interpolation (NWIOI) data set (Arpa Piemonte,

Dipartimento Sistemi Provisionali, 2011), calculated and published by the Forecast Systems Department of the Regional En-

vironmental Protection Agency of Piedmont (Dipartimento Sistemi Previsionali - Arpa Piemonte). The data set contains daily

precipitation, and maximum and minimum temperature values over a regular grid covering the domain area with a 0.125°

resolution. The data was obtained through an analysis of the region’s meteorological station network data via the Optimal110

Interpolation method, as detailed in Uboldi et al. (2008).

The method spatially interpolates station data by correcting a previously defined background field based on an "area of

influence" for each station. This area of influence is both horizontal and vertical in the case of temperature stations (tri-

dimensional interpolation) and only horizontal in the case of precipitation stations (two-dimensional interpolation). In any

case, no direct trend relation between the meteorological values and elevation has been evaluated and removed/added from the115

data. The data used in the interpolation method is provided by a gauging network covering both low and high-altitude areas,

with changing availability of the number of available stations in time. Precipitation stations were about 120 till the mid 80s

and have raised to the current 386 sites. Temperature stations were only about 25 in the first period and have then raised to

371. This is why the background field based on ERA40 has been used (see https://www.arpa.piemonte.it/scheda-informativa/

spazializzazione-dei-dati-temperatura-precipitazione-griglia). Even though the change of number of stations in time, and there-120

fore of information, may have an effect on the analyses described below, especially regarding local extreme drought situations,

we believe that the advantage of having a long-term (1950s-2020s) and spatially consistent database is superior to the disad-

vantages due to its potential lack of homogeneity. The NWIOI grid is based on information from a much higher number of

stations than other available datasets for the area (Turco et al., 2013) and it is therefore the most accurate and homogeneous data

product of meteorological variables for the region. For the purpose of the subsequent analysis, 227 (the number of grid points125

inside the domain) series of 783 monthly values (December 1957 - February 2023) of precipitation, maximum and minimum

temperature are calculated.

2.3 Land classification based on elevation

In order to study drought indices in relation to terrain characteristics, elevation values for the studied domain are used from the

EarthEnv-DEM90 digital elevation model (Robinson et al., 2014) with 90 m resolution. Two sets of values are then obtained130

for each grid cell: the mean elevation (average of the elevation values inside a cell) and the terrain ruggedness. The terrain

ruggedness (also known as surface roughness or topographic heterogeneity) is defined as the "deviations in the direction of the

normal vector of a real surface from its ideal or intended form" (Whitehouse, 1994) and quantifies the irregularity of terrain;

similarly to other studies, it is here calculated as the standard deviation of the elevation values inside every grid cell (Habib,

2021).135

The landscape is classified in areas with similar topography. Four distinct areas of an almost equal number of cells are identi-

fied based on terrain ruggedness, which represent the plains, the hilly region, and the lower and higher mountains respectively.
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Figure A1 shows the classified areas and the fact that mean elevation and terrain ruggedness are highly correlated. However, the

advantage of using terrain ruggedness over mean elevation is that, in our study area, the hills in the center-south of the region

are distinguished from the eastern flat part of the region, despite having similar mean elevation. Regardless of its simplicity,140

our terrain ruggedness classification is consistent with what one would obtain with the K3 Mountain classification (Karagulle

et al., 2017), a much more complex categorization based on the Global Mountain Explorer 2.0 platform (Sayre et al., 2018).

3 Methods

This Section presents the methods adopted to tackle the three research questions stated in the introduction of the paper. The

two drought indices, SPI and SPEI, are introduced in Sections 3.1 and 3.2. Then, we explain the methods used for assessing145

their trend in time (Section 3.3), for deriving drought events at the local and regional scale (Sections 3.4 and 3.5), and for

assessing temporal changes of drought characteristics (Section 3.6). Explanation of the methods to analyze the relationship to

terrain characteristics (mean elevation and local terrain ruggedness) is given in Sections 3.3, 3.4 and 3.6.

3.1 Standardized Precipitation Index (SPI)

Monthly precipitation values are used to calculate the Standardized Precipitation Index (McKee et al., 1993) at 3 and 12 month150

scale. The probability distribution chosen for the index calculation is the gamma distribution because, although other possible

distributions have been proposed in the literature (Angelidis et al., 2012), including empirical ones (Laimighofer and Laaha,

2022), no single one was shown to be markedly better than the gamma distribution. Following the standard procedure found in

the literature (Tigkas et al., 2015; Angelidis et al., 2012; Bordi and Sutera, 2002; Hayes et al., 1999), the index is thus obtained

by fitting the gamma probability distribution f(x) = 1
Γ(a)b2x

a−1e−x/b to each month-of-the-year’s series of values. To do this,155

the shape parameter a and the scale parameter b of the gamma distribution are calculated for each series of non-zero values of

each month using the maximum likelihood method (Choi and Wette, 1969). The cumulative probability FX is calculated as:

