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Abstract 

In this work, we build upon our previous finding that hydrodynamic porosity, 𝜃!"#$%&, is an exponential function of pore-scale 10 

flow velocity (or interstitial Reynolds number). We previously discovered this relationship for media with a square cavity 

geometry – a highly idealized case of the dead-ended pore spaces in a porous medium. Thus, we demonstrate the applicability 

of this relationship to media with other cavity geometries. We do so by applying our previous analysis to rectangular and non-

rectangular cavity geometries (i.e., circular, and triangular). We also study periodic flow geometries to determine the effect of 

upstream cavities on those downstream. We show that not only does our exponential relationship hold for media with a variety 15 

of cavity geometries, but it does so almost perfectly with a coefficient of determination (R²) of approximately 1 for each new 

set of simulation data. Given this high fit quality, it is evident that the exponential relationship we previously discovered is 

applicable to most, if not all, unwashed media. 

Keywords: Hydrodynamic Porosity, Cavity, Dead-End Pore, Pore Velocity, Volumetric Velocity, Reynolds Number, 
Groundwater Remediation 20 

1 Introduction 

In this paper, we build on our previous findings, i.e., Young and Kabala (2023), where we discovered and quantified the 

exponential dependence of hydrodynamic porosity (𝜃!"#$%& ) on pore-scale flow velocity (𝑣'"(& ) or interstitial Reynolds 

Number (𝑅𝑒). This relationship is reproduced below: 

𝜃!"#$%& = (𝑎 + 𝑏𝑒)*	,!"#$)	𝜃	 ⟺ 𝜃!"#$%& = (𝑎 + 𝑏𝑒)-	.&)	𝜃, 𝑑 = 	
𝑐		ℎ𝑒𝑖𝑔ℎ𝑡

𝜈 		 (1)	25 

Where 𝜃!"#$%& is the mobile-zone porosity (what we refer to as the hydrodynamic porosity of the medium), 𝜃 is the total 

porosity of the medium (i.e., 𝑉'"(&/𝑉#/%0), ℎ𝑒𝑖𝑔ℎ𝑡 is the height of the through-channel in the dead-end pore model (m), 𝜈 is 
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the kinematic viscosity (m²/s), and a, b, and c are dimensionless parameters; the exponential parameter, d has units of (s/m) to 

allow for use of pore-scale velocity in place of Reynolds number. Readers are further reminded that a is the value of the pore-

scale partitioning coefficient (𝜉) approximated by the boundary-driven, or analogously, Mobile-Immobile Zone model, both 30 

of which are discussed at length by Young and Kabala (2023), and originally applied to groundwater flows by Vangenuchten 

and Wierenga (1976). In the case of the mobile separatrix we study here, it is the value that results from Re → ∞. Finally, the 

quantity ‘a + b,’ is the value of 𝜉 in the creeping flow regime (i.e., the value that results from Re → 0). 

 

Equation (1) was discovered and quantified for the dead-end pore geometry reproduced in Figure 1, below. Readers will note 35 

that the cavity geometry is square. Thus, we did not previously determine if this relationship holds for more than this single 

idealized case. This work is motivated by the fact that the dead-ended pore spaces in unwashed porous media (e.g., glacial 

deposits, fractured rock, and filtration media such as granulated activated carbon, etc.) are poorly approximated by the square 

cavity geometry we previously studied. The jagged edges of such media result in a random array of pore geometries (as 

illustrated below). Subsequently, we must be able to answer the question: does the exponential dependence of hydrodynamic 40 

porosity, 𝜃!"#$%&, on pore-scale flow velocity hold for media with cavity geometries that are not square? If the answer is indeed 

yes, researchers are justified in utilizing the exponential relationship provided in Eq. (1). Further, researchers can expand upon 

this relationship by determining if 𝜃!"#$%& exhibits a dependence on any other aspects of the dead-end pore geometry (e.g., 

depth, width, hydraulic radius, etc.).  

