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Abstract.  

 20 

The uncertainty of hydrological forecasts is strongly related to the uncertainty of the rainfall field due to the nonlinear 

relationship between the spatio-temporal pattern of rainfall and runoff. Rain gauges are typically considered as reference 

data to rebuild precipitation fields. However, due to the density and the distribution variability of the raingauge network, 

the rebuilding of the precipitation field can be affected by severe errors which compromise the hydrological simulation 

output. On the other hand, retrievals obtained from remote sensing observations provide spatially resolved precipitation 25 

fields improving their representativeness. In this regard, the comparison between simulated and observed river flow 

discharge is crucial for assessing the effectiveness of merged precipitation data in enhancing the model's performance and 

its ability to realistically simulate hydrological processes. This paper aims to investigate the hydrological impact of using 

the merged rainfall fields from the rain gauge Italian rainfall network and the NASA Global Precipitation Measurement 

(GPM) IMERG precipitation product. One aspect is to highlight the benefits of applying the Cellular Automata algorithm 30 

to pre-process input data in order to merge them and reconstruct an improved version of the precipitation field.  
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The cellular automata approach is evaluated in the Tanaro River Basin, one of the tributaries of the Po River in Italy. As 

this site is characterized by the coexistence of a variety of natural morphologies, from mountain to alluvial environments, 

as well as the presence of significant civil and industrial settlements, it makes it a suitable case study to apply the proposed 

approach.  The latter has been applied over three different flood events occurred from November to December 2014.  35 

The results confirm that the use of merged gauge-satellite data using the Cellular Automata algorithm improves the 

performance of the hydrological simulation, as also confirmed by the statistical analysis performed for seventeen selected 

quality scores. 

 

 40 
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1 Introduction 

Hydrological models are important tools for flood early warning system and management of water resources under 

climate change conditions. The accurate estimation of precipitation and its spatial variability within a watershed is crucial 

for reliable discharge simulations: the relationship between the distribution of precipitation and the calculated flow 45 

discharge is not linear; therefore, the precipitation patterns strongly influence the calculation of the runoff (e.g., Goodrich 

et al.; 1997, Singh, 1997; Cristiano et al, 2017).  

As far as the operational activity is concerned, the hydrological models are usually forced both with observed and 

forecasted rainfall data, and the uncertainty of hydrological forecasts is strongly related to the uncertainty of the input 

rain field. Therefore, forcing the hydrological models with observed precipitation data as realistic as possible is essential 50 

to reduce the hydrological simulation uncertainty related to the forecasted rainfall field. 

The rain gauge data are typically used as the main source of information (Nikolopoulos et al., 2010) to produce an 

Areal Precipitation Estimate (hereafter APE), even if the reproduced rainfall spatial pattern can be affected by several 

errors. Furthermore, rain gauges, being in-situ instruments, can be considered highly accurate only over a limited area 

surrounding the instrument itself. Consequently, they have a reduced capability to represent the spatial distribution in 55 

highly variable precipitation fields, such as over complex terrain which are typically poorly gauged and where the 

orographic precipitation effects take place. Increasing the density of the network can be a way to improve the 

representativeness of precipitation derived from rain gauges. WMO has established standard rules in terms of the 

minimum density needed to build precipitation measurement networks (Sevruk, 1992; WMO, 1994; Liang et al., 2012). 

However, such a standard cannot be always strictly followed due to practical reasons (e.g. geomorphological 60 

characteristics, environmental conditions, and the micro-climatic variability of the considered region). Accordingly, 

several regional, national, and private rain gauge networks are generally not sufficiently distributed to fully satisfy the 

hydrological needs. 

Nevertheless, the rain gauges still represent the main source of information to spatialize precipitation. The 

spatialization process considers the horizontal correlation structure of rain, leading to the definition of a correlation length 65 

or radius of influence through which rain gauge measurements are extended over unobserved (i.e., ungauged) surrounding 

areas (e. g. Duque-Gardeazábal et al., 2018). However, the raingauge radius of influence may depends on location, time, 

event type (eg. convective or stratiform), network density (Gandin 1970), as well as the interpolation method implemented 

(Xu et al., 2013; Chacon‐Hurtado et al., 2017; Andiego et al., 2018), thus leading to large uncertainties in the final APE 

and consequently in a reduced ability to model hydrological processes. 70 

Remote sensing observations can represent a valuable gap filling tool, complementing the above-mentioned 

limitations related to the APE. In particular, since satellite observations are spatially resolved, it opens to the more direct 
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use of Satellite-based RainFall Estimation (hereafter SRFE) (Li et al, 2021) into hydrological models. In this work, the 

role of APE from rain gauges and SRFE in the hydrological models is investigated. Indeed, it is well recognized that the 

accuracy of the results of many hydrological calculations depends on those of APE (see Nemec, 1986). The usage of 75 

SFRE for hydrological applications depends upon the type of application, the accuracy, spatial and temporal resolution 

as well as the latency of the estimates: different applications have different data requirements. Kidd and Levizzani (2011) 

demonstrated that hydrological requirements for precipitation estimates can be divided into two main categories: high 

and lower resolution estimates for short- and longer-lived events, respectively. Flash flood events with rapid catchment 

response, necessitate of a fine spatial and temporal resolution, together with timely delivery of those estimates. Fluvial 80 

flooding and water resources are characterized by relatively long lead times and therefore some requirements can be 

relaxed. As a matter of fact, it has been shown that SFRE’s measurement uncertainties are associated to the intensity, the 

duration, and the scale of the event, showing an uncertainty decrease during higher rain rates, larger domains, and longer 

integration time: the more the precipitation tends toward deep convection regime, the more accurate the satellite estimates 

are (Maggioni and Massari, 2018; Maggioni and Massari, 2019). High-mountain regions are among the most challenging 85 

environments for remote-sensing-based precipitation measurements due to extreme topography and large weather and 

climate variability. These regions are typically characterized by a lack of in situ measurements and hit by devastating 

flash floods (Dinku et al., 2007; Hong et al., 2007; Kubota et al., 2009; Tian and Peters-Lidard, 2010; 2010; Hirpa et al., 

2010; Yong et al., 2010; Ghulami et al., 2017; Guo et al., 2017). In this regard, satellite sensors provide global coverage 

and observations in regions where in situ data is unavailable or sparse. Because of this availability, the use of satellite 90 

data for hydrological applications has gained an increased interest, also given the significant activity of space-based 

precipitation estimation techniques in the past few decades (Guetter et al., 1996; Tsintikidis et al. 1999; Wilk et al., 2006; 

Hughes, 2006; Su et al., 2008; Collischonn et al.,2008; Thieming et al. 2013; Jiang and Wang, 2019; Darko et al. 2021). 

However, limitations associated with the use of satellite rainfall estimates for hydrological applications related mainly to 

the error structure of satellite rainfall estimates (McCollum et al. 2002; Gebremichael and Krajewski 2004; Hossain and 95 

Anagnostou, 2006; Ebert et al. 2007; Dinku et al. 2007; Kirstetter et al. 2013; Maggioni et al. 2011, 2014, Falck et al. 

2021) and to the rainfall error propagation through the hydrological model (Nijssen and Lettenmaier 2004; Hossain and 

Anagnostou 2005; Hong et al. 2006; Mei et al., 2017; Solakian et al. 2020; Camici et al., 2020; Brocca et al., 2020; Camici 

et al., 2022; Tramblay et al. 2023) should be considered. 