FX(xi,j) =

xi,j∫
0

f(xi,j)dx=
1

b
aj

j Γ(aj)

xi,j∫
0

x
aj−1

i,j e−xi,j/bj dx (1)

where j is the month index (j = 1,2...12), i is the year index (i= 1,2...n, with n years of records), and Γ(aj) is the gamma

function, i.e.
∫∞
0

yaj−1e−y dy.160

To take the probability of zero values into account (given that the gamma distribution is defined for x ∈ (0,∞)), the zero-

inflated model is defined as:

HX(xi,j) = qj +(1− qj)FX(xi,j) (2)

where qj is the probability of zero precipitation for the j-th month of the year. Finally, the SPI is calculated as the normal

inverse function of HX via the formula:165

SPI(xi,j) =−
√
2Φ−1(HX(xi,j)) (3)
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where Φ−1 is the inverse of the complementary error function:

Φ(x) =
2√
π

∞∫
x

e−t2 dt (4)

The SPI obtained through this method is thus a series of positive and negative values belonging to a normal distribution (µ= 0,

σ = 1): negative (positive) values represent precipitation below (above) the mean, with values lower than -1 denoting drought170

conditions (World Meteorological Organization, 2012). To calculate the index at a different time scale, a moving average is first

applied to each monthly value, with length equal to the desired time scale and only previous data included; data that doesn’t

have enough preceding values to calculate the moving average is discarded. After calculating SPI on this data, each monthly

value of the index describes how the conditions for a period with length equal to the time scale and ending in one particular

month compare with all others in the series. For example, the SPI at 3-month time scale (SPI-3) for the month of July of a175

particular year indicates how much dry/wet the the previous 3 months have been compared with all other May-July periods

in the series. In-built Matlab® functions are used for both the incomplete gamma function and its scale and shape parameters

calculation and the calculation of the normal inverse function.

3.2 Standardized Precipitation Evapotranspiration Index (SPEI)

In order to take into account the effect of evaporative demand on drought episodes, and for comparison with SPI values, the180

Standardized Precipitation Evapotranspiration Index (Vicente-Serrano et al., 2010) is calculated at 3 and 12-month scale. The

procedure for calculating the index is the same as the SPI, but the data analyzed is a series of monthly precipitation minus

reference evapotranspiration (ET0, in mm) values and a log-logistic probability distribution is used. Temperature data was used

to calculate monthly ET0 values using the Hargreaves formula (Hargreaves and Samani, 1985), following the recommenda-

tions for SPEI calculation (Beguería et al., 2014). Probability Weighted Moments (PWMs) using Hosking’s unbiased method185

(Hosking, 1986) were used to calculate the α, β and γ parameters of the log-normal distribution for each month of the year,

according to the formulae (again according to the recommendations for the index calculations found in Beguería et al., 2014):

wsj =
1

N

N∑
i=1

(
N−i
s

)
di,j(

N−1
s

) (5)

βj =
2w1j −w0j

6w1j −w0j − 6w2j

(6)190

αj =
(w0j − 2w1j )βj

Γ(1+1/βj)Γ(1− 1/βj)
(7)

γj = w0j −αjΓ(1+1/βj)Γ(1− 1/βj) (8)
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where di,j are the precipitation minus ET0 values for a given month j of the year i and wsj are the s order of the PWM for the195

month j. Using the αj , βj and γj parameters the log-logistic distribution is calculated as:

FD(di,j) =

[
1+

(
αj

di,j − γj

)βj
]−1

(9)

Finally, this FD distribution is transformed into a normal distribution to obtain the SPEI values. Again, moving average win-

dows are applied to the input data in order to obtain different time scales. The distribution was shown to be well suited to

analyze the data, as calculations obtained a finite solution for all series.200

3.3 Trend analysis

Drought index series are analyzed in order to search for significant (at 5% significance) trends. The trends are estimated

using the Theil-Sen slope estimator (Theil, 1950; Sen, 1968), i.e., by calculating the median slope between the indices values

for all possible month pairs. The significance test is performed through the Mann-Kendall test (Mann, 1945), which is a

non-parametric (distribution-free) alternative to the linear regression slope test available in regression analysis. To improve205

the power of the test, deseasonalization and pre-whitening of the data are performed. Deseasonalization is performed by

subtracting the mean of the detrended temperature series for each month using the Climate Data Toolbox (Greene et al., 2019).

The autocorrelation of the series (given that a moving average is applied at 3 and 12 month time scale) is taken into account by

also applying different pre-whitening methods before performing trend analysis. These method are the simple Pre-Whitening

method (PW, Kulkarni and Storch, 1995), the Trend Free Pre-Whitening method (TFPW, Yue et al., 2002) and the Variance210

Corrected Trend Free Pre-Whitening method (VCTFPW, Wang et al., 2015). The different results are used to obtain one trend

evaluation by applying the 3PW algorithm (Collaud Coen et al., 2020), which, for the purpose of this study, is as follows: (a) if

the lag-1 autocorrelation of the data is significant (following a normal distribution at the two-sided 95% confidence interval),

the PW and TFPW series are obtained from the original series; (b) the trend is considered significant if both processed series

return significant trends using the Mann-Kendall test; and (c) the slope of the significant trend is given as the Sen’s slope of215

the VCTFPW series. If the lag-1 autocorrelation of a series is found not to be significant, trend analysis is performed on the

un-modified data.

In order to identify whether different trends in the drought indices occur in areas with different landscape characteristics, the

classification of the research area in four classes is used, as described in Section 2.3.