  
Figure 1: Illustration of the pore space and cavities in an unwashed porous media and the idealized dead-end pore geometry used 45 
by Young and Kabala (2023) (left and right, respectively). 

2 Related Work 

2.1 Flows Past Cavities 

In our previous work, we provide a thorough literature review of flows past cavities, citing the major contributions that have 

led to a comprehensive understanding of cavity vortex structure(s) (Moffatt, 1963; Higdon, 1985; Shen and Floryan, 1985; 50 

Fang et al., 1997). Readers are directed to this discussion for further detail. In the following table, we summarize the popular 
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cavity geometries studied by these (and other) authors. Following the precedent set by these authors, we proceed by utilizing 

the same cavity geometries in our analysis. 
Table 1: Geometries used in the study of flows past cavities.

Cavity Geometry 

Rectangular Non-Rectangular Periodic 
• Young and Kabala (2023) 
• Kahler and Kabala (2016) 
• Moffatt (1963) 
• Mehta and Lavan (1969) 
• O' Brien (1972) 
• Shen and Floryan (1985) 
• Kang and Chang (1982) 
• Fang et al. (1997) 
• Higdon (1985) 
• Alkire et al. (1990) 
• Horner et al. (2002) 

• Moffatt (1963) 
• Higdon (1985) 
• O’neill (1977) 

 
 
 
 

• Kahler and Kabala (2016) 
• Kang and Chang (1982) 

 55 

Table 1 illustrates that most research has been carried out on rectangular cavity geometries. This is unsurprising given that 

sharp corners in flow geometries result in flow separation. Mehta and Lavan (1969), O' Brien (1972), Shen and Floryan (1985), 

Fang et al. (1997), and Higdon (1985) utilize rectangular geometries and manipulate the cavity width and/or depth to determine 

the subsequent effect on the cavity vortex structure. Moffatt (1963), in his study on resistive eddies that result from sharp 

corners, focuses most of his work on triangular structures, while Higdon (1985) and O’neill (1977) study circular cavities. 60 

2.2 Our Previous Work 

The idealized, square cavity geometry we previously utilized in Young and Kabala (2023) is justified by its foundational use 

in the study of flows past cavities, as noted by Shankar and Deshpande (2000) and is included in most of the studies referenced 

in Table 1 above. To exaggerate the dependence of hydrodynamic porosity, 𝜃!"#$%&, on pore velocity, we also narrowed the 

height of the through-channel, relative to the cavity depth and width, which is kept at a one-to-one aspect ratio so that the 65 

cavity remains square; readers are referred to Figure 6 of Young and Kabala (2023) for reference. 

 

We then subjected these dead-end pore geometries to inlet flows with an interstitial (channel-based) Reynolds number in the 

range of 1–100, reasoning that doing so keeps the flow within the laminar regime. To justify this claim, we reference multiple 

examples that demonstrate a general trend: the onset of turbulence occurs at or above Reynolds numbers of 100 in porous 70 

media (Jolls and Hanratty, 1966; Wegner et al., 1971; Latifi et al., 1989; Rode et al., 1994; Bu et al., 2014). For each dead-end 

pore geometry, we discovered an exponential dependence of hydrodynamic porosity, 𝜃!"#$%&, on pore-scale flow velocity, 

with a coefficient of determination (R²) of approximately 1 for each set of simulation data. As anticipated, this relationship 

was most exaggerated when the through-channel height of the dead-end pore geometry was reduced to one-quarter of the 
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cavity depth/width. For media with this cavity type, 𝜃!"#$%& decreased by 42% over the laminar flow regime. For reference, 75 

over the same Reynolds number range, 𝜃!"#$%& only decreased by 4% when the through-channel height was equivalent to the 

cavity depth/width. 

3 Methods 

In short, the hydrodynamic porosity, 𝜃!"#$%&, of a porous medium with dead-ended pore spaces is ultimately determined by 

the location of the separatrix (i.e., the streamline that divides the through-channel flow from the recirculatory cavity flow), 80 

which we track over a range of flow conditions by varying the magnitude of the interstitial Reynolds number of the inlet flow. 

