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Abstract. Land surface models have many parameters that have a spatially variable impact on model outputs. In applying 9 

these models, sensitivity analysis (SA) is sometimes performed as an initial step to select calibration parameters. As these 10 

models are applied on large domains, performing sensitivity analysis across the domain is computationally prohibitive. Here, 11 

using a VIC deployment to a large domain as an example, we show that watershed classification based on climatic attributes 12 

and vegetation land cover helps to identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. We 13 

evaluate the sensitivity of 44 VIC model parameters with regard to streamflow, evapotranspiration and snow water equivalent 14 

over 25 basins with a median size of 5078 km2. Basins are clustered based on their climatic and land cover attributes. 15 

Performance of transferring parameter sensitivity between basins of the same cluster is evaluated by the F1 score. Results 16 

show that two donor basins per cluster are sufficient to correctly identify sensitive parameters in a target basin, with F1 scores 17 

ranging between 0.66 (evapotranspiration) to 1 (snow water equivalent). While climatic attributes are sufficient to identify 18 

sensitive parameters for streamflow and evapotranspiration, including vegetation class significantly improves skill in 19 

identifying sensitive parameters for snow water equivalent.  This work reveals that there is opportunity to leverage climate and 20 

land cover attributes to greatly increase the efficiency of parameter sensitivity analysis and facilitate more rapid deployment 21 

of land surface models over large spatial domains. 22 

1 Introduction 23 

Land surface models (LSMs) are often used over large-scale domains (i.e., continental, or subcontinental river basins) to 24 

analyze hydrologic variables of interest. The main purpose of large-domain hydrologic modelling is to simulate, in a spatially 25 

consistent manner, the processes governing water fluxes across different geographic and hydroclimatic regions (Mizukami et 26 

al., 2017). The application of LSMs over large domains raises several challenges, including the availability of driving data and 27 

observations for calibration and the computational cost of calibration. 28 
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Parameter estimation when modelling the hydrology of large domains is particularly challenging due the number of parameters 29 

that must be estimated, the resulting computational demand and the impact of spatial heterogeneity on parameter 30 

transferability. Given the lack of guidance on parameter transferability over large domains, LSMs often rely on a priori 31 

parameterizations based on expert opinion, case studies, field data, or hydrologic theory (Beck et al., 2016, Rakovec et al., 32 

2019). Specifically, LSM parametrization of vegetation and soil characteristics is generally based on other measured 33 

characteristics or found in the literature from soil and vegetation classes (Nasonava et al., 2009). This approach relies on the 34 

assumption that vegetation and soil type solely determine the ideal values of vegetation parameters and soil parameters 35 

respectively, neither of which is supported by previous studies (e.g., Rosero et al., 2010; Cuntz et al., 2016; Bennett et al., 36 

2018). 37 

LSM parameter estimation is a high dimensional problem (Göhler et al, 2013; Cuntz et al., 2016). The calibration parameter 38 

space can, however, be reduced by a sensitivity analysis (SA) that serves to identify parameters that strongly influence the 39 

model output variance. SA provides objective insights on calibration parameters by eliminating  parameters from the 40 

calibration space that do not affect model output variance (hereafter called noninformative parameters) and reducing the 41 

probability of over-parameterization (Van Griensven et al., 2006; Cuntz et al., 2015; Demirel et al., 2018). The computational 42 

cost of SA depends on the number of model runs needed to simulate realistic model responses, which increases significantly 43 

with the number of model parameters considered (Sarrazin et al., 2016; Devak and Dhanya, 2017). Therefore, SA of LSMs is 44 

either overlooked and calibration parameters are selected based on the expert judgement and/or a previous SA, or when 45 

performed, the list of model parameters analyzed is artificially shortened to exclude numerous model parameters whose values 46 

are not known with certainty. Recent sensitivity analysis studies of LSMs, have however, revealed the impact of fixed-value 47 

parameters (i.e., parameters assigned fixed values, often within the model code itself) on model output variance (e.g., Mendoza 48 

et al., 2015; Cuntz et al., 2016; Houle et al., 2017), thus raising the need to explore and estimate these parameters to improve 49 

the spatial accuracy of LSM outputs and the representation of hydrologic processes. 50 

Sensitivity analysis studies show that parameter sensitivities vary geographically depending on the hydroclimatic conditions 51 

(Demaria et al., 2007; Gou et al., 2020) and considered hydrologic processes (Bennett et al., 2018; Sepúlveda et al., 2021). As 52 

land surface models are often applied on increasingly larger domains, performing sensitivity analysis across the entire domain 53 

to identify the spatial pattern of sensitive parameters becomes increasingly computationally prohibitive, particularly when one 54 

considers the large number of parameters involved. In addition, there is a lack of guidance in the literature on ways to 55 

extrapolate parameter sensitivity from local to the larger scale with a reduced computational cost.  56 

One approach for extrapolating parameter sensitivity is watershed classification, which aims at identifying watersheds that are 57 

similar in some sense (i.e., according to certain attributes). Hydrological applications of watershed classification include 58 

understanding general catchment hydrologic behavior (e.g., Sawicz et al., 2011), estimation of flow duration curves and 59 

streamflow in ungauged sites (e.g., Boscarello et al., 2016; Kanishka and Eldho, 2020) and estimation of environmental model 60 
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parameters in scarce data regions (e.g., Jafarzadegan et al., 2020). In this paper, we investigate the utility of watershed 61 

classification for reducing the cost of large-scale parameter sensitivity.   62 

Our objective is to demonstrate the application of watershed classification as a means to regionalize parameter sensitivity. We 63 

do this using an example deployment of the Variable Infiltration Capacity model (VIC, Liang et al., 1994, 1996). The VIC 64 

model has been extensively used for regional hydrological modelling, but with typically only 4 to 11 parameters adjusted 65 

during calibration (e.g., Wenger et al. 2010; Shreshta et al., 2012; Oubeidillah et al., 2013; Schnorbus et al., 2014; Islam et al., 66 

2017; Lohmann et al., 1998; Nijssen et al., 2001; Xie and Yuan, 2006; He and Pang, 2014; Melsen et al., 2016; Yanto et 67 

al.,2017; Ismail et al., 2020; Gou et al., 2020; Waheed et al., 2020). Nevertheless, many additional VIC parameters that are 68 

typically fixed also affect model output variance (e.g., Mendoza et al., 2015; Melsen et al., 2016; Houle et al., 2017; Bennett 69 

et al., 2018). Hence, we examine the regionalization of parameter sensitivity for a much larger suite of 44 parameters that 70 

includes 14 soil parameters, four climate parameters, six snow-related parameters, three glacier parameters and 17 vegetation 71 

related parameters. In order to address a range of hydrologic processes, parameter sensitivity is assessed with regard to three 72 

model outputs: streamflow, evapotranspiration and snow water equivalent.   73 

This paper is organized as follows. Section 2 describes the study area, the VIC-GL model and its parametrization, the sequential 74 

screening method and the watershed classification approach used. Section 3 presents the results of the sensitivity analysis for 75 

streamflow, evapotranspiration, snow cover, and the results of transferring parameter sensitivity based on watershed 76 

classification. Section 4 provides a discussion of the results followed by conclusions in Sect. 5, where we also discuss the 77 

implications for cost effective sensitivity analysis when considering hydrologic models with large numbers of parameters that 78 

are deployed across large domains.  79 

2 Methods  80 

Section 2.1 presents the study area and the dataset used to drive the VIC-GL model. Section 2.2 describes the version of VIC 81 

used here, while Sec. 2.3 describes its parametrization and initialization. The parameter sampling strategy is also described in 82 

Sect. 2.3. Section 2.4 presents the Efficient Elementary Effects (EEE; Morris, 1991) screening method used to identify VIC-83 

GL informative parameters. Section 2.5 presents the physical similarity approach used to transfer parameter importance to 84 

other basins. 85 

2.1 Study area and dataset  86 

The study area extends over the Pacific Northwest region of North America from 40.75° N to 57.6° N and 109.96° W to 127.9° 87 

W (see Fig.1). It encompasses three large watersheds, the Peace, Fraser and Columbia rivers, with a combined area of 88 

1,150,624 km2. This region spans many physiographic and climatic zones, resulting in substantial hydroclimatic spatial 89 

variability. The domain was subdivided into several smaller basins (158 in total) according to location of hydrometric gauges. 90 

https://doi.org/10.5194/hess-2023-21
Preprint. Discussion started: 24 January 2023
c© Author(s) 2023. CC BY 4.0 License.



