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Abstract. Many rivers in the East Asian Monsoon region originates from the Qinghai-Tibet Plateau (QTP), which provide 

huge amount of fresh water resources for downstream counties. As a region characterized by high altitude and cold weather, 25 

distributed hydrological modelling provide valuable knowledge about water cycle and cryosphere of the QTP. However, the 

lack of streamflow data restricts the application of hydrological models in this data-sparse region. Previous studies have 

demonstrated the possibility of using remote sensing evapotranspiration (RS-ET) data to improve modelling. However, in the 

QTP, the mechanisms driving such improvements haven’t been understood thoroughly. In this study, such driving mechanisms 

were explored through the rainfall-runoff modelling of the Soil and Water Assessment Tool (SWAT) in the Yalong River 30 

Basin of the QTP. Three experiments of model calibrations were conducted using streamflow data at the basin outlet, basins 

averaged RS-ET data of the Global Land Evaporation Amsterdam Model (GLEAM), and the combination of the both data, 

under the framework of the Generalized Likelihood Uncertainty Analysis (GLUE). The results show that compared with 

calibration using streamflow data solely, the Nash-Sutcliffe Efficiency of simulated streamflow at 50% quantiles for the 

calibration using both of streamflow and RS-ET data increased from 0.71 to 0.81 in the calibration period, while in the 35 

validation period improved from 0.75 to 0.84, and more observations are embraced by the uncertainty bands. Similar 

improvements are also found for the ET estimates. Comparison of parameter posterior distributions among the three 

experiments demonstrated that calibration using both types of observations could increase the number of parameters that 

posterior distributions are different from assumed uniform prior distribution, indicating the degree of equifinality was reduced. 

A more comprehensive parameter sensitivity analysis by the Sobol' method were also conducted for reasoning the differences 40 

among the three calibrations. Although the number of the detected sensitive parameters are almost same, the sensitive 

parameter detected based on both types of observations covers surface runoff generation, snow-melting, soil water movement 

and evaporation processes, while using single type of observations, the identified sensitive parameters are only the ones related 

the hydrological processed quantified by the observations. From the aspects of model performance and parameter sensitivity, 

it is demonstrated that not only the model output performs better, but also the characteristics of water cycle are captured more 45 

effectively, highlighting the necessity of incorporating RS-ET data for hydrological model calibration in the QTP. Moreover, 

adopting observations or information about soil property or snow-melting processes to make more reasonable estimates of 

parameter distribution could further reduce simulation uncertainty under the calibration strategies proposed in this study. 

1 Introduction 

The Qinghai-Tibetan Plateau (QTP), known as "Asia's water tower," is a critical source of freshwater for many rivers, such as 50 

the Yangtze River, Yellow River and Mekong River, which provide water resources for hundreds of millions of people residing 

in the river basins (Li et al.,2014; Wang et al., 2018). In recent years, global climate change and intensified human activities 

have significant impacts on the water resources in the region (Yao et al., 2019), which highlight the importance of examining 

the changes in spatiotemporal dynamics of water cycles at basin scale (Huang et al., 2020; Li et al., 2014). Hydrological models 

are useful tools for simulating rainfall-runoff processes and then provide valuable knowledges for sustainable water resources 55 
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managements (Huang et al., 2022). However, due to the lack of streamflow data for parameter calibration, the application of 

hydrological models in QTP are limited. 

Traditionally, hydrological models are calibrated and validated against the measured streamflow data at the basin outlet 

(Becker et al., 2019; Dembélé et al., 2020a; Zhang et al., 2023). However, many studies show that the information contained 

in the streamflow data cannot completely capture the characteristics of internal hydrological processes of a specific basin 60 

(McDonnell et al., 2007). The evapotranspiration (ET) is such a process, which describes the phenomenon of water returning 

to the atmosphere from land surface, and can affect the processes of soil moisture, and runoff generation (Rajib et al., 2018; 

Shah et al., 2021; Zhang et al., 2020). Previous studies demonstrated that calibrating hydrological models only by measured 

streamflow may not gain reasonable estimates of model parameters and be a major cause of parameter equifinality (Dembélé 

et al., 2020b; López et al., 2017) and incorporating ET observations into model calibration may help to improve model 65 

simulation (Herman et al., 2018). RS-ET data products have been adopted by many researchers for calibrating hydrological 

models (Liu et al. 2022; Meyer Oliveira et al., 2021; Willem Vervoort et al., 2014; Zhang et al., 2021), due to its wide spatial 

coverage, and relatively higher spatial resolution, compare with ground observation. Immerzeel and Droogers (2008) were 

among the early pioneers for such studies and suggested the calibration of hydrological models using MODIS RS-ET data 

could lead to a better constrain of model. In the QTP, China, Huang et al. (2020) found that it is possible to use PML-V2 RS-70 

ET data to calibrate Xinanjiang model (Zhao 1980), allowing for the estimation of daily and monthly runoff time series in 

ungauged or sparsely basins. It is evident that RS-ET data has been recognized as being effective in the calibration of 

hydrological models in ungauged basins. Gupta et al. (2006) argued that a hydrological model can be considered as being well-

calibrated if fulfilling three necessary conditions: Firstly, the input-state-output behavior of the model is consistent with the 

measurements of catchment behavior; Secondly, the model predictions are accurate and precise; Thirdly, the model structure 75 

and behavior are consistent with a current hydrologic understanding of reality. Previous studies about using RS-ET for 

hydrological model calibration have explore the first and second conditions well by model calibration and validation. However, 

the value of RS-ET data in improving the understanding of model structure and behavior has not been understood thoroughly, 

