How economically and environmentally viable are multiple dams in the Upper Cauvery basin, India? A hydro-economic analysis using a landscape-based hydrological model

- 4 5
- Anjana Ekka^{1,3}, Yong Jiang², Saket Pande¹, Pieter van der Zaag^{1,2}
- 6 ¹ Department of Water Management, Delft University of Technology, Delft, The Netherlands
- 7 ² IHE Delft Institute for Water Education, Delft, The Netherlands
- 8 ³ ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
- 9 Correspondence to: Saket Pande (s.pande@tudelft.nl)

10 <u>Supplementary materials</u>

11

12

13 Figure S.1. Water allocation in the Cauvery basin (million m³/year) across the several states and union territories

15 **1. The FLEX-Topo model**

The FLEX-Topo model simulates dominant hydrological processes in various landscape units known as hydrological response units (HRUs). Figure S.2 illustrates such HRU specific processes modeled by FLEX-Topo, which are calibrated based on the parameters shown in Table S.1. Height Above Nearest Drainage (HAND), slope, elevation (DEM) and land use maps are used to categorize these HRUs.

20

21 Rainfall (P) is partitioned into interception evaporation (Ei) and effective rainfall (Pe) based on a threshold value 22 (Si max). The effective rainfall is retained by the soil and excess results in runoff, R, which is a function of root 23 zone storage capacity parameter (Su, max) and a shape parameter (β). Plant transpiration (E) is calculated 24 considering potential evaporation (Eo), a soil moisture threshold parameter (Ce), and relative soil moisture (Su/Su, 25 max). The generated runoff is then separated into fast (Rf) and slow (Rs) components using a separator (D). A lag 26 function is applied to represent the lag time (T) between peak flow and the storm event. The fast and slow runoff 27 components are modeled using two linear reservoirs with different time constants (Kf and Ks). The total runoff 28 (Qm) is the sum of these fast and slow components (Qf and Qs).

29

The landscape classification affects the parameters of the unsaturated root zone reservoir (Su, max) due to variations in rooting depth caused by topography and land use. The Su, max values for hillslope forest and plateau forest are assumed to be larger than those for hillslope crops and plateau crops. In wetlands, the root zone storage capacity (Su, max, W) is relatively low due to the shallow groundwater table.

34

Five HRUs are determined based on the percentage of landscape classes for the upstream and downstream areas of the reservoir for each sub-basin (Figure S.2). These HRUs are connected to a common groundwater reservoir, recharged by different sources depending on the landscape class (e.g., hillslope forest, hillslope crop, plateau forest, plateau crop, and capillary rise from wetlands).

39

After calibrating the reservoir operations model and integrating it with the FLEX-Topo models for the areas upstream and downstream of a reservoir within the corresponding sub-basin, the FLEX-Topo parameters (within the ranges shown in Table S.1) are optimized to ensure the representation of the hydrological processes for various sub-basins (four sub-basins, one for each of the four reservoirs) in the Upper Cauvery basin, which is 44 predominantly covered by field crops, plantation crops, and evergreen forests. For more details readers are referred

45 to Ekka et al. (2022).

46

47 Table S.1. FLEX-Topo model parameters ranges. These define the feasible range within which parameters are

48 calibrated and are discussed in detail in Ekka et al. (2022).