The error propagation of satellite rainfall through hydrological simulation is related to many factors, such as specifications 100 

of the satellite rainfall product, basin size, spatial and temporal hydrological resolution, the used hydrologic model, and 

geomorphological characteristics of the area (Mei et al. 2022). Dembélé et al. (2020) highlighted that although satellite 

products are characterized by uncertainties, their most reliable key feature is the spatial patterns representation, which is  

a unique and relevant source of information for distributed hydrological models. Their results demonstrate that there are 
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benefits in using satellite data sets when suitably integrated in a robust model parametrization scheme. Data integration 105 

was also recognized by Shi et al. (2020) to be a key point: this work suggests that hydrological simulation results using 

an appropriate method for precipitation merging data can provide valuable spatially distributed rainfall leading to a more 

rational flood flow simulation. 

Several techniques to merge different data sets and reduce uncertainties in rainfall estimation are available based on 

physical approaches or statistical algorithms (e.g., French & Krajewski, 1994, Todini, 2001, Li and Shao, 2010). Blending 110 

of precipitation data from different sources involves a deep understanding of the source of the observations, their 

characteristics, and their limits.  

This paper aims to achieve two main objectives: 1) validate Cellular Automata (hereafter CA) algorithm (Packard & 

Wolfram (1985)) to obtain a satisfactory synthesis of rain gauge data and a satellite rainfall product, focusing on small-

medium scale river basins; 2) assess the possible benefits in combining the rain gauges and SFRE to overcome the 115 

limitations provided by in situ measurements alone. 

The basin studied in this work is characterized by a uniformly distributed altimetry profile, with about 27% of mountain 

area, allowing valuable testing of satellite data. The considered area is one of the hydrological operational activity domains 

of forecasting severe events. The used data source is hourly rain gauge, obtained from 352 rain gauge stations into the 

selected domain, distributed by the Dewetra Platform (Italian Civil Protection Department and CIMA Research 120 

Foundation, 2014) and the Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM 

(IMERG), half-hourly 0.1°x0.1° (roughly 10 km x10 km).  

These data sources are used to generate different rainfall datasets, with mutual correction of their implicit error 

characteristics. To merge the data into a single rain field, CA algorithm (Packard & Wolfram (1985)) has been 

implemented in the CETEMPS Hydrological Model (hereafter CHyM) (Coppola et al., 2007, Verdecchia et al., 2008b) 125 

and it is then used to test hydrological response to different input rain fields. Finally, the error evaluation deals with 

scoring metrics in terms of comparison between simulated and observed flow discharge. 

The paper is organized as follows: the geographical framework of the study area is described in section 2; in section 

3 a detailed description of the field data collection is presented whereas methods are presented in section 4. Then, in 

section 5 the application of the proposed approach applied to three different case studies is discussed and conclusions are 130 

drawn in section 6. 

2 Study area 

In the Piedmont region, the northwestern part of Italy, the Tanaro River is among the main right tributaries of 

the Po River in terms of catchment length (276 km) and drainage basin size (8.324 km2), and with an average flow 
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discharge of 123 m3/s. The river flows eastward across northern Italy starting in proximity of the France border, Monte 135 

Saccarello (2201 m) in the Ligurian Alps (Figure 1).  

According to Degiorgis et al. (2013) the river is characterized by morphological variability. Three main areas 

associated with very different characteristics were defined: 1) the mountain zone, with a mean slope of about 6%, deep 

riverbeds, and very steep catchments; 2) the mild zone, with a mean 1% slope, mildly steep catchments, and shallower 

riverbeds; 3) the alluvial zone, with very small values of slope.  140 

The Tanaro is the only river among the right-bank tributaries of the Po, and it has an alpine origin, although the 

low elevation of the Ligurian Alps and their proximity to the sea do not allow for the formation of snowpack or glaciers 

large enough to provide a constant source of water during the summer; moreover, the Alpine zone constitutes only part 

of the basin drained by the Tanaro River. For this reason, under standard seasonal conditions the flow discharge is subject 

to great seasonal variations with a regime more typical of an Apennine stream and a maximum flow discharge that can 145 

reach 1700 m3/s, in spring and autumn, and a very low flow rate in summer. The natural flow discharge of the Tanaro 

river is strongly affected by the anthropic impact due to the fragmentation of the river channels, with dams and water 

regulation causing diversions between basins and irrigation. Some artificial sections intersect natural branches and some 

of these sub-basins are used for hydropower generation. The artificial basins along the river and its tributaries are also 

used for flood control. 150 

The river is exposed to severe events: it has been affected by at least 136 floods in 200 years (from 1801 to 

2001). The most significant of these events occurred in November 1994, when the entire river valley was damaged 

(Marchi et al., 1996; Luino, 2002) and the sensor at Montecastello, located at the outlet of the river recorded a maximum 

flow discharge peak of 4350 m3/s (Po River Basin Authority). 

3 Observed Data  155 

Precipitation data are recorded for the 2014 period on an hourly basis. The precipitation datasets are discussed 

below and include gauge dataset, satellite-only dataset and the flow discharge data on selected point stations distributed 

along the Tanaro river basin. 

3.1 Rain Gauge data. 

It is common to attribute an area of influence on a network of rain gauges: in detail the gauge is in the center of its circular 160 

area of influence, defined as the radius of influence, R. Shi et al. (2020) suggest that the radius of influence, also 

considered the average distance between stations, can be computed as:  
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𝑅 =  √
𝑆

𝑁
                                                                                              (1) 

 165 

where S is the area of the smallest circle which can cover all the rain gauges and the considered basin whereas N is the 

number of rain gauges considered. Reasonable station coverage means that the average radius associated with the rain 

gauge network should be at least comparable to the value associated with the rain bandwidth. In this study, S is the area 

of the Tanaro basin and N is the number of rain gauges in the basin (73 in the basin): the average distance of the next 

station is about 11 km, but the stations are not distributed regularly. As will be discussed later, different values of R are 170 

selected for the different hydrological simulations. As discussed in Sec. 2, since the Tanaro basin is divided into three 

territorial sectors, the average rain gauge distance is computed for each of them (see Table 1). 

3.2 Satellite-based rainfall estimates 

The satellite precipitation product used in this study is the Global Precipitation Measurement (GPM) Integrated 

Multi-satellitE Retrievals for GPM (IMERG). The products provide quasi-global (60° N–60° S) precipitation estimates 175 

combining measurements from passive microwave (PMW) radiometers comprising the GPM Low Earth Orbit (LEO) 

satellite constellation and infrared (IR) geostationary (GEO) sensors. The IMERG product is also available in the form of 

post-real-time research data, i.e., IMERG Final, after monthly rain gauge analysis is received and considered (Huffman 

et al., 2018, O et al., 2017). Note the IMERG Final product is considered for demonstrative purposes because such product 

is not available in near-real time and therefore it cannot be used in an operational context that require near-real-time 180 

constrains. In this study, IMERG version 5 Final (IMERG-F) Uncalibrated (UNCAL) and Calibrated (CAL, where the 

monthly rain gauge data are used for bias correction), half-hourly 0.1°x0.1° (roughly 10 km x10 km) rainfall rate estimates 

have been used. It is worth noting that in this study IMERG V05 is used while a new version (V07) is ready to be issued 

at the time of the publication of our study. However, the methodological value of the combination approach shown should 

not be affected by the product version updates, although quantitative checks could merit attention in a future work.  185 

3.3 Observed Flow Discharge data. 

Flow Discharge data (m3 s-1) are used to evaluate the hydrological model output in response to different 

precipitation inputs. However, several issues must be considered when the evaluation of deterministic hydrological 

models is used, including the need to validate them with very long observed flow discharge data time series. These data 

are not always available, especially on small seasonal streams that are usually not instrumented. Furthermore, data on 190 

artificial water management are not available.  Hence, the hydrological model validation may encounter difficulties when 

dealing with heavily regulated basins, as it simulates the natural river flow rate without accounting for artificial facilities. 
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In addition, estimates of river discharge data are associated with significant uncertainties due to various conditions such 

as rating curve interpolation, extrapolation, unsteady flow condition, and seasonal variations in river roughness (Di 

Baldassarre and Montanari, 2009; Di Baldassarre and Claps, 2011).  195 

Eight stations with long time series of flow discharge, available for the year 2014, are selected for this study. The stations 

are distributed over the basin, as shown in Figure 1 (blue numbers) and they are representative of the different sub-basins 

contained in the Tanaro river basin. 