especially in the data-sparse QTP, for which the characteristics of water cycle are quite unique, due to high altitude and cold 

climate. 80 

Parameter Sensitivity analysis (SA), a method by continuously disturbing parameters in a model to evaluate the effects of 

the parameters’ change on model outputs and state variables, can be used to reveal the key parameters that influence the 

hydrological cycle (Razavi and Gupta, 2015; Razavi et al., 2021; Song et al., 2015), and gain knowledge about the hydrological 

cycle under specific model structure (Mai et al., 2022). The Sobol' method, a global sensitivity analysis method based on 

variance decomposition, can provide quantitative estimates about the sensitivity of single parameter and parameter interaction 85 

for highly nonlinear models (Khorashadi Zadeh et al., 2017; Sobol', 1993). Basijokaite et al. (2021) used Sobol' SA to examine 

parameter sensitivity of HYMOD hydrological model in 30 watersheds in California, USA. It is revealed that the identified 

difference of parameter sensitivity could reflect the difference in basin characteristics. Zhang et al. (2013) applied Sobol' SA 

for distributed hydrological model of SWAT in the Yichun Basin, China, and successfully identified that, compared with the 
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dry year, the parameter interactions contribute much more to parameter sensitivity under wet year. Previous studies 90 

demonstrated that there are varying factors that affect hydrological simulations within a watershed, and understanding these 

variations using Sobol' method can help to quantify the contribution of each parameter and parameter interaction to model 

output and subsequently lead to a deeper insight about driving mechanism of water cycle at the basin scale. 

Based on these knowledges, the objective of this study is to fully explore the value of incorporating RS-ET data into 

hydrological model calibration in the QTP region through SWAT modeling in the Yalong River Basin. The SWAT was 95 

calibrated by GLUE based on streamflow data, RS-ET data, and both of streamflow and RS-ET data, respectively, and then 

the difference in simulation accuracy, uncertainty and posterior parameter distribution among the above-mentioned three 

experiments of model calibration were examined. Thereafter, mechanisms leading to the differences were inspected using the 

Sobol' method by quantitively analyzing the sensitivity of single parameter and parameter interaction. The findings of this 

study are expected to achieve a more comprehensive understanding about feasibility of using RS-ET data for hydrological 100 

model calibration and provide guidance for further reducing simulation uncertainty in the data-sparse QTP. 

2 Materials and Methods 

2.1 Study area 

The Yalong River, which originates from the Bayan Har Mountain in QTP, is the largest tributary of the Jinsha River, which 

is the headwater river of the Yangtze River. In this study, the hydrological simulation was conducted in the upstream region 105 

of the Ganzi Hydrological Station (Fig. 1). The study area is located in the southeastern of the QTP, spans from the northwest 

to southeast and the altitude of the basin is 3,400 m - 6,021 m, with the total length of the mainstream is around 690 km and 

the whole basin area is 32,535 km2. Affected by the plateau monsoon climate, the study area has distinct plateau characteristics 

such as long winters and short summers, significant diurnal temperature variation, high solar radiation, and a pronounced dry 

and wet season, additionally, which are typical of plateau environments. The basin receives an average annual precipitation of 110 

approximately 530 mm, mostly occurring between June and September. Due to the high altitude, the study area experiences 

an extended snowfall period of over 9 months. The average annual temperature varies from -4.9℃ to 7.8℃. Runoff primarily 

originates from precipitation, with additional contributions from groundwater and snowmelt (Huang et al., 2020; Kang et al., 

2001). The dominant soil types are Plateau Meadow, and the major land use and land cover types (LULC) are shrub meadow. 
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Figure 1. (a) Topography, (b) Subbasin, (c) Landcover and (d) Soil type of the upstream region of the Ganzi hydrological station in the 

Yalong River. 

2.2 Rainfall-runoff modelling and data source 

2.2.1 SWAT model 

SWAT is a widely used physically based hydrological model developed by the United States Department of Agriculture – 120 

Agricultural Research Service (USDA-ARS). It simulates hydrological process, transportation and transformation of pollutants 
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at the basin scale. Based on the river network derived from digital elevation model, the study area being modeled are partitioned 

into many subbasins to account for the spatial heterogeneity of hydrological processes within a basin. The runoff generation 

processes are modeled for each subbasin separately and the river flow movement are modelled based on river network from 

upstream to the downstream directions. Full details of SWAT model are referred to Arnold et al. (1998). The SWAT model 125 

simulates ET by considering the combined effects of river, soil, and vegetation surface evaporation, as well as plant 

transpiration. The SWAT model employs the Penman-Monteith method, Priestley-Taylor or Hargreaves method, to indirectly 

estimate actual ET. In this study, the Penman-Monteith method was utilized for calculating ET. 

2.2.2 Data sources and model setting 

There are several kinds of datasets required to build the SWAT model (Table 1), including GIS data of DEM, landuse and 130 

landcover, soil type within the basin, and meteorological input data of precipitation and air temperature. Spatial and temporal 

variations of precipitation and air temperature are high in this region, which cannot be fully captured by sparse ground gauging 

system. Therefore, two grid data products based on satellite observations are adopted as input forcing data. The Multi-Source 

Weighted Ensemble Precipitation (MSWEP) V2.8, which is a global precipitation dataset generated by merging gauge, satellite 

and model simulation data, with long time scale (1979 - near present) and high temporal (3h, day, month) and spatial (0.1°) 135 

resolution (Beck et al., 2019). The gridded temperature dataset, obtained from Multi-Source Weather (MSWX), was 

downscaled using high-resolution climatology data based on ERA5. The daily maximum and minimum temperature values 

from MSWX were used in this study. For the model calibration based on ET data, the GLEAM 3.5a grid dataset was utilized. 

