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Abstract. Baseflow is the delayed component of streamflow from subsurface storage and is critical for sustaining ecological 

flows and ensuring water resource security. Understanding controls on and changes in baseflow, including the seasonality of 

baseflow, is therefore an important task. Baseflow seasonality has typically been investigated using pre-defined hydrological 10 

seasons. Instead, here, we investigate baseflow seasonality using data-led approaches that identify and cluster average annual 

baseflow hydrographs that exhibit early-, mid-, or late-seasonality. We apply a novel functional data analysis (FDA) approach 

and examine temporal changes in the timing of seasonal peaks in annual standardised baseflow hydrographs for 671 catchments 

across Great Britain (GB). We use data from the CAMELS-GB dataset for the period 1976 to 2015 split into two twenty-year 

time blocks (1976-1995 and 1996-2015). Functional clustering enables groups of catchments with similar distributions 15 

between time blocks to be identified. Changes in baseflow seasonality with time are investigated by identifying and 

characterising catchments that move between functional clusters and time blocks, while analysis of the timing of baseflow 

peaks provides additional temporal resolution to the early-, mid-, and late-season discretisation generated by the functional 

clustering. The analysis shows that baseflow seasonality has a spatio-temporally coherent structure across GB and catchment 

characteristics are a first order control on the form of seasonal baseflow clusters. Changes in climate are inferred to be the first 20 

order control on changes in baseflow seasonality between the two time blocks. A change to earlier seasonal baseflow in snow-

melt influenced catchments in upland northern GB is associated with systematic warming across the two time blocks, and a 

move to earlier (later) baseflow seasonality across lowland southern, central and eastern (western, north-western and northern) 

catchments in GB is associated with earlier (later) seasonality in effective rainfall (defined as precipitation minus potential 

evapotranspiration). These changes in baseflow seasonality in non-snow-melt influenced catchments are consistent with the 25 

proposition that, in temperate environments, climate warming leading to vegetation phenology-mediated changes in 

evapotranspiration may be modifying the timing of hydrological cycles.    
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1 Introduction 

Baseflow is the delayed component of streamflow fed by subsurface storage between precipitation and/or snow-melt events 

(Tallaksen, 1995; Price, 2011; Zhang et al., 2017; Gnann et al., 2019; Singh et al., 2019). It is of interest for a number of 

reasons: baseflow can act to regulate the quality and temperature of stream flow (Jordan et al., 1997; Gomez-Velez et al., 2015; 35 

Hare et al., 2021), it supports ecological flows and ecosystem functioning (Poff et al., 1997; Boulton, 2003), and, importantly 

for water resources, it sustains surface flows at times when there is a deficit in precipitation and so baseflow is a significant 

component of streamflow during episodes of low flow and drought (Smakhtin, 2001; Miller et al., 2016). Consequently, there 

is a need to understand the controls on and changes in baseflow, including the seasonality of baseflow – the focus of the current 

study. 40 

Baseflow is a hydrological phenomenon that represents an integrated, whole-catchment response to meteorological and other 

environmental change signals (Bloomfield et al., 2009; 2011; Price, 2011) as well as to water resource management practices, 

such as abstraction and discharge within catchments (Bloomfield et al., 2021). It typically exhibits catchment-specific 

responses over a wide range of spatio-temporal scales to variability or changes in driving climatology and longer-term climate 

change, and to changes in catchments, such as land-use and land-cover change. For example, in an analysis of trends in annual 45 

baseflow in 99 catchments in the Missouri River Basin, Ahiablame et al. (2017) described a strong positive correlation between 

increasing trends in precipitation and baseflow and a weak negative correlation with agricultural land use. Tan et al. (2020) 

recently investigated the impacts of climate change and human-induced changes in vegetation on baseflow at a global scale 

using data from 2,374 streamflow stations for the period 1970 to 2016. They used a combination of linear regression and the 

Mann-Kendall nonparametric trend test to identify the magnitude of changes in annual and seasonal baseflow. They found that 50 

changes were region-dependent due to regional differences in baseflow-generation processes, and that, at a global level, 

changes in precipitation, terrestrial water storage (TWS), normalized difference vegetation index (NDVI) and temperature 

contributed to the majority of changes in annual and seasonal baseflow. They also noted that seasonal baseflow changed, in 

part, due to the shift from snowfall to rainfall and warming effects on glacial retreat and the timing of snow-melt. This latter 

phenomenon has been well-documented in observational studies for a number of snow-dominated catchments, particularly in 55 

North America (Barnett et al. 2005; Barnett et al., 2008; Leppi et al., 2012; Kormos et al., 2016). 

One of the motivations for the present study comes from work on the effects of climate change on vegetation phenology (Piao 

et al., 2019) and the implications for ecohydrology (Chen et al., 2022), and the concept that changing vegetation phenology 

may impact both the magnitude and the timing of key fluxes in the ecohydrological cycle. In addition to the effect of climate 

warming on changes in the timing of flows in snow-dominated catchments, anthropogenic climate warming may already be 60 

modifying the magnitude of evapotranspiration (ET) through earlier spring phenology (greenup) and delayed autumn 
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phenology (senescence) so extending the growing season (Chen et al., 2022). For example, in a study of the phenological 

response of vegetation in eastern USA over the period 1992 to 2011, Kim et al (2018) found that phenological changes were 

increasing long-term changes in ET in addition to those driven by climatic warming (earlier greenup being more significant 

than delayed senescence) and that ecohydrological modelling of the phenological changes indicated reduced annual stream 65 

discharge. Similarly, Geng et al (2020) documented an extended growing season in the Luanhe Basin, China, over the period 

1982–2015 (again, primarily due to earlier greenup) and demonstrated that although the main regulation of annual runoff was 

precipitation, changes in the length of growing season also played a key role in the changes of annual runoff.  Unlike Tan et 

al (2020), where baseflow seasonality was investigated by analysing the characteristics of changes in baseflow within an 

analytical framework of pre-defined hydrological seasons, e.g. hydrological spring as defined by March-April-May (MAM), 70 

here, as with phenological studies (Kim et al., 2018; Geng et al., 2020; Chen et al., 2022), we are interested in quantifying 

changes in the timing of seasonal hydroecological signals, in our case baseflow, precipitation, temperature and effective 

rainfall. 

