
Dear editor, 

Thank you very much for your and the reviewers’ assessment of our manuscript. I revised the 
manuscript according to the reviewers’ comments with a particular focus on improving the 
discussion of different descriptors of multivariate extremes and on expanding the description 
of modeling approaches for multivariate extremes by including descriptions of (1) suitable 
univariate metrics for multivariate extremes, (2) bivariate distributions and return periods, 
(3) multivariate distributions, and (4) multivariate simulation approaches. I hope that you 
find the revised version of this manuscript suitable for publication in HESS. Thank you very 
much for your re-assessment. 

Best regards, 

Manuela Brunner 

Reviewer 1 

The manuscript is presented as a review paper on multivariate extremes, specifically flood, 
and drought. The multivariate aspect of such extremes is intended in space, in time, and in 
their characteristics. The topic is relevant for preparedness and risk management in the 
current and future climates. However, the manuscript in its current form presents some 
limitations. 
Reply: Thank you very much for acknowledging the relevance of the review topic and for 
taking the time to provide this constructive feedback, which I address point by point below. 

The introduction on the drawbacks of the univariate approach seems in contrast with the 
types of multivariate extremes identified. The regional and temporal extremes fall back on a 
univariate approach. Indeed, they are defined based on whether, e.g., flood magnitude is 
above a given threshold or with a given return period at one single location. When does an 
extreme in one location become a multivariate extreme? How many locations should be 
flooded? Is the regional extent of the univariate floods an indicator of whether an extreme is 
multivariate or not? How so? These kinds of questions are difficult to answer from the 
definitions of multivariate extremes provided and it makes questioning whether it is 
necessary to move away from the univariate approach. 
Reply: Thank you for stressing the need to clarify the link between studying multivariate 
extremes and univariate frequency analyses. I agree that one good strategy of studying 
multivariate extremes is by defining univariate metrics that describe them, e.g. spatial flood 
extent for spatially compounding flood events. The point I would like to make here is that 
analyses of hydrological extreme events should go beyond focusing on one variable only and 
consider extreme events from a multivariate perspective. I rewrote the introduction by 
removing the part about univariate frequency analysis which gave the wrong impression that 
this tool is inappropriate to study multivariate extremes. Instead, the new introduction 
stresses that multivariate extremes consider more than one variable compared to univariate 
extremes focusing on one variable only: 

‘In July 2021, a severe and widespread flood event affected Western Germany and parts of 
Belgium and the Netherlands where it led to numerous fatalities and considerable damage to 
infrastructure (Ibebuchi et al. 2022). After such exceptional flood events, we ask: 'how 
frequently do such events occur?' To answer this question, one can rely on frequency 



analyses which establish a link between the magnitude and frequency of events. Such 
analyses are often performed by focusing on one variable only, i.e. by taking a univariate 
perspective. In the case of the Germany flood, this would e.g. be flood peaks in one individual 
catchment. While such a focus on one variable enables the development of suitable 
preparedness and adaptation measures by providing magnitude and frequency estimates of 
extreme events, they have a major drawback: they neglect that extremes are often not 
univariate but multivariate phenomena, i.e. affect more than one variable. 
To illustrate the multivariate nature of hydrologic extremes, let's again look at the 2021 
flood. This flood event was not just extreme in terms of peak discharge at one location, it was 
also extreme in terms of the flood volume generated. Furthermore, it affected not just one 
catchment but multiple catchments in Germany, Belgium, and the Netherlands. 
This example highlights that the multivariate nature of hydrological extremes can take 
multiple forms. In the case of peak discharge and volume, we are looking at an extreme 
event characterized by multiple variables and in the case of multiple affected locations at a 
regional extreme event. These different types of multivariate extremes have in common that 
they involve multiple interdependent variables, which requires a multivariate perspective. In 
this review, I first provide an overview of different types of multivariate hydrological 
extremes including regional extremes, consecutive extremes, extremes with multiple 
characteristics, and extremes transitions. In addition, I review tools, measures, and 
descriptors available to describe these different types of extremes. Second, I present 
modeling approaches available to model extremes in a multivariate framework, such as 
copula models and multivariate simulation approaches. Last, I discuss challenges related to 
multivariate hydrological extremes, including the regionalization of multivariate extremes to 
ungauged basins and the assessment of future changes in multivariate extreme events.’ 
Modification: p.1, l.14-33 