	HRU specific parameter ranges							
Parameters	Plateau	Plateau	Hillslope	Hillslope	Wetlands			
	crop	forest	crop	forest	vv etianus			
I _{max} [mm/day]								
(Storage capacity of the Interception	1-8	6-10	1-8	6-10	1-5			
reservoir)								
C _e [-]	0.1-1	0.1-1	0.1-1	0.1-1	0.1-1			
(Fraction of S _{u, max})	0.1-1	0.1-1	0.1-1	0.1-1	0.1-1			
Su _{max} [mm]								
(Maximum soil moisture capacity in the	100-500	100-1000	100-500	100-1000	10-100			
root zone)								
β[-]								
(Spatial heterogeneity in the	0.1-5	0.1-5	0.1-5	0.1-5	0.1-5			
catchment/shape parameter)								
Pmax [-]	0.1-5	0.1-5	-	-	-			
(Maximum percolation rate)								
D [-]	-		0-0.5	0-0.5	-			
(The splitter)		-						
C_{R} max [mm/day]	-		-	-	0.01-1			
(Capinary rise)		-						
$\mathbf{x}_{\mathbf{f}}$ [u] (P acassion coefficient of the fast reservoir)	0.005 -1	0.005 -1	0.005-1	0.005-1	0.005-1			
(Recession coefficient of the last reservoir)	Cataba	nont coolo novom	atan nangag					
IZ [1]	Catchi	nent scale param	eter ranges					
$K_s[0]$			0.0001	0.01				
(Recession coefficient of the slow			0.0001	-0.01				
			0.1	20				
Time log between the storm and neak			0.1 -	- 30				
(Time tag between the storm and peak								
Frac 1 [-]		The value is	s fixed $(0, 1)$ base	d on the nercen	tage of			
(Fraction of forests cover)	forest area in the sub hasin							
Frac 2 [-]		The value is	s fixed (0 -1) hase	d on the percent	tage of			
reservoir) T _{lag} [d] (Time lag between the storm and peak flow) Frac 1 [-] (Fraction of forests cover) Frac 2 [-]		The value is forest area i The value is	0.1 – s fixed (0 -1) base in the sub-basin s fixed (0 -1) base	- 30 d on the percen d on the percen	tage of tage of			

Irrigated area in the sub-basin

(Fraction of Irrigation) 49

50 Source Ekka et al. (2022)

51

52

Figure S.2 The dominant processes of different HRUs of the FLEX-Topo model used in this study. Various landscape class specific parameters are shown in red and
variables in black. Flows from various reservoirs, Q with corresponding subscripts, are added to obtained total flow and the regime. Source: Ekka et al. (2022).

2. Calibration and validation of the integrated model

The model parameters are calibrated using the Elitist Non-Dominated Sorting Genetic (NSGA-II) algorithm (Deb et al., 2000). NSGA-II is a multi-objective optimization algorithm, which can optimize multiple objectives and provides a collection of parameter values (Pareto optimal) that are not dominated by any other feasible parameters in terms of performance in the multi-objective space.

Table S.2 provides the parameter setting of the NSGA-II algorithm. Population crossing over and population mutation play crucial roles in optimization. For better convergence and to prevent the population from becoming trapped in local optima, a higher fraction of population crossing over and a lower value of mutation value are preferred (Wang et al., 2019). The population size depends on the number of decision variables calibrated in the model, and it is recommended for the simulation to maintain a population size that is five times the number of decision variables (Gutierrez et al., 2019). The reservoir operations model has five parameters and therefore NSGA-II has a population size of 25 when calibrating its parameters. Since there are 20 parameters that are calibrated for FLEX-Topo, the population size is maintained at 100 when calibrating its parameters after the calibrated reservoir operations model has been integrated. Higher population sizes were also tested but not used due to similar performance. 250 iterations were ultimately selected based on the best optimization from amongst 50, 100, 250, and 500 iterations.

NSGA II parameters	Reservoir calibration	Integrated FLEX-Topo Calibration
No. of Iterations	250	300
No. of decision variables	5-8	25
No. of population size	25-40	125
Population Crossover	0.7	0.7
Mutation probabilities	0.2	0.2
New generation selection	Elitist selection	Elitist selection
Ordering criteria	Crowding distance	Crowding distance

Table S.2. Parameter setting for NSGA II optimization of the model.