4 Methodology 

The workflow methodology is shown in Figure 2. It includes three main tasks: precipitation gridding and assimilation 200 

data, precipitation merging data and hydrological model simulations, analysis and error score metrics calculation. 

Different combinations of precipitation are tested as input to the hydrological model and error scores are calculated 

accordingly in terms of flow discharge. The proposed technique for merging different measured rainfall at different spatial 

scales is based on the concepts of data assimilation (Bouttier and Courtier, 1999) with particular emphasis on the 

transformation of point data to areal data. Observed satellite and rain gauge data are gridded respecting the resolution set-205 

up of the hydrological model: each value of rain data (satellite or gauge) is associated with a grid point i-th of coordinates 

(l, m) of the selected domain. Different rain scenarios are produced, using the original datasets or merged rainfall data; 

the hydrological model has been forced with the different rebuilt hourly rain fields to simulate flow discharges and to 

evaluate each scenario. 

4.1 Precipitation data gridding 210 

In hydrological modeling, precipitation data gridding is essential to accelerate numerical processing. It involves 

creating an initial estimate of the precipitation field at the hydrological scale, known as the Precipitation Background 

Field (PBF) (Coppola et al., 2007), on a regular grid. The Cressman algorithm (Cressman, 1959) is commonly used to 

initialize rain field grid points within the designated domain. Due to its simplicity, the Cressman method serves as a 

practical starting point for this initialization process (Bouttier and Courtier, 1999). 215 

The accuracy of the merged field significantly depends on the choice of kernel function, as highlighted by Li 

and Shao (2010). Selecting an appropriate kernel function involves defining a rain radius. The radius of influence, denoted 

as R, plays a crucial role in determining the smoothness of the estimated field and controlling the spread of the kernel 

function: a smaller R results in a more rugged estimated field with higher variance, while a larger R yields a smoother 

surface. Thus, the selection of the radius of influence is critical in determining the overall quality and characteristics of 220 

the estimated precipitation field in hydrological modeling applications. 
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Based on these considerations, given a discontinuous background field, the rainfall for each grid point of the 

selected domain is estimated as follows: 

𝑃𝑖 =  ∑
1− (𝑟𝑖𝑗 𝑅⁄ )

2

1+ (𝑟𝑖𝑗 𝑅⁄ )
2𝑗 𝑃𝑗       (2) 

where Pi is the estimated rain value at the i-th grid point, Pj are the rainfall measurements available within the 225 

radius of influence, R, and rij is the distance between rain gauge location j and the grid point i.  

Selecting a suitable value for R poses the initial challenge in the estimation process. Figure 3 illustrates the area 

coverage by the rain gauge network when employing a radius of influence, R, equal to 5 km. Under the optimal conditions, 

using observed data available for every grid point in the selected domain without significant errors, employing a direct 

merging method such as the Cressman objective analysis scheme would still result in considerable bias at the boundary 230 

(Li and Shao, 2010; Duque-Gardeazábal et al., 2018). This indicates that while a smaller value of R may mitigate bias, it 

would only affect a smaller area around the boundary. However, adjusting R doesn't fully address the issue of boundary 

bias, as the rain bandwidth tends to be large in cases where observed points are irregularly distributed. The boundary bias 

issue arises from the discontinuity of the background field due to field discretization, while nonparametric merging 

methods can only generate continuous surfaces. 235 

To overcome this issue, a double smoothing merging method is applied. It is used to reduce the boundary bias 

(Li and Shao, 2010; Duque-Gardeazábal et al., 2018) as better explained in the next section. Furthermore, a strategy used 

by the work to avoid boundary effects is to extend the spatial domain well beyond the studied basin: this strategy is useful 

for a better reconstruction of the precipitation field (Figure 1). Many data used, although redundant, lead to a better 

reconstruction of the rain field. A smaller amount of this data would probably be enough, but the work uses everything 240 

that the national rainfall network has available. Future studies could lead to identifying, given their distribution, enough 

rain gauges outside the basin deemed useful to overcome the boundary effect. 

4.2 Precipitation data interpolation and merging: Cellular Automata technique 

CA technique is used in this work as a double smoothing estimation. It is a simple mathematical idealization of 

natural systems according to Packard & Wolfram (1985), based on the behavior that every single element of a natural 245 

system can assume. In CA, natural systems are idealized as discrete sites on a lattice, with each grid point evolving based 

on deterministic rules and influenced by the states of neighboring cells at discrete time steps. This approach provides a 

structured framework for dynamic systems modelling, reflecting the intricate interplay of elements in nature. 

In the hydrological model code, a CA-based algorithm has been developed and implemented. Following CA 

theory, the input grid is conceptualized as an aggregate of Cellular Automata, where the status of each grid point represents 250 

the value of a smoothed precipitation field. 
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The evolution of the precipitation status in the i-th grid point of the lattice (𝑃𝑖
(𝑛𝑒𝑤)

 ) is updated according to the 

following rule: 

 

𝑃𝑖
(𝑛𝑒𝑤)

=  𝑃𝑖 +  𝛼(∑ 𝛽𝑗(𝑃𝑗 − 𝑃𝑖)8
𝑖=1 )                                                                 (3) 255 

 

where 𝑃𝑖
(𝑛𝑒𝑤)

  is carried out over all 8 surrounding cells. The coefficients 𝛽𝑗  allow to consider the different 

distances between the cells. As an example, for a regular equally spaced lattice, we assume the value 1 for the cells in 

North, East, South and West location, and the value 1 √2⁄  for the cells located in the North-East, North-West, South-East 

and South-West direction respect to the cell i-th.  260 

The coefficient α assumes a small value, typically ranging from 0.1 to 0.9, ensuring a gentle smoothing of the 

original matrix. All grid points are updated synchronously, and the smoothing continues until stability is achieved, 

signifying minimal changes in the calculated matrix. Notably, the grid point associated with the rainfall value available 

in the considered database remains unaltered by the algorithm. This process enables the hydrological model to refine and 

stabilize the precipitation data while preserving the integrity of observed rainfall values. 265 

Therefore, the rule in Equation 3 can be written as follows: 

 

𝑃𝑡−1 =  𝑃𝑡 + 𝛼 ∑
1

𝑟𝑘
𝑃𝑘

𝑡8
𝑘=1                                                                         (4) 

 

where 𝑟𝑘 is the distance between the considered cell and the neighbouring grid point. The value of rainfall in the 270 

cells is serially modified (eq. 4) and the sum is computed using only the neighbouring grid points. The CA method 

facilitates the assimilation and spatialization of rainfall fields, proving advantageous in achieving the high resolutions 

required in hydrological simulations and for integrating different precipitation data sources. 

In this study, to test the assimilation of satellite rainfall data in the presence of sparse gauge stations, the CA 

algorithm has been implemented in the hydrological model, using two different assimilation approaches: NoModular and 275 

Modular. In the NoModular approach, a high-resolution lattice is filled with both the satellite rainfall data, and the rain 

gauge data, used simultaneously at each time step, prioritizing the rain gauge data. To define a PBF, the approach uses an 

R of 10 km, which corresponds to the satellite spatial resolution, the lowest resolution to cover the whole considered 

domain; CA technique is then applied. In the Modular approach, a hierarchical sequence of modules is used to assimilate 

the different data sets, making it possible to consider the different nature of the data. Therefore, the lattice of the 280 

considered domain can be divided into as many subdomains as the data sources type. Each subdomain can be defined as 

a set of grid points that have at least one rainfall value in a selected radius, R, whose value depends on the density of the 
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available data. Three different radii of influence were selected in this study to allow for different coverage of rain gauge 

data compared to the satellite data.  