Previous investigations of change in baseflow have typically used non-parametric methods such as the Mann-Kendall trend 

test, or slope-based methods (e.g. Ahiablame et al., 2017, Mohammed and Scholz, 2016, Bosch et al. 2017, Tan et al., 2020) 75 

to characterise annual and / or seasonal trends. Consistent changes across time can be identified using these methods. However, 

a drawback to using trend tests such as these is that only monotonic changes can be identified and the tests are not particularly 

suitable to characterise changes in seasonality with time other than by simply segmenting the data into pre-defined ‘seasons’ 

(as in Tan et al., 2020). In addition, care must be applied to the choice of test as autoregression and seasonal behaviour in a 

time series can affect the performance of trend tests (Hirsch and Slack, 1984). Previous studies of seasonality in precipitation 80 

(Liebermann et al., 2012) and modelled precipitation under future climate change (Dunning et al., 2018) have identified and 

analysed the timing of annual peaks and troughs in the hydrographs, however, this approach does not use all the information 

in the hydrograph to define the seasonality. An alternative approach is to use Functional Data Analysis (FDA) (Bouveyron et 

al., 2015b). FDA treats the data (for example seasonal hydrographs) as a curve, rather than as discrete, sequential temporal 

observations in a time series, and allows for general annual shapes in the data to be identified and compared. Functional 85 

clustering enables groups of catchments with similar seasonal patterns of baseflow across time blocks, i.e. that exhibit early-, 

mid-, or late-seasonality, to be identified. A number of other studies have applied FDA to hydrological data. For example, 

FDA has been applied to the analysis of fluvial flood events over time (Ternynck et al., 2016,  Alaya et al., 2020), comparison 

of modelled versus observed discharge time series (Larabi et al., 2018), clustering of locations on a river network according 

to nitrate concentration (Haggarty et al., 2015) and, spatio-temporal analysis of precipitation and other climatic data (Suhaila 90 

and Yusop, 2017; Ghumman et al., 2020). However, to date, FDA has not yet been applied to the quantification of changes in 

hydrological seasonality.  

To address the gap in observation-based understanding of changes in and controls on the seasonality of baseflow in catchments 

in temperate settings, a large-sample data set for Great Britain (GB), CAMELS-GB (Coxon et al., 2020a; 2020b) is analysed 

here using a novel application of FDA methods (Chebana et al., 2012; Ternynck et al., 2016). Data from the CAMELS-GB 95 
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dataset catchments for the period 1976 to 2015 is split into two twenty-year time blocks (1976-95, 1996-2015) to characterise 

the distributions of average annual patterns of baseflow and how these vary over time. Following a description of the study 

area and analytical methods, functional clusters of early-, mid-, and late-season baseflow curves are identified and changes in 

the timing of seasonal peaks in the annual standardised baseflow hydrographs are evaluated and discussed in the context of 

potential catchment and climate controls on baseflow seasonality.   100 

2 Study area, data and methods 

2.1 Study area 

The study area, GB, consists of England, Scotland and Wales (Fig. 1(a)) and includes a wide range of climate–landscape–

water management features as described in Coxon et al. (2020b). Catchments in the north and north-west of the study area 

typically have higher mean elevations than those in the south and south-east of GB and the prevailing climatology reflects the 105 

broad gradient in catchment physiography. Wet and cooler conditions with reduced evapotranspiration are typically prevalent 

in the north and west of GB compared with relatively dry and warmer conditions in the south-east (Fig. 1(b)). 

Annual mean precipitation over England shows no systematic trends with time since records began in 1766 and there has been 

no attribution of changes in annual mean precipitation to anthropogenic factors (Jenkins et al., 2008; Watts et al., 2015). 

Precipitation in the UK is, however, seasonal and variable over a range of spatio-temporal scales, with a tendency towards 110 

drier summers in the south-east and wetter winters in the north-west (Jenkins et al., 2008; Watts et al., 2015) and to showing 

significant inter-annual variations, including episodes of meteorological extremes (Bloomfield and Marchant, 2013). Although 

annual average precipitation has not changed significantly in the observational record, there is a tendency for increasing winter 

rainfall and with more winter rain falling during intense events (Jenkins et al., 2008; Burt and Ferranti, 2011; Jones et al., 

2012). Air temperature has increased by about 1 °C between 1980 and 2015 (Jenkins et al., 2008; Watts et al., 2015) consistent 115 

with long-term global warming trends. However, there have been few studies of historical changes in associated 

evapotranspiration. Kay et al. (2013) documented increased potential- and actual-evapotranspiration (PET and AE) across GB 

between 1961 and 2012 and Watts et al. (2015) speculated that it is reasonable to hypothesize that PET has increased in line 

with decadal scale warming of air temperatures over GB, but a causal relationship has yet to be established. 