It provides estimates of land surface evaporation, were developed and provided by researchers Miralles et al. (2011). The 

datasets have a spatial resolution of 0.25° and cover a long-time scale from 1980 to near present, with daily, monthly, and 140 

yearly time scales available. In this study, the GLEAM 3.5a monthly dataset of actual ET was used for model calibration. 

Meanwhile, measured streamflow data of Ganzi station were also used to calibrate and validate the model. 

For SWAT modelling, the calibration and validation period were set as years 2001-2005 and 2006-2010, respectively. The 

studied basin was discretized into 29 subbasins (Fig. 1b) based on river network and the model was run at monthly scale. For 

each subbasin, the area averaged daily precipitation, daily maximum temperature, and monthly ET was computed form the 145 

grid datasets. Based on literature review (Neitsch, et al., 2011; Sun, et al., 2017), 28 parameters related streamflow and ET of 

SWAT modelling were selected for calibration and sensitivity analysis (Table 2). 

 

 

 150 

 

 

 

https://doi.org/10.5194/hess-2023-200
Preprint. Discussion started: 24 August 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

Table 1. Overview of the Modelling Data Sets 

Type of Data Data Product 
Spatial 

Resolution 

Temporal 

resolution 
Source 

DEM Shuttle Radar Topography Mission 90×90 m - http://srtm.usgs.gov 

Land Use and Land 

Cover 

Institute of Geographic Sciences 

and Natural Resources Research, 

Chinese Academy of Sciences 

1×1 km - http://www.igsnrr.cas.cn/ 

Soil Nanjing Institute of Soil Science, 

Chinese Academy of Sciences 
1×1 km - http://www.issas.cas.cn/ 

Precipitation MSWEP  0.1° Daily http://www.gloh2o.org/mswep 

Temperature MSWX 0.1° Daily http://www.gloh2o.org/mswx 

RS-ET GLEAM 3.5a 0.25° Monthly https://www.gleam.eu 

Streamflow Hydrological Year Book - Monthly Ministry of Water Resources, China 

 155 

Table 2. Parameters of SWAT being calibrated in this study 

Hydrological 

Processes 

No. Parameter Name Parameter Description Unit Min 

Valu

e 

Max 

value 

Runoff generation 

1 CN2 Runoff curve number multiplicative factor - 35 98 

2 HRU_SLP Average slope steepness  m m-1 0 1 

3 LAT_TTIME Lateral flow travel time days 0 180 

4 SLSUBBSN Average slope length m 10 150 

5 OV_N Manning’s ‘n’ value for the overland flow - 0.91 30 

6 SURLAG Surface runoff lag time days 0.05 24 

Groundwater 

7 GW_DELAY Groundwater delay time days 0 500 

8 ALPHA_BF Baseflow alpha factor  days 0 1 

9 GWQMN 
Threshold depth of water in the shallow aquifer 

required for return flow to occur  
mm 0 5000 

10 GW_REVAP Groundwater ‘revap’ coefficient - 0.02 0.2 

11 REVAPMN 
Threshold depth of water in the shallow aquifer 

for "revap" to occur  
mm 0 500 

12 RCHRG_DP Deep aquifer percolation fraction - 0 1 

Soil Water 

Movement 

13 SOL_BD Moist bulk density mg m-3 0 1 

14 SOL_AWC Available water capacity of the soil layer - 0 2000 

15 SOL_K Saturated hydraulic conductivity mm h-1  0 0.25 

Main Channel 

Processes 

16 CH_N2 Manning’s ‘n’ value for the main channel  0.01 0.3 

17 CH_K2 Effective hydraulic conductivity in main channel 

alluvium 
mm h-1 0.01 500 

18 CH_COV1 Channel cover factor - 0 1 

19 ALPHA_BNK Baseflow alpha factor for bank storage  days 0.05 0.6 

ET 

20 TLAPS Temperature lapse rate ℃ km-1 -10 10 

21 CANMX Maximum canopy storage mm 0 100 

22 ESCO Soil evaporation compensation factor - 0 1 

23 EPCO Plant uptake compensation factor - 0 1 

Snow Melting 

24 SFTMP Snowfall temperature ℃ -20 20 

25 SMTMP Snowmelt base temperature  ℃ 0 20 

26 SMFMX Maximum melt rate for snow during year  mm ℃-1day-1 0 20 

27 SMFMN Minimum melt rate for snow during year mm ℃-1day-1 0 20 

28 TIMP Snowpack temperature lag factor - 0 1 
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2.3 Design of experiments 

In order to demonstrate the differences of model performance and parameter sensitivity constrained between calibration based 

on ground observed streamflow data and RS-ET data. Three experiments were conducted: In Experiment I, the model was 160 

calibrated using observed streamflow data only. In Experiment II, the model was calibrated using RS-ET data only. In 

Experiment III, the model was calibrated and validated using both streamflow and RS-ET data. For above mentioned three 

calibration experiments, the model performance of streamflow and ET for the calibration and validation were all evaluated. 

Meanwhile, the uncertainty bands of streamflow or ET simulation of each experiment were also computed to quantify 

simulation uncertainty. Subsequently, sensitivity analysis was carried out based on the calibration data used in the three 165 

experiments, respectively, for the purpose to examining the mechanism driving the differences of model behaviors among the 

SWAT modeling. The details of model calibration, uncertainty analysis and sensitivity methods are given in the coming 

section. The setting of these methods is kept same to ensuring that the differences in modelling accuracy, simulation uncertainty 

and identified parameter sensitivity only comes from the differences in the calibration data. 

