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Abstract. Multivariate hydrological extreme events such as successive floods, large-scale droughts, or consecutive drought-

to-flood events challenge water management and can be particularly impactful. Still, the multivariate nature of floods and

droughts is often ignored by studying them from a univariate perspective, which can lead to risk under- or overestimation.

Studying multivariate extremes is challenging because of variable dependencies and because they are even less abundant in

observational records than univariate extremes. In this review, I discuss different types of multivariate hydrological extremes5

and their dependencies including regional extremes affecting multiple locations such as spatially connected flood events, con-

secutive extremes occurring in close temporal succession such as successive droughts, extremes characterized by multiple

characteristics such as floods with jointly high peak discharge and flood volume, and transitions between different types of

extremes such as drought-to-flood transitions. I present different strategies to describe and model multivariate extremes, and

to assess their hazard potential including multivariate distributions and return periods as well as stochastic and large-ensemble10

simulation approaches. The strategies discussed enable a multivariate perspective in hydrological hazard assessments, which

allows us to derive more comprehensive risk estimates than the classical univariate perspective commonly applied.

1 Introduction

In July 2021, a severe and widespread flood event affected Western Germany and parts of Belgium and the Netherlands where

it led to numerous fatalities and considerable damage to infrastructure (Kreienkamp et al., 2021; Ibebuchi, 2022). After such15

exceptional flood events, we ask: ’how frequently do such events occur?’ To answer this question, one can rely on frequency

analyses which establish a link between the magnitude and frequency of events. Such analyses are often performed by taking

a univariate perspective, i.e. by considering one variable only. In the case of the Germany flood, this would e.g. be flood peaks

in one individual catchment. Such a univariate frequency analysis first defines a sample of extreme events using either a block

maxima/minima or a peak-over-threshold/threshold-level approach (Meylan et al., 2012). Second, it fits a suitable theoretical20

distribution to the sample of extreme events. In the case of block maxima, one usually works with a Generalized Extreme

Value (GEV) distribution and in the case of threshold exceedances with a Generalized Pareto distribution (GPD) (Coles, 2001).

The goodness-of-fit of the distribution chosen is assessed using a test for extreme values such as the Anderson–Darling or

Cramér-von-Mises test (Laio, 2004). Once a suitable distribution has been identified, one can use the probability distribution
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function to determine the probability of occurrence of a certain event or the quantile function to determine the magnitude of25

an event with a certain non-exceedance probability or return period (Figure 1). The relationship between the non-exceedance

probability p and the corresponding return period T is expressed as follows:

T = µ/(1− p), (1)

where µ is the mean inter-arrival time between two successive events, which is defined as one divided by the number of flood

occurrences per year (Brunner et al., 2016). Using this relationship, one can answer questions such as ’how often does an30

extreme event with a certain magnitude occur’ or ’how big is an event with a certain return period’.

Discharge

Frequency
(return period)

How big …?

How often …?

Figure 1. Illustration of the relationship between extreme event frequency and magnitude.

While such univariate frequency analyses enable the development of suitable preparedness and adaptation measures by pro-

viding magnitude and frequency estimates of extreme events, they have a major drawback: they neglect that extremes are often

not univariate but multivariate phenomena. To illustrate the multivariate nature of hydrologic extremes, let’s again look at the

2021 flood. This flood event was not just extreme in terms of peak discharge at one location, it was also extreme in terms of35

the flood volume generated. Furthermore, it affected not just one catchment but multiple catchments in Germany, Belgium,

and the Netherlands. This example highlights that the multivariate nature of hydrological extremes can take multiple forms.

In the case of peak discharge and volume, we are looking at an extreme event characterized by multiple variables and in the

case of multiple affected locations at a regional extreme event. These different types of multivariate extremes have in common

that they involve multiple interdependent variables, which requires a multivariate perspective. In this review, I first provide an40

overview of different types of multivariate hydrological extremes including regional extremes, consecutive extremes, extremes

with multiple characteristics, and extremes transitions. In addition, I review tools, measures, and descriptors available to de-

scribe these different types of extremes. Second, I present modeling approaches available to model extremes in a multivariate

framework, such as copula models and multivariate simulation approaches. Last, I discuss challenges related to multivariate

hydrological extremes, including the regionalization of multivariate extremes to ungauged basins and the assessment of future45

changes in multivariate extreme events.
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2 Types of multivariate hydrological extremes

The multivariate nature of hydrological extreme events can take multiple forms (Figure 2). A first type of multivariate hydro-

logical extremes is regional extremes that affect multiple catchments at once. The 2021 flood in Germany is an example of such

a regional extreme event (Figure 2a). Regional extremes represent a challenge for emergency management because resources50

need to be distributed and shared across regions. A second type of multivariate hydrological extremes is consecutive extremes,

i.e. several extreme events occurring in close temporal succession (Figure 2b). An example for such a consecutive extreme

event is the ’multi-year’ drought 2018–2020 characterized by multiple dry summers over Central Europe (Rakovec et al.,