 120 

High-productivity aquifers are largely found in the south-east and east of GB (Allen et al., 1997; Bloomfield et al., 2009; 

Marchant and Bloomfield, 2018), whereas less productive aquifers and non-aquifers are generally more extensive in the west 

and north-west. Catchments in which clay-dominated soils overlie mudrock and clay bedrock formations and catchments with 

extensive glacial till deposits are typically present in central and eastern areas (Bloomfield et al., 2009; Bricker and Bloomfield, 

2014; Bloomfield et al., 2021). These regional variations in underlying hydrogeological conditions are reflected in spatial 125 

variation in Baseflow Index across GB (Fig. 1(c)) with the highest Baseflow Index associated with streams flowing over the 

unconfined Chalk (a fractured microporous limestone of Cretaceous age and the main aquifer in GB) of southern, south-east 
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and eastern England (Fig. 1(a)), and the lowest baseflow in northern and western catchments where low permeability-low 

storage bedrock and superficial deposits predominate (Allen et al., 1997; Bloomfield et al., 2021). 

In a previous analysis of baseflow data from CAMELS-GB using multiple linear regression, Bloomfield et al. (2021) showed 130 

that, even though natural covariates, such as topography, aridity, and fractional area of highly productive fractured aquifers, 

provide the main explanatory power for Baseflow Index (BFI) across the study area, BFI is also affected by groundwater 

abstraction and to a lesser extent discharges to rivers from sewage treatment works. Groundwater abstraction is focused on 

major aquifers, particularly the Chalk, in GB, however, discharges to rivers from sewage treatment works have no regional 

focus and are typically highest in catchments with large populations and high use of water (Bloomfield et al., 2021, Figure 2). 135 

2.2 Data 

Hydro-climatic timeseries for 671 catchments in Great Britain are used from the CAMELS-GB dataset (Coxon et al., 2020a; 

2020b). These data are a combination of UK National River Flow Archive (NRFA) and meteorological time series, provided 

at a daily resolution for the period 1970 to 2015. The streamflow series were collected by agencies including the Environment 

Agency, Natural Resources Wales and the Scottish Environmental Protection Agency and then compiled and quality checked 140 

by the NRFA. The data feature a good spatial coverage of GB, and over 80 % of the locations have under 20 % missing flow 

data, converted to mm day-1. 

The daily precipitation data in CAMELS-GB are derived from the CEH-GEAR dataset (Keller et al., 2015). These data consist 

of observations from Met Office UK gauges, quality checked and converted to grid format using natural neighbour 

interpolation. Snow fraction is taken from the CAMELS-GB dataset (Coxon et al., 2020a) and given by fraction of precipitation 145 

falling as snow for days colder than 0 °C. 

The CAMELS-GB temperature data used in this study are catchment daily averaged temperature from the CHESS-met dataset 

(Robinson et al., 2017) and CAMELS-GB PET data used in this study are catchment daily averaged PET for a well-watered 

grass based on the Penman–Monteith equation (Robinson et al., 2020).  

The baseflow series are derived from the daily CAMELS-GB streamflow series using the Lyne-Hollick filter (Ladson et al., 150 

2013). The Lyne-Hollick digital filtering approach is chosen as this enables separation of hundreds of baseflow series without 

requiring additional estimation of parameters. The monthly average baseflow values for each location are calculated, then the 

average seasonal shapes for each time block (1976-1995 and 1996-2015) are formed by taking the median over the years in 

the time block. Any locations and months with fewer than ten years of data within a twenty-year time block are removed from 

the dataset. This means that catchments may be present in one time block but not the other. These seasonal shapes are 155 

standardised to have mean zero and standard deviation of one, so that the FDA method considers different seasonal shapes 

rather than absolute levels or the magnitude of annual variation of baseflow.  

BFI is taken from CAMELS-GB (Coxon et al., 2020a) and is estimated by the ratio of mean daily baseflow to daily discharge, 

where hydrograph separation has been performed using the Ladson et al. (2013) digital filter.  
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To investigate changes over time in the hydro-climatic time series, the data are split into two twenty-year time blocks: 160 

hydrological years (October-September) 1976-1995, 1996-2015. Peaks and troughs in the standardised functional baseflow 

curves are identified as days from the start of the hydrological year. 

2.3 Functional data analysis 

Functional data consists of representations of functions {𝑋ଵ, … , 𝑋} observed on a domain [𝑡ଵ, 𝑡ଶ]. In this work temporal 

domains are considered, but functional data can also be considered over other domains, such as spatial applications. The 165 

monthly data are considered to be observations from a curve on the domain [0,12) months. The functional approach allows 

discretely sampled data to be considered as observations from a process acting on a continuous domain. Unlike the previously 

cited work using FDA in hydrological contexts (Haggarty et al., 2015, Ternynck et al., 2016, Suhaila and Yusop, 2017, Larabi 

et al., 2018, Alaya et al., 2020, Ghumman et al., 2020), the seasonal shapes are standardised to remove their mean and give 

unit variance for each curve. This allows the shapes defining the baseflow seasonality to be compared rather than the absolute 170 

values. 

To identify similarities between the average annual baseflow curves at different locations and time blocks we apply the funFEM 

clustering method (Bouveyron et al., 2015b). The funFEM package runs the algorithm of the same name (Bouveyron et al., 

2015a), which aims to find a discriminative functional subspace to separate the curves into different clusters. This involves 

starting with a matrix of coefficients containing a basis representation of each curve, then assuming a latent subspace exists 175 

such that the coefficients of the curves separate into distinct clusters. The clustering approach is different to testing methods 

such as Larabi et al. (2018) or Suhaila and Yusop (2017) as there is no explicit test of difference, instead this method allows 

for characterisation of the seasonal curves over space and time blocks. 