Further discussion on the separatrix is provided by Elderkin (1975), Weiss (1991), Horner et al. (2002), and Kahler and Kabala 

(2016). We track the location of the separatrix because it defines the magnitude of the mobile zone (i.e., the pore space 

conducive to through-flow), and therefore the value of the pore-space partitioning coefficient, 𝜉: 

	𝜉	 = 	
𝑉!"#$%&
𝑉'"(&

	=
𝐴!"#$%&
𝐴'"(&

	 (2)	85 

As defined above, 𝜉 is the ratio of the mobile-zone volume (𝑉!"#$%&)	to the total pore space volume (𝑉'"(&). For an isotropic, 

or 2D media, like the ones we study in this work, 𝜉 can be defined in terms of cross-sectional areas, 𝐴. To relate 𝜉 to 𝜃!"#$%&, 

we remind readers of the definition of 𝜃, the total porosity: 

𝜃	 = 	
𝑉'"(&
𝑉#/%0

(3)	

Similarly, 𝜃!"#$%& is defined as: 90 

𝜃!"#$%& 	= 	
𝑉!"#$%&
𝑉#/%0

(4)	

Combining Eq. (2) – (4), we find that the product of the total porosity of the medium and the partitioning coefficient yield the 

hydrodynamic porosity, 𝜃!"#$%&, of the medium: 

	𝜃!"#$%& = 	𝜉	𝜃	 (5) 

The methods and tools used in this analysis are the same as those used in our previous work. Readers are directed to Young 95 

and Kabala (2023) for a description of the numerical flow solver we leverage in this analysis, as well as a detailed outline of 

the data collection process. Slight modifications to the flow solver program allow for manipulation of the cavity geometry, 

which we picture in the figures below. With each cavity manipulation, we adjust the refinement region of the solver mesh to 

fully encapsulate the area in which we assume the separatrix to be. Altogether, we test rectangular cavities with depth-to-width 

ratios of 2:1, 1.5:1, 1:1, and 0.5:1 (pictured in Figure 2), and 1:2, 1:1.5, 1:1, and 1:0.5 (pictured in Figure 3). The varying 100 

channel length in the geometries provided in Figure 3 is an artifact of the decision to extend the length of the through-channel 
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past the cavity by twice the cavity width. We also test two non-rectangular cavities (i.e., a semicircle and an equilateral 

triangle). Finally, we test a periodic flow geometry to determine the effect upstream cavities have on those downstream. These 

additional flow geometries are provided below, in Figures 4 and 5. 

 105 
Figure 2: Flow geometries with a cavity depth-to-width ratio of 2:1, 1.5:1, 1:1, and 0.5:1 (left to right, top to bottom). 

 
Figure 3: Flow geometries with a cavity heigh-to-width ratio of 1:2, 1:1.5, 1:1, and 1:0.5 (left to right, top to bottom). 
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Figure 4: Triangle and circular cavity geometries. 110 

 
Figure 5: Periodic flow geometries with square cavities. The spacing between the cavities is a fraction of the cavity depth/width (i.e., 
from left to right, top to bottom: 1, 0.5, 0.33, 0.25). 

Again, these flow geometries are subjected to an inlet flow with channel-based Reynolds numbers in the laminar flow regime 

(i.e., Re < 100). For ease of comparison to our previous results, we determine the location of the separatrix at the same Reynolds 115 

numbers (i.e., Re = 1.81, 3.61, 5.52, 9.19, 25, 50, 75, 100). Note that we do not test Reynolds numbers in the creeping flow 

regime, which in this case, is less than 1. This is because we previously found that the separatrix is immobile in this regime 

(Young and Kabala, 2023). After having subjected each flow geometry to the specified Reynolds numbers, we apply the 

exponential relationship in Eq. (1) that we discovered for the square cavity geometry to each new set of simulation data. We 

determine the fit quality of the exponential model via the coefficient of determination (R²). Finally, given the sparse sampling 120 

we previously used to generate the exponential relationship we define in Eq. (1), we also determine the error associated with 

this low sampling frequency; we do this by testing Reynolds numbers of 1–100 in increments of 5.  