2022), which severely impacted water supply and agriculture (Stephan et al., 2021) and had severe ecological consequences

such as forest die backs (Sánchez-Pinillos et al., 2022). A third type of multivariate extreme is hydrological extremes described55

by multiple characteristics such as flood peak and volume as in the case of the 2021 flood event in Germany (Kreienkamp

et al., 2021) (Figure 2c). Such extremes, which affect multiple characteristics, challenge water management because hydraulic

structures such as retention basins have to cope not just with high maximum loads but also high volumes. A fourth type

of multivariate hydrologic extremes is transitions from one type of extreme event to another type of extreme event, such as

drought-to-flood transitions (Figure 2d). An example for such a drought-to-flood transition event is the multi-year dry period60

in California (2011–2016) which was ended by a flood in 2017 (Swain et al., 2018; He and Sheffield, 2020). Such transition

events can also challenge water management because regulation measures, which might be reasonable from the perspective of

one type of extreme, may be less useful from the perspective of the other type of extreme (Ward et al., 2020). In the following

sections, I review the state of knowledge on these four types of multivariate hydrological extremes, i.e., regional and consecu-

tive extremes, extremes with multiple characteristics, and extremes transitions. In addition, I summarize methodological tools65

used to study these different types of multivariate hydrological extreme events.

(c) Extremes with
multiple characteristics

(a) Regional extremes (b) Consecutive extremes (d) Extremes transitions

Figure 2. Illustration of different types of multivariate hydrological extreme events: (a) Regional extremes, (b) consecutive extremes, (c)

extremes with multiple characteristics, and (d) extremes transitions.

2.1 Regional extremes

Regional extremes affect multiple locations, catchments, or river basins at (almost) the same time and are also called spatially

compounding extremes (Zscheischler et al., 2020).
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2.1.1 Regional floods70

Floods can occur simultaneously at multiple locations, i.e. flood occurrences can be spatially dependent (Figure 3). Such

Figure 3. Spatial flood connectedness in the United States computed over all seasons. Links indicate stations, which have at least 10 flood

events in common. Stations are colored according to the mean day of flood occurrence.

spatial dependence can be quantified using different types of measures, including pairwise measures such as the number

of co-occurrences at a pair of catchments (Brunner et al., 2020a) or the correlation between flood magnitudes at a pair of

catchments (Brunner and Gilleland, 2021); catchment specific measures such as the distance over which multiple catchments

flood near synchronously (i.e. the flood synchrony scale; Berghuijs et al., 2019) and the expected proportion of sites in a75

catchment’s vicinity that exceed their xth quantile during an event in which this catchment exceeds its xth quantile (conditional

spatial dependence; Keef et al., 2009); or event-based metrics such as flood extent (Kussul et al., 2008) and the percentage of

catchments affected by flooding within a certain region (Brunner et al., 2020b).

Spatial dependence is related to flood magnitude to a certain degree. However, spatial dependence has been shown to increase

or decrease with event magnitude when using different dependence measures. Keef et al. (2009) have shown that conditional80

spatial dependence is particularly severe for moderate floods and becomes weaker as events get more extreme. That is, they

showed that more extreme events are more localized than moderate floods. In contrast, Kemter et al. (2020) have shown a

positive relationship between flood magnitude and extent when using the flood synchrony scale, i.e. increasing spatial scales

with increasing flood magnitude. The strength of spatial dependence also depends on location and is highly variable across

catchments. Berghuijs et al. (2019) have shown that the distance over which multiple catchments flood near synchronously85

exceeds the size of individual catchments in Europe and shows strong regional variations, with larger floods occurring in

lowland than in mountain catchments.

Regional floods are shaped by both meteorological and land surface processes, i.e. precipitation dependence alone is not

sufficient to explain spatial flood dependence (Brunner et al., 2020a). Regional floods often develop when a storm meets

favorable antecedent conditions, such as widespread wet soils, or when multiple catchments experience synchronous snowmelt90

(Brunner and Dougherty, 2022). Therefore, floods are more likely to be spatially connected in mountain regions with seasonal

snowmelt contributions than in lowland catchments where floods are mainly driven by precipitation (Brunner and Fischer,
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2022). Besides climate, spatial flood dependence is shaped by reservoir regulation, which leads to less spatially connected

floods in winter compared to unregulated conditions (Brunner, 2021).