Using the CA technique, this study aims at identifying how different input data settings can affect the 285 

hydrological model performance, and if merging rain gauge and satellite rainfall data improves hydrological outputs. The 

degree of freedom of the input data settings are: 1) the type of data sources: variation in the sources of input data, such as 

rain gauge data, satellite rainfall data, or a combination of both; 2) Data Merging Approach. Comparison between two 

merging approaches: i) NoModular, where rain gauge and satellite data are simultaneously incorporated, prioritizing rain 

gauge data ii) Modular, which employs a hierarchical sequence of modules to assimilate different data sets independently; 290 

3) the radius of influence, R: exploration of different values for the radius of influence, which determines the coverage 

area of rain gauge data before applying the CA technique and 4) Satellite Data Type: Evaluation of hydrological model 

performance using both Uncalibrated and Calibrated satellite rainfall data. By systematically varying these input data 

settings, the study aims to provide insights into their respective impacts on the hydrological model's performance. This 

analysis will contribute to understanding the effectiveness of data assimilation techniques in improving the accuracy and 295 

reliability of hydrological simulations. 

 

4.3 Hydrological modelling: CETEMPS Hydrological Model 

The CHyM has been applied for climatological studies (Coppola et al., 2014, Sangelantoni et al., 2019), but it mainly has 

been used as an operational tool for early warning systems (Tomassetti et al., 2005; Ferretti et al., 2019; Colaiuda et al., 300 

2020; Lombardi et al., 2021).  

CHyM is a distributed, physically based hydrological model; hydrological processes (surface runoff, infiltration, 

evapotranspiration, percolation, melting and return flow) are explicitly simulated. In addition to being used to acquire 

different data sources or rebuild the spatial distribution of precipitation at hydrological model scale, the CA algorithm 

allows the model to simulate the hydrologic cycle of any defined geographic domain and at any fixed spatial resolution 305 

up to the Digital Elevation Model (DEM) resolution (90 meters in the current version). The choice of spatial resolution is 

mainly related to the validity of the numerical schemes used to simulate hydrological processes (such as the shallow water 

kinematic wave used to solve the continuity equation which is considered a good approximation at a horizontal resolution 

of a few hundred meters). The hydrological simulation spatial resolution is also related to the different simulated basins: 

in areas with very small basins close to each other the resolution must be higher, even up to a few hundred meters; in 310 

detailed, in this work the used spatial resolution is 900m. Using ChyM, the spatial domain is extended well beyond the 

investigated basin. This approach is useful to avoid boundary effects and to have a better rebuild of the precipitation field. 

Furthermore, CHyM is a valid tool to investigate the rebuilt of the rainfall field, given that the resulting flow discharge 
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value is linked exclusively to the rainfall, in fact the effects related to the base flow discharge are not visible, since the 

model does not reproduce them, given the short simulation spin-up time. The hydrological model is not specifically 315 

calibrated over the Tarano basin. However, in this work we refer to the calibration accomplished by (Coppola at al 2014) 

on the northern part of the Po River, which totally includes the Tanaro basin. 

 

4.4 Error Score Metrics 

To assess the fit between the observed and simulated flow discharge time series, objective functions were 320 

selected. The traditional performance indicators have been used, such as the Nash–Sutcliffe Efficiency (NSE) (Nash and 

Sutcliffe, 1970), and bias percentage (PBIAS) measuring the average tendency of the simulated values to be larger or 

smaller than the observed ones. The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model 

simulations. Furthermore, the following scores were considered: Root Mean Square Error (RMSE), Mean Absolute 

Relative Error (MARE), sensitive to extreme values (i.e., outliers) and to low values, Original Kling-Gupta Efficiency 325 

(KGE, Gupta et al., 2009), Modified Kling-Gupta Efficiency (KGEprime, Kingl eta al., 2012), Non-Parametric Kling-

Gupta Efficiency (KGEnp, Pool et al., 2012). 

According to Mathevet et al. (2006), KGE and NSE can be calculated in a bounded version: Bounded Nash-

Sutcliffe Efficiency (NSEc2m), Bounded Original Kling-Gupta Efficiency (KGEc2m), Bounded Non-Parametric Kling-

Gupta Efficiency (KGEmp_c2m), Bounded Modified Kling-Gupta Efficiency (KGEprime_c2m). The analysis is carried 330 

out using an open-source evaluator for flow discharge time series (Hallouin, 2019). In addition to the conventional scores, 

other indicators were selected to obtain a more objective analysis, independent of the limits of the scores commonly used 

for hydrological analyses, for a total of 17 quality scores. The idea is to consider the river flow discharge profile as a 

signal and for this reason, indicators, commonly used in generic signal studies, have been used. 

The Match Correlation (MC) is the relationship between the Auto-correlation curve and the Cross-Correlation curve 335 

(Observed VS Simulated) and allows to understand the two curves overlap: the best value obtained will be close to 1.  

 

MC =  
∫ AutoCorrelation_of_Observed_values

∫ CrossCorrelation_of_Index_values_VS_Observed_values
                                                 (5) 

 

The cross correlation (CC) is typically used in the signal theory for the assessment of similarity between two signals 340 

(Rabiner and Gold, 1975; Rabiner and Schafer, 1978; Benesty et al., 2004). The Correlation Time Delay (CT_D, 

Lombardi et al., 2021) represents an estimation of time shift between two series:  

 

𝐶𝑇_𝐷 = 𝑚𝑎𝑥
𝐿∈𝑅

 𝐶𝐶(𝐿)                                                                              (6) 
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 345 

the value of time lag L maximizes the product obtained in the CC calculation. Therefore, this quality score is suitable for 

measuring the effectiveness of the signal provided by hydrological simulations. The Time Peak Delay (TP_D) is a timing 

score and represents the hourly delay of the estimated maximum peak flow discharge compared to the observed one.  

The percentage Error (E%) at the peak value of the flow discharge was calculated as follows: 

 350 

𝐸 =
max

 
 𝐷𝑆𝑖𝑚− max

 
 𝐷𝑂𝑏𝑠

max
 

 𝐷𝑂𝑏𝑠
                                                                               (7) 

 

where Dsim indicates the simulated flow discharge and DObs represents the observed flow discharge. 

The Dynamic Time Warping (DTW, Berndt and Clifford, 1994; Keogh and Ratanamahatana, 2005; Maier-

Gerber et al., 2019 and Di Muzio et al., 2019) finds the similarity between two sequences by looking for the best 355 

alignment. For the N-by-M matrix, built using two discrete series x(i) and y(j) of N and M components respectively, a 

“warping” path W is defined as a contiguous set of L matrix elements, and the measure of misalignment d for the path W 

is given by: 

 

𝑑(𝑊) =
∑ 𝑉(𝑖,𝑗)𝑖,𝑗
1

2
𝐿(𝐿−1)

                                                                                 (8) 360 

 

where the sum in the numerator is carried out over all the elements belonging to the warping path W. Each element V(i,j) 

represents the Euclidean distance between the i-th element of the first sequence and j-th element of the second sequence. 