2.4 Model calibration, uncertainty evaluation and sensitivity analysis method 170 

2.4.1 Model calibration and uncertainty evaluation method 

The essential assumption of GLUE is that there is no single set of best parameter values and the parameter sets for which the 

value of likelihood measure quantifying model performance is all higher than certain threshold should be treated as behavioral 

parameter sets and be included in the ensemble simulation (Beven and Binley, 1992). In this study GLUE was applied for 

automatic calibration and simulation uncertainty analysis and was conducted as follows: 175 

Firstly, for the 28 parameters being calibrated, based on the prior range in Table 2 and assumption of uniform distribution, 

10000 sets of model parameter were randomly generated by Latin hypercube sampling and each parameter set was used to run 

model.  

Secondly, to identify the behavioral parameter sets, a likelihood measure must be selected. For the Experiment I, the Nash-

Sutcliffe Efficiency (NSE) of simulated streamflow at Ganzi station NSEQ was used as the likelihood: 180 

𝐿𝑦(𝜃|𝑌)𝐸𝑋𝑃𝐼 = 𝑁𝑆𝐸𝑄 = 1 −
∑(𝑄obs,i-Qsim,i)

2

∑(𝑄obs,i-Qobs,avg)
2                                                         (1) 

where Ly(θ|Y)EXP I represents the likelihood of a specific parameter set θ in Experiment I, Qobs,i and Qsim,i stand for measured 

and simulated streamflow at the time step i, respectively, Qobs,avg represents the average of observed streamflow. For the 

Experiment II, the NSE of simulated basin-averaged ET NSEET was computed as the likelihood: 

𝐿𝑦(𝜃|𝑌)𝐸𝑋𝑃𝐼𝐼 = 𝑁𝑆𝐸𝐸𝑇 = 1 −
∑(𝐸𝑇obs,i-ETsim,i)

2

∑(𝐸𝑇obs,i-ETobs,avg)
2                                                   (2) 185 

where Ly(θ|Y)EXP II is likelihood of a specific parameter set θ in Experiment II simulated, ETobs,i and ETsim,i stand for measured 

and simulated ET at the ith time step, which are basin averaged value, and ETobs,avg represents the temporal average of observed 

ET. The basin-averaged observed or simulated ET was calculated as follows: 
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𝐸𝑇𝑗 =
1

𝐴𝑇
∑ 𝐴𝑖𝐸𝑇𝑖𝑗
𝑛
𝑖=1                                                                     (3) 

where ETj is the basin-averaged observed or simulated ET at the time step j, AT is the total area of the basin, Ai is the area of 190 

sub-basin i, ETij is the area averaged observed or simulated ET for subbasin i in the jth time step, and n is the number of 

subbasins. For Experiment III, the performance of simulated streamflow and ET are integrated to build the likelihood measure. 

The NSE of simulated streamflow and ET were computed in the same way as in Experiment I and II, respectively. Then the 

NESQ and NSEET are combined as the likelihood: 

𝐿𝑦(𝜃|𝑌)𝐸𝑋𝑃𝐼𝐼𝐼 = 0.5 ∗ 𝑁𝑆𝐸𝑄 + 0.5 ∗ 𝑁𝑆𝐸𝐸𝑇                                                       (4) 195 

which means in the likelihood measure, the weight of performance of simulated streamflow and ET are same. For each 

calibration, the parameter set for which the likelihood value is larger than 0.5 was treated as the behavioral parameter set. 

Lastly, after scaling the likelihood of all behavioral parameter set to 1, the cumulative distribution of simulated streamflow or 

ET were computed as: 

𝑃𝑡(𝑌𝑡 < 𝑦) = ∑ 𝐿𝑃
𝑚
𝑖=1 [𝜃𝑖|𝑌𝑡,𝑖 < 𝑦]                                                              (5)  200 

where Pt(Yt<y) is the cumulative probability of simulated streamflow or ET at the time step t less than an arbitrary value of y, 

Lp is the scaled likelihood of set θi, m denote the total number of parameter sets satisfying the condition Yt, i  < z.  

To quantify the model performance, for each calibration experiment, the NSE of simulated streamflow or ET corresponding 

to at the 50 quantiles of all-time step (NSE50%) are computed. To quantify the simulation uncertainty, simulated streamflow or 

ET corresponding to 5% and 95% quantiles of each time step were treated as the lower limit and upper limit of the uncertainty 205 

band of streamflow or ET, respectively. Then two indexes were calculated. The P_factor describes the percentage of 

observation embraced by the uncertainty band: 

𝑃__𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑛𝑞

𝑛
∗ 100%                                                                                           (6)  

where nq represents the number of measured observations falling within the uncertainty interval, and n is the number of 

simulation time steps. The R_factor quantifies the average width of uncertainty band: 210 

𝑅__𝑓𝑎𝑐𝑡𝑜𝑟 =
1

𝑛
∑ 𝑉𝑠,𝑢𝑝𝑝𝑒𝑟

𝑖 −𝑉𝑠,𝑙𝑜𝑤𝑒𝑟
𝑖𝑛

𝑖=1

𝜎𝑜𝑏𝑠
                                                                    (7)  

Where Vi
s,upper, Vi

s,lower is the 95% and 5% quantiles of simulated variable at the time step i, n is the number of simulation time 

steps, σobs is the standard deviation of the observed variable. The simulation uncertainty is evaluated by the two indexes 

simultaneously. The possible ranges of P_factor and R_factor are 0 to 1 and 0 to positive infinity, respectively. A high value 

of P_factor combined with a low R_factor value indicates the simulation uncertainty is low 215 

2.4.2 Sensitivity analysis 

Distributed hydrological model can capture the complex hydrological processes occurring in a basin by making mathematical 

or physical assumptions that involve multiple parameters that generalize basin characteristics. However, not all parameters are 

equally important in hydrological simulations. Identifying the most influential parameters that affect hydrological simulations 
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within a specific basin is a crucial for understanding the water cycle of the basin. This can be accomplished through sensitivity 220 

analysis of the parameters, which is expected to reveal the mechanism driving the differences in calibration using different 

data in this study. 