4 Results   

Stream plots for each cavity geometry at Reynolds numbers of approximately 1, 10, 50, and 100, are provided in the figures 

below. In each stream plot, the separatrix is highlighted in red. Again, because the cavity flow is driven by the adjacent through-125 
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channel flow, we also provide a stream plot of the entire dead-end pore geometry adjacent to the corresponding cavity flow. 

Figure 6 is reproduced from our previous work. 

        

Figure 6: Stream plot magnification example. 

4.1 Separatrix Movement: Rectangular Cavity Geometry Manipulation 130 

In Figure 7 and 8, we provide the stream plots that result when we adjust the depth and width of the square cavity geometry 

we previously tested. We also illustrate movement of the separatrix, which is highlighted in red. 
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Figure 7: Stream plots for cavity depth-to-width ratios 2:1, 1.5:1, 1:1, and 0.5:1 (from left to right) and Reynolds numbers 1.81, 9.19, 
and 100 (from top to bottom). The separatrix location for each cavity is highlighted in red. 135 

https://doi.org/10.5194/hess-2023-209
Preprint. Discussion started: 9 October 2023
c© Author(s) 2023. CC BY 4.0 License.



9 
 

 
Figure 8: (as viewed in landscape orientation) Stream plots for cavity depth-to-width ratios 1:2, 1:1.5, 1:1, and 1:0.5 (from top to 
bottom) and Reynolds numbers 1.81, 9.19, and 100 (from left to right). 
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Separatrix movement, as a function of Reynolds number, is summarized in Figure 9 and 10, below. In each figure, the separatrix 

is highlighted according to its location at a given Reynolds number (blue, yellow, green, and red for Reynolds numbers 1.81, 140 

9.19, 50, and 100, respectively).  

 
Figure 9: Separatrix locations for cavity depth-to-width ratios 2:1, 1.5:1, 1:1, and 0.5:1 (left to right) and Reynolds numbers 1.81 
(blue), 9.19 (yellow), 50 (green), and 100 (red). 
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 145 
Figure 10: Separatrix locations for cavity depth-to-width ratios 1:2, 1:1.5, 1:1, and 1:0.5 (left to right) and Reynolds numbers 1.81 
(blue), 9.19 (yellow), 50 (green), and 100 (red). 

4.2 Separatrix Movement: Non-Rectangular Cavity Geometries  

In Figure 11, we provide the stream plots for non-rectangular cavity geometries (i.e., the semicircle and equilateral triangle) 

with the separatrix highlighted in red. 150 
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Figure 11: Stream plots for a semi-circular and triangular cavity geometry (top and bottom, respectively) for Reynolds numbers 
1.81, 9.19, and 100 (from left to right) with the separatrix highlighted in red.  155 

4.3 Separatrix Movement: Periodic Cavity Geometry  

For the reader’s edification, a single stream plot example of the periodic cavity flow geometry is provided below. Additional 

stream plots are not provided because the streamlines in each cavity are effectively identical for each of the cavity geometries 

pictured in Figure 12. The purpose of testing a periodic flow geometry was to determine the effect of upstream cavities on 

those downstream. Qualitatively, we can conclude that there is slightly less penetration of the through-flow into the 160 

downstream cavity, although this is barely evidenced by the red horizontal line in the figure below. As drawn, this line 

coincides with the bottom-most point of the separatrix in the upstream cavity. Note that this figure is generated for the periodic 

flow geometry with cavity spacing one-quarter of the cavity width, at a Reynolds number of 10. 
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Figure 12: Stream plot of the cavities in the periodic flow geometry with a cavity spacing of one-quarter the cavity depth/width.The 165 
horizontal red line marks the bottom-most point of the separatrix of the upstream cavity (left). 