Given original data from one curve, 𝑋 ∈ {𝑋ଵ, . . . , 𝑋} and chosen basis with basis functions {𝜓}ୀଵ
  the curve is converted to 

basis coefficients using the representation: 180 

𝑋(𝑡) = ∑ 𝛾,

ୀଵ 𝜓(𝑡)           (1) 

This is done using least squares to fit the basis coefficients 𝛾 by assuming that noisy versions of the curves are observed. These 

𝛾 coefficients are then transformed to a subspace with dimension at most 𝐾 − 1, where 𝐾 is the number of clusters. This 

projection and separation is performed by iterating over three steps detailed below: Function determination (F), Expectation 

(E) and Maximisation (M). This iteration is based upon the assumption that in the discriminant subspace, the coefficients of 185 

the curves are from a multivariate Gaussian with mean and covariance matrix dependent on the cluster membership. The basis 

coefficient vector for each curve: 

𝛤 = ൫𝛾,ଵ, . . . , 𝛾,൯′            (2) 

is related to the corresponding subspace coefficients 

𝛬 = ൫𝜆,ଵ, 𝜆,ௗ൯′             (3) 190 

via the noisy transformation 
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𝛤 = 𝑈𝛬 + 𝜖.             (4) 

Conditional on allocation to group 𝑘, 𝛬 is assumed to be normally distributed with mean 𝜇 and covariance matrix 𝛴. 

The FEM steps are required because the underlying cluster group allocation is unknown, so it is not possible to maximise the 

likelihood of the multivariate Gaussian directly. To find the most discriminative subspace both the parameters of the 195 

distribution and the transformation are iterated in the funFEM algorithm. Note the naming is derived from functional-EM 

(expectation maximisation), however the steps are set out in a different order (FME) in Bouveyron et al. (2015b), as follows: 

F: Using the posterior probabilities of group membership (for the current iteration), this step aims to find the orientation matrix 

𝑈 that gives a subspace in which the clusters are best separated. This is defined as the subspace such that the variance between 

the groups is maximised, but the variance within the cluster is minimised. 200 

M: Using the new orientation matrix 𝑈 the log-likelihood is maximised and the parameters of the multivariate Gaussian 

distribution are updated. 

E: Using the new parameters, update the posterior probabilities of group membership for each curve. 

After repeated iteration of these steps the parameters of the Gaussian distribution and the transformation to the subspace are 

estimated. This latent information provides the cluster allocation and associated probabilities. 205 

In this application to annual signals, the Fourier basis is chosen as it provides a periodic function space over the domain interval 

so the smoothed seasonal patterns can seamlessly repeat from year to year. The Fourier basis is constructed using a combination 

of sine and cosine functions defined over the year interval. Over the domain of one year, [0,12) months, seven basis functions 

are used as a balance between flexibility and complexity. Although information criteria such as the Akaike Information 

Criterion (AIC) or the Bayesian Information Criterion (BIC) could be applied to choose the number of clusters, it is noted by 210 

Bouveyron et al. (2015b) that these can be less efficient in real data scenarios than with simulated test data. Here, the number 

of clusters is set to three for the seasonal baseflow clustering. This number is chosen to allow for clear comparisons to be made 

between the shapes of baseflow seasonality (here the clusters represent early-, mid- and late patterns) and for comparison of 

these groupings spatially and across the time blocks. The parameters of the latent subspace are such that the mean and variance 

of each cluster can be different, with diagonal covariance matrices 𝛴. 215 

3 Results 

In the following sections baseflow seasonality in GB is characterised by describing the spatio-temporal distribution of the 

functional seasonal (early-, mid- and late-season) baseflow clusters, and controls on those distributions are investigated by 

comparing functional seasonal baseflow cluster membership with BFI. Controls on changes in cluster membership and 

baseflow seasonality are then explored. 220 
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3.1 Characterisation of baseflow seasonality 

Figure 2(a) shows the standardised median seasonal baseflow curves (in grey) grouped by cluster (early-, mid-, and late-

seasonality), with the cluster means overlaid (in bold colour). Figure 2(b) shows the spatial distribution of the catchments as a 

function of cluster memberships for each of the two time blocks. Figure 2(c) is a flow diagram showing how the cluster 

membership of individual catchments varies (or not) across the two time blocks, and Fig. 2(d) shows this information spatially. 225 

Table 1 gives the numbers of catchments assigned to each seasonal baseflow cluster and how they vary over time, and Table 

2 contains the mean residual variance for each baseflow cluster and the timings of the peak and trough of the annual baseflow 

curves. Equivalent plots to Fig. 2 and Table 1 for precipitation, temperature and effective rainfall are given in the 

Supplementary Information (Figs. S1 to S3 and Tables S1 to S3). 

The three functional seasonal baseflow clusters have broadly similar annual shapes, as shown in Fig. 2(a). All are slightly 230 

asymmetrical with relatively sharper peaks in baseflow during late winter and broader, less well-defined troughs in summer. 

However, the timing of the peaks (and troughs) in seasonal baseflow varies between the three clusters. Baseflow cluster 1 

peaks (troughs) earliest in December (July), with cluster 2 peaking (troughing) around a month later, and cluster 3 peaking 

later still in February to March. In addition, there is a difference in the within cluster variation in baseflow seasonality with the 

smallest mean residual variance associated with cluster 2 and greatest associated with cluster 3 (Table 2). The functional 235 

clustering resulting in early-, mid- and late-season groups indicates that the main difference between the baseflow seasonality 

across catchments and time blocks is the timing of the peaks and troughs, rather than the seasonal shapes. 