4 

 

We selected 25 of these basins representing glacierized conditions in the Coast Mountains and the Rocky Mountains, semi-91 

arid conditions in the interior of both the Fraser and Columbia and in eastern Peace, and the arid conditions of the southern 92 

Columbia. The location of these basins is presented in Fig. 1 and their characteristics are summarised in Table 1 and 2. The 93 

selected basins capture large spatial variability in precipitation, which is largely controlled by orography, such that average 94 

annual precipitation over the 25 basins ranges from 448 mm/year to 1666 mm/year. The sampled basins also capture a strong 95 

latitudinal gradient of air temperature, with average annual temperature ranging from -0.4 °C to 7.4 °C. The snow index, the 96 

fraction of annual precipitation that falls as snow, ranges from 0.38 to 0.70 and the aridity index, the ratio of evapotranspiration 97 

to precipitation (ET/P), ranges from 0.28 to 1.66. Average catchment elevation ranges from 683 m to 1990 m.  98 

 99 

 100 

Figure 1: Modelled domain with the location of the 25 selected sub-basins (a), the domain digital elevation map (b), mean annual 101 
precipitation (c) and mean annual temperature (d), which were calculated from the PNWNAmet dataset. 102 

 103 

 104 

 105 

 106 
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Table 1: Physiographic attributes of 25 selected basins. 107 

Basin 

ID 

 
Basin 

name 
Basin description 

Area 

[km2] 

Glacier 

area 

[km2] 

Average 

elevation 

[m] 

Relief 
[m] 

1  ADAMS Adams River near Squilax, BC 3130 41 1266 1558 

2  BCHTR Bridge River at Terzaghi Dam, BC 2745 54 1748 1434 

3  BCHWL Shuswap River at Wilsey Dam, BC 1021 0 1339 1208 

4  BONAP Bonaparte River below Cache Creek, BC 5334 0 1216 1305 

5  BRN Snake River at Brownlee Dam, Idaho/Oregon 8877 0 1299 1692 

6  CAYOO Cayoosh Creek near Lilooet, BC 954 2 1770 1400 

7  CLEAO Clearwater River at the outlet of Clearwater Lake, BC 3031 224 1625 1540 

8  DONAL Columbia River at Donald, BC 1623 115 1767 1838 

9  DWR North Fork Clearwater River at Dworshak Dam, ID 6066 0 1307 1341 

10  FRSHP Fraser River at Hope, BC 31557 62 1198 2015 

11  FRSMG Fraser near Marguerite, BC 20810 0 867 968 

12  HERNN Krawchuk Drainage near Mclennan, BC 4018 0 683 160 

13  HORSE Horsefly River above McKinley Creek, BC 1242 0 1400 990 

14  KIRNF Kiskatinaw River near Farmington, BC 6196 0 910 555 

15  LIB Kootenai River at Libby Dam, MT 6977 0 1327 1240 

16  LSRNG Little Smoky River near Guy, AB 18975 0 868 946 

17  MAHOO Maood River at outlet of Mahood Lake, BC 5078 0 1194 1072 

18  NAUTL Nautley river near Fort Fraser, BC 3163 0 956 565 

19  QUESQ Quesnel River near Quesnel, BC 5551 78 1251 1442 

20  SEYMO Seymour River near Seymor Arm, BC 1024 41 1516 1422 

21  TASEK Taseko River at outlet of Taseko Lake, BC 1789 194 1990 1098 

22  REXI Henrys Fork Rexburg, ID 8034 0 1983 1590 

23  BurneauR Bruneau River near Hot Spring, Idaho  7074 0 1711 1852 

24  KWRNW Kwadacha River Near Ware, BC 5034 144 1538 1433 

25  HRNFC Halfway River near Farrel Creek, BC 5906 0 835 705 
  108 
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The climatic attributes presented in Table 2 are spatially averaged by sub-basin from the gridded PNWNAmet dataset (Werner 109 

et al., 2019), which is used to drive the VIC model. This dataset provides gridded observations of daily precipitation (mm) and 110 

minimum and maximum temperature (°C) for the Northwestern North America. The dataset is available at a daily timestep 111 

and a spatial resolution of 1/16° for the period 1945 to 2012. Wind speed (m/s) from the 20CR reanalysis (Compo et al., 2011) 112 

that has been spatially interpolated to 1/16° is also provided with the PNWNAmet dataset at a daily timescale. For further 113 

details see Werner et al. (2019). 114 

Table 2: Climatic attributes of the 25 selected basins. Snow Index is the fraction of wet days when temperature is below 2°C, zero 115 
means no snow and one means all precipitation is received as snow. Aridity index is the ratio between average annual 116 
evapotranspiration and precipitation (ET/P).   117 

Basin name 
Average annual 

precipitation [mm] 

Average  annual 

temperature [°C] 
Snow index Aridity index 

ADAMS 1196 3.39 0.47 0.40 

BCHTR 1123 1.42 0.62 0.37 

BCHWL 991 3.64 0.51 0.48 

BONAP 475 3.88 0.43 1.04 

BRN 557 7.42 0.40 1.01 

CAYOO 995 1.93 0.60 0.43 

CLEAO 1492 1.00 0.57 0.28 

DONAL 1194 0.23 0.61 0.34 

DWR 1271 5.88 0.48 0.41 

FRSHP 951 3.96 0.44 0.51 

FRSMG 634 2.94 0.44 0.76 

HERNN 448 1.23 0.47 1.14 

HORSE 1119 2.17 0.51 0.40 

KIRNF 575 2.19 0.45 0.87 

LIB 856 3.93 0.48 0.56 

LSRNG 570 2.62 0.41 0.90 

MAHOO 675 3.34 0.45 0.72 

NAUTL 583 2.64 0.45 0.82 

QUESQ 939 2.86 0.46 0.50 

SEYMO 1666 2.63 0.70 0.28 

TASEK 1310 -0.37 0.70 0.29 

REXI 729 3.54 0.54 0.65 

BruneauR 337 7.43 0.38 1.66 

KWRNW 845 -1.57 0.62 0.47 

HRNFC 514 1.61 0.48 0.96 
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2.2 VIC-GL model 118 

VIC is a physically based macroscale model that simulates both water and energy balances by grid cells (Liang et al., 1994, 119 

1996; Cherkauer and Lettenmaier, 1999). The VIC model has been widely applied to analyze the impact of climate change on 120 

the hydrology and water resources of the study region (e.g., Hamlet and Lettenmaier, 1999; Payne et al., 2004; Shrestha et al., 121 

2012; Schnorbus et al., 2014; Islam et al., 2017) and to study the effect of land cover change on streamflow (e.g., Matheussen 122 

et al., 2000). VIC-GL, an upgraded version developed at the Pacific Climate Impacts Consortium (PCIC) that is used here, 123 

includes additional functionality to simulate glacier mass balance (Schnorbus, 2018). VIC-GL was branched from VIC version 124 

4.2, and although the model physics are in many ways similar, it uses a different model abstraction from its predecessor. 125 

Although the computational domain of VIC-GL is still described using a two-dimensional grid (using a spatial resolution of 126 

1/16 in the current application), sub-grid variability in land cover and topography uses hydrologic response units (HRUs) as 127 

opposed to the original vegetation tiles. Specifically, an HRU is assigned for each land cover class within an elevation band, 128 

with the elevation of each HRU being the median of the associated elevation band. In this manner, the type and extent of land 129 

cover is allowed to vary with elevation within grid boxes. The vertical water and energy balance is solved separately in each 130 

HRU and then averaged to the grid-cell scale. The current application of VIC-GL uses fixed 200-m elevation bands and three 131 

soil layers. The baseline model processes are described in detail by Liang et al. (1994, 1996), Cherkauer et al. (2013) and Bohn 132 

et al. (2016).  133 

Updates to address glacier mass balance modelling are described in detail by Schnorbus (2018), but pertinent VIC-GL 134 

parameter changes are summarised here. Glacier surface mass and energy balance modelling introduces three additional 135 

parameters GLAC_ALB, GLAC_ROUGH and GLAC_REDF. GLAC_ALB specifies the albedo of glacier ice, which controls 136 

the amount of incoming solar radiation absorbed by the ice surface. The value of GLAC_ALB, once set, is constant in time. 137 