Source: Ekka et al., 2022

Table S.3 presents the calibration results of both reservoir operations models and FLEX-Topo parameters after integrating the reservoir operations models for each of the sub-basins, obtained using the NSGA II algorithm. Negative Nash-Sutcliffe Efficiency (NSE) values are reported instead of positive NSE (due to its use to maximize as an objective in NSGA-II), and the Pareto front ranges for both -NSE (note the negative sign in front of NSE) and Mean Absolute Error (MAE) are shown within the parentheses. The MAE values range from 0.71 to 2.92 (10⁶ m³ day⁻¹), falling within an acceptable range. Lower MAE values indicate better predictions. Similarly, the NSE values, which assess the model's goodness of fit, range from 0.51 to 0.73, all above the acceptable threshold of 0.50.

Note that the calibration and validation of the reservoir operations models did not include validation against observed streamflow at the reservoir outlets. Despite this limitation, the overall MAE and NSE values indicate

acceptable performance for the reservoir operations models, given the available data and operational considerations.

Table S.3. The model performance metrics for the calibration of the four reservoirs and the calibration and validation of the Flex-Topo models (i.e., the integration of calibrated reservoirs with upstream and downstream FLEX-Topo models) for the corresponding four sub-basins.

		Reservoir Calibration (2011-2016)								
Reservoirs	-NSE [range]		MAE [range] $(10^6 \text{ m}^3 \text{ day}^{-1})$							
Harangi(kudige)	-0.64 [-0.65 - (-0.6	3)]	2.92 [2.92 -3.0]	[]						
Hemavathi (M.H. Halli)	-0.51 [-0.52 - (-0.5	1)]	1.15 [1.15 -1.16	5]						
Kabini (T. Narasipur)	-0.73 [-0.73 - (-0.7	2)]	1.24 [1.24-1.24	.]						
KRS(Kollegal)	-0.68 [-0.67 - (-0.6	9)]	0.71 [0.70 - 0.72]							
	Flex-Topo model ca	alibration and valid	ation							
Sub-basins	Calibr	ration (1991-2010)	Validatio	n (2011-2016)						
	-NSE [range]	MAE [range] (mm day ⁻¹)	-NSE	MAE (mm day ⁻¹)	_					
Kudige	-0.80 [-0.81 - (-0.80)]	1.36 [1.33 -1.39]	-0.65	2.05						
M.H. Halli	-0.57 [-0.57 - (-0.56)]	0.37 [0.40 -0.41]	-0.52	0.48						
T.Narasipur	-0.53 [-0.53 - (-0.50)]	0.67 [0.67- 0.69]	-0.52	0.66						
Kollegal	-0.53 [-0.54 - (-0.52)]	0.92 [0.92 -0.97]	-0.50	0.86						

Note: The reported value in front of the parenthesis represents the parameter value on the Pareto front this is closed to the origin using Euclidean distance. The range in the parenthesis represent the range of possible solutions lying on the Pareto front. Source: Ekka et al. (2022).

The calibrated reservoir model is integrated with the FLEX-Topo model, the FLEX-Topo model parameters are calibrated and Table S.3 reports the performance of the resulting integrated model. The NSE values for all subbasins ranged from 0.53 to 0.80 during the calibration phase and from 0.50 to 0.65 during the validation phase. NSE scores over 0.50 are regarded as acceptable and denote the integrated model's performance at acceptable levels for all the four sub-basins. Further, the Mean Absolute Error (MAE) for calibration and validation are within acceptable ranges of 0.86 to 2.05 mm day⁻¹ and 0.92 to 1.36 mm day⁻¹, for calibration and validation phases respectively.