4.4 Applying the Exponential Dependence of Hydrodynamic Porosity on Pore-Scale Flow Velocity 

The change in hydrodynamic porosity, 𝜃!"#$%&, as a function of Reynolds number, is provided in Figure 13 and 14, below. For 

ease of comparison across cavity types, we normalize 𝜃!"#$%& by the static mobile-zone porosity value,	𝜃121, that results from 

enforcement of the Mobile-Immobile Zone model in the dead-end pore space. We define this quantity 170 

as:

𝜃121 = 𝜉121	𝜃 (13) 

Where 𝜉121  is determined by the relative magnitudes of the through-channel and cavity volumes for each dead-end pore 

geometry. For example, using Eq. (2), we find that for the square cavity, 𝜉121 = 4/5. 

 175 

Applied to each dataset, is the exponential dependence of hydrodynamic porosity, 𝜃!"#$%&, on pore flow velocity we previously 

discovered and described in Eq. (1). We remind readers that although it is the value of the pore-space partitioning coefficient, 

𝜉 = 𝜃!"#$%&/𝜃, that we numerically quantify in this analysis, we are able to plot the hydrodynamic porosity of the medium, 

𝜃!"#$%&, because of the direct proportionality between these two quantities.  

 180 
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Figure 13: Normalized decrease in hydrodynamic porosity, 𝜽𝒎𝒐𝒃𝒊𝒍𝒆, for media with cavity depth-to-width ratios 2:1, 1.5:1, 1:1, and 
0.5:1 (top), and 1:2, 1:1.5, 1:1, and 1:0.5 (bottom). 185 
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Figure 14: Normalized decrease in hydrodynamic porosity, 𝜽𝒎𝒐𝒃𝒊𝒍𝒆, for media with triangular and semi-circular cavities, compared 
to media with square cavities. 

The fitting parameters and coefficient of determination (R²) for each model are summarized in the table below.  
Table 2: Equation (1) exponential model fit parameters for each cavity geometry. Rectangular cavity geometries are specified by 190 
depth-to-width ratio. 

 

4.5 Sampling Error  

Finally, the error associated with the exponential model derived from the relatively sparse dataset is approximated by fitting 

the exponential model to a more finely sampled dataset, pictured below. The results provided in Figure 15 are for the square 195 

cavity geometry. 
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Square 0.80 3.80 3.19 0.9999 
Rectangle    

2:1 0.67 3.13 3.16 0.9998 
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1:2 0.80 16.88 4.26 0.9999 
1:1.5 0.80 9.50 4.73 0.9999 
1:0.5 0.80 1.14 0.91 0.9999 

Circle 0.91 6.94 3.47 0.9999 
Triangle 0.90 3.24 2.33 0.9999 
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Figure 15: (top) Comparison of the exponential model that results from a sparse dataset and the exponential model that results from 200 
a more finely sampled dataset (i.e., twenty data points), and the relative error in the former (bottom). 
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5 Discussion 

In this work, we find that the pore-space partitioning coefficient, 𝜉 = 𝜃!"#$%&/𝜃, of each of the tested cavity geometries is 

well-approximated by the exponential relationship in Eq. (1). In fact, the coefficient of determination (R²) is approximately 1 

for each dataset. Should we test additional cavity geometries in the future, given representative imaging of the pore space in 205 

an unwashed media, it would be reasonable to assume that the partitioning coefficient, and therefore the hydrodynamic porosity 

of that media, 𝜃!"#$%&, would be well-approximated by this same exponential relationship. Further, our sampling frequency in 

the previous study did not yield a significant error in our model fit. In fact, when comparing the exponential models that result 

from both data sets, the largest difference between them is 0.1%. This error is an order of magnitude smaller than the error 

associated with the measurement process, which we judge to be small enough to disregard in our analysis. 210 