3.4 Local drought analysis220

Each SPI/SPEI series obtained for the cells of the data grid (Section 2) is analyzed pixel-by-pixel through a “run analysis”,

at both time scales, in order to identify local drought events and study local drought characteristics. Based on run theory

(Yevjevich, 1967), a drought run is a series of consecutive months under a certain threshold (-1, corresponding to a moderately

dry condition in the SPI classification). Adding onto this definition, in the present study, the negative values leading and

following a period under the -1 threshold are here counted as part of the runs, in order to capture events where a deficit is225
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Figure 2. Drought runs examples, highlighted in orange. (a) Runs obtained with a simple -1 threshold (not used in this paper). (b) Run

defined by a threshold and by including their onset and offset, i.e. all negative values before and after the values under the threshold (as used

in this paper). In both cases DSL is the sum of the index value during the run, DDL is the length of each run and DIL is the mean index value

during the run.

not fully recovered from (see Figure 2). Drought run characteristics are then calculated for each local drought event (Caloiero

et al., 2021):

– Drought Duration (DDL) is the length of the drought run, reported in months for this study;

– Drought Severity (DSL) is the cumulative value of the index during each run;

– Drought Intensity (DIL) is the ratio between the DSL and DDL value of a run, i.e. the average index value during the run.230

– Drought maximum Intensity (DmaxIL) is the maximum (without sign) index value during the run.

Given a series of drought runs calculated from an index series, the average values of these characteristics for all runs are reported

as DDL, DSL and DIL. Pedex L indicates that these are local drought characteristics, as opposed to drought characteristics

calculated over multiple grid points.

To quantify the level of correspondence between local droughts by SPI and SPEI, each cell’s series is transformed into a235

binary series of zeros and ones, where 1 denotes the occurrence of a drought, and the Cohen’s kappa (Cohen, 1960) between

the series is calculated as a measure of agreement, with 0 and 1 denoting no agreement and complete agreement respectively.

In order to identify whether different trends in the drought indices occur in areas with different landscape characteristics,

correlations between terrain characteristics and trend values are quantified by calculating both the Pearson and the Spearman

correlation coefficients (Shevlyakov and Oja, 2016).240
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3.5 Region-wide drought event analysis

In order to include the spatial dimension in the study of droughts and to describe the coupled spatio-temporal characteristics of

drought runs, the following approach is taken, similarly to González-Hidalgo et al. (2018), Baronetti et al. (2020) and Baronetti

et al. (2022). In contrast to local droughts, which are calculated from a series of index values belonging to one cell, region-

wide drought events are evaluated by considering what happens in the entire region. So, for example, during a region-wide245

drought event, a certain percentage of the domain will be in drought conditions (below the -1 drought index threshold); each

of these cells will therefore be experiencing a local drought. Region-wide drought events are detected through the use of two

thresholds: (1) an index threshold, based on the SPI/SPEI values (cells with an index lower than -1 are considered to be in

drought condition); and (2) an area threshold (a drought episode is considered in progress when at least 25% of the domain

is in drought condition). Note that the additional threshold on the minimum duration threshold of 3 weeks used in González-250

Hidalgo et al. (2018), Baronetti et al. (2020), and Baronetti et al. (2022) is always met as monthly data is used in this analysis.

In addition to two thresholds listed above, the drought events’ onset and offset, meaning the periods below the 25% drought

area threshold before and after a period above the threshold, were also included in the drought event itself. This approach

is useful in considering persisting drought conditions as one continuous event while still maintaining well-defined episodes,

similar to the proposed local drought definition (see Figure 2).255

Similarly to local drought, different characteristics are calculated for each region-wide drought event:

– Drought event Duration (DDE) is the length of the drought event;

– Drought event Severity (DSE) is the sum of the drought index of each cell in drought condition for the duration of the

event, divided by the total number of cells in the domain;

– Drought event Intensity (DIE) is the mean of the local intensity for each cell that has been part of the drought event.260

Intensity for each cell is calculated as the sum of the drought index below the -1 threshold divided by the number of

months where the index was lower than -1.

– Drought Area (DAE) is the average number of cells in drought condition during the event;

Given a series of region-wide drought events calculated from the index series for all cells in the domain, the average value of

these characteristics for all events is reported as DDE, DSE, DIE and DAE.265

3.6 Change analysis of drought characteristics

In order to evaluate the significance of the change in average drought characteristics between the periods 1958-1990 and 1990-

2023 (approximately the first and second half of the series), the two sample t-test (Rasch et al., 2011) is applied to DSL,

DDL and DIL (as well as DSE, DDE, DIE and DAE) calculated for the drought periods starting before and after January 1990,

respectively. After obtaining the values pre and post 1990, their sample mean and standard deviations are calculated, and the270
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test statistic t is calculated as

t=
DCpost −DCpre

s
(10)

where DC is the mean of a certain drought characteristics for all drought runs/events before/after 1990 and s:

s=

√
σ2
post

npost
+

σ2
pre

npre
(11)

where σ is the standard deviation of a certain drought characteristics for all drought run/events before and after 1990 and n275

the number of run/events for the two periods. t is then compared with the critical value of the statistic at a 5% significance

level. Given that no assumptions about the variance of the two ensembles were made, and given the different number of runs

in the two periods, the degrees of freedom needed for the calculation of the critical value were approximated through the

Welch-Satterthwaite equation (Welch, 1947).