Regional flood characteristics change over time, but the direction of change is yet unclear. Berghuijs et al. (2019) have95

shown historical increases in the distance over which catchments flood near synchronously for catchments in Europe. In

contrast, Rupp et al. (2021) found decreases in the synchrony of flooding between snowmelt-dominated basins because of

decreases in snowmelt using simulations of future streamflow. This finding is in line with results by Brunner and Fischer

(2022) and Brunner and Dougherty (2022) who found stronger spatial connectedness for snowmelt-influenced regions than for

rainfall-driven regions. While these studies provide first evidence for future changes of regional floods in a warming climate, the100

direction and magnitude of these changes needs to be quantified using further targeted modelling experiments (see Section 3.2).

The spatial dependencies between flood occurrences at multiple locations need to be considered in flood hazard assessments

in order to avoid risk over- or underestimation (Metin et al., 2020). Such consideration can e.g. be achieved by computing

probabilities of regional flooding (Brunner et al., 2020b).

2.1.2 Regional droughts105

Droughts are often regional phenomena, i.e. drought occurrences at different locations are dependent. Similarly to floods,

such spatial drought dependence can be quantified using different types of descriptors. Using a pairwise-perspective, drought

dependence can be quantified by counting the number of drought co-occurrences or the number of months under concurrent

drought (Brunner and Gilleland, 2021). Taking a regional perspective, regional droughts can be described by the number of

catchments affected by drought (Teutschbein et al., 2022) or by the drought extent (Hanel et al., 2018). The main part of the110

literature studying regional droughts and their extents focuses on meteorological rather than on streamflow droughts (Ganguli

and Ganguly, 2016; Sharma and Mujumdar, 2017; Perez Arango et al., 2021; Ionita and Nagavciuc, 2021). Those studies that

have assessed the spatio-temporal variation in hydrological drought extents found substantial temporal variations in the number

of catchments jointly affected by drought (Hanel et al., 2018; Brunner et al., 2021b; Teutschbein et al., 2022).

Spatial drought extent is driven by different hydro-meteorological conditions including soil moisture deficits, precipitation115

deficits, and positive temperature anomalies. The relative importance of these different drivers varies by event and season. In

winter and spring, large scale droughts often co-occur with soil moisture and precipitation deficits, while they co-occur with

positive temperature anomalies in summer (Brunner et al., 2021b). While there exist first indications that the relationships

between climatic drivers and drought extent are complex, future studies should focus on the identification of atmospheric

drivers of widespread streamflow droughts similar to studies that assess the link between atmospheric patterns and/or climate120

indices and the spatial extent of meteorological droughts (e.g. McCabe and Wolock, 2022).

Streamflow drought spatial extents have increased in the United States over time, mainly because of increases in the extent

of small droughts and in temperature (Brunner et al., 2021b). Further investigations are needed to assess whether such changes

can also be observed in other climate zones such as tropical, arctic, or alpine regions. The spatial extents of streamflow droughts

have not just changed in the past, they are also projected to further increase in future, as demonstrated for Great Britain using125

5

https://doi.org/10.5194/hess-2023-20
Preprint. Discussion started: 19 January 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 1. Metrics used to describe regional floods and droughts

Metric Description References Application

Areal coverage Percentage of area/catchments under extreme condi-

tions

Rossi et al. (1992), Hannaford et al. (2010),

Hanel et al. (2018), Brunner et al. (2021b)

Droughts

Spatial extent Area under extreme conditions derived from gridded

data

Kussul et al. (2008), Rudd et al. (2019) Floods and

droughts

Conditional spatial depen-

dence

Expected proportion of sites in the vicinity D of a

specific catchment that exceed their pth quantile dur-

ing an event in which this catchment exceeds its pth

quantile

Keef et al. (2009) Floods

Synchrony scale Distance over which multiple rivers flood near syn-

chronously

Berghuijs et al. (2019) Floods

Length scale Range of semi-variogram Touma et al. (2018) Extreme pre-

cipitation

Connectedness Network degree, i.e. number of catchments a catch-

ment has co-experienced extreme events with

Brunner et al. (2020a), Brunner and Gille-

land (2021)

Floods and

low flows

Severity-area-frequency

curves

Relationship of specific severity (deficit) and area

coverage for different return periods

Henriques and Santos (1999), Hisdal and

Tallaksen (2003)

Droughts

Severity-area-duration

curves

Relationship between drought severity (deficit) and

area coverage for different drought durations

Andreadis et al. (2005), Sheffield et al.

(2009)

Droughts

Probability of regional ex-

tremes

Probability that a certain percentage of catchments

within a region is jointly under extreme conditions

Brunner et al. (2020b) Floods

climate and hydrological model simulations (Rudd et al., 2019). How such changes translate to other regions remains to be

assessed using modelling experiments, which focus on reliably reproducing spatial streamflow drought extents.