The parameter GLAC_ROUGH specifies the roughness length of the glacier surface, which affects the wind speed profile and 138 

the transfer of energy to the glacier surface due to the turbulent fluxes. The scaling factor for snow redistribution 139 

(GLAC_REDF) controls the redistribution of precipitation between non-glacier HRUs and acts as a proxy for mechanical snow 140 

redistribution that typically occurs via wind and gravity in mountainous alpine environments (e.g. Kuhn 2003). VIC-GL also 141 

uses the rain-snow partitioning algorithm of Kienzle (2008) rather than the original algorithm in the VIC model distribution.  142 

This is a curvilinear model that uses two parameters, the threshold mean daily temperature (TEMP_TH_1), where 50% of 143 

precipitation falls as snow, and the temperature range centered on TEMP_TH_1 within which both solid and liquid precipitation 144 

occurs (TEMP_TH_2). VIC-GL has also been updated to make certain parameters more accessible for model calibration and 145 

to allow for a more spatially explicit description of some hydro-climatic processes. These parameters include five that  146 

determine soil albedo decay according to the USACE algorithm (USACE 1956) and the climatic parameters T_LAPSE and 147 

PGRAD. The latter specify vertical temperature and the precipitation gradients that are used to adjust temperature and 148 

precipitation, respectively, for each HRU within a grid cell. 149 
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2.3 Model parameterization and sampling 150 

We consider 44 VIC-GL parameters (Table 3) composed of 5 baseflow parameters, 1 runoff parameter, 9 drainage parameters, 151 

4 climate parameters, 6 snow-related parameters, 3 glacier parameters and 17 vegetation related parameters. The set of 152 

analyzed parameters includes the commonly calibrated parameters, parameters that have been addressed in previous studies 153 

(e.g., Demaria et al., 2007; Houle et al., 2017; Bennett et al., 2018), and some that are typically set to fixed values (Gao et al., 154 

2009).  155 

 156 
Table 3: The 44 VIC-GL parameters selected for the sensitivity analysis. Type is the parameter sampling strategy, which is to either 157 
replace the parameter default value (i.e., Absolute), apply a multiplicative factor or apply an additive change to the baseline values.  158 
The additive change is applied so that trunk ratio remains between 0.1 and 0.8.  159 

Parameter  Description  Unit Range Default Type  

Baseflow parameters       
ds Fraction of Dsmax where nonlinear 

baseflow begins  

_ [0.001, 

0.6] 

0.1 Absolute 

dsmax Maximum velocity of baseflow  mm/day [1, 200] 40 Absolute 

ws Fraction of maximum soil moisture where 

nonlinear baseflow occurs  

_ [0.4, 1] 0.9 Absolute 

c Exponent used in baseflow curve _ [1, 10] 2 Absolute 

depth3 Thickness of soil layer 3 m [0.5, 10] 2 Absolute 

Runoff parameters       
INFIL Variable infiltration curve parameter _ [0.0001, 

0.8] 

0.2 Absolute 

Drainage parameters       
watn Exponent in Campbell's equation for 

hydraulic conductivity in all layers 

_ [8, 11] 9.5 Absolute 

ks Saturated hydrologic conductivity in all 

layers  

mm/day [300, 

3000] 

1081 Absolute 

depth1 Thickness of soil layer 1  m [0.001, 

0.5] 

0.1 Absolute 

depth2 Thickness of soil layer 2  m [0.05, 1] 0.2 Absolute 

bd Soil bulk density (applied to all layers) kg/m^3 [800, 

1600] 

1400 Absolute 

sdens Soil particle density (applied to all layers) kg/m^3 [2000, 

2700] 

2500 Absolute 

wcr Critical Point (applied to all layers) _ [0.35, 

0.55] 

0.40 Absolute 

wpwp Wilting point (applied to all layers) _ [0.20, 

0.50] 

0.35 Absolute 

resid_moist Residual moisture (applied to all layers) _ [0.0, 

0.125] 

0.08 Absolute 

Climate parameters      

PGRAD Precipitation gradient  1/m [0.0001, 

0.001] 

0.0005 Absolute 

T_LAPSE Temperature lapse rate  °C/m [0, 9.5] 6.5 Absolute 
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TEMP_TH_1 Rain/snow temperature threshold 

parameter 1 

°C [-2.0, 5.0] 2 Absolute 

TEMP_TH_2 Rain/snow temperature threshold 

parameter 2  

°C [8.0, 15.0] 12 Absolute 

Snow parameters       
SNOWROUGH Surface roughness of snowpack m [0.0001, 

0.1] 

0.01 Absolute 

NEW_SNOW_ALB Albedo of new snow _ [0.8, 0.9] 0.85 Absolute 

SNOW_ALB_ACCUM_A Albedo decay coefficient during 

accumulation period 

_ [0.3, 0.99] 0.94 Absolute 

SNOW_ALB_ACCUM_B Albedo decay exponent during 

accumulation period 

_ [0, 0.99] 0.58 Absolute 

SNOW_ALB_THAW_A Albedo decay coefficient during thaw 

period 

_ [0.1, 0.99] 0.82 Absolute 

SNOW_ALB_THAW_B Albedo decay exponent during thaw period _ [0, 0.99] 0.46 Absolute 

Glacier parameters  
     

GLAC_ALB Albedo of glacier surface _ [0.2, 0.6] 0.4 Absolute 

GLAC_ROUGH Surface roughness of glacier m [0.0001, 

0.01] 

0.001 Absolute 

GLAC_REDF Scaling factor for snow redistribution with 

values in range 0 (no redistribution) to 1 

(redistribution equal to area ratio) 

_ [0, 1] 0 Absolute 

Vegetation parameters       
root_depth Thickness of root zone layer 3 m [0.5, 2]  1 Multiplicative 

factor 

root_fract1 Fraction of roots in soil layer 1 _ [0, 1] 0.7 Absolute 

root_fract2 Fraction of roots in soil layer 2 _ [0, 1] 0.2 Absolute 

lai_djf Leaf Area Index (winter) m2/m2 [0.5, 2] 1 Multiplicative 

factor 

lai_mam Leaf Area Index (spring) m2/m2 [0.5, 2] 1 Multiplicative 

factor 

lai_jja Leaf Area Index (summer) m2/m2 [0.5, 2] 1 Multiplicative 

factor 

lai_son Leaf Area Index (fall) m2/m2 [0.5, 2] 1 Multiplicative 

factor 

alb_dja albedo(winter) _ [0.5, 2] 1 Multiplicative 

factor 

alb_mam albedo(spring) _ [0.5, 2] 1 Multiplicative 

factor 

alb_jja albedo(summer) _ [0.5, 2] 1 Multiplicative 

factor 

alb_son albedo(fall) _ [0.5, 2] 1 Multiplicative 

factor 

Rarc Architectural resistance s/m [0.5, 2] 1 Multiplicative 

factor 

Rmin Minimum stomatal resistance s/m [0.5, 2] 1 Multiplicative 

factor 

https://doi.org/10.5194/hess-2023-21
Preprint. Discussion started: 24 January 2023
c© Author(s) 2023. CC BY 4.0 License.



10 

 

RGL Minimum incoming shortwave radiation at 

which there will be transpiration 

W/m^2 [0.5, 2] 1 Multiplicative 

factor 

SolAtn Solar attenuation factor _ [0.5, 2] 1 Multiplicative 

factor 

WndAtn Wind speed attenuation through the 

overstory 

_ [0.5, 2] 1 Multiplicative 

factor 

Trunk_ratio* Ratio of total tree height that is trunk _ [-0.2, 0.2] 0 Additive 

change  

 160 

The commonly calibrated parameters are limited to four baseflow parameters, the runoff parameter, and five drainage 161 

parameters. The common baseflow parameters are maximum velocity of baseflow (dsmax), fraction of dsmax where nonlinear 162 

baseflow begins (ds), fraction of maximum soil moisture where non-linear baseflow occurs (ws) and thickness of deepest soil 163 

layer (depth3). These parameters describe the non-linear relationship between baseflow rate and soil moisture in the deepest 164 

soil layer (with thickness described by depth3). The runoff parameter, or variable infiltration curve parameter (INFIL), 165 

describes the extent of soil saturation within grid cell (i.e., amount of direct runoff) as function of soil moisture in the surface 166 

soil layers (i.e., the variable infiltration curve, Liang et al., 1994) which have thicknesses given by depth1 and depth2. The 167 

common drainage parameters are the two parameters controlling soil storage capacity (depth1 and depth2), the exponent in 168 