The denominator is used to normalize different length sequences. The DTW index is then calculated as the minimum 

value of d(W), considering all the possible path W. 365 

 

𝐷𝑇𝑊 = min  
𝑊

𝑑(𝑊)                                                                            (9) 

 

The optimal path will be the N diagonal elements of matrix V, if the two considered sequences are aligned and have the 

same number of components (N=M). The DTW technique, however, could lead to wrong results in finding the optimal 370 

alignment because a feature (e.g., a local peak or minimum) in one sequence is higher or lower than the corresponding 

feature in the other sequence. To overcome this issue, Keogh and Pazzani (2001) proposed the computation of warping 

using the local derivative of the time series to be compared: the Derivative Dynamic Time Warping (DDTW). The first 

derivative was calculated for each time series as follows: 
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 375 

𝐷(𝑥[𝑖]) =
(𝑥[𝑖]−𝑥[𝑖−1])+((𝑥[𝑖+1]−𝑥[𝑖−1])/2

2
                                                         (10) 

 

The main limitation linked to both analyses is defined singularities (Sakoe, & Chiba 1978; Keogh and Pazzani, 

2001), i.e., the algorithm may try to explain variability in the Y-axis by warping the X-axis. This can lead to unintuitive 

alignments where a single point on one time series maps onto a large subsection of another time series. To overcome 380 

these limits, we used the Windowing method (Berndt and Clifford, 1994). Allowable elements of the matrix can be 

restricted to those that fall into a warping window defined according to the following rule: 

 

|𝑖 − (𝑛 (𝑚 𝑗))⁄⁄ | <  𝜔                                                                           (11) 

 385 

where i and j are the allowable points of the 𝑛x𝑚 matrix, constrained to fall within a given warping window, 𝜔 a positive 

integer window width. In this work, 𝜔 is equal to 10 and this allows us to mitigate the effects linked to the baseflow 

discharge. 

5 Analyzed case studies. 

One of the effective strategies for the validation of satellite rainfall data is an indirect method through a 390 

hydrological assessment. It is worth noting that data on artificial water management are not available for the case study 

considered, thus, a preliminary screening is carried out to minimize any anthropogenic impact in our analysis. 

In this study, the hydrological simulation ranges from November 1, 2014, to December 31, 2014. Since the 

purpose of this work is to investigate the performance according to the different rain scenarios (model forcing), November 

and December represent the most suitable period from the climatic point of view: in fact, according to the authors' 395 

experience, the succession of rainfall events in the fall reduces the anthropic impact. In late fall-early winter dams and 

reservoirs are often at the limit of their capacity, allowing the water to laminate, the river flow discharge to be comparable 

to the natural one, which is simulated by the CHyM. Three time series, related to the three different flood events, have 

been studied:  

• Case Study 01 - 10/11/2014 00UTC – 14/11/2014 23UTC 400 

• Case Study 02 - 15/11/2014 00UTC – 20/11/2014 23UTC 

• Case Study 03 - 29/11/2014 00UTC – 03/12/2014 23UTC 
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Figure 4a shows the synoptic charts of the fifth generation ECMWF reanalysis (ERA5) 500 hPa geopotential height and 

sea level pressure (Hersbach et al. 2023), related to the first analyzed case study (12 November 2014 00UTC). The 

European scenario was mainly characterized by the presence of a deep depression area located in the North Atlantic and 405 

by a persistent blocking system of high-pressure on the Eastern continental sector. A trough associated to the oceanic 

depression was slowly moving toward Eastern Mediterranean by rotating its axis. This configuration caused instability 

conditions in Northern Italy, with widespread precipitation especially in the North-Western sectors, and cumulated rainfall 

up to 250 mm in 120 hours (10 November 00UTC – 14 November 23UTC) in the area of interest (Figure 4d). 

The synoptic scenario for the second case study (16 Novmber 2014 00UTC) resulted from a slow evolution of 410 

that described above. As shown in Figure 4b, the circulation was slowed down by a high-pressure system located on 

Eastern Europe, extending from Anatoly up to North Sea, blocking the shift of the Oceanic trough toward the East. The 

most intense precipitation was registered in the Italian Northwestern sectors, with cumulated rainfall up to 250 mm in 120 

hours (15 November 00UTC – 19 November 23UTC) in the area of interest (Figure 4e).  

Figure 4c shows the synoptic situation related to the third case study (1 December 2014 00UTC). In this period, 415 

the typical Western Mediterranean weather conditions were affected by the evolution of a deep cut-off low. On 29 

November, it was centered on Morocco and in the following days, it moved eastward, advecting subtropical warm and 

moist air towards northwestern Italy. The flux produced intense precipitations on the Ligurian territory, with cumulated 

rainfall up to 150mm in 120 hours (29 November 00UTC – 03 December 23UTC) in the area of interest (Figure 4d). 

Eight different hourly simulations have been carried out for each case study, using the eight different rain input 420 

settings (Table 2). Hourly hydrological simulations are possible thanks to the availability of the observed data: the 

temporal resolution of the hydrological simulations, especially for small hydrological basins that have very short recharge 

times, is very important, given that satellite data are provided every half hour, they are essential for developing operational 

monitoring and forecasting tools for flood early warning systems. Therefore, UNCAL and CAL simulations use only 

satellite data (respectively IMERG-F Uncalibrated and IMERG-F Calibrated), while the GAUGE simulation uses the 425 

local rain gauge data; the GAUGEUNCAL simulation uses the combined gauge and satellite data using the NoModular 

approach. MODGAUGEUNCAL1, MODGAUGEUNCAL3, MODGAUGEUNCAL5 are the simulations where the 

hydrological model has been forced using a Modular approach and different radii of influence related to rain gauge data 

merging gauge and Uncalibrated satellite data (the number at the end of the simulation name is related to the gauge radius 

of influence: 1km, 3km and 5km); whereas the last hydrological simulation, MODGAUGECAL5 is carried out in the 430 

same way, but using the Calibrated satellite data. 
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6 Results: hydrological simulation analysis  

The experiment uses an indirect validation technique of precipitation data, through an analysis of the flow 

discharge simulated by CHyM, where the model has been forced with eight rainfall scenarios. The APE produced using 

IMERG F UnCalibatred (UNCAL) and Calibrated (CAL) and rain gauge data (GAUGE) separately, is based on different 435 

R for each dataset, as defined in Equation (1). Note that in the case of satellite data, R is fixed to 10 km (the IMERG 

products resolution). In the case of the GAUGE, R has been set at 30km, as in the CETEMPS hydrological operational 

set-up (Colaiuda et al., 2020), to have a coverage of all the points of the grid in the considered domain. Therefore, even 

if the number of rain gauges that fall in the analyzed basin, according to equation (1), gives an average distance of the 

next station of about 11 km, in order to have a total coverage of the entire simulated domain (defined by the coordinates: 440 

43.9 ≤ latitude ≤ 46.59 and 6.49 ≤ longitude ≤ 9.18) and to account for the rain gauge spatial distribution, R cannot be 

lower than 30 km.  

Figure 5 shows the CHyM rebuilt rain field for the Case Study 01. In detail, Fig. 5a represents 120h accumulated 

rain carried out from GAUGE simulation obtained forcing the hydrological model with rain gauge data; Fig. 5b and Fig. 

5c respectively represent CAL and UNCAL simulations, where CHyM has been forced using respectively GPM IMERG 445 

FINAL CAL and GPM IMERG FINAL UNCAL. Figure 5f shows the 120h cumulated rain related to 

MODGAUGEUNCAL5 simulation, obtained forcing the hydrological model with rain gauge data, using a Radius of 

influence equal to 5km, merged with GPM IMERG FINAL UNCAL. 