Similarly to what is done for trends in drought indices, the correlation between changes in local drought characteristics and280

terrain characteristics (mean elevation and ruggedness) are quantified by the Pearson and the Spearman correlation coefficients

(Shevlyakov and Oja, 2016).

4 Results

The following sections report the results of the analyses of drought indices (Section 4.1), local drought events (Section 4.2)

and region-wide drought events (Section 4.3). For the first two analyses, the correlation of temporal trends with topographic285

characteristics of the landscape is reported in each section.

4.1 Trends in the drought indices

Drought indices, i.e. SPI and SPEI, calculated from the precipitation and temperature series of each cell in the region are

analyzed in order to find possible trends in drought conditions. Given the nature of SPI, as described in Section 3.1, negative

trends indicate a tendency for precipitation to be below the series’s mean value. This means that both wet and dry periods have290

seen on average reduced precipitation, and thus that drought conditions, when occurring, have become worse. For the SPEI,

described in Section 3.2, the trend interpretation is the same, but instead of precipitation a climatic water balance between

precipitation and potential evapotranspiration is considered. Furthermore, trend analysis on indices at the shorter 3-month time

scale and the longer 12-month time scale indicates, respectively, how drought conditions might have evolved over smaller time

scales, closer to the response time of soil moisture conditions to meteorological conditions, and over larger time scales, closer295

to the response time of reservoirs and groundwater levels to meteorological conditions.

Trend analysis on SPI-3 and SPI-12 values shows a majority of cells with significant negative trends (and thus a tendency

towards dryer conditions). A majority of cells (almost 70%) shows negative SPI trends at both 3 and 12-month time scale,

although SPI-12 indicates dryer conditions over time compared to SPI-3 (Figure 3a-b). Trend analysis for SPEI-3 and SPEI-12
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Figure 3. Trend analysis on drought indices. (a) SPI-3 trends. (b) SPEI-3 trends. (c) SPI-12 trends. (d) SPEI-12 trends. Cells containing a dot

denote significant trends at 5% significance. (e) Frequency histogram of significant trends per distribution of trends’ Sen-slope coefficients,

with dashed lines representing the respective mean values of indexes. (f) Trend analysis on drought indices calculated from data belonging to

areas defined by terrain ruggedness inside cells. The colour of the circles represents the slope coefficient of the trend, while the inner radius

of the circles represents the significance of the trend (a smaller inner radius represents a more significant trend). The black circles denote a

significance level of 5%. (g) Representation of terrain ruggedness classes (see Figure A1 for more details on their definition).

displays a similar time scale effect, with the longer time scale having a higher number of cells with significant trends (although300

with 79% of cells showing trends for both time scales) and, on average, greater slope coefficients (Figure 3c-d). The clearest

differences emerge by comparing the results obtained by SPI and SPEI (Figure 3e). At both time scales, SPEI shows a far

wider region heading towards dryer conditions (more than twice the cells found with SPI), and at a faster rate, given the slope

coefficients.

From observing Panels a-d of Figure 3, clear and consistent spatial patterns are visible. The terrain characteristics align305

well, especially for the SPEI analysis. Even though terrain elevation is to be considered a potential variable correlated to trend

patterns, an expert observer (or simply someone grown in the region) would spot the fact that the majority of the significant

positive trends occur in flat areas, not necessarily the lower ones. Figures 3f-g show that, if terrain ruggedness is used to

subdivide the area into regions with similar sizes, the low elevated areas (classes A and B), especially the flat ones (class A),

show the strongest and most significant trends for both SPI and SPEI at both 3- and 12-month timescales. Classifying the area310

by terrain mean elevation (not shown here) gives similar results, i.e., a significant difference between the alpine range and the
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plain area of the domain with worsening drought conditions for the latter, but with smaller differences between the two classes

with lower elevation.

4.2 Local drought analysis

After analyzing how the general drought conditions in the region have changed over time, the effects of such changes on the315

characteristics of local drought periods are investigated through a run analysis (see Section 3.4). First, the characteristics of

local droughts in the region are described as a baseline; then, possible temporal changes in their number, severity, duration and

intensity are investigated.

4.2.1 Local droughts characteristics

Despite the differences in observed trends detailed in the previous section, the detection of local droughts by SPI and SPEI320

shows a high level of correspondence for both 3 and 12-month time scales. The mean Cohen’s kappa (Cohen, 1960) kappa

value is slightly higher at the 3-month scale (mean kappa equal to 0.86) than at the 12-month scale (mean kappa equal to 0.81),

but always higher than 0.5: this means that there is always good to excellent agreement between the identification of drought

runs based on SPI and SPEI. Therefore, given that SPI drought runs are based only on precipitation values, it can be stated

that a majority of local droughts are determined by precipitation deficits, with temperature itself having a smaller influence on325

single events, and a greater influence on overall trends (as seen in the comparison between drought indices trends reported in

Section 4.1).