In my opinion, more emphasis should be given to the descriptors of multivariate extremes, 
as defined by the Author, their differences, and the implication of using one descriptor 
rather than another. As a matter of fact, the definition of an extreme cannot be decoupled 
from the descriptor used. In the manuscript, they are simply listed in tables without further 
implications on their use. 
Reply: Thank you for highlighting the need to emphasize the descriptors of multivariate 
extremes. I substantially expanded the description of the different descriptors and provide an 
overview on what types of analyses the different descriptors can be used for: 
 
‘Descriptors of regional extremes: A diverse range of tools can be used to quantify the 
spatial dependence and spatial extents of floods and droughts. These tools include areal 
coverage, spatial extent, conditional spatial dependence, synchrony scale, length scale, 
probability of regional extremes, connectedness, severity-area-frequency curves, and 
severity-area-duration curves (Table 1). A first category of descriptors describes the spatial 
extent of extreme events at an event scale. This category comprises areal coverage, i.e. the 
percentage of a region or river basin under extreme conditions; spatial extent, i.e. the area 
under extreme conditions usually derived from gridded data; and conditional spatial 
dependence, i.e. the expected proportion of sites in the vicinity of a specific catchment that 
exceed their pth quantile during an event in which this catchment exceeds its pth quantile. 
While these descriptors focus on describing individual events, a second group of descriptors 
summarizes the behavior of regional extremes at a catchment scale. For example, the 
synchrony scale measures over which distance around a catchment, multiple rivers flood at 



the same time. A third group of metrics comprises metrics that summarizes regional 
relationships in extremes occurrence e.g. through a semivariogram or more specifically the 
length scale (i.e. the range of the semi-variogram) or the probability of regional extremes, i.e. 
the probability that a certain percentage of catchments within a region is jointly under 
extreme conditions. A fourth group of metrics includes pairwise measures such as 
connectedness determined either based on the number of co-occurrences at a pair of 
catchments or on the correlation between flood magnitudes at a pair of catchments. A last 
group of descriptors are frequency or duration curves, e.g. severity-area-frequency curves or 
severity-area-duration curves. Depending on which metric is chosen to describe regional 
extremes, the results of an analysis will differ. For example, change assessments may find 
different changes in regional extremes when looking at pairwise relationships than when 
focusing at the event-scale.’ 
Modification: p.5, l.118-132 

‘Descriptors of consecutive extremes: The persistence and periodic features of hydrological 
extreme events have been documented using a range of measures including the Hurst 
exponent, power spectra derived using the Fourier transform, dry-to-dry transition 
probabilities, and others (Table 2). A very simple measure to characterize consecutive 
extremes is the number of consecutive events, e.g. the number of successive extreme 
months/years. Also related to individual events, one can compute extreme event transition 
probabilities, i.e. the probability of observing a subsequent extreme event given that an 
extreme event has occurred in the previous time unit (e.g. week/month/year). Instead of 
focusing on events, the temporal persistence of extremes can be summarized for entire time 
series of extreme events, for example by the Hurst exponent, which measures the long-term 
memory of a time series, or the average power spectrum, i.e. the average power over all 
frequencies after the Fourier transform. In addition, consecutive extreme events can be 
described by measures that characterize the temporal clustering behavior of extreme events 
including the dispersion index, which quantifies the departure of an observed process from a 
homogeneous Poisson process, Ripley's K, which counts the average number of extreme 
events in the temporal neighborhood of extreme events, and Kernel estimation, which 
estimates the time variation of extreme event counts as a smooth function of time. Another 
possibility to describe consecutive extremes is to identify flood/drought-rich and -poor 
periods using scan statistics. That is, unusual periods in the observations that are inconsistent 
with the assumption of independent and identically distributed random variables, i.e. periods 
encompassing very few or very many events, are identified with a moving window approach. 
If it is not just of interest to describe consecutive extremes but to identify their drivers, one 
can rely on cox regression models, which examine the dependence of the rate of occurrence 
of extremes on covariate processes, e.g. different types of teleconnection patterns. The 
choice of a specific descriptor will depend on the specific research question or application, i.e. 
on whether one would like to test for clustering significance, in which case Ripley's K or the 
dispersion index can be used, or whether one would like to identify specific periods 
particularly abundant in extremes occurrence, in which case scan statistics or Kernel 
estimation can be used, or one would like to explain temporal dependence, in which case one 
can rely on cox regression models.’ 
Modification: p.8, l.185-203 