The preliminary comparisons related to Case Study 01, between observed and simulated flow discharge data 

with the different rainfall scenarios are shown: in Figure 6 Alba Tanaro and Ponte di Nava sections were selected for this 450 

quick comparison. The hydrometric stations are in sections draining respectively 3385 km2 and 145 km2 upstream. From 

a first subjective analysis, the model appears to perform better with the GAUGE (cyan line), compared to the use of 

satellite data only, both UNCAL (gray line) and CAL (yellow line) (Figure 6 a, c), consistently with the literature: rain 

gauges can be considered as the most accurate approach for measurements. A sensitivity series of tests have been carried 

out and the most significant are reported (figure 6 b, d). The tests refer to i) the used approach: NoModular or Modular; 455 

ii) the value of R: 5 km, 3 km and 1 km for the rain gauge data and 10 km for satellite data respectively; iii) the satellite 

data used: GPM IMERG FINAL UNCAL and GPM IMERG FINAL CAL.  

From the analysis of Figure 6, it can be deduced that the best performances are obtained for MODGAUGECAL5, 

although comparable performances are obtained using MODGAUGEUNCAL5 (indeed, given the small difference 

between the two results, the two curves are graphically superimposed). In these cases, the background rain field of the 460 

rain gauge data with R = 5 km (a coverage of 68% of the surface of the considered basin, Table 1), smoothed with CA, is 

merged with the remaining part of the surface covered by the satellite data, where its background areal is first created 
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with a R = 10 km, filling the grid points left uncovered (32%) and then applying a definitive smoothing with CA. The 

scores also confirm the best performances obtained by the simulation using the merged data. As an example, for the CS 

01 at the ALBA section river, the KGE assumes values ranging from -1.16 (UNCAL), -0.95 (CAL), -0.703 465 

(MODGAUGEUNCAL1), -0.366 (GAUGEUNCAL), 0.066 (GAUGE), passing to 0.209 (MODGAUGEUNCAL3), up 

to 0.584 (MODGAUGEUNCAL5) and 0.585 (MODGAUGECAL5). 

Figure 7 shows the boxplots for KGE and RMSE related to all Case Studies and all river sections and confirms 

what has been shown so far: certainly, the rain gauge data allows for better performance than using the satellite data alone, 

but the best results are obtained when the two data sources are merged, especially using the MODGAUGECAL5 setting, 470 

which is comparable to MODGAUGEUNCAL5. 

To obtain an objective evaluation, the statistical analysis has been performed using different quality scores, 

evaluating their overall average (AVG) related to the three Case Studies and all stations (Table 3). Table 3 is divided into 

two parts and the various settings have been placed following the order of increasing performance. In the first part of 

Table 3 an improvement corresponds to increasing values, while in the second part an improvement corresponds to 475 

decreasing values. All scores confirm the results obtained from the comparison between observed and simulated flow 

discharges (Figure 6), showing better performance using the rain gauge data only (GAUGE) compared to satellite data 

only. Simultaneously, the calibrated satellite data (CAL) allows the model to perform better than the uncalibrated ones 

(UNCAL). There is an evident improvement in the results obtained by merging the different sources of observed data 

(gauge and satellite) compared to simulations that use only satellite data.  480 

The KGE score, for example, shows the above: an AVG ranging from -1.41 for UNCAL to 0.11 for GAUGE to 

0.40 for MODGAUGECAL5 (Table 3). The MODGAUGEUNCAL3 has comparable performance, although lower, with 

respect to GAUGE (only rain gauge data) and to the MODGAUGEUNCAL5 and MODGAUGECAL5, where the rain 

gauge data have a coverage of 68%. Although they do not improve compared to GAUGE, this is encouraging, suggesting 

that even with a lower rain gauge density the performance of the hydrological simulation can be guaranteed. 485 

MODGAUGEUNCAL1 has been used to test the minimum bandwidth of rain gauge size in the basin. Not all results are 

satisfactory; for example, in the case of NSE, a classic skill score in hydrology, it is a convenient and popular (albeit 

gross) indicator of the model's ability (there has been a long and lively discussion about its eligibility (Gupta et al., 2009)). 

The simulation efficiency can be considered significant if the results are greater than 0: the study results do not respect 

these conditions, they are negative or at most close to zero. Although the results, our aim is to verify which APE obtained 490 

with the different settings improves the performance of the hydrological model and the results obtained with NSE test 

confirm it: the score goes from -15.618 for the UNCAL simulation (the worst performance) to -0.104 for 

MODGAUGEUNCAL5 and MODGAUGECAL5 simulations. Figure 8 shows the AVG values, listed in Table 3, of some 
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of the considered scores. In detail, Figure 8a shows some of the scores where the best performances are identified by a 

value equal to 1: KGEnp, NSEc2m, KGEc2m and MC. 495 

In the second part of Table 3, the error is measured in terms of RMSE, MARE and PBIAS. In the case of RMSE 

and MARE, the trend of the results confirms what has been verified with the other quality scores. For what concerns 

PBIAS, the results are slightly different. The low magnitude of PBIAS indicates an accurate model simulation, positive 

values indicate overestimation, whereas negative values indicate model underestimation. In this case, the best 

performances are evident for MODGAUGEUNACAL3, GAUGE, MODGAUGEUNCAL5 and MODGAUGECAL5 500 

simulations, although their interpretation is not as straightforward as for other scores. In detail, the overall PBIAS AVG 

values are 8.22 for MODGAUGEUNACAL3, -13.33 for GAUGE, and about 15 for MODGAUGEUNCAL5 and 

MODGAUGECAL5 simulations. Also, in this case, as shown in Table 3 and Figure 8 b CT_D, TP_D, E%, DTW, DDTW, 

an improvement in performance is confirmed with a clear decrease in the trend. 

The comparison between the different Modular settings was necessary to verify if CA technique could overcome 505 

the limit of the satellite rain data calibration. In fact, using a 5km rain gauge radius of influence, the results are comparable 

both for calibrated and uncalibrated satellite data. 

Regardless of the setting of the different runs, an improvement in results is obtained by merging rain gauges and 

uncalibrated satellite data compared to using only calibrated GPM IMERG; an improvement was also found by merging 

the data compared with using only rain gauge data. Thus, the Modular approach with R = 1 km (MODGAUGEUNCAL1) 510 

provides a lower-performing hydrological simulation than the NoModular approach (GAUNGEUNCAL), while a strong 

performance improvement is evident with the Modular approach, where rain gauges have R = 5 km 

(MODGAUGEUNCAL5 and MODGAUGECAL5), compared with the simulation using only rain gauge data (GAUGE). 

All the other scores reflect the expected trend: the performance of the model improves by merging the data, but above all, 

using this approach, whether calibrated or uncalibrated satellite data are used, the performances are comparable. In 515 

addition to using the average values (AVG) of the scores, the overall median (MED) and the overall standard deviation 

(STD) for the different runs have been computed and they are reported in the Supplementary materials (Table 4 and Table 

5). A general increase in performance using merged data is obtained also for MED and for STD. 

7 Conclusions 

Hydrological models are crucial aids for flood early warning systems and water resource management, 520 

particularly in the context of climate change. The accuracy of the results of many hydrological calculations depends on 

the accuracy of the Areal Precipitation Estimation (APE): a more realistic rainfall distribution is as important as the correct 

estimation of the cumulative rainfall maxima, especially when severe weather events affect areas with a complex drainage 
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network and characterized by small to medium-sized river basins in close proximity to each other. Accurate estimation 

of APE using rain gauge measurement interpolation is widely used, although the use of radar and satellite data is 525 

increasingly common. To correct spatial errors caused by variability in precipitation over short distances, different data 

sources are necessary. As these errors are linked to the density and distribution of rain gauges, they impact the streamflow 

simulation model's performance. In fact, the arrangement of rain gauges in the monitoring network may not meet the 

minimum density standard set by the WMO, as in the selected domain, particularly in areas with diverse topography. 

