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Responses to reviewer #1 

 

Dear reviewer, 

 

Thank you very much for your constructive comments and suggestions. In the texts below, we 

will try to answer all questions addressed by the reviewer. If you feel more explanations or 

revisions are needed. Please do not hesitate to contact with us. 

 

Best regards, 

 

From the authors 

 

This is an interesting and timely study. Reducing simulation uncertainty has always 

been an important issue of hydrological modeling. Traditionally, hydrological models are 

calibrated and validated using only runoff data, which not only leads to parameter 

equivocality and failure to obtain reasonable and true parameters, but also leads to large 

uncertainties in other elements of the simulation such as evapotranspiration, soil water. 

This study attempts to explore how incorporating RS-ET data into the calibration could 

improve hydrological modelling. I think there is potential in this manuscript, but there 

are several sections that need to be more clearly explained My comments are as follows, 

 

1. There are a large variety of ET products, why choose GLEAM data and how accurate 

are GLEAM data in this basin? A set of ET model data may have large uncertainties both 

in magnitude and in spatial and temporal distribution, and direct use without calibration 

may introduce greater uncertainty. It is recommended that a water balance analysis, 

which analyzes relationships between the precipitation, runoff, and ET data used in the 

study, be added to determine the overall confidence in the data and thus improve the 

credibility of the article's results. 

 

 

Response: 

Thank you very much for this suggestion. To evaluate the accuracy of GLEAM ET data, a water 

balance at the studied basin was conducted at annual scale. For the upstream area of the Ganzi 

Gausing station, which is the outlet of hydrological modelling in this study, the runoff (Qest,1) 

was estimated from the area averaged precipitation (derived from MSWEP dataset as input for 

SWAT model; the analysis about accuracy of MSWEP data is described in the responses to the 

following comment) minus GLEAM ET and compared with observed value at the Ganzi Station 

(Qobs). Figure R1 is the scatterplot of Qobs and Qest,1. Absolute bias (ABIAS) was computed to 

evaluate the accuracy:  

ABIAS =
∑ |𝑄𝑜𝑏𝑠,𝑖−𝑃𝑠𝑖𝑚,𝑖|𝑛

𝑖=1

∑ 𝐺𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

                                                                          (1) 

where Qobs,i and Qsim,i represents observed runoff and estimated runoff from water balance 

analysis at time step i, respectively, n is the number of samples. The ABIAS for Qest,1 is 0.20. 
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Huang et al. (2020) used bias‐corrected PML‐AET data to calibrate Xinanjiang hydrological 

model. Compared with the accuracy evaluation of PML-AET in the whole Yalong River Basin 

(Huang et al., 2020), the ABIAS of GLEAM ET is much lower than the uncorrected PML-AET 

(ABIAS: 0.55). As a high-attitude region, the snow-melting process has influences on runoff in 

the simulated basin of this study. We further corrected Q est,1 by subtracting annual snow-melting 

amount (derived from Monthly Snowmelt Dataset in China during 1951-2020 (Yang et.al, 

2022)) from Q est,1 (mentioned as Q est, 2) and compared with Qobs (Figure R1). The ABIAS of  

Q est, 2 is 0.12, which is also lower that the bias‐corrected PML‐AET data (ABIAS: 0.18, Huang, 

et al., 2020). It is indicated that partly the error of Q est,1 comes from ignoring the snow-melting 

process and cannot contribute to the GLEAM ET data completely. Based on literature review, 

the GLEAM ET has been wide used worldwide for analyzing changes in regional water cycle 

(e.g., Bennour, et al., 2022, Ding and Zhu, 2022), rainfall-runoff modelling (e.g. Dembélé, et 

al., 2020, López López, et al., 2017). Also, from the results of model calibration in this study, 

incorporating GLEAM ET data into SWAT model calibration did improve the accuracy of 

runoff simulation. Based on these facts, we are confident using the current version of GLEAM 

ET data in this study. 

The above-mentioned analysis will be added to the results section of the manuscript. 

 

 

Figure R1. Observed annual runoff versus the runoff estimated from the area averaged 

precipitation (MSWEP) minus GLEAM ET (Qest,1), and versus the ones obtained from 

precipitation minus GLEAM ET and annual snow-melting (Qest,2) 

 

 

1.Similarly, is it possible to validate or document the regional applicability of climate-

driven data? 