Campbell’s equation for hydraulic conductivity (watn) and the saturated hydrologic conductivity (ks).   169 

The additional drainage parameters considered are the soil bulk density (bd), soil particle density (sdens), fractional soil 170 

moisture content at the critical point (wcr), fractional soil moisture content at the wilting point (wpwp) and the residual moisture 171 

(resid_moist). The wpwp parameter dictates baseflow estimation with the Arno model formulation (Francini and Pacciani, 172 

1991) used in VIC (Gao et al., 2009). We also consider the four climate parameters which are temperature lapse rate 173 

(T_LAPSE), precipitation gradient, and the rain/snow temperature threshold parameter 1 and 2 (TEMP_TH_1 and 174 

TEMP_TH_2). The examined parameters also include the three glacier mass balance parameters (GLAC_ALB, GLAC_ROUGH 175 

and GLAC_REDF). The snow related parameters examined are surface roughness (SNOWROUGH), albedo of new snow 176 

(NEW_SNOW_ALB) and albedo decay parameters during the accumulation period (SNOW_ALB_ACCUM_A, 177 

SNOW_ALB_ACCUM_B) and during the thaw period (SNOW_ALB_THAW_A, SNOW_ALB_THAW_B).  178 

The parameters describing snow and glacier properties along with soil and climate parameters are assigned by grid cell. These 179 

parameters were initialized with default values and then sampled within prescribed ranges (see Table 3).The same value is 180 

assigned to all grid cells within a catchment. The sampling of the soil parameters critical point (wcr), wilting point (wpwp) and 181 

residual moisture (resid_moist) is constrained so that conditions required by VIC (Gao et al., 2009) are not violated. Thus, 182 

sampling is performed so that wcr ≤ (1 - bd/sdens), wpwp ≤ wcr, and resid_moist ≤ wpwp * (1 - bd/sdens).  183 
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The vegetation parameters consist of the thickness of root zone of the third soil layer (root_depth), and the root fractions in all 184 

three soil layers. We only sample root fractions in soil layer one and two (root_fract1, root_fract2) such that the total root 185 

fraction in the three soil layers adds to 1. That is, the root fraction in soil layer three is updated as 1 - (root_fract1 + root_fract2).  186 

The vegetation parameters that are considered also include the seasonal leaf area index (lai) and seasonal albedo (albedo), the 187 

architectural resistance (Rarc), minimum stomatal resistance (Rmin), minimum incoming shortwave radiation at which there 188 

will be transpiration (RGL), solar attenuation factor (SolAtn), wind speed attenuation through the overstory (WndAtn) and 189 

fraction of the total tree height that is occupied by tree trunks (Trunk_ratio). The lai parameter governs the amount of water 190 

intercepted by the canopy, which controls canopy evaporation. Leaf area index, along with stomatal resistance (Rmin), also 191 

influences the estimation of vegetation transpiration, and the root fraction dictates the amount of transpiration from each soil 192 

layer (Gao et al., 2009). The parameter Rarc affects the vertical wind profile.  193 

The vegetation parameters are assigned by land cover class.  Sampling of these parameters is conducted by adjusting baseline 194 

values obtained for each land cover class. The land cover classes were based on the North America Land Cover dataset, 195 

edition2 (Natural Resources Canada/The Canada Centre for Mapping and Earth Observation (NRCan/CCMEO) et al. 2013) 196 

produced as part of the North America Land Change Monitoring System (NALCMS). In total, 22 land cover classes were 197 

identified. For most of these parameters, sampling is conducted by applying a multiplication factor, sampled in the range 0.5 198 

to 2.0, to the baseline values. The same sampled parameter is applied to all vegetation classes. To reduce the number of 199 

vegetation parameters, a multiplier factor is applied on a seasonal basis for the monthly parameters LAI and albedo, following 200 

a similar approach of Bennett et al., (2018). For example, lai_djf is the multiplier factor applied to leaf area index values during 201 

winter months (i.e., December, January, and February). The trunk ratio is sampled around the defined value by applying an 202 

additive change in the range -0.2 to 0.2 so that trunk ratio values remain between 0.1 and 0.8. The monthly roughness and 203 

displacement height parameters were not sampled. They are specified as a function of vegetation height (which is constant 204 

within classes, but variable between classes) and leaf area index as described by Choudhury and Monteith (1988). 205 

2.4 Sensitivity analysis 206 

We applied the Efficient Elementary Effects (EEE) screening method introduced by Cuntz et al. (2015) as a frugal 207 

implementation of the Morris method (Morris, 1991). It was developed to identify the model parameters that are most 208 

informative regarding a certain model output. The strength of the method lies in it requiring only a small set of model 209 

evaluations to separate informative vs. noninformative parameters. On average, EEE requires 10N model runs with N being 210 

the number of model parameters. EEE does not require algorithmic tuning and converges by itself. The method has been tested 211 

for a large range of sensitivity benchmarking functions and a hydrologic model at several locations by Cuntz et al. (2015). The 212 

method has further been applied to obtain the informative parameters in complex hydrologic (Cuntz et al., 2016) and land-213 

surface models (Demirel et al., 2018). 214 
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The EEE approach samples model parameters in trajectories as initially described by Morris (1991) and improved by 215 

Campolongo et al. (2007). A “trajectory” is defined as a sequence of (N+1) parameter sets where the first parameter set is 216 

sampled randomly while all subsequent sets i (i > 1) differ from the prior set (i-1) in exactly one parameter value. Such 217 

trajectories allow an efficient sampling of the whole parameter space while considering parameter interactions to a certain 218 

extent. In the approach of Cuntz et al. (2015), only a small number of such trajectories (M1; here M1=5) are sampled in a first 219 

EEE iteration to lower the computational burden. The resulting (M1 x (N + 1)) model outputs are derived, and the elementary 220 

effects (EEs) are computed for each parameter following Morris (1991). The EEs are used to identify the most informative 221 

parameters by deriving a threshold that splits the parameters into a set of Nninf noninformative parameters and a set of Ninf=N-222 

Nninif informative parameters. The threshold T is derived automatically within the EEE method and is based on the EEs of the 223 

model outputs provided in the first iteration. The threshold is derived based on fitting a logistic function to the sorted EEs 224 

derived and defining the threshold as the point of largest curvature of the fitted logistic function. Defining the threshold that is 225 

used to separate informative and non-informative parameters in this approach has been demonstrated using a wide range of 226 

test functions and real-world examples, and the reader is referred to Cuntz et al. (2015) for further details. In the next EEE 227 

iteration, a new N-dimensional parameter set is randomly sampled but this time only the Nninf noninformative parameters are 228 

perturbed while the Ninf informative parameters are kept at their initially sampled values. Hence, this trajectory contains only 229 

Nninf+1 parameter sets. M2 of such trajectories are sampled in this step (here M2=1). The derivation of model outputs and the 230 

calculation of EEs is repeated. If the EE of any noninformative parameter exceeds the previously derived threshold T, the 231 

previously noninformative parameter will be added to the set of informative parameters. This EEE iteration (sampling a new 232 

trajectory and then adding parameters with an EE above T to the set of informative parameters) is repeated until no further 233 

parameter is reclassified as informative. The final EEE iteration is to sample M3 trajectories (here M3=5) to confirm that the 234 

set of Nninf noninformative parameters is stable, and no further parameter is found to be informative. The EEE method parameter 235 

values (M1, M2, and M3) utilized here are the default settings tested and recommended by Cuntz et al. (2015). The 236 

implementation, documentation, and examples for EEE are open source (Mai and Cuntz, 2020).  237 

2.5 Transferability of parameter sensitivity 238 

We applied the EEE method to each of the 25 basins and the three model outputs (streamflow, evaporation, snow water 239 

equivalent) independently, leading to 75 sets of noninformative/informative parameters. The initial set of N randomly sampled 240 

model parameter values was the same for all 75 experiments. An average of 430 model runs were required for each of the 75 241 

EEE experiments to identify which of the 44 VIC-GL parameters analyzed in this study were informative.  242 