2.1.3 Descriptors of regional extremes

A diverse range of tools can be used to quantify the spatial dependence and spatial extents of floods and droughts. These tools

include areal coverage, spatial extent, conditional spatial dependence, synchrony scale, length scale, connectedness, severity-130

area-frequency curves, severity-area-duration curves, and probability of regional extremes. These metrics are summarized and

shortly described in Table 1.

2.2 Consecutive extremes

Consecutive extremes occur in close temporal succession in the same catchment or region and are also referred to as temporally

compounding extremes (Zscheischler et al., 2020). Such temporal clustering behavior is illustrated in Figure 4, which shows135

time series of drought occurrences for two example catchments in different hydro-climates. The first catchment shows temporal

drought clustering at seasonal time scales (Figure 4a), meaning that droughts are likely to occur in subsequent seasons. The
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second catchment shows temporal clustering at longer, i.e. multi-annual time scales (Figure 4b), meaning that the catchment is

affected by droughts in regular multi-annual intervals.
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Figure 4. Temporal hydrological drought variability: (a) temporal drought occurrence in the Riss catchment at Warthausen (Austria) and (b)

temporal drought occurrence in the Little Pee Dee catchment at Galivants Ferry (United States).

2.2.1 Consecutive floods140

Flood events cluster in time, i.e. flood-rich periods in which floods are more common alternate with flood-poor periods in which

floods are rare (Villarini et al., 2013; Mediero et al., 2015; Merz et al., 2016; Gu et al., 2016; Liu and Zhang, 2017; Wang et al.,

2020). In Europe or China for example, many catchments show temporal clustering for moderate floods at time scales of one

to a few years (Merz et al., 2016; Gu et al., 2016; Lun et al., 2020). However, the strength of temporal clustering decreases

substantially with time scale and with an increasing flood threshold (Lun et al., 2020). The temporal flood clustering behavior145

to some degree also depends on the region. For example, catchments in the Atlantic and Continental regions of Europe are

more prone to temporal flood clustering than catchments in Scandinavia (Mediero et al., 2015).

Flood-rich periods with temporally clustered events are related to climate. Blöschl et al. (2020) and Brönnimann et al. (2022)

have e.g. shown for Europe that historic flood-rich periods occurred under colder than normal climate conditions. Similarly,

Villarini et al. (2013), Gu et al. (2016), Liu and Zhang (2017) have shown for catchments in Iowa, China, and Australia,150

respectively, that the flood clustering behavior is influenced by large-scale climate indices. The pronounced link between

climate and the temporal flood clustering behavior suggests that future changes in temperature and oscillation patterns may

lead to changes in temporal flood clustering. How the temporal flood clustering behavior changes across different climate zones

in a warming climate still needs to be investigated using simulation-based studies. Such simulation-based studies require the

development of modeling approaches that reliably represent the temporal clustering behavior of floods.155
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2.2.2 Consecutive droughts

Drought events can occur successively or cluster in time as highlighted by studies looking at the occurrence of multi-year

droughts and studies assessing the temporal clustering behavior of droughts. A first body of literature provides evidence for

the occurrence of multi-year droughts both from a meteorological and hydrological perspective. The occurrence of multi-year

precipitation deficits has for example been documented for France (Vidal et al., 2010), Central Europe (Moravec et al., 2021),160

and the United States (Goodrich, 2007; Diffenbaugh et al., 2015; Abatan et al., 2017; Bales et al., 2018) and the occurrence of

multi-year streamflow deficits for different parts of Europe (Parry et al., 2012; Folland et al., 2015; Hanel et al., 2018; Brunner

and Tallaksen, 2019) and Chile (Alvarez-Garreton et al., 2021). A second body of literature shows that both meteorological

and hydrological drought occurrences are highly variable in time with alternations between drought-rich and drought-poor

periods at multi-year (Moreira et al., 2015; Noone et al., 2017; Yue et al., 2021), decadal (Ionita et al., 2012; Tong et al., 2018;165

Barker et al., 2019), and multi-decadal time scales (Tanguy et al., 2021). However, some other studies also provide contrasting

evidence by showing a lack of cyclicity in precipitation deficits (Pelletier and Turcotte, 1997; Bunde et al., 2013).

Brunner and Tallaksen (2019) have shown that catchments experiencing multi-year droughts are mostly characterized by a

rainfall-dominated flow regime, while catchments with melt-dominated flow regimes are generally not affected by multi-year

droughts. As a consequence, multi-year droughts may become more frequent in a future climate as flow regimes transition from170

snow-dominated to rainfall-dominated (Brunner and Tallaksen, 2019). Detailed modeling assessments are needed to show how

the probability of occurrence of multi-year droughts and the temporal-clustering behavior of droughts are going to change in

the future. Such assessments require an adequate representation of temporal streamflow dependencies.