Response: 

Precipitation data from two meteorological stations operated by China Meteorological 

Administration within the upstream region of Ganzi gauging station are available to evaluate 

the MSWEP precipitation data the we used to drive the hydrological model. The scatterplots 

for daily, monthly and annual precipitation between ground and satellite precipitation data at 
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the pixels corresponding to the two meteorological stations (2001 to 2010) are shown in Figure 

R2. The correlation coefficient for daily, monthly and annual is 0.52, 0.94 and 0.85, respectively. 

The accuracy is highest for the monthly scale, which is the temporal scale for the hydrological 

model simulation.   

The above-mentioned analysis will be added to the results section of the manuscript. 

 
 

Figure R2. Comparison between observed precipitation and MSWEP precipitation at (a) daily, 

(b)monthly and (annual) scale 

 

2.In section 2.1, what are the values for the percentage of runoff sources roughly, this 

could be crucial information. It is also recommended that the percentage of area of major 

soil types and LULC types be given. Although this may have been shown in the figure, it 

would be easier for the reader to understand if specific values were given. 

 

Response: 

Based on the analysis of MSWEP precipitation data and streamflow data for the period of 2001 

to 2010, the rainfall-runoff ratio is 0.59. The percentage of percentage of area of major soil 

types has been shown in the following table (Table R1). The major land use and land cover type 

are grass land, forest and bare land, which occupies 78.9%, 13.2% and 12.4% of the basin area, 

respectively.  

These information will be added to Section 2.1 Study area. 

 

Table R1 The percentage of area of major soil types 

Soil Type 
Grey Brown 

Soil 

Swamp 

Soil 

Grass Felt 

Soil 

Thin Grass 

Felt Soil 

Brown Grass 

Felt Soil 

Black Felt 

Soil 

Permafrost 

Soil 

Percentage 

of Area 
3.36% 2.64% 56.23% 7.69% 4.43% 15.78% 9.87% 

 

3.In Section 3.1, it is desired to make a multidimensional comparison of the analysis of 

information in figures and tables, e.g., a comparison of NSEQ and NSEET in the same 

experiment. 

 

Response: 

Thank you very much for the comment. The accuracy and uncertainty of streamflow and ET 
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simulation will be compared in the revised paper through the information provided by Table 

R2. 

    For Experiment I using streamflow data solely for calibration, the NSE50% for streamflow 

simulation in the calibration and validation period is much higher than those of ET, which is all 

lower than 0 and means that the performance of ET simulation is unsatisfactory. The P_factor 

corresponding to the streamflow estimation is higher than that for ET simulation, which means 

more observation are embraced by the uncertainty band. Meanwhile, The R_factor for 

streamflow estimation is lower than ET, indicating the width of uncertainty band is narrow. For 

modeling accuracy and simulation uncertainty, streamflow estimation all outperforms ET 

simulation. For Experiment II using RS-ET data solely for calibration, the NSE50% for ET 

simulation in the calibration and validation period is higher than those of streamflow. The 

P_factor corresponding to the ET estimation is similar with the value for streamflow simulation. 

The R_factor for streamflow estimation is higher than ET, implying uncertainty of streamflow 

estimation is higher than ET simulation. For Experiment III combing both of streamflow and 

ET data for model calibration, the NSE50% for streamflow simulation is slightly higher than that 

for ET simulation. P_factor is in the same level for the simulation of the two hydrological 

variables. The R_fator of ET is a little bit higher than that for streamflow simulation. All these 

factors demonstrated that the streamflow simulation performs better to a small degree. 

 

Table R2. Accuracy and uncertainty for streamflow and ET simulations  

 
Experiment I  Experiment II Experiment III 

Calibration Validation  Calibration  Validation  Calibration  Validation  

NSE50% 
Q 0.71 0.75 0.52 0.54 0.81 0.84 

ET -0.22 -0.09 0.84 0.88 0.79 0.79 

P_factor 
Q 0.75 0.75 0.88 0.88 0.85 0.87 

ET 0.58 0.52 0.93 0.88 0.88 0.88 

R_factor 
Q 0.86 0.92 1.42 1.51 1.1 1.17 

ET 1.42 1.35 1.2 1.14 1.18 1.18 

 

4.In Section 3.2, why is the number of behavioral parameter sets different in the three 

experiments? Is it because the number of parameters sensitive to evapotranspiration 

processes in a hydrological model like SWAT is much smaller than the number of 

parameters sensitive to runoff processes? 