In the analysis of local drought characteristics (Figures 4), the longer time scale shows, both for SPI and SPEI, a lower

number of runs, but with higher severity (DSL) and duration (DDL). Drought intensity (DIL) values are instead similar between

the two time scales, although slightly greater at the 3-month scale. Despite the difference in absolute values, drought analysis330

indicates a higher number of local droughts, a higher DSL and DDL for SPEI runs compared to SPI runs at both time scales.

Thus, when considering both precipitation and ET0, a greater number of longer and more severe drought periods are detected,

compared to the less numerous and shorter periods detected using only precipitation.

One significant difference emerges when comparing the mean drought intensity (DIL) values. Average drought intensity is

lower for SPEI-3 runs compared to SPI-3, while slightly greater for SPEI-12 compared to SPI-12. This seems to be due to the335

lower index values reported by SPI-3 compared with SPI-12. The mean negative minimum values during the drought runs are

lower for SPI than for SPEI at both 3 months (−1.65±0.05 for SPI and −1.47±0.03 for SPEI) and 12 months (−1.52±0.07

for SPI and −1.46± 0.06 for SPEI) time scales, but, while SPEI values remain almost constant, SPI values show less negative

mean minimum values at the longer time scale. This fact, combined with the similarly longer SPEI droughts at both time scales

leads to the slightly higher DIL for SPEI-12.340

Regarding the spatial distribution of mean local drought characteristics (number of runs, DSL, DDL and DIL), SPI and SPEI

show similar results when compared at the same time scale, while deviating significantly between 3 and 12-month time scales.

SPI-3 and SPEI-3 drought characteristics do not display clear spatial gradients but do display some correlation with mean

elevation and terrain ruggedness (Table 1, where only Pearson correlations are reported because Spearman correlations give
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Figure 4. Spatial distribution of drought run characteristics at 3- and 12-month time scales. SPI-3’s number of runs (a), average severity of

local drought DSL (b), average length of local drought DDL (c), average intensity of local drought DIL (d). SPEI-3’s number of runs (e),

DSL (f), DDL (g), DIL (h). SPI-12’s number of runs (i), average severity of local drought DSL (l), average length of local drought DDL (m),

average intensity of local drought DIL (n). SPEI-12’s number of runs (o), DSL (p), DDL (q), DIL (r).
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Table 1. Pearson correlation coefficients between mean drought characteristics and mean elevation (EL) or terrain ruggedness (RG), for both

SPI and SPEI at 3 an 12 month time scale. Values in italic font denote significant correlation at 5% significance.

Number of runs DSL DDL DIL

EL RG EL RG EL RG EL RG

SPI-3 -0.50 -0.40 -0.35 -0.22 0.44 0.29 0.28 0.21

SPEI-3 -0.29 -0.22 -0.15 -0.06 0.14 0.02 -0.05 -0.23

SPI-12 0.06 0.18 0.13 0.23 -0.11 -0.21 0.18 0.23

SPEI-12 0.04 0.19 0.05 0.19 -0.07 -0.21 0.01 -0.03

very similar results). In particular, when areas at a higher mean elevation are considered, a lower number of more severe, longer345

and, for SPI-3 only, less intense droughts are reported (although with some differences in the degree of correlation). Altogether,

these results indicate that, on shorter time scales, droughts in higher mean elevation areas tend to be more clustered. Even so,

visual inspection of the spatial distribution of local drought characteristics for SPI-3 and SPEI-3 (see Figure 4a-h) shows that

spatial variability of characteristics is overall quite high. Conversely, the higher mean elevation points of the mountainous part

of the domain do show quite uniform drought characteristics consistent with the observed correlations. It can therefore be350

stated that, despite some significant effects of mean elevation on the characteristics of drought periods, local orography and

meteorological conditions play a key role. When considering terrain ruggedness, the resulting correlation values are generally

less significant than for mean elevation at the 3-month scale but more significant at the 12-month scale. SPI-12 and SPEI-12 run

characteristics display no spatial gradient (see Figure 4i-r) and no correlation with mean elevation in terms of number, severity

and duration of runs. The only statistically significant correlation found is with SPI-12’s DIL, with higher mean elevation areas355

reporting less intense events, coherent with the results obtained for SPI-3. Conversely, indices at the 12 month scale have

significant correlations with terrain ruggedness for the number of runs and their DSL and DDL, with rugged terrain reporting

less numerous, less severe and shorter droughts.

4.2.2 Temporal analysis of local drought characteristics

Trend analysis on the obtained local drought characteristics reports only a few cells (always less than 3% of the domain)360

showing significant changes for drought duration, severity and intensity (DDL, DSL and DIL) (Figure 5). In comparison, SPEI-

3 shows a far greater amount of cells, slightly more than 10% of the total area, with significant increasing trends for DSL and

DIL, distributed almost exclusively along the alpine chain, particularly near the southern border. The yearly predicted change,

in terms of percentage of the relative DSL/DIL for the cell, ranges from 1 to 11% and 0.01 to 1% for severity and intensity

respectively.365

Despite the overall lack of significant trends, clear differences can be found between the characteristics of drought runs that

started before and after 1990, approximately at half the series’ length. SPI-3 and SPEI-3 display on average an increase in
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Figure 5. Cells with significant changes in mean drought characteristics between the 1958-1990 and 1990-2023 periods according to the

two sample t-test. (a) Mean drought severity (DSL) increase, (b) Mean drought duration (DDL) increase, (c) Mean drought severity (DSL)

decrease, (d) Mean drought duration (DDL) decrease.