‘Descriptors of extremes with multiple characteristics: The interdependencies between 
multiple characteristics of hydrological extreme events can be assessed using various 



dependence measures, including different correlation and tail dependence measures focusing 
on bivariate variable relationships (Table 3). Linear relationships can be quantified using 
Pearson's correlation coefficient while non-linear relationships can be described using 
Spearman's or Kendall's rank correlation coefficients. If the focus is not on the bulk of the 
distribution but on its tails, one can use the extremal dependence coefficient, which describes 
the probability of one variable being extreme given that the other one is extreme.’ 
Modification: p.11, l.243-247 

‘Descriptors of extremes transitions: The transitions between dry and wet periods have been 
described using transition times and transition frequencies as summarized in Table 4. The 
transition time describes the time elapsing between dry and wet periods while the transition 
frequency describes the frequency of transitions between dry and wet periods.’ 
Modification: p.12, l.271-273 

Section 3 on modeling multivariate extremes is about models for assessing the frequency 
and magnitude of multivariate hydrologic extreme events (as summarized by the Author in 
lines 241-243). In this section, bivariate copula models are described way more extensively 
compared to other methods. However, it is unclear why such a detailed description and how 
copula models differ from the descriptors of hydrological extremes with multiple 
characteristics. As a matter of fact, copulas model the dependence between two variables, 
where the dependence between the variables is measured by the correlation between two 
variables (descriptors in Table 3). It would be useful to discuss whether bivariate copulas can 
be applied also to regional and temporal multivariate extremes and how. Moreover, limiting 
the description of multivariate models to bivariate statistical methods in a review paper on 
multivariate extremes is not enough. I encourage the Authors to add studies and methods 
for higher dimensions.   
Reply: Thank you for stressing the need to expand the discussion of multivariate models and 
distributions beyond the bivariate case. I introduce bivariate copula models in detail because 
they are a useful tool to describe return periods in a bivariate setting, which is often used 
because return periods are difficult to generalize to higher than two-dimensional data. 
However, I fully agree that it is important to also introduce multivariate distributions and 
models going beyond 2 dimensions because some of the extremes discussed in this review 
(e.g. the spatial extremes) are higher dimensional phenomena. Therefore, I substantially 
expanded section 3 (Modeling multivariate extremes) by including descriptions of (1) suitable 
univariate metrics for multivariate extremes, (2) bivariate distributions and return periods, 
(3) multivariate distributions, and (4) multivariate simulation approaches. 

‘Univariate metrics for multivariate extremes: Different approaches have been developed to 
quantify the frequency of multivariate extremes. The easiest work around for dealing with 
multivariate extremes is to describe the complex phenomena with a suitable univariate 
descriptor, such as describing regional floods by flood extent. Such univariate descriptors can 
be used in a univariate frequency analysis to determine the frequency and magnitude of 
events. Such a univariate frequency analysis first defines a sample of extreme events using 
either a block maxima/minima or a peak-over-threshold/threshold-level approach (Meylan et 
al. 2012). Second, it fits a suitable theoretical distribution to the sample of extreme events. In 
the case of block maxima, one usually works with a Generalized Extreme Value (GEV) 
distribution and in the case of threshold exceedances with a Generalized Pareto distribution 
(GPD) (Coles 2001). The goodness-of-fit of the distribution chosen is assessed using a test for 



extreme values such as the Anderson--Darling or Cramér-von-Mises test (Laio et al. 2004). 
Once a suitable distribution has been identified, one can use the probability distribution 
function to determine the probability of occurrence of a certain event or the quantile function 
to determine the magnitude of an event with a certain non-exceedance probability or return 
period (Figure 6). The relationship between the non-exceedance probability p and the 
corresponding return period T is expressed as follows: 