The Sobol' method is a global sensitivity analysis technique that utilizes variance decomposition to identify the key 

parameters and their interactions for highly nonlinear models (Sobol', 1993; Khorashadi Zadeh et al., 2017). The total variance 

of the model output can be separated into the variance caused by a single parameter and the variance caused by interaction 225 

among multiple parameters. The proportion of variance caused by a single parameter to the total variance is called the first-

order sensitivity index (S1), which indicates the influence of parameter itself on the model output. The proportion of variance 

caused by interaction between two or more parameters to the total variance is called the high-order sensitivity index, which 

indicates the influence of interaction between two or more parameters on the model output. The sum of first-order and high-

order sensitivity index is called the total-order sensitivity index (ST), which indicates the total influence of parameters on the 230 

model output. In most cases, S1 and second-order index (S2) make a large portion of parameter sensitivity. Therefore, in this 

study, we calculated the S1, S2 and ST for sensitivity analysis. In the Sobol' method, suppose that a non-linear and non-

monotonic model can be represented by function Y: 

𝑌 = 𝑓(𝑋) = 𝑓(𝑋1, … . 𝑋𝑃)                                                                                  (8) 

where Y represents the output of the model, X represents the parameters of the model, and the variance D(y) of function f(X) 235 

can be decomposed into the variance caused by a single parameter and the variance caused by the interaction between multiple 

parameters: 

D(y) = ∑ 𝐷𝑖𝑖 + ∑ 𝐷𝑖𝑗𝑖<𝑗 + ∑ 𝐷𝑖𝑗𝑘𝑖<𝑗<𝑘 +⋯+𝐷12…𝑝                                           (9) 

where Di represents the impact of the ith parameter Xi on the simulation results, Dij represents the impact of the interaction 

between the ith parameter Xi and the jth parameter Xj on the simulation results, and then calculate the impact of the interaction 240 

between a single parameter or multiple parameters on the model output according to their percentage contribution to the total 

variance D(y). 

First-order index:  

𝑆𝑖 =
𝐷𝑖

𝐷
                                                                                   (10) 

Second-order index: 245 

𝑆𝑖𝑗 =
𝐷𝑖𝑗

𝐷
                                                                                     (11) 

Total-order index: 

𝑆𝑇𝑖 = 1 −
𝐷~𝑖

𝐷
                                                                               (12) 

where Si denotes the main effect of parameter Xi to the output, Sij denotes the interaction between parameter Xi and Xj, STi 

denotes the main effect and interaction of parameter Xi with other parameters. The estimation of variance D, Di, and D~i can 250 

be obtained through the application of approximate Monte Carlo numerical integration (Sobol', 1993). 
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Sampling size is an important step in calculating sensitivity. Sobol' sequence, a popular quasi-random low-discrepancy 

sequence, can generate uniform samples of parameter space, Saltelli's scheme extends the Sobol' sequence to reduce the error 

rate of the calculation of sensitivity, the model simulates numbers M = N × (2 × D + 2), where N is the sample numbers, D is 

the number of parameters, and M is the number of modelling. Since Sobol' sensitivity analysis requires a large number of 255 

sampling, we followed prior studies (Fu et al.2012; Zhang et al.2013) and sampled 4096 points in our research, i.e. M = 4096 

× (2 × 28 + 2) = 237568 model evaluations. For each of the three experiment, the sensitivity analysis was conducted using the 

defined likelihood as the objective function to quantify the disturbance on model output. 

3 Results 

3.1 Comparison of simulation accuracy and uncertainty among three experiments 260 

Figure 2-4 show the simulated streamflow hydrograph corresponding to the Experiment I to III and the metrics of model 

performance were listed in Table 3. In Experiment I and III, for which streamflow data are used as calibration data, the temporal 

variation and magnitude of streamflow are reproduced well by the calibrated models and Experiment III outperforms 

Experiment I, judging from the NSE50%. In comparison, the Experiment II fails to capture the magnitude of temporal changes 

in streamflow and the NSE50% is much lower than the other two experiments, indicating only using RS-ET data cannot obtain 265 

reasonable estimates of parameter related to runoff generation. From the aspect of simulation uncertainty, uncertainties bands 

of Experiment I and III could contain a large portion of streamflow observations and Experiment III contains more, according 

to the values of P_factor in both of the calibration and validation period. It is also noticed that, in the view of R_factor, the 

uncertainty band corresponding to Experiment I is wider than Experiment III, implying that the simulated streamflow by 

behavioral parameter sets identified in Experiment III are more diverse. 270 

For Experiment I to III, the simulated time series of ET are demonstrated in Fig. 5-7, respectively and the values of model 

accuracy and uncertainty are described in Table 4. For Experiment I, the NSE50% for both of calibration and validation period 

are lower than 0 for ET simulation, indicating the calibration based on streamflow data solely cannot yield ET estimates with 

satisfactory performance in the studied basin, highlighting the necessity of incorporate ET information into hydrological model 

calibration. Both of Experiment II and III made reasonable reproduction of the basin-averaged ET observed from remote 275 

sensing data. The NSE50% corresponding to Experiment II, which only use RS-ET data for model calibration is slightly higher 

than Experiment III, for which model were calibrated based on both of RS-ET and streamflow data. Regarding the P_factor 

and R_factor, the difference among the Experiment II and III are not significant, which means that the simulation uncertainties 

of the two experiments are in the similar level. 
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 280 

Figure 2. Simulated streamflow for the (a) calibration and (b) validation period corresponding to Experiment I. 