the number of droughts (more markedly in the case of SPEI-3), and in their DIL. Opposite results are found in terms of DSL

and DDL, with SPI-3 indicating a shift towards less severe and shorter droughts, and vice-versa for SPEI-3. Significantly, this

difference seems to be caused mainly by cells located in the flat part of the region, where SPEI-3 indicates a shift towards370

greater DSL and DDL (not shown here). The rest of the region shows similar results for the two indices. The alpine chain,

especially in the north, shows a shift towards a higher number of less severe, shorter and less intense droughts. SPI-12 and

SPEI-12, on the other hand, report agreeing results and show on average a change towards a lower number of more severe,

longer and more intense droughts across the domain. The only exception is the alpine chain, where for a small but continuous

area a change towards less numerous, less severe, shorter and less intense droughts is found.375

These relative changes are highly correlated to the mean cell elevation and, even more so, to the ruggedness of the area

(Table 2). Only Pearson correlations are reported in the table because Spearman correlations give very similar results. For
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Table 2. Pearson correlation coefficients between change in mean drought characteristics pre- and post-1990 and mean elevation (EL) and

terrain ruggedness (RG), for both SPI and SPEI at 3 an 12 month time scale. Values in italic font denote significant correlation at 5%

significance.

∆Number of runs ∆DSL ∆DDL ∆DIL

EL RG EL RG EL RG EL RG

SPI-3 0.06 0.18 0.29 0.42 -0.23 -0.37 0.36 0.41

SPEI-3 0.24 0.23 0.20 0.38 -0.21 -0.38 0.13 0.26

SPI-12 -0.28 -0.33 0.16 0.25 -0.19 -0.27 0.04 0.09

SPEI-12 -0.15 -0.25 0.16 0.32 -0.15 -0.30 0.15 0.28

example, at the 3-month scale, the flat part of the region has seen a change towards less numerous, more severe, longer and

more intense droughts, while the alpine chain shows an opposite change. Changes in SPEI-12 run characteristics also display

a similar correlation for DSL, DDL and DIL but opposite in terms of number of droughts. Therefore, it seems that SPEI-12380

droughts got more numerous, more severe, longer and more intense in the lowlands, and, although not quite as strongly, the

opposite has happened in the alpine chain. SPI-12 does show an increase in the number, severity and duration of droughts in

the lowlands and a decrease in the mountains, but no correlation for DIL.

Changes in local drought characteristics, as opposed to average values, report higher correlation with terrain ruggedness

than with mean elevation. Overall, correlation values are also higher than those found for average local drought characteristics,385

and visual inspection of the spatial distribution (not shown here) does show a quite homogeneous distribution of drought

characteristics change between the mountains (especially on the windward side, i.e. the one facing the Po plain) and the plains

and hills. The only outliers are the Aosta valley in the nord-west and another valley close to the western border, with changes

often in common with the lowlands.

Still, most of the changes found by comparing the two periods are not found to be significant according to the two sample390

t-test, and thus do not denote a change in the probability distribution of local drought characteristics. The cells with significant

changes (reported in Figure 5) are mostly distributed between two areas: changes towards more severe (according to SPI-12,

SPEI-3 and SPEI-12), longer (by both indices at the 3 month scale) and more intense (by both indices at the 12 month scale)

droughts are reported for the eastern-most part of the domain; changes towards less severe and shorter droughts are reported

mostly in the northern part of the alpine chain for SPI/SPEI at the 3 month scale, while almost no significant shifts towards less395

intense local droughts are reported.

4.3 Region-wide drought event analysis

This section shows the results obtained from the analysis of region wide drought events (see Section 4.3). Similarly to the

previous sections, both the characteristics of drought events and their change over time are discussed.
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Figure 6. Region-wide drought event analysis conducted on SPEI-12. (a) Time series of percentage of cells in drought condition (only the

portion below the -1 threshold, upper part of the diagram) and minimum index value in the domain (lower part of the diagram). Each event is

highlighted in yellow and labeled. (b) Drought event characteristics: drought intensity (DIE), mean drought area (DAE) and drought severity

(DSE).

4.3.1 Drought event characteristics400

Region-wide drought events are calculated from SPI and SPEI index series at 3 and 12 month scales. As the most interesting

example, Figure 6 shows the result for SPEI-12. The analysis displays similar results between the two indices at the same time

scale, with all main events identified by both SPI and SPEI, and high agreement between the extent of the area in drought

conditions over time. The analysis at the 3-month scale reports about 60 events (see supplementary Figure A2), while the

analysis at the 12-month scale (for SPEI-12 see Figure 6, for SPI-12 see supplementary Figure A3) reports less than 20 events.405

Region-wide drought events at the longer time scale are also far more severe and longer than those at the shorter time scale, but

intensity and area values are similar. Regarding relative differences between the drought characteristics between SPI and SPEI

at both time scales, DSE is similar between the two indices, DDE is higher for SPEI, and both DIE and DAE are higher for SPI.