2.2.3 Descriptors of consecutive extremes

The persistence and periodic features of hydrological extreme events have been documented using a range of measures in-175

cluding the Hurst exponent, power spectra derived using the Fourier transform, dry-to-dry transition probabilities, etc. These

measures are summarized and shortly described in Table 2.

2.3 Extremes with multiple characteristics

Droughts and floods are characterized by multiple characteristics such as deficit and duration or peak discharge and flood

volume, respectively. These characteristics can be mutually interdependent as illustrated by some examples in Figure 5.180

2.3.1 Floods

Floods are characterized by multiple characteristics including peak discharge, volume, and duration, which are interdependent

(Mediero et al., 2010; Serinaldi and Grimaldi, 2011) (Figure 6a). These variable relationships vary with the flood generation

process, e.g. flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods show different forms and strengths of

variable dependence (Renard and Lang, 2007; Szolgay et al., 2015; Brunner et al., 2017). Because of such variations in variable185

dependence with flood generation processes, variable dependence also varies between low- and high-elevation catchments
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Table 2. Metrics used to describe consecutive floods and droughts

Metric Description References Application

Number of consecutive

events

Count of the number of successive extreme

events/years

Hanel et al. (2018), Brunner and Tallaksen

(2019)

Droughts

Hurst exponent Measure of the long-term memory of a time series Hurst (1956), Tatli (2015), Noorisameleh

et al. (2021)

Droughts

Average power spectrum Average power over all frequencies after the Fourier

transform

Pelletier and Turcotte (1997) Droughts

Extreme event transition

probabilities

Probability of observing a subsequent extreme event

given that an extreme event has occurred in the previ-

ous time unit (e.g. month)

Moon et al. (2018) Droughts

Dispersion index Quantifies the departure from a homogeneous Poisson

process

Vitolo et al. (2009), Mediero et al. (2015),

Merz et al. (2016)

Floods and

droughts

Ripley’s K Measures the average number of extreme events in the

temporal neighborhood of extreme events

Ripley (1981),Dixon (2013), Tuel and Mar-

tius (2021), Tuel et al. (2022)

Extreme

precipitation,

floods, and

droughts

Kernel estimation Estimates the time variation of extreme event counts

as smooth functions of time

Cowling et al. (1996), Mudelsee et al.

(2003), (Merz et al., 2016)

Floods

Scan statistics Maximum number of observed counts in a series of

overlapping sliding windows

Lun et al. (2020) Floods

Cox regression model Cox processes are Poisson processes with a randomly

varying rate of occurrence. Cox regression models

can be used to examine the dependence of the rate

of occurrence on covariate processes

Villarini et al. (2013) Floods
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Figure 5. Illustration of the relationship between different drought and flood variables for the Fish river in Maine, United States: (a) drought

duration and deficit, (b) drought deficit and intensity, (c) flood duration and volume, and (d) flood volume and peak discharge.

(Gaál et al., 2015). For Austrian catchments, Gaál et al. (2015) found weaker variable dependence in Alpine than in lowland

catchments because of a mix of flood generation processes. In addition to elevation, variable dependence has also been shown
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Figure 6. Illustration of flood and drought characteristics: (a) floods: peak discharge, volume, and duration; (b) droughts: minimum flow,

deficit, and duration.

to vary with catchment size. Using a global dataset, Rahimi et al. (2021) have shown that the strength of variable dependence

increases with the catchment area. However, overall, variable dependence seems to be more strongly related to climatic factors190

than to physiographic factors (Gaál et al., 2015). Because of the link between climatic flood drivers and variable dependence,

the strength of variable dependence is changing in a warming climate. For example, Bender et al. (2014) found an increase in

the dependence between flood volume and peak discharge for the Rhine river and Ben Aissia et al. (2014) detected decreases

and increases in such dependence for two catchments in Québec. These temporal change patterns in variable dependence

are spatially heterogeneous and cannot be explained by one hydro-meteorological driver alone. Instead, changes in variable195

dependence are the result of an interplay between changes in precipitation, snowmelt, and soil moisture, resulting in dependence

increases in some and dependence decreases in other regions (Brunner et al., 2019c). The interdependencies between different

flood variables, and their potential future changes need to be considered in multivariate hazard and climate impact assessments.

That is, flood frequency analyses need to consider variable dependencies if multiple variables are of interest for the application.

For example, the dependence between peak and volume should be considered when deriving flood estimates for hydraulic200

design.