 

Figure 3. Simulated streamflow for the (a) calibration and (b) validation period corresponding to Experiment II. 

 

Figure 4. Simulated streamflow for the (a) calibration and (b) validation period corresponding to Experiment III. 285 

 

Figure 5. Simulated ET for the (a) calibration and (b) validation period corresponding to Experiment I. 
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Figure 6. Simulated ET for the (a) calibration and (b) validation period corresponding to Experiment II. 

 290 

Figure 7. Simulated ET for the (a) calibration and (b) validation period corresponding to Experiment III. 

Table 3. Accuracy and uncertainty for streamflow simulation  

 Experiment I  Experiment II Experiment III 

Calibration Period Validation 

Period 

Calibration Period Validation 

Period 

Calibration 

Period 

Validation 

Period 
NSE50% 0.70 0.75 0.52 0.54 0.81 0.84 

P_factor 0.75 0.75 0.88 0.88 0.85 0.87 

R_factor 0.86 0.92 1.42 1.51 1.1 1.17 

 

Table 4. Accuracy and uncertainty for ET simulation  

 Experiment I  Experiment II Experiment III 

Calibration 

Period 

Validation 

Period 

Calibration 

Period 

Validation 

Period 

Calibration 

Period 

Validation 

Period 
NSE50% -0.22 -0.09 0.84 0.88 0.79 0.79 

P_factor 0.58 0.52 0.93 0.88 0.88 0.88 

R_factor 1.42 1.35 1.2 1.14 1.18 1.18 

 295 

3.2 Comparison of simulation accuracy and uncertainty among three experiments 

Figure 8-10 demonstrated the posterior distribution of behavioral parameter sets for the three experiments, respectively. The 

deviation of posterior distribution from the initially assumed uniform distribution can be considered as indications of how the 

observed data used for calibration constrains parameters response surface. For the three experiments, the number of identified 

behavioral parameter set is 1663, 291 and 277, respectively, implying different observations restrict model behaviors in a 300 

different manner.  
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When calibrating using streamflow data only (Experiment I, Fig. 8), posterior distribution of parameters related to lateral 

flow (ALPHA_BNK and LAT_TTIME), surface runoff generation (CN2), and snow melting (SMTMP) are found to be 

different from priori uniform distribution. In Experiment II, for which the model was calibrated solely based on RS-ET data 

(Fig. 9), parameters take on visible dissimilarity between assumed prior and identified posterior distribution are related to soil 305 

water movement and evaporation (SOL_AWC, SOL_K and ESCO), and snow melting (SFTMP and SMTMP). For the 

Experiment III using both streamflow and RS-ET data for calibration at the same time (Fig. 10), the detected parameters with 

different posterior distribution from uniform distribution includes the above-mentioned parameters and two additional 

parameters regarding to runoff generation (HRU_SLP and SLSUBBSN). 

 310 

 

Figure 8. Posterior parameter distributions of Experiment I. 
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Figure 9. Posterior parameter distributions of Experiment II 

 315 

Figure 10. Posterior parameter distributions of Experiment III. 

3.3 Parameter sensitivity detected from the Sobol' method 

Figure 11 demonstrates the results of Sobol's Sensitivity Analysis for the three experiments. The first-order index (S1) reflects 

the influences of an individual parameter on model output, and the total-order index (ST) reveals the impact of a single 

parameter plus it’s all interaction with other parameters.  The second-order index (S2) were also computed to show the 320 

interaction between two parameters on model output. Meanwhile the value of ST is larger than 0.1, or the value of S2 is larger 

than 0.01, the parameter or the interaction between two parameters are considered to be sensitive. 
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For Experiment I, which considers runoff as the output variable, there are five parameters that their variance contribution to 

the total model variance, i.e., ST, are larger than 0.1 and considered as being sensitive. More specifically, the parameter of 

ALPHA_BNK, LAT_TTIME, CN2, SMTMP and HRU_SLP, accounting for 34%, 26%, 13%, 12%, 10% of the total variance, 325 

respectively. They are related to the surface runoff generation, lateral flow, snow-melting processes. Furthermore, 

LAT_TTIME and ALPHA_BNK are found to have an interactive influence on the output, accounting for 1.6% of the total 

variance, which describes the movement of water in unsaturated zone and bank storage. When using RS-ET solely as 

calibration data (Experiment II), five parameters are also identified as sensitive: SMTMP, SOL_AWC, ESCO, SOL_K, 

HRU_SLP, accounting for 26%, 20%, 17%, 16% and 15% of the total variance, respectively. Two of the five parameters 330 

(SMTMP and HRU_SLP) are same as Experiment I and the other three (SOL_AWC, ESCO, SOL_K) are different, which 

describing the processes of soil water movement and evaporation. It is also found that two parameters related to snow-melting, 

i.e., SFTMP and SMTMP, have a non-negligible interactive influence on the output which account for 4.3% of the total 

variance. For Experiment III integrating both of streamflow and RS-ET data for calibration, six parameters are identified as 

sensitive: SMTMP, HRU_SLP, SOL_AWC, SOL_K, ESCO, CN2 and accounting for 24%, 15%, 14%, 14%, 12%, and 11% 335 

of the total variance, respectively. These six parameters were previously detected being sensitive in Experiment I or II. 