Table S.4. Definitions of major Indicators of Hydrological Alteration (IHA)

Flow	Indicators of Hydrologic	Definitions (for non-parametric)				
characteristics	Alteration (IHA)					
Magnitude/ timing	The median value for each	Median (m ³ s-1) of daily flow condition from January to				
	calendar month	December				
	Annual minima, 1-day median	Minimum flow value (m ³ s ⁻¹) occurred in a year				
	Annual minima, 3-day median	Minimum flow value (m ³ s ⁻¹) for the mean daily flow of 3				
		consecutive days of the year				
	Annual minima, 7-day median	Minimum flow value (m ³ s ⁻¹) for the mean daily flow of 7				
		consecutive days of the year				
	Annual minima, 30-day	Minimum flow value (m ³ s ⁻¹) for the mean daily flow of 30				
	median	consecutive days of the year				
	Annual minima, 90-day	Minimum flow value (m ³ s ⁻¹) for the mean daily flow of 90				
	median	consecutive days of the year				
	Annual maxima, 1-day median	Maximum flow value (m ³ s ⁻¹) occurred in a year				

Magnitude/duration	Annual maxima 3 day median	Maximum flow value (m^3s^{-1}) for the mean daily flow of 3					
Magintude/ duration	Alinual maxima, 5-day median	Waxinum now value (in s) for the mean darry now of 5					
		consecutive days of the year					
	Annual maxima, 7-day median	Maximum flow value (m^3s^{-1}) for the mean daily flow of 7					
		consecutive days of the year					
	Annual maxima, 30-day	Maximum flow value (m ³ s ⁻¹) for the mean daily flow of 30					
	median	consecutive days of the year					
	Annual maxima, 90-day	Maximum flow value (m ³ s ⁻¹) for the mean daily flow of 90					
	median	consecutive days of the year					
	Low pulse count (days)	No of times in a year when the flow is lower than the 25 %					
		percentile of the flow period					
Duration	High pulse count (days)	No. of times in a year when the flow is higher than the 75 %					
		percentile of the flow period in analysis					
	Low pulse duration (days):	The median duration of the low pulses (days)					
	High pulse duration (days):	The median duration of the high pulses (days)					
Environmental	Extreme low peak	Minimum flow event during each water year or season					
flow components	Extreme low frequency	Frequency of extreme low flows during each water year or					
		season					

References: compiled from The Nature Conservancy (TMC), 2009

Table S.5. The residence time of the reservoirs

Reservoir	Year of construction	Sub-basin based on gauge location	Catchment area (10 ⁶ m ²)	Gross Storage (10 ⁶ m ³)	Residence time (months)
Harangi	1982	Kudige	419.58	240.69	7.23
Hemavathi	Hemavathi 1979 M.H. H		2810	1050.63	22.63
Krishna Raja Sagara (KRS)		Kollegal	10619	1400.31	8.68
Kabini 1974		T. Narasipur	2141.90	552.74	3.57

Table S.6. The crop coefficients (Kc) and yield response factors (Ky) used to calculate crop specific yields

	Crops	Kc	Ky		Tur (Red gram)	0.74	0.90
1	CEREAL CROPS			3	OIL SEEDS CRO	PS	
		0.77	0.02		Linseed	0.78	0.70
	Вајга	0.67	0.92		Castor	0.7	0.70
	Jowar	0.69	0.92		Groundnut	0.78	0.70
	Maize	1.06	1.25		N'	0.70	0.70
	Paddy	1.14	1.20		Niger seed	0.7	0.80
	Pagi	0.60	0.00		Rape & Mustard	0.75	0.80
		0.09	0.90	Safflower	Safflower	0.75	0.80
2	PULSES CROPS				Sesamum	0.75	0.95
	Avare	0.74	0.85		Sovabean	0.70	0.85
	Bengal gram	0.00	0.00		Supflower	0.75	0.05
	(Gram)	0.90	0.90		Suilliowei	0.75	0.93
	Black gram	0.65	0.85	4	COMMERCIAL /	FIBRE CR	OPS
	Cowpea	1.19	0.98		Cotton	0.88	0.85
	Green gram	0.89	0.80		Sugarcane	1.58	1.20
	Horse gram	0.74	0.90		Tobacco	0.9	1.10
	Navane	0.74	0.70		Crops	Kc	Ку