On the other hand, when considering the mean highest area affected by drought conditions in every single event both indices

report similar results at both time scales. Overall, this indicates that the same deficit tends to affect a slightly wider area, with a410

higher intensity but for less time when only precipitation is considered, while it tends to affect the same overall area with less

intensity and for a longer time when both precipitation and temperature are considered.

Region-wide drought event analysis on SPI-12 and SPEI-12 was also useful in indicating the main drought events that

happened in the region in the last 60 years. Of these, the last one, starting in the winter of 2021 and still ongoing at the end

of the available data timeseries, was identified as perhaps the most extreme in the series. In particular, the wide area affected415

by drought during this event and its severity, second only to the longest 2001-2008 event, mark it as an exceptional drought

for the region. The intensity value is also the highest of all detected events, but this may not be significant given that this last
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Table 3. Drought event characteristics before and after 1990. Values in italic font font denote significant differences between the two distri-

butions at 5% significance.

Number of events DSE DDE (months) DIE DAE (%)

Pre 1990 Post 1990 Pre 1990 Post 1990 Pre 1990 Post 1990 Pre 1990 Post 1990 Pre 1990 Post 1990

SPI-3 31 28 -3.24 -3.30 5.68 5.90 -1.45 -1.50 38.51 35.13

SPEI-3 27 32 -3.10 -3.40 6.18 6.56 -1.32 -1.36 37.50 32.05

SPI-12 12 5 -7.14 -19.34 14.33 36.60 -1.37 -1.42 31.61 32.05

SPEI-12 11 7 -6.92 -16.14 20.27 32.28 -1.31 -1.39 24.24 30.77

event had not yet ended at the time the analysis was done. Certainly, the fact that its severity is higher than the severity of the

2001-2002 event as detected through SPEI-12, also adds to how exceptional this last event is.

4.3.2 Temporal analysis of drought event characteristics420

Trend analysis reports no significant results for the drought characteristics of region-wide drought events. Confronting the

values before and after 1990 does show results consistent with those found for local droughts (Table 3): drought events have

become more severe, longer and more intense at both time scales. Also similar to drought runs, the number of drought events

has increased at the shorter 3-month time scale while it has decreased at the longer 12-month scale. Another difference is in

the DAE, which has decreased at the 3-month time scale and has increased at the 12-month time scale. Overall, this seems to425

indicate that, on a region-wide level, drought conditions have worsened between the periods 1960-1990 and 1990-2020, with

short-term deficits becoming more common over slightly smaller areas, leading to more generalised deficits over wider areas

at the longer time scales. Despite many of the described changes not being significant according to the two-sample t-test, DSE

and DDE for SPI-12 do report a statistically significant shift in the mean before and after 1990. Changes in DSE and DDE for

SPEI-12 also report p-values close to the 5% level, although not falling below the 5% threshold. This seems to confirm that the430

shift towards worse region-wide drought conditions (higher severity and longer duration) is more evident at longer time scales,

and that this shift is mainly caused by a change in precipitation patterns. Despite the apparent importance of precipitation, the

only significant trend in terms of the percentage of the domain in drought conditions (index lower than -1) over time is found

for SPEI-12, with a slope coefficient of 2.92× 10−4/year.

5 Discussion and conclusion435

In this study, 60 years of precipitation and temperature data are analyzed in order to characterise changes in drought conditions

in the Piedmont and Aosta Valley area. In Section 1 three questions were posed. The first question asked whether there are

temporal trends in drought indices such as SPI and SPEI, and how do these trends translate into changes in the characteristics
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of drought events (in terms of duration, severity, and intensity). Evidence of widespread drying trends in the region is found

through the trend analysis of SPI and SPEI series. Temperature plays a key role in defining these drying trends, as the SPEI440

reports negative trends for wider areas and with greater slope coefficients than SPI. This is to be expected given the clear trends

in temperature due to climate change and is consistent with other studies conducted in the area (see e.g., Falzoi et al., 2019;

Baronetti et al., 2020). When moving from drought indices to drought event identification, it is interesting to note that the

start and end of single drought periods seem to be mainly determined by precipitation anomalies, in contrast to the importance

of temperature in determining long-term conditions. Despite the worsening of drought conditions related to precipitation and445

temperature being clear, the effects on the characteristics of individual drought events are weaker. Some evidence of an increase

in the severity, duration and intensity of drought periods after 1990 is found, although often not statistically significant. A

tendency for drought periods at 3-month time scale to become more numerous, and for drought periods at 12-month time scale

to become less numerous is observed, both at a local and regional scale. Thus, while the percentage of time under drought

conditions has become greater at both time scales, it seems that a larger amount of short-term deficits aggregate into long-450

term deficits with higher duration. In addition to this, a significant positive trend in the percentage of the area under drought

conditions according to SPEI-12 is detected. Overall, however, changes in local drought characteristics between the two halves

of the analysed series are seldom significant, making it difficult to assess whether the increase in severity, duration and intensity

of drought periods is actually part of a general tendency, that would be coherent with the detected worsening drought conditions.