Informative and noninformative parameters were compared over the 25 basins to identify parameters that are informative 243 

across all basins (termed invariant-informative parameters), 2) parameters that are non-informative across all basins (invariant-244 

noninformative, and 3) parameters that are informative in some basins but not others (variant-informative). 245 
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We evaluated the potential of using watershed classification as a tool to transfer parameter SA information. Climatic conditions 246 

exert a major control on runoff generation (Yadav et al., 2007; Sawics et al., 2011) and have been found to have a higher 247 

impact on parameter sensitivity than vegetation and soil conditions (Rosero et al., 2010). However, vegetation and soil 248 

conditions can affect other hydrologic quantities. For example, Bennett et al. (2018) found that canopy spacing plays an 249 

important role in snow water equivalent simulation by VIC. Here, we used aridity index, snow index and the percentage of 250 

glacier area, and the percentage of area covered by each of several vegetation classes to classify the 25 basins. Although 22 251 

vegetation classes are defined for VIC-GL, we only considered the four vegetation classes listed in Table 4 that are dominant 252 

in the study area. To evaluate the impact of vegetation on informative parameter identification, watershed classification was 253 

first performed using the climatic attributes only, and then by combining climatic and vegetation class cover attributes. 254 

 255 

Table 4: Statistics of the percentage of VIC land cover classes (%) identified using NALCMS and considered in this study over the 256 
25 selected basins. 257 

Class ID Description  Min   Max Mean 

2 Temperate or sub-polar needleleaf forest - high-

elevation 0.1 46 18 

4 Temperate or sub-polar needleleaf forest - 

coastal/humid/dense 0 29 9 

9 Mixed Forest      0 34 4 

11 Temperate or sub-polar shrubland    0.4 91 19 

 258 

To classify the 25 basins into homogenous groups, the agglomerative hierarchical algorithm was used with the Euclidean 259 

distance and Ward’s criterion (Roux, 2018).  Agglomerative hierarchical clustering consists of a series of successive fusion of 260 

watersheds into groups according to their similarity.  It starts by considering each element x (i.e., watershed) as a cluster  {x} 261 

then continue by creating new cluster by merging the two closest clusters. The dendogram, a tree diagram, illustrates the 262 

merging process of the agglomerative hierarchical clustering. The Ward method used here aggregates clusters so that within-263 

group inertia (i.e. multidimensional variance) is minimal.   264 

To test our hypothesis that parameter sensitivity can be generalized using watershed classification we conducted the following 265 

evaluation. Each sub-basin was set as the target basin. For each target basin, informative parameters are transferred using a 266 

number of donor basins of the same cluster. Using multiple donor basins has been shown to provide better results than a single 267 

donor basin (e.g. Oudin et al., 2008; Bao et al., 2012). Let A be a target basin of cluster C i. We assume that informative 268 

parameters of basin A are the intersection of informative parameters of x donor basins from cluster Ci. For each target basin 269 

A, informative parameters are transferred using all possible combinations of x donor basins of cluster Ci not including A. This 270 

test aims at evaluating whether x donor basins could be used to generalize informative parameters for each cluster.  271 
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The performance of watershed classification to identify informative and noninformative parameters in a basin is evaluated 272 

using the F1 score. This score is often used to measure the performance of a binary classification (Chicco and Jurman, 2020).  273 

The F1 score is a weighted average of precision and recall. Assuming two classes, positive (informative) and negative 274 

(noninformative), the F1 score measures the ability to correctly and incorrectly predict the two classes. Considering counts of 275 

TP true positive (i.e., informative predicted as informative), FP false positive (informative predicted as noninformative), and 276 

FN false negative (noninformative predicted as informative), we can obtain measures of precision, recall and the F1 score as 277 

follows: 278 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                                        (1) 279 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,            (2) 280 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
           (3) 281 

 282 

The F1 score takes values between 0 and 1, where 0 means that all positive (here informative parameters) are predicted as 283 

negative (i.e., as noninformative) and 1 means perfect classification with FN=FP=0.  284 

For a given number of donor basins x, the F1 score is reported for each target basin A as the average F1 score calculated 285 

between sensitive parameters of A and identified sensitive parameters from all possible combinations of the x donor basins. 286 

This is done for each classification method, climate-based and climate-land cover-based clustering, to evaluate performance 287 

in identifying sensitive parameters by watershed groupings provided by each clustering analysis. Then, we use the Wilcoxon 288 

signed rank test to compare the F1 scores for the 25 basins obtained using the two clustering methods so that we can determine 289 

whether incorporating land cover in watershed classification improves the ability to predict informative parameters. The 290 

Wilcoxon signed rank test tests the null hypothesis that the F1 score resulting from both clustering analyses are from the same 291 

distribution i.e., have similar ability to identify informative parameters.   292 

3 Results  293 

The sensitivity analysis using the EEE method was performed with respect to three model outputs independently: streamflow, 294 

evapotranspiration, and snow water equivalent. Figure 2 presents the number of occurrences of informative parameters over 295 

the 25 selected sub-basins for the three outputs. From this figure, we can identify the three parameter categories, invariant-296 

informative, invariant noninformative and variant-informative for each hydrologic process. Table 5 summarizes the three 297 

parameter categories per model output. Amongst the 44 VIC-GL parameters only 9 parameters are invariant-informative for 298 

streamflow, 13 are invariant-informative for evapotranspiration and 4 are invariant-informative for snow water equivalent. A 299 

large percentage of parameters are variant-informative for these fluxes with 29 parameters for streamflow, 25 parameters for 300 

evapotranspiration and 14 parameters for snow water equivalent. We first examine the sensitive parameters and their spatial 301 

https://doi.org/10.5194/hess-2023-21
Preprint. Discussion started: 24 January 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

variability per model output in Sect. 3.1 to 3.3. We further analyze the performance of the physical similarity approach for 302 

transferring sensitivity analysis information and the attributes that are informative for each model output (Sect. 3.4).  303 

 304 

 305 
Figure 2: Number of occurrences of informative parameters for streamflow (a), evapotranspiration (b) and snow water equivalent 306 
(c) over the 25 studied sub-basins. Parameters are considered invariant-informative if the count of basins in which they are 307 
informative 308 

  309 
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Table 5: VIC-GL parameter importance regarding streamflow, evapotranspiration (ET) and snow water equivalent (SWE). 310 

Process Invariant-informative 

parameters  

Invariant-noninformative 

parameters 

Variant-informative parameters  

Streamflow ds, dsmax, ws, depth3, 

INFIL, depth1, bd, sdens, 

resid_moist 

PGRAD, GLAC_ROUGH, 

alb_mam, alb_jja, alb_son, RGL 

c, T_LAPSE, watn, ks, depth2, wcr, wpwp, 

SNOW_ROUGH, NEW_SNOW_ALB, 

SNOW_ALB_ACCUM_A, 

SNOW_ALB_ACCUM_B, 

SNOW_ALB_THAW_A, 

SNOW_ALB_THAW_B, TEMP_TH_1, 

TEMP_TH_2, GLAC_ALB, GLAC_REDF, 

root_depth, root_fract1, root_fract2, lai_djf, 

lai_mam, lai_jja, lai_son, alb_dja, Rarc, 

Rmin, Sol_Atn, Trunk_ratio 

ET depth1, depth2, bd, wcr, 

wpwp, resid_moist, 

TEMP_TH1, 

TEMP_TH2, root_fract1, 

root_fract2, lai_mam, 

lai_jja, Rmin 

SNOW_ALB_THAW_B, 

GLAC_ALB, GLAC_ROUGH, 

GLAC_REDF, alb_dja, alb_son 

ds, dsmax, ws, c, depth3, INFIL, PGRAD, 

T_LAPSE, watn, ks, sdens, 

SNOW_ROUGH, NEW_SNOW_ALB, 

SNOW_ALB_ACCUM_A, 

SNOW_ALB_ACCUM_B, 

SNOW_ALB_THAW_A, root_depth, 

lai_djf, lai_son, alb_mam, alb_jja, Rarc, 

RGL, Sol_Atn, Trunk_ratio 

SWE SNOW_ROUGH, 

NEW_SNOW_ALB, 

SNOW_ALB_THAW_A, 

TEMP_TH1 

ds, dsmax, ws, c, depth3, INFIL, 

watn, ks, depth2, bd, sdens, wcr, 

wpwp, resid_moist, GLAC_ALB, 

GLAC_ROUGH, GLAC_REDF, 

root_depth, root_fract1, 

root_fract2, alb_dja, alb_jja, 

alb_son, Rarc, Rmin, RGL,  

PGRAD, T_LAPSE, depth1, 

SNOW_ALB_ACCUM_A, 

SNOW_ALB_ACCUM_B, 

SNOW_ALB_THAW_B, TEMP_TH_2, 

lai_djf, lai_mam, lai_jja, lai_son, alb_mam, 

Sol_Atn, Trunk_ratio 

 311 

3.1 Informative parameters for streamflow 312 

The soil parameters ds, dsmax, ws, depth3, depth1 are consistently identified as sensitive to streamflow (e.g., Demaria et al., 313 