5	PLANTATION &	HORTICUL	TURAL CROPS
	Lemon	0.7	1.10
	Onion	1.19	1.10
	Tomato	1.19	1.05
	Banana	1.12	1.20
	Beans	0.93	1.15
	Brinjal	0.93	0.85
	Cabbage	1.19	0.85
	Cashewnut		
	(Raw&Processed Nuts)	0.8	0.90
	Coconut	0.8	0.90
	Grapes	0.85	1.10
	Guava	0.05	1.10
	Mango	0.09	1.10
	Papava	0.03	0.00
	Fapaya Domograpata	0.93	0.90
	Politografiate	1.00	0.90
	Folalo	0.7	1.10
	Sapola	0.7	0.90
	Sweetpotato	1.09	1.00
		1.09	0.80
	Coffee (Arabica)		
	Coffee (Robusta)		
6	CONDIMENTS &	2 SPICES CR	
	Coriandar Arecanut (Raw &	1.19	1.20
	Processed Nuts)	0.8	0.90
	Black pepper	1.19	1.10
	Cardamom	1.19	1.10
	Dry Chillies	0.95	1.10
	Dry Ginger	0.93	1.10
	Garlic	1.19	0.90
	Turmeric	1.01	0.85

Source: Compiled from Allen et al., 1998; Mohan & Arumugam.,1994

	Kodagu (ha)				Mysore (ha)			Hassan (ha)			Chikmagalur (ha)		
Reservoirs	Irrigated (with in basin)	Irrigated (Outside basin)	Unirrigated	Irrigated (with in basin)	Irrigated (Outside basin)	Unirrigated	Irrigated (with in basin)	Irrigated (Outside the basin)	Unirrigated	Irrigated (with in basin)	Irrigated (Outside basin)	Unirrigated	
Harangi	2792.00	0.00	79808.30	14481.78	27329.22	0.00	0.00	8935.00	0.00	0.00	0.00	0.00	
Hemavathi	1060.00	0.00	17661.12	0.00	2267.00	0.00	69223.00	0.00	82027.64	0.00	0.00	75937.08	
Kabini	0.00	0.00	15461.33	23028.00	0.00	133798.82	0.00	0.00	0.00	0.00	0.00	0.00	
KRS	0.00	0.00	55919.38	34673.00	0.00	124432.11	0.00	0.00	268040.72	0.00	0.00	0.00	

Table S.7. An overview of the irrigated and non-irrigated areas of the districts (columns) lying within the sub-basins of the respective reservoirs (rows)

	Chamrajanagar (ha)			Mandya (ha)			Tumkur (ha)			Wayanad (ha)		
Reservoirs	Irrigated (with in sub- basin)	Irrigated (Outside sub-basin)	Unirrigated	Irrigated (with in basin)	Irrigated (Outside the basin)	Unirrigated	Irrigated (with in basin)	Irrigated (Outside basin)	Unirrigated	Irrigated (with in sub- basin)	Irrigated (Outside sub- basin)	Unirrigated
Harangi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hemavathi	0.00	0.00	0.00	0.00	92239.00	0.00	0.00	127076.00	0.00	0.00	0.00	0.00
Kabini	22702.00	0.00	103389.02	0.00	0.00	225.47	0.00	0.00	0.00	0.00	0.00	98640.87
KRS	73409.00	0.00	72242.64	0.00	0.00	207379.38	0.00	0.00	0.00	0.00	0.00	0.00

		Erode (ha)		The Nilgiris (ha)			
Reservoirs	Irrigated (with in basin)	Irrigated (Outside the basin)	Unirrigated	Irrigated (with in basin)	Irrigated (Outside the basin)	Unirrigated	
Harangi	0.00	0.00	0.00	0.00	0.00	0.00	
Hemavathi	0.00	0.00	0.00	0.00	0.00	0.00	
Kabini	0.00	0.00	0.00	0.00	0.00	22711.92	
KRS	0.00	0.00	54349.34	0.00	0.00	0.00	