    T = mu/(1-p), 

where mu is the mean inter-arrival time between two successive events, which is defined as 
one divided by the number of flood occurrences per year (Gumbel 1941, Salvadori et al. 2010, 
Brunner et al. 2016). Using this relationship, one can answer questions such as 'how often 
does an extreme event with a certain magnitude occur' or 'how big is an event with a certain 
return period'.’ 
Modification: p.13, l.279-295 

‘Bivariate distributions and return periods: In many cases, however, univariate descriptors 
of multivariate extremes as described above do not exist, e.g. when we are interested in 
floods characterized by multiple variables such as magnitude, volume, and duration. Because 
multivariate definitions of return periods are difficult to establish, one often tries to break 
down the problem to bivariate relationships, for which bivariate distributions and return 
period definitions exist. […] ’ 
Modification: p.13, l.297-300 

‘Multivariate distributions: Different models for multivariate extremes have been proposed 
in the literature, including multivariate distributions such as the logistic model (Kotz et al. 
2000), conditional exceedance models (Heffernan and Tawn 2004, Neal et al. 2013, Keef et 
al. 2013), the multivariate skew-t distribution (Ghizzoni et al. 2010, Ghizzoni et al. 2012), 
hierarchical Bayesian models (Yan et al. 2015), max-stable models (Ribatet et al. 2013), the 
multivariate generalized Pareto distribution (Rootzen et al. 2006, Rootzen et al. 2018), and 
copula models such as pair-copula constructions (Graeler et al. 2014, Schulte et al. 2015, 
Bevacqua et al. 2017), factor copula models (Lee et al. 2017), vine copulas (Bedford and Cook 
2002, Graeler et al. 2013), chi-square copulas (Bardossy et al. 2006, Quessy et al. 2016) the 
Fisher copula (Favre et al. 2018, Brunner et al. 2018). Classical multivariate distributions such 
as the logistic model, have mostly been defined for the bivariate or trivariate case because 
the complexity linked to the solution of multivariate problems increases strongly with the 
dimension (Kotz 2000). 
This dimensionality problem can be overcome by using conditional exceedance models as 
proposed by Heffernan and Tawn (2004), which can be applied to phenomena of any 
dimension, e.g. to model spatial extremes (Keef et al. 2013, Neal et al. 2013). In such a 
spatial extremes context, these models are defined in terms of the statistical distribution of a 
variable (e.g. streamflow) at a set of locations conditional on the variable exceeding a certain 
threshold at one of these locations. Applications are not limited to spatial extremes and could 
also be extended to extremes with multiple characteristics by quantifying the conditional 
distribution of one variable (e.g. flood peak) being extreme given that another variable (e.g. 
flood volume) is high (Salvadori et al. 2014). 
However, in order to account for the full range of possible models, the use of conditional 
exceedance models requires the fitting of several models (e.g. by conditioning on each 



variable once). 
Multivariate distributions of higher dimension also exist both for componentwise maxima 
and threshold exceedances. Max-stable distributions arise from the limiting behavior of 
vectors of componentwise maxima (block maxima) (Segers et al. 2012, Ribatet et al. 2013) 
and there exist a number of parametric max-stable models, e.g. Brown-Resnick processes, 
the Smith model, or the Hüsler-Reiss model (Davison et al. 2012). Max-stable process models 
have e.g. been used to model the spatial dependence of rainfall extremes (Davison et al. 
2012, Le et al. 2018). 
Similarly, multivariate generalized Pareto distributions result from the limit distributions of 
exceedances over multivariate thresholds of different variables (Rootzen et al. 2006, Rootzen 
et al. 2018, Kiriliouk et al. 2018). These multivariate generalized Pareto distributions can be 
applied to a wider range of applications than max-stable models because they do not require 
the definition of pairwise extremes.  
Another flexible alternative to max-stable models are multivariate copula models such as 
vine copulas which extend to higher than two to three dimensions (Bedford and Cook 2002, 
Graeler et al. 2013). Vine copulas construct high-dimensional copulas by mixing conditional 
bivariate copulas in a stagewise procedure, i.e. by modeling pairwise dependencies with 
bivariate copulas (Graeler et al. 2013).’ 
Modification: p.15, l.350-377 