There are no spatial inputs to the clustering algorithm used to generate the clusters, the inputs are simply the average seasonal 

shapes for each location and time block. Consequently, any spatially coherent grouping of the clusters in Fig. 2(b) is a sign of 

similar seasonal behaviour in these catchments for a given time block. The maps of cluster membership (Fig. 2(b)) show 240 

consistent spatial relationships that persist across the two time blocks. Catchments in cluster 1 (associated with the earliest 

baseflow seasonality) are predominantly distributed throughout the west of GB across both time blocks with only a few 

isolated, outlying catchments in the second time block (1996-2015) in this cluster found in south-east England. Catchments in 

cluster 2 are predominantly distributed through a band running from eastern Scotland, down through central England to south-

west England and a second, smaller spatially coherent region running from the easternmost area of England through south-245 

east England to the south-east coast of England. Finally, cluster 3 catchments with the latest baseflow seasonality are 

predominantly situated in central, eastern and southern England (largely co-incident with the outcrop of the Chalk aquifer, Fig. 

1(a)) with a small outlier of catchments distributed in the east Scottish Highlands. However, most of these latter catchments 

change to cluster 1 catchments by the second time block (Fig. 2(b)). As previously noted, cluster 3 has greatest within cluster 

variation in baseflow series (Fig. 2(a) and Table 2), which may result from the geographical diversity of regions in GB that 250 

contribute to this cluster (Fig. 2(b)) compared with clusters 1 and 2. 

The majority of catchments have unchanged cluster membership between the two time blocks (Fig. 2(d)). Even though over 

time some catchments change cluster allocations, as shown by Table 1 and in the maps in Fig. 2(b) and 2(d), the overall spatial 
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disposition of the seasonal baseflow clusters remains broadly similar between the two time blocks. The most noticeable 

changes over time are the increase in membership of cluster 1 (the cluster with the earliest peak in seasonal baseflow) from 255 

233 catchments in 1976-95 to 328 catchments in 1996-2015, and the decrease in membership of cluster 3 (the cluster with the 

latest peak in seasonal baseflow) from 133 catchments to 88 catchments over the same time (Table 1). The increase in 

membership of cluster 1 is due to movement from clusters 2 and 3, and additionally some catchments that were not included 

in the first time block due to missing data. In addition, some catchments move from cluster 3 to cluster 2 between the time 

blocks. Of the catchments included in both time blocks, 97 catchments move to an earlier functional baseflow seasonality 260 

cluster in the last time block and 501 catchments do not change cluster. In comparison, only three move to a cluster with later 

baseflow seasonality. 

3.1.1 Controls on baseflow seasonality 

Given the strong spatial association between catchments with the latest baseflow seasonality (cluster 3, Fig. 2(b)) and the 

outcrop of the unconfined Chalk aquifer with associated high BFI (Fig. 1(a) and 1(c)), the association between the timings of 265 

baseflow seasonality and the baseflow index (BFI) of the catchments is considered here. 

Figure 3 shows histograms of BFI for the catchments plotted by time block with different colours used for the different seasonal 

baseflow clusters. There is a broad alignment between the baseflow clusters and BFI. In general, the catchments in clusters 

with earlier (later) baseflow seasonality have lower (higher) BFI. In the later time block there is a wider spread of BFI in cluster 

2, and a narrower spread of BFI in cluster 3, corresponding to the move of many of the cluster 3 catchments to cluster 2. Based 270 

on these observations, the first order control on baseflow seasonality is inferred to be catchment characteristics (that are in 

large part reflected by the BFI) rather than features of the driving climatology. This is supported by the observation that when 

the FDA methodology is applied to precipitation (six-month smoothed precipitation), temperature, and effective rainfall 

timeseries for the same set of CAMELS-GB catchments (Fig. S1, S2 and S3) there is no clear spatial correlation between the 

resulting clusters for the seasonality of the climatological variables and the equivalent baseflow seasonality clusters (Fig. 2(b)). 275 

For example, the annual patterns in precipitation (Fig. S1) appear to be moving earlier between the two time blocks, but 

spatially the eastern locations exhibit earlier peaks in baseflow. There are barely discernible differences between the three 

clusters of temperature seasonality (Fig. S2), indicating a process with shared annual distribution across this study area. For 

effective rainfall (Fig. S3), in the first time block relatively late effective rainfall seasonality dominates across much of GB 

(with the exception of the northwestern and northern GB that shows relatively early seasonality), but at the second time block 280 

both the early and late season effective rainfall cluster membership switches to the mid-seasonality cluster. Given that the 

majority of catchments across GB exhibited late seasonality in the first time block, the effect is that the majority of sites across 

GB move to earlier effective rainfall seasonality (with the exception of those in northwestern and northern GB that move to a 

slightly later seasonality). 
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3.2 Controls on changes in baseflow seasonality 285 

Although the study area is predominantly temperate in character, there are a few catchments in the north of GB, in the 

mountains of eastern Scotland, where snow accumulates during winter. Given previously documented links between the effects 

of warming on snow-melt influenced flow regimes (Barnett et al. 2005; Barnett et al., 2008; Leppi et al., 2012; Kormos et al., 

2016; Tan et al., 2020), changes in baseflow seasonality in snow-influenced GB catchments are first explored. Then we explore 

the evidence for potential controls on changes in baseflow seasonality more generally across the study area. 290 

3.2.1 Changes in baseflow seasonality associated with snow-melt influences catchments 

One geographically distinct group of catchments that start in cluster 3 (late season baseflow) in the earlier time block (Fig. 