Consequently, the use of modern remote-sensing techniques, including radar or satellite data, is indispensable in regions 530 

with scarce or non-existent rain gauges. 

The study highlights the benefit of using Satellite-based RainFall Estimation precipitation products for 

hydrological simulations, especially in those areas where there is no homogeneous distribution of rain gauges, and it is a 

detailed analysis of the potential usage of the Cellular Automata based algorithm developed and implemented in the 

CHyM code to merge different rainfall data inputs. 535 

This work supports the relevance and provides methodologies, for dealing with different data sources 

simultaneously (rain gauges and satellite rainfall estimates): different data sources are used to obtain a mutual correction 

of the implicit error typical of different sources. An important aspect is choosing the right methodology for using the data. 

The main aim of this work is to validate the CA technique as a tool for creating APE using rain gauge and satellite rainfall 

data. The temporal resolution of these data sources (rain gauge is provided every hour instead of satellite data every half 540 

hour) is essential for developing operational monitoring and forecasting tools for flood early warning systems. 

Eight different simulations have been carried out, where the hydrological model has been forced with different 

CA-based APE scenarios. 

For the comparison between observed and simulated flow discharge time series, objective functions were 

selected. The traditional performance indicators have been used: KGE, NSE and the bounded version (KGEprime, 545 

KGEnp, NSEc2m, KGEc2m, KGEprime_c2m, KGEnp_c2m). RMSE, MARE, PBIAS were also considered. In addition, 

the typical signal theory indicators (MC, CT_D, TP_D, E%, DTW, DDTW) were selected to obtain a more objective 

analysis, independent of the limits of the scores commonly used for hydrological analyses.  

Three different case studies have been selected and the statistical analysis has been performed using the different 

quality scores, evaluating their overall average related to the three Case Studies and all station time series. The results 550 

show an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged. In 

detailed all scores confirm the better performance using the only rain gauge data (GAUGE) compared to satellite data 

(UNCAL, CAL), with results ranging from negative KGE values, -1.414 and -1.425 respectively for the UNCAL and 

CAL simulations (as reported in Table 3) to the value 0.116 of the GAUGE simulation. Considering that in the case of 

the KGE score the best performances are identified by values close to 1, the best performances are associated to the model 555 



20 

 

outputs forced with APE obtained starting from a rain gauge background rain field characterized by radius of influence R 

= 5km (i.e., when 68% coverage of the Tanaro basin is associated to the rainfall estimated through the gauge data) and 

the remaining part of the area is covered by the rainfall field rebuilt using the GPM IMERG product (calibrated or 

uncalibrated) which has a KGE value of approximately 0.4. Less performing results than the GAUGE simulation is 

obtained with the other settings. Obviously, the objective of this work is not to verify the perfect performance of the 560 

hydrological model, but to demonstrate how different rainfall fields can improve hydrological simulations.  

The same performances are confirmed if the typical signal theory indicators are used, where the best 

performances are identified by values close to zero: DDTW takes values ranging from 5.43 to 3.043 for UNCAL and 

CAL respectively to 0.257 for the GAUGE simulation. Also, in this case the MODGAUGEUNCAL5 and 

MODGAUGECAL5 simulations are comparable to each other with a value of 0.192 and perform better than the other 565 

simulations. Regarding the timing indices, CT_D and TP_D the results are comparable in all simulations. Only a few 

hours of shifting compared to the observed data makes the performances reliable for all simulations, regardless of the 

rainfall field. In any case, the CT_P confirms the best performances for the MODGAUGEUNCAL5 and 

MODGAUGECAL5 simulations with a score value of 0.625 compared to the worst results obtained with the UNCAL 

and CAL simulations with a score value of -2.75. The results for TP_D are different where the best performances are 570 

obtained with the MODGAUGEUNCAL3 simulation, with an average advance of the maximum peak of approximately 

two hours compared to the observed data. The same result is also obtained for the PBIAS score, measuring the average 

tendency of the simulated values to be larger or smaller than the observed ones, where the best average performances are 

obtained in the MODGAUGEUNCAL3 simulation.  

In the future, this method will be tested on a larger number of case studies and different river basins, as well as 575 

on other satellite products (available at different spatial, temporal resolution and shorter latency) to investigate the 

advantage of the proposed approach in an operational setting for near-real time hydrological applications. 
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All raw data can be provided by the corresponding authors upon request.  580 
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Figure 1: North-West domain of Italy main drainage network (blue line), Tanaro river basin is hilighted in yellow. The 

numbers represent the basin flow discharge stations selected: Montecastello (7956 km2 drained), Masio (4535 km2 

drained), Asti (4123 km2 drained), Alba (3385 km2 drained), Piantorre (500 km2 drained), Mondovì – Ellero (180 km2 

drained), San Damiano d’Asti – Borbore (85 km2 drained), Ponte di Nava (149 km2 drained). The red triangles are the 

rain gauges available for this study. DEM data are accessibile at https://land.copernicus.eu/imagery-in-situ/eu-dem/ 

(last access August 2023). Drainage Network and boundaries basin are accessible at https://www.hydrosheds.org/ (last 

access August 2023). 
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Figure 2. Numerical experiment workflow, consisting of three main tasks: 1) precipitation gridding and assimilation 

data, 2) precipitation merging data and hydrological model simulations, 3) analysis and error score calculation. 

Different combinations of precipitation are tested as input to the hydrological model and error scores calculated 

accordingly in terms of flow discharge. Eight different simulations have been carried out for each case studies, using 

the eight different rain input settings. 
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Figure 3. Tanaro Basin rain gauge density and distribution. The red circles represents the rain gauge coverage of area 

using a radius of influence of 5 km. The blue line reprents the Tanaro basin extent. @Google Earth. 
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 815 

 
Figure 4. Case Studies Synoptic analysis: a) CS 01 12 November 2014 00UTC, b) CS 02 16 November 2014 00UTC, 

c) CS 03(1 December 2014 00UTC) 500 hPa geopotential height and sea level pressure using the fifth generation 

ECMWF reanalysis (ERA5); d) CS 01, e) CS 02, f) CS 03 120h cumulated rain rebuilt using rain gauge data. 
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Figure 5: CS 01 Areal Precipitation Estimation: the figures show the rain field rebuilt using rain gauge data (a), GPM 

IMERG FINAL CAL (b), GPM IMERG FINAL UNCAL (c). Panel d shows the rain field obtained forcing the 

hydrological model with rain gauge data, using a radius of influence equal to 5km, merged with GPM IMERG FINAL 

UNCAL. 
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Figure. 6. Intercomparison between Observed and Simulated flow discharge data with the different rainfall scenarios 

for CS01. The Simulation analysis are related to Alba Tanaro (a, b) and Ponte di Nava (c, d) river sections. 
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Figure 7. The boxplots show the summary refer to KGE and RMSE obtained from the CHYM simulation using the eight 

APE fields as input, related to all three Case Studies and all river sections. 

 

  



35 

 

 

 

 

Figure 8. The histograms summarize the statistical analysis performed for the different scores, evaluating their average 

(AVG) and the standard deviation (STD). The figure a) shows the quality scores (KGEnp, NSEc2m, KGEc2m and 

MC) where the best performances are identified by a value equal to 1. In the figure b) (MARE, CT_D, E% and DDTW) 

the best performances are identified by values close to zero. 
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Table 1. Raingauge Network characteristic of Tanaro catchment; R* = Cressman radius of influence. 