	CROPS					District					
1	CEREAL CROPS	Chikamagalur	Chamrajanagar	Hassan	Kodagu	Mandya	Mysore	Wayanad	Erode	Nilgiris	Tumkur
	Bajra	-	886.35	-	-	-	-	-	-	-	-
	Jowar	937.51	887.01	937.51		942.67	834.06	-	-	-	-
	Maize	900.00	874.97	900.27	893.11	925.90	821.62	-	925.90	-	-
	Minor Millets	1560.00	-	1560.00	-	-	-	-	-	-	-
	Paddy	945.54	979.32	945.54	988.40	984.06	953.27	983.36	984.00	984.00	946.00
	Ragi	939.27	947.74	939.27	950.91	988.99	902.61	-	989.00	-	-
2	PULSES CROPS										
	Avare	2550.23	2234.87	2550.23	-	2456.71	2432.92	-	-	2456.71	2550.23
	Bengal gram (Gram)	2626.19	4394.24	2626.19	-	3532.86	3238.28	-	3532.86	-	2626.19
	Black gram	4984.98	3874.48	4984.98	-	5473.22	4420.44	-	5473.22	5473.22	4984.98
	Cowpea	2336.74	2251.65	2336.74	2689.33	2606.98	3536.14	-	2606.98	2606.98	2336.74
	Green gram	3486.06	3967.20	3486.06	-	4128.95	4239.37	-	4128.95	4128.95	3486.06
	Horse gram	1601.18	1667.18	1601.18	-	1560.01	1665.11	-	1560.01	1560.01	1601.18
	Tur (Red gram)	4495.61	4387.40	4495.61	-	3973.62	-	-	-	3973.62	4495.61
3	OIL SEEDS CROPS										
	Linseed	2569.52	-	-	-	-	-	-	-	-	-
	Castor	2563.52	2520.74	2569.52		3973.62	2605.32	-	-	-	-
	Groundnut	3335.87	1496.76	2563.52	2716.52	2130.70	2351.64	-	2130.70	-	2564.00
	Niger seed	4465.82	3432.45	3335.87	-	3093.87	2853.61	-	-	-	-
	Rape & Mustard	2703.29	4465.82	4465.82	-	-	-	-	-	-	-
	Safflower	3993.88	3383.83	2703.29	-	-	-	-	-	-	-
	Sesamum	3993.88	2368.29	3993.88	-	4465.82	4258.06	-	-	-	-
	Soyabean	-	-	-	-	-	-	-	-	-	-
	Sunflower	2429.32	-	2429.32	-	2476.03	2676.09	-	-	-	-
4	COMMERCIAL / FIB	RE CROPS									

Table S.8. Average yearly price (₹, Indian National Rupees) of crops (rows)) used to calculate the economic value of the agricultural production (2011 to 2016) for various districts shown as columns.