Of the tested geometries, those that exhibited the largest decrease in the pore-space partitioning coefficient,	𝜉 = 𝜃!"#$%&/𝜃, 
accompanying an increase in Reynolds number from 1 to 100 were rectangular. More specifically, the two largest decreases 

were for geometries with a cavity width greater than its depth. When the cavity width was less than its depth, however, the 

decrease in 𝜉 was the smallest for all the tested geometries. In comparison, adjustment to the cavity depth did not result in such 

large variations. Although only six rectangular cavities were tested, it appears that 𝜉 is more sensitive to cavity width than 215 

cavity depth. Of course, this conclusion is made for a flow geometry with a through-channel height equivalent to either the 

cavity width or depth. Reduction of the adjacent through-channel height, as we previously demonstrated, results in more 

significant decreases to the mobile zone volume. These results are summarized in the table below. 
Table 3:  The decrease in pore-space partitioning coefficient, 𝝃 = 𝜽𝒎𝒐𝒃𝒊𝒍𝒆/𝜽, corresponding to an increase in channel-based Reynolds 
number, from 1 to 100. Rectangular cavity geometries are specified by their cavity depth-to-width ratio. 220 

 
Further increasing the applicability of the exponential dependence of hydrodynamic porosity, 𝜃!"#$%& , on pore-scale flow 

velocity, is the fact that the periodic flow geometries do not exhibit a significant difference between the upstream and 

downstream cavities. Given this finding, we can more confidently apply our hydrodynamic description of porosity onto a 

periodic medium at the macroscale.  225 

% Decrease in Pore-Space Partitioning Coefficient, 
! = #!"#$%&/# 

Cavity Geometry  
Square 4.10 
Rectangle   

2:1 4.05 
1.5:1 4.04 
0.5:1 5.91 
1:2 16.09 
1:1.5 9.73 
1:0.5 0.81 

Circle 6.45 
Triangle 2.99 
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As previously mentioned, the next steps for this work are in the experimental quantification of the exponential fit parameters 

in Eq. (1) (i.e., a, b, and c). The ability to do so for media at sites needing remediation is necessary to demonstrate the ease 

with which this relationship can be tailored to a specific media. Further, it may be the case that the numerically calculated 

parameters provided in Table 2 indicate a physical characteristic of the aggregate, effective pore geometry of real media. For 230 

example, consider the rectangular cavities with a depth-to-width ratio of 1:2 and 1:0.5. The former has a b-value one order of 

magnitude larger than the rest, and the latter, a c-value one order of magnitude smaller than the rest. The values in Table 2 also 

serve as an order of magnitude guide for what the exponential fit parameters should be in column studies.  

6 Conclusions 

In this work, we further demonstrate the applicability of the exponential dependence of hydrodynamic porosity, 𝜃!"#$%&, on 235 

pore-scale flow velocity. We do so by testing a range of cavity geometries that are more representative of what we would 

expect to see in a real porous medium (i.e., rectangular, non-rectangular, and periodic geometries). Previously, we only tested 

a single, square cavity geometry, which is a highly idealized case. We show that not only does this exponential relationship 

hold for media with these new cavity geometries, but it does so almost perfectly with a coefficient of determination (R²) of 

approximately 1 for each set of simulation data. Given this high fit quality, it is evident that the exponential relationship we 240 

previously discovered is applicable to most, if not all, media with dead-ended pore spaces. That said, this work would lend 

itself well to significant expansion. Although we have highlighted sensitivity to cavity width, and previously, through-channel 

height to pore depth, there remain other parameters that could affect the exponential fit and perhaps, even inform us about the 

aggregate, effective nature of the pore spaces of experimentally studied media. 

Data and Code Availability  245 

The simulation data that support the findings of this study, and the corresponding Mathematica code files, are available in 

Open Science Framework at DOI 10.17605/OSF.IO/P2EMN. All files are also provided in pdf format for readers that do not 

have access to Mathematica. 
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