Additionally, it is found that two pairs of parameters, SFTMP and SMTMP, ESCO and TIMP have an interactive influence on 

the output which account for 3.3% and 1% of the total variance, respectively. These parameters describe snow-melting and 

soil water processes. 
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 340 

Figure 11. (a) S1 and ST and (b) S2 values for Experiment I; (c) S1 and ST and (d) S2 values for Experiment II; and (e) S1 and ST and (f) 

S2 values for Experiment III (parameter number is same as in Table 2). 
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4 Discussion 

4.1 The value of adding RS-ET data for model calibration in QTP 

In the three experiments of model calibration, all the settings of GLUE are the same, except the observation data, to ensure the 345 

differences of model simulation solely comes from the choice of calibration data. Our results show that when combing 

streamflow and RS-ET data for model calibration, the accuracy of simulated streamflow and ET are all higher and more 

observations are embraced by uncertainty band compared to calibration using streamflow data only. It is consistent with 

previous research by Herman et al. (2018) and Nijzink et al. (2018). Under the GLUE framework, the likelihood is assumed 

to be a quantitative measure of the goodness of a parameter set to capture the characteristics of the hydrological processes. 350 

However, the hydrological variables for which the observations are used to compute the likelihood may be different from the 

hydrological variables being concerned by the modeler. A strong positive correlation of the likelihood and the accuracy of the 

simulated target hydrological variables are expected for a successful model simulation. To explore the mechanisms driving the 

difference of model simulation among the three experiments, a detailed analysis about the correlation between the likelihood 

and the NSEQ or NSEET was conducted for the behavioral parameter sets detected in each experiment (Fig. 12). When using 355 

streamflow only to calibrate the SWAT model (Figure. 12a), for the parameter sets with same likelihood, their NSEET varies 

significantly, and the performance of NSEET for many parameter sets are highly unsatisfactory. Similarly, when using the RS-

ET data only (Figure. 12b), the accuracies of simulated streamflow among the behavior parameter sets may change 

considerably, although their likelihood are among the similar level. The streamflow is the ultimate output of the rainfall-runoff 

processes within a basin, therefore streamflow data contains information about hydrological processes contribute to it. ET is 360 

one such process, but not the only one.  The results of Experiment I implies that the information contained in the streamflow 

data cannot fully capture the variation in ET. Meanwhile, as an internal variable of the runoff generation system, the ET data 

cannot completely reflect the magnitude and temporal pattern of changes in streamflow, it is the most possible reason that 

could explains the phenomenon in Fig. 12 b. When combining the streamflow and RS-ET data to calibrate the model (Fig. 12c 

and 12d), compared with the Experiment I and II, the variations of NSEQ or NSEET are much lower for the parameter set with 365 

same likelihood and lower limit of NSEQ or NSEET increases as the increase of likelihood. All these facts indicate that the 

positive correlation between the likelihood and NSEQ or NSEE becomes stronger than the previous two experiments. 
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Figure 12. Likelihood of behavioural parameter sets in (a) Experiment I versus NSEET, (b) Experiment Ⅱ versus NSEQ, (c) Experiment III 

versus NSEQ, and Experiment III versus NSEET. 370 

The above discussion confirmed that incorporating RS-ET data with streamflow observations are effective to guarantee 

satisfactory model performance of ET and streamflow at the same time. Besides the model performance, the posterior 

parameter distribution may also give some insight about the value of RS-ET data in model calibration. The present study 

highlights the effectiveness of incorporating RS-ET data in the calibration of the SWAT model, which can lead to improve the 

simulation accuracy of runoff, while also ensuring the precision of ET simulation, ultimately resulting in more accurate 375 

hydrological modeling results. Even GLUE treats a parameter set as a whole to evaluate the possibility of the being an 

acceptable simulator of the system, the response of an individual parameter to the calibration data is valuable to assess the 

sensitivity of the model to that parameter. The results show that for the Experiment I, the parameters that posterior distribution 

takes on strong difference with assumed uniform prior distribution are mainly related to lateral flow and runoff generation, 

which mostly do not overlap with the ones identified by Experiment II, which mainly related to snow-melting, soil water 380 

movement and evaporation processes. 

The differences between the two experiments indicate that the streamflow and RS-ET data differ in constrain feasible 

parameter space. What is worth-noticing is the results of Experiment III, the identified parameters include all the parameters 

being detected in Experiment I and II, and two additional parameters related to surface runoff generation. A common 

phenomenon of hydrological modeling is that various parameter sets yield similar model outcome, i.e., equifinality. More 385 

parameters are identified as being sensitive indicates that incorporating RS-ET into streamflow data for model calibration are 
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effective in reducing the degree of equifinality and further confirmed the effectiveness of applying such model calibration 

strategies in the QTP. 

4.2 Implications for hydrological modelling in QTP 

Although the posterior distribution of parameters identified by GLUE partially reflects parameter sensitivity, under the GLUE 390 

framework, it is difficult to quantitatively evaluate the impact of each parameter or interaction between parameters on model 

simulation, which are important for guiding the selection of the parameter need to be calibrated and improving the 

understanding about the characteristics of the water cycle in the basin. Therefore, the Sobol' method was applied to gain a 

whole picture about parameter sensitivity and interactions. For the three experiments, the number of parameters being regarded 

as being sensitive according to ST are almost same (five, five and six), and is much lower than the original number of parameter 395 

(twenty-eight) being analyzed. This is consistent with the results of Zhang et al. (2013) that only a few parameters in the SWAT 

model have significant influences on model output. These finding are useful to reduce the number of parameters need to be 

calibrated and subsequently improve the efficiency of automatic calibration. Although the number of sensitive parameters is 

almost the same for the three experiments, most parameters are related to different hydrological processes. For Experiment III, 

the identified six parameters characterize the surface runoff generation, snow-melting, soil water movement and evaporation 400 

processes, and had been recognized sensitive in Experiment I or II. It is found that the sum of ST for the top three parameters 

in Experiment III (0.53) is lower than that of Experiment I and II (0.73 and 0.63) and consequently implied that more 

parameters influence model output. Meanwhile, the contribution of parameter interaction to the total variance are highest in 

Experiment III. By these facts, it is indicated that RS-ET data bring more information about the hydrological cycle into the 

model calibration and more modules in the model are activated, which also partly explains that more measured data are 405 

encompassed in the simulated uncertainty band, which becomes wider than calibration solely based on streamflow data. 