2.3.2 Droughts

Similarly to floods, droughts can be described by different characteristics including drought intensity, deficit, and duration

(Figure 6b). These variables are also interdependent (Shiau, 2006; Lee et al., 2013; Salvadori and Michele, 2015; Brunner et al.,

2019d) and the strength of dependence varies with climate (Van Loon et al., 2014). Drought deficit increases most strongly205

with duration in cold seasonal climates because snow accumulation during winter prevents the recovery from summer drought

and in monsoonal, Savannah, and Mediterranean climate zones where summer droughts continue into the winter (Van Loon

et al., 2014). This relationship between drought variable dependence and climate suggests that the variable interdependence

may change in a warming climate. How climate change specifically affects the dependence between different pairs of variables

needs to be assessed using targeted modelling experiments focusing on an accurate representation of variable dependencies in210

hydrological models.
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Table 3. Metrics used to describe hydrological extremes with multiple characteristics

Dependence measure Description References Application

Pearson’s correlation coef-

ficient

Measure of linear correlation between two data sam-

ples

Edwards (1976) Droughts

and floods

Spearman’s rank correla-

tion coefficient

Measure of rank correlation between two data sam-

ples

Spearman (1904); Genest and Favre (2007) Droughts

and floods

Kendall’s rank correlation

coefficient

Measure of rank correlation between two data sam-

ples

Kendall (1937); Genest and Favre (2007) Droughts

and floods

Extremal dependence/tail

dependence coefficient

Probability of one variable being extreme given that

the other one is extreme

Coles et al. (1999); Coles (2001) Droughts

and floods

2.3.3 Descriptors of extremes with multiple characteristics

The interdependencies between multiple characteristics of hydrological extreme events can be assessed using various depen-

dence measures, including different correlation and tail dependence measures (Table 3).

2.4 Extremes transitions215

Consecutive drought and flood periods can seriously challenge water and emergency management because of trade-offs be-

tween long-term water storage and short-term flood control (Di Baldassarre et al., 2017; He and Sheffield, 2020) and substantial

effects on water quality (Mosley, 2015; Pulley et al., 2016). Recent examples of such events include the transition from a very

dry spring in 2017 to extremely wet conditions in July in several parts of Germany (Becker et al., 2017), the multi-year dry

period in California (2011–2016) which was ended by a flood in 2017 (Swain et al., 2018; He and Sheffield, 2020), or the dry220

2010–2012 period in the UK that ended with record summer rainfall (Marsh et al., 2013).

2.4.1 Droughts to floods

Studies looking at transitions from dry to wet periods mainly focus on transitions in meteorological states, i.e. on transitions

from negative to positive precipitation or moisture anomalies (Yang et al., 2013; Liu et al., 2018; Shi et al., 2021; Ansari and

Grossi, 2022). These meteorological studies indicate large spatial variability in dry-to-wet period transition times ranging from225

a few months to multiple years (De Luca et al., 2020). In contrast, little is known about consecutive hydrological drought–flood

events, i.e. transitions between extremes in streamflow data. For the Amazonas River, Espinoza et al. (2012) studied the abrupt

transition from an extreme drought in September 2010 to very high discharge in April 2011 and Parry et al. (2016) studied

drought termination for river basins in the UK. Still, little is known about the atmospheric and land-surface conditions that lead

to rapid drought to flood transitions and about how transition times and characteristics vary in space and time. Further research230

is needed in order to better understand the variations of transition times across hydro-climates and the hydro-climatic drivers

of rapid drought–flood transitions. Studies looking at future changes in transitions between dry and wet meteorological states
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Table 4. Metrics used to describe transitions between extreme events

Transition measure Description References Application

Transition time Time between dry and wet periods De Luca et al. (2020); Chen and Ford (2022) Dry to wet

conditions

Transition frequency Frequency of transitions between dry and wet periods Chen and Ford (2022) Dry to wet

conditions

suggest more frequent and rapid transitions between wet and dry extremes (Chen and Ford, 2022). Hydrological simulation

experiments are needed to assess how these changes in transitions from dry to wet states translate into changes in transitions

from hydrological droughts-to-floods. The possibility of rapid drought–flood transitions under both current and future climate235

conditions needs to be integrated in disaster risk reduction strategies (Ward et al., 2020).

2.4.2 Descriptors of extremes transitions

The transitions between dry and wet periods have been described using transition times and transition frequencies as summa-

rized in Table 4.

3 Modeling multivariate extremes240

Assessments of the frequency and magnitude of multivariate hydrologic extreme events are facilitated by various tools and

approaches including multivariate distributions and return period definitions, multivariate stochastic simulation approaches,

and hydrological models.