4(a)) are 24 catchments in Scotland. The BFI of these catchments is shown in Fig. 4(b). These catchments have BFI values 

typically in the range 0.4 to 0.7, rather than the higher BFI associated with the majority of the groundwater-dominated 

catchments in cluster 3 located in the south east of England primarily on the Chalk (BFI typically >0.9). These Scottish 295 

catchments are mostly in locations with relatively high elevation (mean elevation greater than the 80th percentile of GB 

catchments, 315 m, for all but 4 of these catchments) and have a correspondingly high fraction of precipitation falling as snow 

(greater than or equal to the 80th percentile for GB catchments).  

Of the 24 Scottish catchments, 20 move to cluster 1 (the earliest seasonal baseflow), 3 move to cluster 2 and 1 stays in cluster 

3 in the later time block and it is inferred that the catchments that move from cluster 3 to earlier clusters are associated with 300 

earlier snow-melt associated with long-term warming in these high catchments. Figure 5 shows that warming January 

temperatures for the selected catchments over the two time blocks are consistent with the snow melting at an earlier time in 

the year: Fig. 5(a) shows an increase in median January temperature and Fig. 5(b) shows an increase in the proportion of days 

with temperature over 0 ℃ between the two time blocks. The only catchment to stay in cluster 3 (with the latest timed peak) 

in the later time block is the catchment with lowest temperature, highest elevation and highest proportion (17 %) of 305 

precipitation as snowfall. The movement from cluster 3 to cluster 1 for many of the selected catchments indicates a large 

change in the timing of the peak in annual baseflow (median change ~87 days), consistent with higher temperatures 

contributing to earlier melting of the snow-pack. This observation is consistent with similar observations from North America 

(Barnett et al. 2005; Barnett et al., 2008; Leppi et al., 2012; Kormos et al., 2016) and with the findings of Pohle et al (2019) 

who have shown that, over the period of analysis of this study, increased air temperature due to climate warming has led to 310 

earlier snowmelt across the Scottish Highlands. 

3.2.2 Other controls on changes in baseflow seasonality 

In addition to the Scottish catchments described above, 73 catchments show a change to earlier baseflow seasonality between 

the time blocks (Fig. 2(d)) and, unlike the Scottish catchments, these catchments that move to earlier baseflow seasonality 

have a wide spatial distribution across large parts of GB. Two approaches have been used to investigate what may be 315 
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controlling this systematic change to earlier baseflow seasonality in these catchments across GB: a paired catchment approach 

and an analysis of changes in the timing of peak seasonal baseflow. 

Given the first order control of BFI and hence catchment characteristics on baseflow seasonality (Fig. 3), we first used three 

sets of paired catchments with different cluster allocations and contrasting changes (or not) in cluster allocation to investigate 

if there is evidence for catchment controls on the move to earlier baseflow seasonality (see Table S4 and Fig. S4 for details of 320 

the paired catchments and results). From the paired catchment study, there was no evidence of systematic control of catchment 

characteristics on cluster allocations and changes in cluster membership. Instead, we found that all catchments exhibit an 

earlier seasonality at the second time block regardless of whether a site changes cluster membership with time when details of 

the monthly baseflow curves are considered. Thus increased temporal granularity (beyond early-, mid-, and late-season 

functional clusters) in the seasonal analysis may be useful in exploring controls on changes in baseflow seasonality.  325 

As the paired catchment analysis has indicated that changes in baseflow seasonality without a corresponding change in cluster 

allocation may be affected by factors other than catchment characteristics and to provide increased temporal granularity to the 

analysis, the timing of the peaks in the baseflow curves are identified for each location and time block and compared with 

comparable plots for precipitation, temperature, and effective rainfall to investigate if changes in the seasonality of climate 

variables may be influencing changes in baseflow seasonality. This is shown in Fig. 6 where the direction of change in the 330 

seasonal peak timing and magnitude for each of the variables is mapped across GB. 

The majority of the symbols have a red outline in Fig. 6(d) indicating that most catchments across GB are exhibiting an earlier 

peak in baseflow in the second time block compared to the first by up to a month. Conversely, there are a few catchments, 

indicated by light blue triangles mostly situated in western, northwestern and northern GB, along with a few catchments near 

London that exhibit later baseflow peaks (by up to a month) in the second time block compared with the first. Most of these 335 

catchments with later peaks in baseflow in the second time block are in an area predominately allocated to cluster 1 in both 

time blocks. This could indicate that there is a limit to how early the peaks of the baseflow curves can be; as curves that are 

already early do not see a shift to an earlier peak in annual baseflow. Note that the Scottish catchments that have been inferred 

to be affected by snow-melt processes (section 3.2.1) show peak seasonal baseflow is more than one month earlier in the 

second time block compared with the first time block (Fig. 6(d)).   340 

The predominant change in precipitation is to earlier peaks (Fig. 6(a)), except for locations in western Scotland where there is 

evidence for some later peaks in precipitation seasonality. This tendency to earlier peaks in precipitation is strongest (indicated 

by dark red filled triangles) in the east of GB. There is very little change shown in the timing of peaks in temperature seasonality 

(Fig. 6(b)), either the peaks are slightly later or there is no change. The map of change in effective rainfall (Fig. 6(c)) shows 

regions of later seasonal peaks in the western, northwestern and northern GB and in the far southeast of GB, with a band of 345 

earlier peaks in lowland southern, central and eastern England and up to the east of Scotland. There is a strong similarity in 

the overall patterns of changes in peak timings of the effective rainfall and baseflow seasonal curves in Fig. 6(c) and 6(d) (with 

the exception of a greater tendency for a change to later effective rainfall in the far southeast of England compared with 

generally earlier baseflow seasonality). Lin’s concordance coefficient for the respective changes in peak timing of the baseflow 

https://doi.org/10.5194/hess-2023-202
Preprint. Discussion started: 29 August 2023
c© Author(s) 2023. CC BY 4.0 License.