2007; Bennett et al., 2018; Gou et al., 2020) and this reflects the empirical nature of the runoff and baseflow processes that are 314 

fundamental in the VIC family of models. In addition to these parameters, the soil parameters soil bulk density (bd), soil 315 

particle density (sdens) and the residual moisture (resid_moist) are also identified as invariant-informative to streamflow in 316 

the study area. 317 

Figure 3 presents the sensitivity of the 29 variant-sensitive parameters with respect to streamflow (Table 5). These parameters 318 

include the remaining soil parameters, climate, snow, and most of the vegetation parameters. The climate parameters 319 

TEMP_TH_1 and TEMP_TH_2 (i.e., the rain/snow temperature threshold parameter 1 and 2) have different sensitivity 320 

patterns. The parameter TEMP_TH_1 is found to be informative across all basins except in the arid basin BruneauR, which 321 

has the lowest snow index (0.38). The parameter TEMP_TH_2 is informative only in sub-basins located in the interiors of the 322 

Fraser and Peace. T_LAPSE is informative in the snow-dominated basins of the Fraser and the Columbia. The snow-related 323 
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parameters show different spatial sensitivity. For instance, SNOW_ROUGH is sensitive over all basins except for some snow-324 

dominated basins of the Fraser and Columbia. The NEW_SNOW_ALB and SNOW_ALB_THAW_A, which control snow melt, 325 

are sensitive across all basins except the semi-arid basins of the Peace (north-east of the study region). Snowmelt in the study 326 

area contributes significantly to runoff, which explains the sensitivity of these parameters for streamflow. These results are 327 

consistent with the results found by Houle et al. (2017) who evaluated sensitivity of these parameters to snow water equivalent 328 

using the Sobol’ method (Sobol’, 1990). 329 

 330 

Figure 3: The spatial sensitivity of the 29 streamflow variant-informative parameters with red being informative and blue non-331 
informative over the 25 selected basins. The nine invariant informative and six invariant non-informative parameters are not 332 
included. 333 

In the semi-arid and arid basins, the exponent in Campbell’s equation for hydraulic conductivity (watn), the saturated 334 

hydrologic conductivity (ks), and fractional soil moisture content at the wilting point (wpwp) are informative for streamflow. 335 

The wpwp parameter dictates baseflow estimation with the Arno model formulation (Francini and Pacciani, 1991) used in VIC 336 

(Gao et al., 2009). Given the limited precipitation in these basins, baseflow may be a significant streamflow source that explains 337 

the importance of this parameter in these basins. The root depth of the third layer (root_depth) is sensitive in the northern semi-338 
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arid basins (NAUTL, HRNFC). The root fraction of the first layer (root_fract1) is sensitive in Columbia basins and the non-339 

glacierized basins of the Fraser and Peace. The root fraction in the second layer (root_fract2) is sensitive only in the semi-arid 340 

and arid basins. The sensitivity of the LAI parameters is seasonal with springtime LAI being sensitive in almost all basins.  341 

For the glacierized headwater catchments the albedo of the glacier surface (GLAC_ALB) is informative for streamflow. The 342 

importance of this parameter increases with the basin glacier area and this parameter is influential in the four basins CLEAO, 343 

KWRNW, DONAL, and TASEK with the largest glacier area (between 115 km2 and 194 km2, between 7 % and 11 % of 344 

watershed area). The remaining glacierized basins have much smaller glacier areas (less than 1.5 % of the watershed area). 345 

The GLAC_REDF parameter is informative for streamflow as well in the western-glaciated basins TASEK and KWRNW, 346 

where average annual temperature is negative. Glaciers behave as natural water reservoirs that provide streamflow through ice 347 

melt and temporary meltwater storage within the glacier during late summer (Marshall et al., 2011). For instance, in the upper 348 

Columbia, glaciers contribute up to 25 % and 35 % of streamflow in August and September respectively and up to 6 % to the 349 

annual streamflow (Jost et al 2012, Jiskoot and Muller, 2012).  350 

3.2 Informative parameters for evapotranspiration 351 

There are 13 invariant-informative parameters that affect evapotranspiration in the study region (see Fig. 2 and Table 5). These 352 

include parameters that control soil drainage (wcr, wpwp, resid_moist), and soil storage capacity (bd, depth1 and depth2). The 353 

invariant-informative parameters also include the climate parameters TEMP_TH_1, TEMP_TH_2 and vegetation parameters 354 

seasonal leaf area index (lai_mam, lai_jja), minimum stomatal resistance (Rmin), and root fraction (root_fract1, root_fract2). 355 

The VIC-GL model computes evapotranspiration as the sum of four types of evaporation; evaporation from the canopy layer, 356 

transpiration from all three soil layers, soil evaporation from the top soil layer, and evaporation/sublimation from the snow or 357 

glacier surface (Liang et al., 1994). The soil parameters affect the bare soil evaporation that occurs at the top thin layer. The 358 

leaf area index parameters govern the amount of water intercepted by the canopy, which controls canopy evaporation. Leaf 359 

area index and stomatal resistance (Rmin) influence the estimation of vegetation transpiration and the root fraction dictates the 360 

amount of transpiration from each soil layer (Gao et al., 2009). These parameters are defined for each land cover type in the 361 

vegetation library. They are typically fixed based on observed values, which ignores the large estimation and scaling 362 

uncertainties around their values (Mendoza et al., 2015). In this paper, the sampling of LAI and Rmin values is based on a 363 

perturbation of observed values (see Table 3; Type “Multiplicative factor”). The sensitivity of evapotranspiration to this 364 

perturbation illustrates the need to obtain accurate values for these parameters or consider their uncertainty in the model 365 

calibration process. The rain/snow temperature thresholds (TEMP_TH_1, TEMP_TH_2) are likely to impact the throughfall 366 

(water that penetrates a plant canopy) and rainfall/snow interception (rain captured, stored, and evaporated from the vegetation 367 

surface) (Levia et al., 2019). 368 
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 369 

Figure 4: The spatial sensitivity of the 25 evapotranspiration variant-informative parameters with red being informative and blue 370 
non-informative over the 25 selected basins. The 13 invariant informative and 6 invariant non-informative parameters are not 371 
included. For the number of occurrences of informative parameters see Figure 2.  372 

Table 5 lists the six invariant-noninformative parameters for evapotranspiration which are the glacier parameters, autumn and 373 

winter vegetation albedo, and the albedo decay exponent during the thaw period SNOW_ALB_THAW_B. Figure 4 presents the 374 

spatial sensitivity of the 25 variant-informative parameters with respect to evapotranspiration. Some parameters show a clear 375 

spatial pattern of sensitivity that is related to basin physical characteristics. For instance, T_LAPSE is sensitive in snow-376 

dominated basins, whereas INFIL and sdens are sensitive in semi-arid and arid basins. The baseflow parameters (ds, dsmax) 377 

are informative in most basins while the parameter ws is only informative in humid sub-basins. The surface roughness of the 378 
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snowpack (SNOW_ROUGH), the architectural resistance of vegetation (Rarc), which affects the vertical wind profile, and 379 

autumn leaf area index (lai_son) are also influential to evapotranspiration in most basins.  380 

3.3 Informative parameters for snow water equivalent  381 

Amongst the six snow-parameters, only three (SNOW_ROUGH, NEW_SNOW_ALB, SNOW_ALB_THAW_A) are invariant-382 

informative for snow water equivalent. The climate parameter TEMP_TH_1 is also invariant-informative for snow water 383 

equivalent. The parameter TEMP_TH_2 is informative in the majority of the basins except in the semi-arid basins of the Peace. 384 

The sensitivity of the remaining three snow parameters (SNOW_ALB_ACCUM_A, SNOW_ALB_ACCUM_B, and 385 