Point-by-point comments: 

Line 28 and Line 280: my suggestion is to cite textbooks or the original journal papers where 
these concepts are first defined. For example, G. Salvadori and C. De Michele earlier works. 
Reply: Thank you for this suggestion. I included a few of the original journal papers, where 
the return period concept was introduced, and the paper by Salvadori and De Michele. 
Modification: p.13, l.293 

Line 88: “precipitation dependence” dependence to what? 
Reply: I specified that I was referring to ‘precipitation spatial dependence’. 
Modification: p.4, l.75 

Figure 4: it would help to have more information on how drought is defined 
Reply: I specified that ‘droughts were here defined using a variable threshold at the 15th 
flow percentile.’ 
Modification: p.6, caption Figure 3 

Lines 182 – 200: discussion about variables dependence is a bit vague. Which variables? Is it 
a bi-variate dependence? The example of dependence between peak and volume for 
hydraulic design should be elaborated further. 
Reply: Thank you very much for pointing out the need for clarification. I provide a few 
examples of variable pairs of interest, specify that we are talking about bivariate 
dependence, and use the example of peak-volume to illustrate the importance of considering 
bivariate/multivariate relationships in hydraulic design by adding the following sentences: 
‘For example, flood duration and volume or flood volume and flood peak show strong 
correlations (Figure 5), i.e. they show bivariate dependence. […] Such bivariate 
interdependence is e.g. found for drought deficit and duration or drought deficit and intensity 
(Figure 5a,b).[…] Such dependence, e.g. between peak discharge and flood volume, is 



important for hydraulic design because dam failure depends not only on flood peak but also 
volume (De Michele et al. 2005). 
Modification: p.9, l.210-211 

Line 321: studies in higher dimensions should be added to the manuscript 
Reply: I rewrote Section 3 (Modeling multivariate extremes) and added a subsection called 
‘multivariate distributions’, which discusses different models for multivariate extremes 
including conditional exceedance models, max-stable models, the multivariate generalized 
Pareto distribution, and high-dimensional copula models such as vine copulas. 
Modification: p.12-16, Sections 3.1-3.3 

  



 

Reviewer 2 

This manuscript presents a review of some hydrological problems that can be characterized 
in terms of a multivariate extreme value distribution. The identified hydrological conditions 
that require a probabilistic estimation in terms of event magnitude and occurrence are listed 
and briefly discussed along with the metrics that can be generally used to determine the 
dependence among the variables. Further, copula for multivariate frequency analysis and 
continuous time serie simulation are introduced as strategies for modeling those 
phenomena. Due to the variety and complexity of the problems mentioned in the review 
paper, each of them is only hinted at, missing an in-depth discussion about several 
important issues. Further, many interesting works about multivariate statistical modeling are 
not mentioined at all; indeed, also the most recent literature on the topic is very rich. Based 
on these consideration, I suggest the Author to revise her work trying to improve the 
description of the phenomena, especially those problems that are still unsolved, and enlarge 
the state of the art description referring the interested readers to the most recent papers 
(and books) that provide well established and innovative solutions with a deeper insight into 
the mentioned problems.    
Reply: Thank you very much for your assessment and for highlighting that the discussion of 
multivariate statistical models was too superficial in the first version of the manuscript. I 
rewrote Section 3 (Modeling multivariate extremes) by including multivariate statistical 
models going beyond copula approaches, which are applicable to higher dimensional 
problems such as spatial extremes. Furthermore, I substantially expanded the description of 
metrics used to describe the four types of multivariate hydrologic extremes I focus on in this 
review, i.e. regional extremes, consecutive extremes, extremes with multiple characteristics, 
and extremes transitions. 
Modification: p.12-16, Sections 3.1-3.3 

 