	Cotton	3690.52	2805.66	3690.52	-	-	2980.41	-	-	-	3690.52
	Sugarcane	929.57	929.57	929.57	-	-	919.98	-	-	-	930.00
	Tobacco	2684.29	2684.29	2684.29	2684.29	-	2556.56	-	-	-	2684.29
5	PLANTATION & HO	RTICULTURAL CR	OPS								
	Lemon	3016.56	3016.56	3016.56	-	3016.56	2883.71	-	-	-	3016.56
	Onion	869.96	922.69	922.69	-	890.30	927.60	-	-	890.00	870.00
	Tomato	677.08	613.56	939.20	561.42	561.42	544.90	-	-	561.00	677.00
	Banana	1690.69	1690.69	1690.69	1690.69	1690.69	1510.27	1646.28	-	-	1690.69
	Beans	1390.81	1391.21	1309.42	1309.67	1309.67	1533.91	-	-	1310.00	1391.00
	Brinjal	740.28	748.49	747.26	748.49	748.49	637.83	-	-	748.00	740.00
	Cabbage	405.93	405.93	405.93	405.93	407.94	374.99	-	-	-	406.00
	Cashewnut (Raw &Processed Nuts)	4667.80	4667.80	4667.80	4667.80	4348.33	4098.33	4098.33	-	-	4667.80
	Coconut	4466.02	4466.02	4466.02	4466.02	4466.02	4351.66	4351.66	-	-	4466.02
	Grapes	1738.93	1738.93	1738.93	-	-	1619.04	-	-	-	1738.93
	Guava	584.71	584.71	584.71	584.71	584.71	552.13	-	-	-	584.71
	Mango	670.58	670.58	670.58	670.58	670.58	633.50	-	671.00	-	670.58
	Papaya	726.04	726.04	726.04	726.04	726.04	714.00	-	-	-	726.04
	Pomogranate	7443.38	7443.38	7443.38		7443.38	7224.00	-	-	-	7443.38
	Potato	883.49	639.43	799.11	800.00	800.00	954.64	-	-	-	883.49
	Sapota	1493.10	1493.10	1493.10	1493.10	1493.00	1408.63	-	-	-	1493.10
	Sweet potato	450.96	568.27	568.27	568.27	275.00	551.63	-	-	-	450.96
	Tapioca	806.59	806.59	-	806.59	-	776.76	721.29	-	-	806.59
	Coffee (Arabica)	11997.13	-	14250.18	14304.36	-	-	14304.36	-	-	-
	Coffee (Robusta)	8208.75	-	9981.82	6772.36	-	-	6772.36	-	-	-
6	CONDIMENTS & SPICES CROPS										
	Coriandar	4558.09	4558.09	4558.09	-	4558.09	4350.82	-	-	-	4558.09
	Arecanut (Raw & Processed Nuts)	13331.14	9343.66	9343.66	9343.66	9343.66	13876.97	12942.44	-	-	13331.14
	Black Pepper	21845.87	20784.95	20784.95	19541.56	-	18152.31	23283.95	-	-	21845.87

Cardamom	73691.80	73691.80	73691.80	73691.80	-	73547.61	73547.61	-	-	73691.80
Dry Chillies	4388.39	4338.89	4338.89	4338.89	5394.66	4937.84		-	-	4388.39
Dry Ginger	3525.27	1668.86	3525.27	3525.27	3525.27	3275.26	7293.97	-	-	3525.27
Garlic	-	3310.75	3310.75	-	-	3145.66	-	-	-	4459.60
Turmeric	4459.60	4765.48	4459.60	4459.60	4459.60	3802.76	3802.76	-	-	-

Source: Extracted and compiled from https://agmarknet.gov.in/.

References

Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (, 1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. *FAO*, *Rome*, *300* (9), p.D05109.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_83

Ekka, A., Keshav, S., Pande, S., van der Zaag, P., & Jiang, Y. (2022). Dam-induced hydrological alterations in the upper Cauvery River basin, India. *Journal of Hydrology: Regional Studies*, 44, 101231.

Gutierrez, J. C. T., Adamatti, D. S., & Bravo, J. M. (2019). A new stopping criterion for multi-objective evolutionary algorithms: application in the calibration of a hydrologic model. *Computational Geosciences*, *23*, 1219-1235.

Mohan, S., & Arumugam, N. (1994). Crop coefficients of major crops in South India. Agricultural Water Management, 26(1-2), 67-80.

The Nature Conservancy (2009). Indicators of Hydrologic Alteration (IHA) Software Version 7.1 User's Manual. *The Nature Conservancy: Charlottesville, VA, USA*.

Wang, Q., Wang, L., Huang, W., Wang, Z., Liu, S., & Savić, DA., 2019. Parameterization of NSGA-II for the optimal design of water distribution systems. *Water*, *11* (5), 971. <u>https://doi.org/10.3390/w11050971</u>