3.1 Multivariate distributions and return periods

Quantifying the frequency of multivariate extremes requires considering variable dependencies, fitting multivariate distribu-245

tions, and using multivariate return period definitions. The joint distribution of variables that are interdependent can be repre-

sented using copula models, which allow for a flexible representation of different variable-dependence structures and different

univariate distributions for the margins (Genest and Favre, 2007). The copula approach roots in the representation theorem by

Sklar (1959), which states that the joint cumulative distribution function FXY of a pair of continuous random variables (X,Y )

at (x,y) can be expressed by250

FXY (x,y) = C(FX(x),FY (y)),x,y ∈ R, (2)

where FX(x) and FY (y) are realizations of the marginal distributions of X and Y whose dependence is modeled by a copula

C (Nelsen, 2006; Joe, 2015). This copula approach allows one to select an appropriate model for the dependence between X
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and Y independently from the choice of the marginal distributions. In order to identify a suitable copula for a pair of variables,

five steps have to be taken:255

1. quantify the strength of dependence and evaluate the form of dependence between the variables using rank-based corre-

lation measures and dependence plots (Genest and Favre, 2007).

2. choose a number of copula families.

3. estimate the copula parameters for each copula family.

4. perform goodness-of-fit tests to exclude unsuitable copulas (Genest et al., 2009).260

5. choose one of the admissible copulas using selection criteria such as the Akaike or Bayesian information criterion.

For an introduction to copulas with application examples, the reader is referred to Genest and Favre (2007) and for detailed

theoretical introductions to Nelsen (2006) and Joe (2015).

Such bivariate distributions are needed to compute return periods in a bivariate context, e.g. when hydraulic design relies

on two variables such as peak discharge and flood volume. In the univariate setting, the return period T is uniquely defined265

as described by Equation 1. In the bivariate and more generally the multivariate setting, the definition of the return period of

an observed event is not unique. Instead, one has to choose one out of several definitions depending on the problem at hand

(Serinaldi, 2015). In a multivariate framework, the return period can be defined as the return period TD of a "dangerous" event

as

TD =
µ

Pr[X ∈D]
, (3)270

where D is a set of events defined to be dangerous according to some reasonable criterion and Pr[X ∈D] is the probability that

the random variable X lies in this dangerous region D. In a multivariate setting, D can be defined in different ways depending

on the application at hand, e.g. using the conditional probability distribution, joint probability distributions, or the Kendall’s

distribution (Brunner et al., 2016). These distributions are typically expressed using bivariate copula models. For example, if

the definition of dangerous events spans all those events where the two variables (e.g. peak discharge and flood volume) jointly275

exceed a certain threshold, one would use the joint ’AND’ return period definition. This joint ’AND’ return period T (u,v) is

using a copula C expressed as

T (u,v) =
µ

1−u− v + C(u,v)
, (4)

where u and v are realizations of U and V , i.e. uniform representations of FX and FY . For an overview of more alternative

bivariate return period definitions, the reader is referred to Gräler (2014) or Brunner et al. (2016). Such bivariate return period280

definitions can be used to quantify the return period of events characterized by two variables, e.g. droughts described by drought

deficit and duration or floods described by flood peak and volume (Salvadori, 2004; Serinaldi and Grimaldi, 2011; Serinaldi,

2016; Brunner et al., 2017, 2019d).
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3.2 Simulation of multivariate extremes

Multivariate extreme events are even less abundant in observational records than univariate extremes. This lack of data chal-285

lenges frequency analysis because reliable distribution fitting requires sufficiently large datasets. To overcome the problem

of a limited sample size, different simulation approaches have been proposed, which enable simulating long time series or

large event sets. These simulation approaches include statistical and physically-based models. Both types of approaches aim

to generate large samples of data with similar distributional and spatio-temporal characteristics as the limited observed data.

Such large simulation ensembles can be used to refine water management plans, or to develop suitable adaptation strategies to290

drought and flood events.

There exists a variety of stochastic modeling approaches which differ in their capability of representing distributional and/or

temporal characteristics of hydrological data. The most commonly used direct stochastic simulation approaches, i.e. approaches

that directly simulate streamflow using a stochastic model, belong to the two classes of parametric and nonparametric models.

Parametric models include autoregressive moving average (ARMA) models and their modifications (Stedinger and Taylor,295

1982; Papalexiou, 2018) and fractional Gaussian noise models (Mandelbrot, 1965, 1971; Mejia et al., 1972; Hosking, 1984).

Nonparametric models include different bootstrap approaches (Salas and Lee, 2010; Herman et al., 2016; Srinivas and Srini-

vasan, 2006; Srivastav and Simonovic, 2014) and kernel density estimation (Lall and Sharma, 1996; Sharma et al., 1997).

Other simulation approaches for extreme events include the conditional exceedance model by Heffernan and Tawn (2004)

(Keef et al., 2013; Diederen et al., 2019; Neal et al., 2013), max-stable models (Segers, 2012; Ribatet and Sedki, 2013; Oesting300

and Stein, 2018), or copula models (Gräler, 2014; Brunner et al., 2019b). In addition to these time-domain models, there exist

frequency-domain models that simulate surrogate data with the same Fourier spectra as the raw data (Theiler et al., 1992;

Prichard and Theiler, 1994; Schreiber and Schmitz, 2000). Such methods are based on the randomization of the phases of the

Fourier transform and are known as the amplitude-adjusted Fourier transform (AAFT) (Lancaster et al., 2018; Radziejewski

et al., 2000; Serinaldi and Kilsby, 2017; Brunner et al., 2019a). They have been successfully applied to simulate spatially305

consistent streamflow time series in multiple catchments (Brunner and Gilleland, 2020).