12 
 

compared with the effective rainfall is 0.40, whereas comparing the changes in peak timing of baseflow to precipitation and 350 

temperature yield coefficients of 0.00 and -0.01. In summary, unlike Tan et al. (2020), we have found no evidence for an 

association between changes in the seasonality of baseflow with changes in either the seasonality of precipitation or 

temperature. However, from Fig. 6(c) and 6(d), and given the Lin’s concordance coefficients, there is some evidence that 

changes in the seasonality of effective rainfall may be associated with changes in baseflow seasonality across the study area.  

4 Discussion 355 

4.1 Controls on and changes in baseflow seasonality 

The findings of this study are consistent with the results of previous analyses of the controls on BFI.  Those studies have shown 

that catchment characteristics such as the fraction of highly productive aquifer, non-aquifers, clay soils, and crop cover within 

a catchment as well as other factors such as catchment topography are significant controls on BFI (Bloomfield et al., 2009; 

2011; Price 2011; Bloomfield et al., 2021). Here, the seasonality of baseflow, i.e. whether catchments exhibit early-, mid- or 360 

late-seasonality, has been shown to be closely linked to BFI and hence to catchment characteristics. Consequently, because 

catchment characteristics vary spatially across the study area, see for example Figure 2 in Coxon et al (2020b), the spatial 

distribution of baseflow seasonality follows regional variations in catchment characteristics and BFI (Fig. 1(c)). 

The findings of the present study also provide new insights into potential controls on changes in seasonal baseflow. The results 

of this study are consistent with and support the findings of previous studies that have described earlier snow-melt in snow-365 

influenced catchments associated with warming (Barnett et al. 2005; Barnett et al., 2008; Leppi et al., 2012; Kormos et al., 

2016; Pohle et al., 2019). However, importantly they provide the first evidence for systematic changes in baseflow seasonality 

in catchments in temperate settings and give an indication of at least one possible mechanism for those changes. The global-

scale analysis of controls on changes in baseflow seasonality of Tan et al. (2020) found that changes in precipitation, terrestrial 

water storage (TWS), the normalized difference vegetation index (NDVI) and temperature contributed to the majority of 370 

changes in annual and seasonal baseflow. Here we have shown that neither change in the seasonality of precipitation nor 

temperature on their own appear to provide plausible explanations for change in baseflow seasonality. However, we have 

demonstrated some concordance or association between change in effective rainfall and baseflow seasonality. Given the 

absence of association between change in precipitation and baseflow seasonality, it is inferred that the change in effective 

rainfall seasonality is due to changes in the seasonality of PET, the latter presumably driven at least in part by long-term 375 

warming across the UK (Kay et al., 2013; Watts et al., 2015). This association is consistent with the vegetation phenology-

mediated changes in PET proposed by Chen et al. (2022) under climate warming.  An analysis of phenological change over 

the current study area linked to the characterisation of seasonal hydrological change would provide evidence to strengthen the 

case for a causal relationship between phenology and hydrological seasonality change in temperate regions, as would repeating 

the analysis over a wider study area to one that included both water- and energy-limited evaporation from groundwater storage 380 

(Condon and Maxwell, 2017; Condon et al., 2020). 
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4.2 Application of the FDA methodology 

This application of functional data analysis to seasonal data has shown differences over time in annual baseflow that may not 

have been identified using other seasonal approaches such as trend identification following seasonal averaging. The clustering 

part of the methodology allows for discrete categorisation of the time series and catchments with large changes in seasonal 385 

baseflow can be identified as those changing cluster. However, the discrete nature of the clustering analysis can mask smaller 

temporal changes that are present in the functional representation of the annual series.  

The functional data analysis methodology is well-suited to annual patterns as the fitted curves can be defined as cyclic so that 

the end of the year continues seamlessly to the start of the next.  Here the data are averaged over months before applying the 

functional method, however the daily data could also be used, as in Ternynck et al. (2016). The monthly averaging provides 390 

smoother starting curves for analysis. The months were also considered to be equally spaced through the year, which is an 

approximation. However, whilst the ability to compare the seasonal distributions of the data is a key factor of this work, 

standardising the curves also limits the information available to the distribution over the year and not the absolute values. This 

is related to the application of the FDA method to standardised shapes in this work and is not a feature of FDA approaches in 

general. Means and different variances can be included in FDA but would have distracted from the seasonal patterns in this 395 

work. 