 Network characteristics   

Region Type 
Area size  

(km2) 

Gauge 

Numbers 

Network 

Density 

(km2 per 

gauge) 

Average 

Gauge 

Distance  

(km) 

Gauge 

Covered 

Area  

(R=5km) * 

Gauge 

Covered 

Area 

(R=3km) * 

Gauge 

Covered 

Area 

(R=1km) * 

Mountain  

(>700 MSL) 
2241 22 102 10 0.79 0.26 0.006 

Hill  

(700 ≤ H ≤ 300) 
3032 32 95 9.74 0.74 0.26 0.008 

Flat  

(< 300) 
3153 19 166 13 0.51 0.16 0.004 

Tanaro 

Catchment  
8426 73 115 10.74 0.68 0.22 0.006 
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 840 

Table 2. Input data sources and settings for each simulation. 

 

Simulation Input data souces 
Radius of 

influence 

UNCAL IMERG F Uncal 10 km 

CAL IMERG F Cal 10 km 

GAUGE Rain Gauge 30 km 

GAUGEUNCAL 

(NoModular) 
Rain Gauge + IMERG F Uncal 10 km 

MODGAUGEUNCAL1 
Rain Gauge 1 km  

IMERG F Uncal 10 km 

MODGAUGEUNCAL3 
Rain Gauge 3 km 

IMERG F Uncal 10 km 

MODGAUGEUNCAL5 
Rain Gauge 5 km 

IMERG F Uncal 10 km 

MODGAUGECAL5 
Rain Gauge 5 km 

IMERG F Cal 10 km 
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 850 

Table 3. Average statistical scores for all three case studies and all river stations obtained from the CHYM simulations 

using the eight APE fields as input (AVG). The first block of the table shows all the quality scores where the best 

performances are identified by a value equal to 1. In the second block of the table, the best performances are identified 

by values close to zero. 

 855 

 UNCAL CAL 

MOD 

GAUGE 

UNCAL1 

GAUGE 

UNCAL 

MOD 

GAUGE 

UNCAL3 

GAUGE 

MOD 

GAUGE 

UNCAL5 

MOD 

GAUGE 

CAL5 

KGE -1.414 -1.425 -1.029 -0.408 0.069 0.116 0.407 0.403 

NSE -15.618 -12.739 -10.425 -4.570 -1.775 -0.997 -0.104 -0.104 

KGEprime -0.711 -0.989 -0.565 -0.139 -0.070 0.186 0.242 0.239 

KGEnp 0.090 -0.056 0.178 0.427 0.514 0.568 0.604 0.604 

NSEc2m -0.462 -0.482 -0.392 -0.210 -0.101 -0.037 0.126 0.128 

KGEc2m -0.164 -0.175 -0.097 0.036 0.179 0.181 0.327 0.325 

KGEprime_c2m -0.150 -0.199 -0.112 0.034 0.069 0.202 0.251 0.250 

KGEnp_c2m 0.173 0.156 0.218 0.336 0.363 0.428 0.446 0.447 

MC 0.548 0.622 0.572 0.579 0.774 0.598 0.798 0.797 

 

RMSE 297.038 277.595 257.797 200.080 159.440 149.397 128.757 129.549 

MARE 1.163 1.299 1.055 0.778 0.630 0.586 0.464 0.464 

PBIAS -53.840 -57.306 -43.956 -25.297 8.220 -13.323 15.662 15.383 

CT_D -2.750 -2.750 -2.125 -1.042 -1.042 0.750 0.625 0.625 

TP_D -4.083 -4.833 -3.375 -1.958 -1.875 3.875 3.750 3.792 

E% 1.543 1.318 1.176 0.716 0.261 0.275 -0.021 -0.019 

DTW 50.829 40.878 33.380 15.190 6.978 4.346 2.674 2.660 

DDTW 5.436 3.043 3.274 1.481 0.668 0.257 0.192 0.192 
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Table 4. Standard deviation of the statistical scores for all three case studies and all river stations obtained from the 

CHYM simulations using the eight APE fields as input (STD). 
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 UNCAL CAL 

MOD 

GAUGE 

UNCAL1 

GAUGE 

UNCAL 

MOD 

GAUGE 

UNCAL3 

GAUGE 

MOD 

GAUGE 

UNCAL5 

MOD 

GAUGE 

CAL5 

KGE 2.914 2.617 2.386 1.536 1.003 0.701 0.445 0.448 

NSE 42.912 25.613 28.062 12.344 5.752 2.480 1.226 1.228 

KGEprime 1.126 1.439 1.029 0.795 0.802 0.609 0.634 0.637 

KGEnp 0.854 1.333 0.779 0.402 0.173 0.224 0.138 0.137 

NSEc2m 0.414 0.415 0.433 0.482 0.401 0.435 0.340 0.341 

KGEc2m 0.383 0.387 0.388 0.392 0.321 0.342 0.268 0.272 

KGEprime_c2m 0.298 0.315 0.298 0.298 0.297 0.316 0.332 0.333 

KGEnp_c2m 0.313 0.327 0.306 0.261 0.153 0.200 0.143 0.142 

MC 0.266 0.335 0.260 0.217 0.282 0.166 0.242 0.243 

 

RMSE 366.182 289.936 324.530 244.503 191.808 167.846 159.119 164.644 

MARE 0.984 1.437 0.898 0.521 0.318 0.306 0.186 0.187 

PBIAS 101.932 151.940 94.248 53.677 34.796 34.535 23.365 23.417 

CT_D 12.477 12.804 12.221 9.154 9.370 2.933 3.080 3.107 

TP_D 14.180 14.020 14.041 12.614 12.204 3.756 3.711 3.730 

E% 3.166 2.295 2.451 1.650 1.101 0.640 0.533 0.533 

DTW 126.770 70.688 81.781 34.897 15.763 6.349 3.024 3.020 

DDTW 20.408 10.338 12.362 5.263 2.326 0.562 0.371 0.372 
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Table 5. Median of the statistical scores for all three case studies and all river stations obtained from the CHYM 870 

simulations using the eight APE fields as input (MED). 

 

 UNCAL CAL 

MOD 

GAUGE 

UNCAL1 

GAUGE 

UNCAL 

MOD 

GAUGE 

UNCAL3 

GAUGE 

MOD 

GAUGE 

UNCAL5 

MOD 

GAUGE 

CAL5 

KGE -0.558  -0.473  -0.299  0.097  0.402  0.299  0.537  0.537  

NSE -3.140  -3.609  -2.083  -0.637  -0.264  0.046  0.341  0.331  

KGEprime -0.485  -0.585  -0.308  0.030  0.116  0.362  0.532  0.529  

KGEnp 0.392  0.375  0.500  0.606  0.523  0.657  0.611  0.619  

NSEc2m -0.604  -0.643  -0.508  -0.240  -0.116  0.028  0.207  0.199  

KGEc2m -0.218  -0.182  -0.129  0.051  0.251  0.176  0.368  0.367  

KGEprime_c2m -0.195  -0.225  -0.133  0.015  0.062  0.221  0.362  0.360  

KGEnp_c2m 0.244  0.231  0.333  0.435  0.354  0.489  0.440  0.448  

         

RMSE 167.351  169.794  144.205  108.312  113.309  104.219  83.801  84.676  

MARE 0.915  0.845  0.817  0.635  0.531  0.533  0.457  0.467  

PBIAS -30.560  -20.430  -17.750  -4.952  20.578  -1.279  20.597  21.030  

CT_D 0.535  0.560  0.570  0.585  0.765  0.570  0.750  0.750  

TP_D 2.000  1.000  1.500  1.000  1.000  0.000  0.500  0.500  

E% 0.100  0.500  1.100  2.200  2.100  4.000  3.500  3.500  

DTW 0.630  0.605  0.605  0.230  -0.075  0.075  -0.220  -0.220  

DDTW 9.940  11.605  7.000  2.255  3.020  1.945  2.000  2.005  

RMSE 0.140  0.145  0.125  0.065  0.045  0.040  0.040  0.040  
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