SNOW_ALB_THAW_B) and the two climate parameters (PGRAD, T_LAPSE) varies within the study region. Figure 5 presents 386 

the sensitivity of the 14 variant-informative parameters for snow water equivalent. The T_LAPSE and PGRAD are sensitive in 387 

the high-altitude basins. The parameter SNOW_ALB_ACCUM_B is informative in the basins of the Columbia and Peace, and 388 

in the semi-arid basins of the Fraser. The sensitivities of seasonal leaf area index (lai_djf, lai_mam, lai_jja, and lai_son), ratio 389 

of total tree height that is trunk (Trunk_ratio), and the solar attenuation factor (Sol_Atn) show a clear spatial pattern. These 390 

parameters are informative in basins where forest is the dominant land cover (i.e., Fraser and Peace). The springtime vegetation 391 

albedo (alb_mam) is sensitive over the snow-dominated basins. The sensitivity of snow water equivalent for vegetation 392 

parameters can be explained by the impact of forest cover on snow accumulation and ablation processes, mainly by snowfall 393 

interception and modification of incoming radiation and wind speed below the forest canopy (Andreadis et al., 2009). These 394 

finding are consistent with those of Houle et al., (2017) and Bennett et al., (2018).  395 
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 396 

Figure 5: The spatial sensitivity of the14 snow water equivalent variant-informative parameters with red being informative and blue 397 
non-informative over the 25 selected basins. The 4 invariant informative and 26 invariant non-informative parameters are not 398 
included. For the number of occurrences of informative parameters see Figure 2. 399 

 400 

3.4 Watershed classification 401 

Figure 6 presents the dendogram, a diagram tree of clusters resulting from the agglomerative hierarchical clustering using 402 

climate indices and the combination of climate indices and vegetation class cover. Clustering based on climate indices yields 403 

four clusters whereas clustering based on climate indices and vegetation cover results in five clusters.   404 

 405 
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 406 

Figure 6: Watershed classification dendogram using climate indices and the combination of climate and vegetation indices. The 407 
height of each node represents the distance between its branches and the dashed line represents the cutoff threshold to distinguish 408 
the 4 clusters in the case of climate-based classification and 5 clusters in the case of climate-land cover-based classification. The 409 
threshold is chosen as a trade-off between cluster dissimilarity and within cluster variance.   410 

 411 

Figure 7 shows the results of the hierarchical clustering analyses and Fig. 8 and 9 present the attribute statistics for each cluster. 412 

The clusters produced using climatic attributes can be described as follows. Cluster #1 consists of dry basins located in the 413 

southern Columbia, eastern Peace, and central Fraser basins. Cluster #2 contains glacierized watersheds along the Coast 414 

Mountains and the Rocky Mountains.  Cluster #3 contains semi-arid basins in the interior Fraser and eastern Columbia, and 415 

cluster #4 contains snow-dominated basins with very low glacier area (less than 4 % of watershed area) compared to cluster 416 

#2. Clusters obtained using both climatic and vegetation attributes correspond to clusters based on climate that were merged 417 

or divided based on vegetation class cover dominance. Cluster #1 contains all glaciered watersheds and corresponds to clusters 418 

#2 and #4 obtained with climatic based clustering. Cluster #2 consist of dry basins dominated by land cover 11 (temperate or 419 

sub-polar shrubland) that are located in the southern Columbia basin. Cluster #3 consist of dry basins dominated by land cover 420 

9 (i.e., mixed forest) located in the eastern Peace River basin. Cluster #4 represents arid basins in the interior Fraser and upper 421 

Columbia dominated by land cover 2 (i.e., temperate or sub-polar needleleaf forest - high-elevation) and cluster #5 consists of 422 

wet basins dominated with land cover 4 (i.e., temperate or sub-polar needleleaf forest - coastal/humid/dense).  423 
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 424 

Figure 7: Map of clusters obtained using only climatic attributes (left), and using both vegetation- and climatic attributes (right). 425 
 426 

 427 

 428 

 429 

Figure 8: Box-plots of the climate attributes for each cluster produced by climate based classification. 430 

 431 
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 432 

Figure 9: Box-plots of attributes of each cluster produced by climate- and vegetation-based classification. 433 

 434 

3.5 Watershed classification as a way to transfer parameter sensitivity 435 

The distribution of F1 scores obtained by transferring informative parameters for streamflow, evaporation and snow water 436 

equivalent using both clustering analyses and a range of donor basins is presented in Fig. 10. The F1 scores calculated for 437 

transferring streamflow informative parameters based on climatic attributes range between 0.66 (using 9 donor basins) and 438 

0.98 (using between three to seven donor basins), whereas this score ranges between 0.65 (using six donor basins) and 0.96 439 

(using six donor basins) when using both climate and vegetation attributes. For evapotranspiration the F1 scores obtained by 440 

climatic based clustering range between 0.63 (using six donor basins) and 0.96 (using three to six donor basins). The scores 441 

range between 0.7 (using two donor basins) and 0.95 (using a single donor basin) when using both climatic and land cover 442 

attributes for clustering analysis. The F1 scores for snow water equivalent range between 0.83 (using four to nine donor basins) 443 

and 1 (using one to two donor basins) when transferring informative parameters based on climatic attributes and the 444 

combination of climatic attributes and vegetation.  445 
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 446 

Figure 10: F1 score distribution obtained by transferring informative parameters over the 25 basins. 447 

 448 

Transferring informative parameters based on more than a single donor basin improves the F1 score except when transferring 449 

evapotranspiration informative parameters using climatic and vegetation clustering analysis. Overall, the results shows that 450 

two donor basins would be sufficient to generalize informative parameters to each cluster. Therefore, for each model output 451 

we compare the F1 distributions using two donor basins based on both clustering analysis with the Wilcoxon test. The p-value 452 

of the test applied to F1 score distributions obtained by transferring streamflow informative parameters is 0.49 and by 453 

transferring evapotranspiration informative parameters is 0.48. Hence, the F1 score distributions using climatic clustering 454 

analysis and climatic-land cover analysis are not significantly different. Therefore, using only climatic attributes would be 455 

sufficient to transfer informative parameters to streamflow and evapotranspiration. These findings are consistent with other 456 

VIC studies (Demaria et al., 2007) and for other hydrologic models (e.g., Rosero et al., 2010) showing that parameter sensitivity 457 

for streamflow can be transferred based predominantly on climate similarity.  458 

The Wilcoxon test statistic applied to the F1 distribution resulting from transferring snow water equivalent informative 459 

parameters is 31 with a p-value of 0.0006. This suggests that there is a significant improvement when using both climatic and 460 

land cover attributes to transfer snow water equivalent parameter sensitivity. The importance of land cover and vegetation 461 

properties as a control on snow accumulation and ablation is consistent with previous studies (e.g., Bennett et al., 2018).  462 
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4 Discussion  463 

In this work, we have examined the sensitivity of an extensive list of VIC parameters to streamflow, evapotranspiration, and 464 

snow water equivalent over 25 basins spanning a range of hydroclimatic conditions. We found that informative parameters 465 

vary spatially with climate and land cover depending on the model output considered. The findings are in line with previous 466 

VIC sensitivity analysis studies (e.g., Demaria et al., 2007; Bennett et al., 2018; Gou et al., 2020, Sepúlveda, 2021). In addition, 467 

the two climate parameters temperature lapse rate (T_LAPSE) and the precipitation gradient (PGRAD) omitted in previous 468 

studies have been found to be informative to headwater glacierized watersheds and snow dominated non-glacierized 469 

watersheds. The T_LAPSE parameter is typically fixed when developing gridded meteorological data. For instance, Bohn et 470 

al., (2016) used a gridded temperature corrected with a lapse rate of 6.5 °K/km to force VIC over southwestern US and 471 

northwestern Mexico. However, several studies have indicated that the often-used constant lapse rates 6-6.5 °C/km are not 472 

representative of the surface conditions over different mountainous regions and may differ for each slope within the same 473 

mountain (Blandford et al., 2008; Minder et al., 2010, Córdova et al., 2016).  474 