It is also noted that for this application, the cluster means are of similar shapes but different timing so the clusters are described 

as earlier and later versions of the annual pattern, but this will not always be the case for the resulting clusters. In other 

applications where the curves (seasonality or other series) are of different shapes the categorisation of clusters would focus on 

shape rather than timing. 400 

4.3 Implications for future work – the need for better linked datasets 

One of the key challenges we found when conducting this study was identifying clear links between changes in baseflow 

seasonality and climatic/geophysical/water management catchment attributes. Catchment attributes included in large sample 

datasets such as the CAMELS-GB dataset (Coxon et al., 2020a) typically represent a snapshot (i.e. specific year) or an average 

over time, rather than changes or trends. This hinders their application in large-sample studies when identifying controls on 405 

changes in time. For example, in an analysis of the effects of water resource management practices on BFI across GB, 

Bloomfield et al. (2021) demonstrated that both groundwater and surface water abstraction and effluent discharges to rivers 

have potentially had minor but systematic influences on BFI. They also noted that there have been a range of water resources 

management schemes and measures including conjunctive-use, low flow alleviation schemes, and hands-off flow measures all 

of which may modify BFI and potentially the seasonality of baseflow. However, systematic information on such schemes and 410 

how they have varied over time is unavailable in CAMELS-GB (Coxon et al., 2020a) and so their influence on the seasonality 

of baseflow cannot be investigated by the current study. 
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Other changes to catchments over the analysis period that increased the responsiveness of catchments to precipitation, in central 

and central southern GB, such as changes in land cover (including, for example, increased urban coverage) or stream 

conveyance, may also have contributed to the switch to earlier seasonal peaking of baseflows and should also be the focus for 415 

future research.    

More generally, however, to investigate changes in seasonality and how these cascade through the terrestrial water cycle in 

different catchment settings there is a need for better linked environmental data sets, including both hydrological and 

phenological data, and continued production of and investment in future large sample data sets such as the CAMELS family 

of data sets (Addor et al., 2017; Coxon et al., 2020a; Chagas et al., 2020), the related LamaH-CE large sample dataset for 420 

Central Europe (Klingler et al., 2021), and the Caravan meta-data set (Kratzert et al., 2023). 

5 Conclusions 

The FDA approach to clustering patterns in environmental data has been presented and applied to the seasonal distribution of 

baseflow in GB catchments. By splitting time series from the CAMELS-GB dataset into two twenty-year blocks, changes to 

earlier seasonal patterns have been seen in most of the baseflow series. In this work, the seasonal distribution rather than 425 

absolute values were considered, allowing for identification of shifts of pattern that may be missed by taking seasonal averages. 

The results from FDA have identified patterns and areas of similarity within the data. The changes to clusters are not formally 

tested hypotheses but are indicators of change that could be explored further. 

The first order control on the membership of functional clusters of similar seasonal baseflow curves is inferred to be catchment 

characteristics due to their close association with BFI. However, changes in climate, and specifically warming, is the first order 430 

effect on changes in baseflow seasonality. For snow-influenced catchments in GB, there has been a shift towards earlier 

baseflow seasonality inferred to be due to earlier snow-melt associated with global warming. For other catchments, there is a 

geographical association between a shift to earlier seasonal effective rainfall and earlier seasonal baseflow. Here, again, it is 

proposed that warming has driven these changes, in this case possibly through a mechanism suggested by Chen et al (2022) 

namely by a change in vegetation phenology leading to changes in the timing of PET over the study area. 435 

Our approach to identifying patterns of seasonal distribution of hydrological variables is not specific to the GB catchment data 

in CAMELS-GB. This method could also be applied to other hydrological or climate time series to identify similarities and 

changes over space and time. A natural extension to this work would be application to further CAMELS (Addor et al., 2017) 

and related datasets in other countries and regions. It has been shown that the FDA approach described here is a potentially 

powerful data-driven analytical tool to identify and quantify hydrological changes as a precursor to designing subsequent 440 

research and models to address specific process-based questions, such as elements of the causal cascade of process from 

changing phenology, through changing evapotranspiration and associated effective rainfall to changes in recharge, flow and 

discharge within catchments. An improvement in data availability, particularly for time-varying anthropogenic factors would 

aid further study. 
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 615 

Figure 1: (a) Map of the study area with Chalk aquifer designation, country boundaries and paired catchments (described in Section 
3.2.2). (b) Mean daily precipitation at CAMELS-GB catchments. (c) BFI at CAMELS-GB catchments. 
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Figure 2: (a) Median annual baseflow for each location and time block plotted by cluster (grey lines), with the cluster means overlaid 
(in cluster colour and bold). (b) Cluster membership of each location within each time block. (c) Flow diagram of each location 620 
showing cluster membership over the time blocks. Each location is a thin line within the plot. (d) Map showing the cluster 
membership of each location in time block B (shown by colour), with triangular symbols denoting those locations in an earlier or 
later cluster compared with time block A. 
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Cluster Block A Block B 

1 233 328 

2 237 252 

3 133 88 
Table 1: Number of locations assigned to each baseflow cluster within each time block. 

Cluster Mean residual variance Peak timing Trough timing 

1 0.083 85 283 

2 0.050 116 319 

3 0.182 152 338 
Table 2: Mean residual variance per baseflow cluster (variance is calculated per time series and averaged over each cluster), 625 
approximate timing of cluster peak and trough (presented as days through the hydrological year) 

 

Figure 3: Histogram of baseflow index (BFI) for the cluster allocations in each time block (sub-plots). Histogram bars for different 
clusters are overlaid (not stacked). 
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 630 

Figure 4: (a) Map denoting the selected Scottish catchments that start in cluster 3 in time block A (marked as Cluster 3S). (b) Boxplot 
of baseflow index (BFI) of the selected catchments, split according to their cluster allocation in time block B. 
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Figure 5: (a) Median January daily temperature for selected Scottish locations, calculated for each time block. (b) Proportion of 
January days with daily temperature greater than 0 °C. 635 

 

Figure 6: Changes in peak timing between the two time blocks (a) six-month smoothed precipitation, (b) temperature, (c) effective 
rainfall (PPT – PET), (d) baseflow. Red outlined up arrows indicate locations with earlier peaks, white circles indicate no change, 
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and blue outlined down arrows indicate later seasonal peaks. The shapes are filled with colour according to the magnitude of change 
(in months).  640 
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