In addition to these statistical approaches, streamflow can be simulated using physically-based approaches. These approaches

rely on a hydrological model which is driven with large ensembles of stochastically or physically generated climate input

data. Examples of physically-based large climate ensembles include single-model-initialized ensembles (SMILES Deser et al.,

2012, 2020) and reforecast simulations, i.e., forecasts generated for past periods (Hamill et al., 2006). Climate SMILEs and310

reforecast simulations have been used in combination with hydrological models to generate large ensembles of streamflow time

series (van der Wiel et al., 2019; Willkofer et al., 2020; Brunner et al., 2021c; Brunner and Slater, 2022).

4 Challenges and future directions

Quantifying the frequency and magnitude of multivariate extremes is challenging for multiple reasons. Here, I discuss some of

these challenges and how they could be addressed in future research.315
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1. Multivariate extremes are scarce in observational records. Therefore, frequency analyses are often associated with

large uncertainties and it is challenging to study the processes governing such extreme events. To overcome the problems

related to a limited sample size, simulation approaches can be used (see Section 3.2). However, these simulations need

to represent different types of data features including distribution, temporal, spatial, and variable dependencies. Repre-

senting all these features simultaneously is challenging. Novel simulation approaches are needed that capture a range of320

different types of dependencies.

2. Multivariate frequency analysis requires dependence modeling. Modelling such dependence is feasible in smaller

dimensions (e.g. in the bivariate setting) but becomes more complex and more computationally demanding in larger

dimensions. Identifying suitable dependence structures in high-dimensions is not always straightforward and further

flexible dependence structures are needed to represent temporal, spatial, and variable dependencies at the same time.325

3. Multivariate extremes are subject to change. Extreme events are affected by various factors including land-use

changes, climate, and water management (e.g. Slater et al., 2021; Blum et al., 2020; Brunner, 2021). The effects of

these changes on hydrological extremes is not limited to their univariate characteristics, but extends to their dependence

structure (Brunner et al., 2019c). Such non-stationarities in variable dependence, need to be accounted for in global

change impact assessments.330

4. Variable dependencies need to be transferred to ungauged catchments. Predicting the frequency and magnitude of

extreme events in ungauged basins is challenging. Different methods, (i.e. regionalization approaches) are available to

predict hydrological extremes or model parameters in ungauged catchments using information from gauged catchments

including similarity metrics or linear and non-linear regression models. While such techniques are established in the

univariate case, regionalizing multivariate extremes is more challenging because variable dependence needs to be main-335

tained. For example, regionalizing flood peaks and flood volumes individually, may destroy the dependence between the

two variables (Brunner et al., 2018; Kiran and Srinivas, 2022). Novel regionalization approaches are needed that respect

such variable dependencies.

5. Variable dependence needs to be represented in statistical and process-based models. The representation of variable

dependencies in statistical and hydrological modeling is non-trivial. For example, hydrological model simulations do340

neither necessarily well represent the dependence between flood peaks and flood volume (Brunner and Sikorska, 2018)

nor spatial flood coherence (Brunner et al., 2021a). The representation of such dependencies in hydrological models

needs to be improved by developing suitable model calibration approaches that take into account variable dependencies

in addition to individual variables.

5 Conclusions345

Multivariate hydrological extreme events can jointly affect multiple regions, occur in close temporal succession, be charac-

terized by multiple characteristics or represent transitions from one type of extreme to another one. These different types of
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extreme events have in common that they involve multiple inter-related variables, whose dependence needs to be accounted for

in frequency analysis and risk estimation. However, studying extreme events in a multivariate framework is challenging because

of the scarceness of multivariate extreme events in observational records and the need to model variable interdependencies.350

Assessments of the probability and magnitude of multivariate hydrological extremes may profit from advances in the following

areas: (1) the development of (stochastic) simulation approaches that represent different types of variable dependencies and

allow generating large datasets; (2) the development of flexible dependence structures that represent dependencies of different

strength and form; (3) and the development of hydrological model calibration procedures that enable calibrating models with

respect to temporal, spatial, and variable dependencies. These method developments will facilitate change assessments for355

different types of multivariate hydrological extremes such as large-scale floods, successive droughts, or rapid drought-to-flood

transitions. Such assessments are strongly needed in order to adapt water management strategies to future changes in impactful

multivariate drought and flood events.
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