It is also noticing that, the S1 is lower than ST for most of sensitive parameters and there are detected pairs of parameters 

that their interactions make contributions to variance of model output, more specifically, parameters related to soil property 

and snow-melting processes. However, the Latin hypercube sampling under GLUE doesn’t explicitly consider joint 

distribution of model parameters with strong correlation during the random sampling processes. To further reducing simulation 410 

uncertainty raised from model parameter under the proposed calibration strategies, updating prior parameter distribution with 

new observation or information about the parameter is a potential approach. For parameters related to soil water movement, 

Sun et al. (2016) employed a pedotransfer function estimated three soil parameters (SOL_AWC, SOL_K, and SOL_BD) and 

effectively reduced the uncertainty of the SWAT simulation, and suggested that the reduction in uncertainty could be attributed 

to a better representation of soil moisture characteristics compared with parameter values gained from calibration. In QTP, 415 

many studies related to cryosphere may provide valuable information for updating prior distributions of SWAT model 

parameters. For example, Liu et al. (2018) applied statistical methods to estimate ranges of critical temperature for precipitation 

phase separation in the QTP region, which corresponds to the parameter SFTMP in the SWAT model. Li et al. (2021) 

conducted a comprehensive observation work of water heat transfer and effective thermal conductivity of a snowpack lasted 
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more than five months in the Ngoring Lake basin of the QTP and collected many valuable information about timing and 420 

threshold of snow-melting, which are possibility useful for put a better constraint on the SWAT parameter SMTMP, denoting 

the critical air temperature at which substantial snowmelt occurs. 

5 Conclusion 

Reducing simulation uncertainty is always an important issue of hydrological modeling. For the QTP, where the hydrological 

processes are unique due to high altitude and cold weather, the lack of in-situ observation data brings great challenges for 425 

rainfall-runoff modeling. This study attempted to make a thorough investigation how incorporating RS-ET data into calibration 

could improve hydrological modelling in QTP, through the case of Yalong River basin using SWAT model. Three calibrations 

using streamflow data, RS-ET, and a combination of streamflow and RS-ET data were carried out respectively. The results 

show that when the SWAT model was calibrated with streamflow or RS-ET solely, the performance of the simulated variable 

for which the data was applied for calibration is satisfactory, while the accuracy of simulation for the other variable is low. 430 

Compared with calibration using streamflow data solely, combing both the RS-ET and streamflow data for model calibration 

could improve the simulation accuracy for the two hydrological variables and uncertainty band of simulation could embrace 

more observations. Meanwhile, calibration using both types of observations could increase the number of parameters that 

posterior distributions are different from assumed uniform prior distribution, which indicate the degree of equifinality was 

reduced. A more comprehensive parameter sensitivity analysis by the Sobol' method revealed that no more than six parameters 435 

out of the 28 parameters are adequate to account for model output variability. However, the detected sensitive parameters, 

their rankings and significant pairwise interactions differ among the three experiments, which explains the difference of model 

performances among the three experiments. The sensitive parameter detected based on both types of observations covers 

surface runoff generation, snow-melting, soil water movement and evaporation processes, while using single type of 

observations, the identified sensitive parameters are only the ones related the hydrological processed quantified by the 440 

observations. It is indicated from these findings that by integrating RS-ET data into streamflow data for SWAT model 

calibration, not only the model output performs better, but also the characteristics of water cycle are captured by the calibrated 

model more effectively, highlighting the necessity of incorporating RS-ET data for hydrological model calibration in QTP. To 

further reduce simulation uncertainty after applying the calibration strategy proposed in this study, updating prior distribution 

of parameter related to soil property or snow-melting processes when new data or information becomes available is a promising 445 

approach. 

Code and data availability 

The DEM dataset can be downloaded from Geospatial Data Cloud: https://www.gscloud.cn/. The Land Use and Land Cover 

(LULC) dataset can be obtained from National Earth System Science Data Center, National Science & Technology 

Infrastructure of China: http://www.geodata.cn/. The soil data is available at Institute of Soil Science, Chinese Academy of 450 

Sciences: http://vdb3.soil.csdb.cn/.The gridded precipitation dataset Multi-Source Weighted Ensemble Precipitation 
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(MSWEP) V2.8, which was developed by Beck et al. (2019), and can be downloaded from: http://www.gloh2o.org/mswep/. 

The gridded temperature dataset obtained from Multi-Source Weather (MSWX) developed by Beck et al. (2022), and can be 

downloaded from: http://www.gloh2o.org/mswx/. The Global Land Evaporation Amsterdam Model (GLEAM) developed by 

researchers Miralles et al. (2011) from the Department of Hydrology and Meteorology, School of Geographic Sciences at the 455 

University of Bristol, UK, and can be downloaded from: https://www.gleam.eu/. The code for model calibration and 

streamflow data are available from the corresponding author (sunny@bnu.edu.cn) upon request. 
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