In this study, we showed that watershed classification helps identify spatial patterns of informative parameters at a reduced 475 

cost. Hence, it reduces the cost of performing sensitivity analysis at the same scale of large-scale land surface models. In our 476 

case, watershed classification based on climatic attributes (snow and aridity index) and percentage of glacier area was sufficient 477 

to transfer parameter sensitivity between basins of similar attributes. However, incorporating vegetation class cover 478 

significantly improved the identification of sensitive parameters for snow water equivalent. The results show that two donor 479 

basins per cluster are sufficient to identify sensitive parameters. These results imply that the cost of running sensitivity analysis 480 

over a large domain encompassing N clusters of basins would be reduced to the cost of running 2N sensitivity analyses. The 481 

information gained can then be extrapolated to large domain based on sub-watershed membership to the N clusters. Thus, 482 

candidate parameters for model calibration can be identified at a substantially reduced computational cost as compared to 483 

running a large-domain sensitivity analysis. For example, climatic based classification of the 158 basins that covers the entire 484 

domain results in four watershed clusters (see Fig. 11) as follows. Cluster #1 consist of glaciered basins along the Coast 485 

Mountains and Rocky Mountains. Cluster #2 groups dry basins located in interior and southern Columbia, eastern Peace, and 486 

upper Fraser basins. Cluster #3 contains snow-dominated basins in north Peace River basin and eastern Columbia River basin 487 

whereas Cluster #4 contains rainfall dominated basins in western Columbia River basin. These clusters are consistent with the 488 

clusters obtained by classifying the 25 basins except for cluster #4 because the sample of the studied basins does not include 489 

any rainfall-dominated basins. Hence, the cost of performing a sensitivity analysis across the 158 basins is reduced to the cost 490 

of evaluating parameter sensitivity over eight basins (i.e., two basins for each basin cluster).   491 
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 492 

Figure 11: Climatic based classification of the 158 sub-basins of the Peace River, Fraser River, and Columbia River basins. 493 

 494 

It has been argued in the literature that calibration based solely on streamflow is not sufficient to ensure model accuracy and 495 

fidelity (Rakovec et al., 2016). To improve model realism, recent calibration strategies follow a process-based approach. This 496 

approach relies either on adjusting model parameters against hydrological signatures extracted from streamflow timeseries that 497 

link to the underlying model processes (Yilmaz et al., 2008; Euser et al., 2013, Shafii and Tolson; 2015; Rakovec et al., 2016), 498 

against measurements of different model outputs such as evapotranspiration, snow cover, and baseflow (e.g., Isenstein et al., 499 

2015, Ismail et al., 2020), or by hydrograph decomposition (e.g., He et al., 2015, Shafii et al., 2017; Larabi et al., 2018). 500 

However, we recognize that the effort to constrain multiple hydrologic processes will require a substantial increase in the size 501 

of the parameter domain during model calibration. For instance, our sensitivity analysis results from Table 5 and Fig. 12 502 

suggest that calibrating VIC-GL in a multi-objective/multi-variable framework would require a high number of parameters in 503 

the calibration process (30 to 38 parameters depending on the sub-basin if one is to consider all informative parameters for 504 

each output considered here).  Across the 25 sub-basins, an average of 77 % of parameters (34 of 44 parameters analyzed) are 505 
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informative to at least one of simulated streamflow, evapotranspiration, or snow water equivalent (see Fig. 12). This contrasts 506 

with previous studies that typically calibrate fewer than 12 VIC parameters (e.g., Troy et al., 2008; Isenstein et al., 2015; 507 

Mizukami et al., 2017; Rakovec et al., 2019; Ismail et al., 2020). Options to tackle this more complex calibration problem are 508 

not evaluated here but could include suitable one-step multi-objective optimization algorithms such as PADDS (Asadzadeh et 509 

al. (2014)), or a stepwise multi-objective calibration approach where each set of informative parameters for a specific flux are 510 

adjusted separately (Larabi et al., 2018).  511 

 512 

 513 

Figure 12: Informative parameters (blue) for at least one of simulated streamflow, evapotranspiration, and snow water equivalent. 514 
Basin ID description is provided in Table 1. 515 

 516 

 517 

 518 

 519 

 520 
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In previous VIC applications, the same parameters are adjusted over large domains to fit the model to streamflow (e.g., Nijssen 521 

et al., 2001; Obeidillah et al., 2014; Xue et al., 2015, Mizukami et al., 2017) and against other model output (Isenstein et al., 522 

2015; Ismail et al., 2020) ignoring both the spatial variability of parameter sensitivity and dependence of parameter sensitivity 523 

to the hydrological processes. To account for this spatial variability, a multi-site cascading approach (Xue et al., 2015) where 524 

calibration parameter selection varies depending on the site can be used. Overall, there remains a need to study how information 525 

regarding the spatial variability and process dependence of parameter sensitivity is best integrated into a multi-variable 526 

parameter estimation framework. 527 

In this study, the low-cost EEE sequential screening method (Cuntz et al., 2105) was used to identify informative parameters. 528 

However, this method does not quantitatively rank the importance of these informative parameters. In situations where it is 529 

desired to reduce the number of calibration parameters below the counts identified by EEE analyses, a quantitative approach 530 

such as variance-based methods (e.g., Sobol’, 1990; Saltelli, 2002) or qualitative approach that provides parameter groupings 531 

based on their sensitivity could be considered (Sheikholeslami et al., 2019; Mai et al., 2020, 2022). However, future work is 532 

required to determine the conditions under which a reduction in the number of calibrated parameters (i.e., by not calibrating 533 

some parameters that are informative) could potentially yield better calibration results, particularly in a multi-objective context.   534 

5 Conclusions  535 

Land surface models tend to have large numbers of parameters, many of which cannot be measured directly. Sensitivity 536 

analysis is therefore often employed to identify parameters with significant impact on model output variance. Performing 537 

sensitivity analysis for large-scale land surface models is, however, computationally demanding. In this study, we consider 538 

whether computational cost can be reduced by using watershed classification to transfer information about which parameters 539 

sensitively affect streamflow, evapotranspiration and snow water equivalent between basins that have similar climatic and 540 

vegetation land cover attributes.  541 

The study was performed using a large domain implementation of a hydrologic model as an example. Specifically, we used an 542 

updated version of the VIC model (Schnorbus, 2018) that has been coupled to a regional glacier model and implemented across 543 

a very large domain in the Pacific Northwest region of North America. A wide range of VIC model parameters was evaluated 544 

that include five baseflow parameters, one runoff parameter, nine drainage parameters, four climate parameters, six snow-545 

related parameters, three glacier parameters, and 17 vegetation related parameters. The sensitivity analysis was performed over 546 

25 basins spanning a range of hydroclimatic conditions to understand the spatial variability of parameter sensitivities with 547 

regard to streamflow, evapotranspiration and snow water equivalent. Parameter sensitivities for each model output were found 548 

to vary in a predictable way with basin climate and land cover characteristics.  549 
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Watershed classification was employed to classify the 25 basins into homogenous groups based on climatic attributes (aridity 550 

and snow index) and percentage of glacier area and vegetation land cover. This classification was used to transfer sensitive 551 

parameters to each basin based on its group membership. This approach was shown to be able to efficiently identify sensitive 552 

parameters with a median F1 score of 0.87 for streamflow, 0.83 for evapotranspiration and 0.95 for snow water equivalent. 553 

These findings suggest that parameter sensitivity can be performed by classifying watersheds into broad groups and then 554 

analyzing sensitivity for only a subset of the basins in each group. In our large domain example, we found that it would likely 555 

be sufficient to perform sensitivity analysis in 4 % (or fewer) of the basins contained within the domain. This would 556 

substantially reduce the cost of the sensitivity analyses that are used to determine the model calibration strategy, or for a given 557 

computing budget, would enable the consideration of a broader range of parameters than could be considered if sensitivity 558 

analysis were to be performed across the entire domain.     559 

The parameter classification based on parameter sensitivities informs which parameters should be adjusted (invariant-560 

informative and variant-informative) depending on the calibration variables that are considered and the local climatic 561 

conditions. We found that for a multi-variable calibration approach targeting streamflow, evapotranspiration and snow water 562 

equivalent, an average of 77 % of VIC parameters (i.e., 34 of 44 parameters analyzed) were identified as calibration candidates. 563 

These parameters include not only those that control runoff and baseflow generation, but also parameters that control snow 564 

processes and describe vegetation properties. The findings of this study highlight the need to explore efficient ways to decrease 565 

the complexity of multi-process-based calibration of land surface models arising from the increased dimensionality of both the 566 

parameter and objective function spaces.  567 

Finally, we note that more specific modelling objectives, such as the skillful representation of peaks flows (for flood forecasting 568 

purposes), or low flows (for predicting summer drought impacts) could also be considered using the approach that has been 569 

proposed. Similarly, the results and methods are applicable to other land surface models.   570 
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