The higher resolution of the analyzed data, compared to previous studies, makes it possible to show quite heterogeneous455

results regarding the presence of drying/wetting trends, as well as drought characteristics, in different portions of the region. As

a possible explanation of this result, our analysis studies relations between terrain characteristics and drought characteristics,

finding several significant correlations. This type of analysis is in common with a growing body of literature focused on

the elevation effects on drought characteristics, with studies conducted in the Qinghai–Tibet plateau (Feng et al., 2020), the

Lorestan province in Iran (Hosseini et al., 2020), the Indus river basin (Dubey et al., 2023) and the Canary Islands (Carrillo460

et al., 2023). These studies, using mean elevation as a topographic variable, find different results in regards to the distribution

of drought trends at high/low elevations, and as such no general claim about the tendency of different elevation areas to show

drying/wetting trends can be made. The second question in the introductory section asked whether there is a relationship

between drought trends and topographical characteristics of the landscape and, if so, whether elevation is the topographical

variable most correlated to these trends. Terrain characteristics and mean elevation show significant influence on the observed465

trends and changes in drought characteristics, with drying trends being more severe the lower and less rugged the area. In fact,

when the mountainous parts and the flat part of the domain are considered separately, the first shows no significant drought

trends, while the second reports significant drying trends for both SPI and SPEI at multiple timescales. This is particularly

true for the flat areas of the region, where trends are stronger than in low elevated rugged (hilly) areas. In the case of drought

period characteristics, decreases in their severity, duration and intensity are mostly found in the alpine range, while increases470

are mostly found in the smoother and low lying areas. Overall, drought characteristics and changes in time seem to be better

correlated to the terrain ruggedness than to elevation alone. Thus, our finding of more severe drying trends and worsening

drought characteristics in the lower altitude part of the region proves the importance of considering topographic effects in
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areas with highly diverse terrain. More importantly, our study shows that mean elevation, although certainly a variable to be

considered, shouldn’t be the only topographic variable taken into account.475

The third question in the introductory section asked whether the outcomes depend on the chosen spatial scale of the analysis.

Interestingly, the local drought analysis and the region-wide analysis result in some differences. Changes in the characteristics

of local drought periods are affected by temperature increase, as drought periods obtained from SPEI series show more pro-

nounced increases in severity, duration and intensity than those obtained from SPI series. Contrary to this, drought events at a

region-wide scale show more marked shifts in severity and duration for SPI than for SPEI, denoting a more significant influence480

of regional precipitation patterns than of temperature on droughts at a regional scale. It would be of interest to understand if

this is valid for the region of interest, north-western Italy, or if a similar result could be valid in other areas of the world, and,

more generally, what could be the causes, from a meteorological and climatic point of view.

The same consideration can be done for the other results of our analyses. Although strong correlations between drought

trends and the mean elevation and ruggedness of the terrain are found, the attribution of these results to physical phenomena485

is not straightforward. The presented methodology doesn’t focus on this aspect and, given the complexity of the involved

phenomena, attribution is outside the scope of our study. However, our finding of different meteorological conditions between

the alpine chain and the surrounding Po plain is consistent with other studies concerning the presence of an increase in alpine

summer convective precipitation not in common with the surrounding areas (Giorgi et al., 2016; Grose et al., 2019).

In this study we restrict our focus to near-past and current conditions and do not consider predictions of future conditions490

(although strong drying trends in some portions of the study area are detected). Further research is needed to study how the

local and regional drought characteristics of areas at different elevations and with different reliefs may evolve under climate

change. Still, the results presented in this paper can be useful not only for the Piedmont and Aosta Valley region, where they

could be the input for analyses of soil moisture and hydrological droughts, but also for other areas and for drought research in

general, showing the need to conduct drought studies at different spatio-temporal scales, showing the need to consider areas495

with distinct topographical features as well as giving an indication of which areas are more likely to face dryer conditions.

Data availability. The data that support the findings of this study are openly available in the NWIOI data set at

https://www.arpa.piemonte.it/rischinaturali/tematismi/clima/confronti-storici/dati/dati.html

maintained and updated by the Forecast Systems Department of the Regional Environmental Protection Agency of Piedmont (Dipartimento

Sistemi Previsionali - Arpa Piemonte).500
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Appendix A: Supplementary figures

Figure A1. Areas classified using mean cell elevation and terrain ruggedness, calculated as the standard deviation of elevation values inside

each cell. (a-d) Areas belonging to classes defined based on terrain ruggedness, corresponding to the A to D areas cited in Figure 3. (e)

Empirical cumulative distribution function (eCDF) of the terrain ruggedness values. (F) Scatter plot between terrain ruggedness and mean

elevation for each cell and relative Pearson correlation coefficient.
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Figure A2. Region-wide drought event analysis conducted on the indices at 3 month scale. (a) Series of percentage of cells in drought

condition (below the -1 threshold) and the minimum index value in the domain for SPI-3. (b) Drought event characteristics for SPI-3. (c)

Series of percentage of cells in drought condition (below the -1 threshold) and the minimum index value in the domain for SPEI-3. (d)

Drought event characteristics for SPEI-3.

Figure A3. Region-wide drought event analysis conducted on SPI-12. (a) Series of percentage of cells in drought condition (below the -1

threshold) and the minimum index value in the domain. Each event is highlighted in yellow and labeled. (b) Drought event characteristics.
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