Response: 

We agree with the reviewer that, a complex model like SWAT, the number of parameters related 

to evapotranspiration processes is lower than the ones connected with runoff processes, because 

as the integrated output of water cycle at basin scale, the runoff is determined by many 

hydrological processes with a basin, which also include evapotranspiration processes. For the 

three experiments, the data used for calibration is different, which is observed streamflow data, 

remote sensing evapotranspiration, and the combination of the streamflow and 

evapotranspiration data. The automatic calibration process tried to minimize the difference 

between observation data and model simulation by searching the parameter space. As the 
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calibration data are different among the three experiments, the parameter sets being gained by 

calibration are also different, which explains why is the number of behavioral parameter sets is 

different. 

 

5.The headings of sections 3.1 and 3.2 are the same. 

Response: 

The heading of section 3.2 will be changed into “Comparison of parameter posterior 

distributions among three experiments” 

 

6.There should be an error in the x-axis in set (b) of Figures 2-7. 

Response: 

The years showed in the x-axis of Figures 2-7 will be corrected. 

 

7.Figures 2-7 could be merged into one or two figures. And Tables 3-4 could be merged 

into one table. In Figure 6, “b” was mislabeled as “d”. 

Response: 

The figure 2 to 4 are merged in to one figure. Similarly, the Figure 5 to 7 are merged into one 

figure. The merged figures are shown as Figure R3 and R4. Tables 3 and 4 are merged into one 

table as Table R2. The sequence number of each figure has been corrected. 

 

Figure R3. Streamflow observation, best simulation (50% quantile of ensemble simulation) 

and uncertainty band for the calibration and validation period corresponding to Experiment I 

(a) and (b), Experiment II (c) and (d), and Experiment III (e) and (f) 
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Figure R4. Evapotranspiration observation, best simulation (50% quantile of ensemble 

simulation) and uncertainty band for the calibration and validation period corresponding to 

Experiment I (a) and (b), Experiment II (c) and (d), and Experiment III (e) and (f) 

 

8.Figure 12 is missing (d) in the title 

Response: 

This typo will be corrected in the revised manuscript.  

 

 

References: 

Bennour, A., Jia, L., Menenti, M., Zheng, C., Zeng, Y., Asenso Barnieh, B., Jiang, M.: 

Calibration and Validation of SWAT Model by Using Hydrological Remote Sensing 

Observables in the Lake Chad Basin. Remote Sensing, 14(6): 1511. 

doi:10.3390/rs14061511, 2022. 

Dembélé, M., Hrachowitz, M., Savenije, H.H.G., Mariéthoz, G., Schaefli, B.: Improving the 

Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns 

With Multiple Satellite Data Sets, Water Resources Research, 56(1), 

doi:10.1029/2019WR026085, 2020b. 

Ding, J., Zhu, Q.: The accuracy of multisource evapotranspiration products and their 

applicability in streamflow simulation over a large catchment of Southern China. 

Journal of Hydrology: Regional Studies, 41: 101092. doi: 10.1016/j.ejrh.2022.101092, 

2022. 

Huang, Q., Qin, G., Zhang, Y., Tang, Q., Liu, C., Xia, J., Chiew, F.H.S., Post, D.: Using Remote 

Sensing Data-Based Hydrological Model Calibrations for Predicting Runoff in Ungauged 



7 

 

or Poorly Gauged Catchments, Water Resources Research, 56(8), doi:10.1029/2020 

wr028205, 2020. 

López López, P., Sutanudjaja, E.H., Schellekens, J., Sterk, G., Bierkens, M.F.P.: Calibration of 

a large-scale hydrological model using satellite-based soil moisture and evapotranspiration 

products, Hydrology and Earth System Sciences, 21(6), 3125-3144, doi:10.5194/hess-21-

3125-2017, 2017. 

Yang, Y., Chen, R., Liu, G., Liu, Z., Wang, X.: Trends and variability in snowmelt in China 

under climate change, Hydrology and Earth System Sciences, 26: 305-329. doi: 

10.5194/hess-26-305-2022, 2022. 


