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A) Voluntary changes 
 

Lines 15-18: We realized that the main conclusion (we proved no entity awareness is present in the 

model) was absent from the abstract, and completed it. 

 

Lines 183-185: changed for improved intelligibility. 

 

Lines 349-253: Wording changed for better readability. 

 

Caption of Figure 6: Added further explanations as we realized that the baseline dotted line indicator 

was not explained yet.  

 

 

  



B) Changes with respect to Reviewer #1 

The authors have presented an application of machine learning techniques to create a global model 
of groundwater levels in Germany. They compared two different input model settings: one with 
static features and one with dynamic features. Additionally, they compared these settings with two 
reference cases, one with random entity variables and a second without entity variables. Their 
results indicate that both model settings perform well under in-sample conditions, but their 
performance diminishes in out-of-sample conditions. The work aligns with the growing trend in this 
field, introducing entity-aware methods to hydrogeology and yielding promising results. I believe the 
paper has the potential for publication, but there are some points that need to be addressed before 
publication. 

We thank Reviewer 2 for his positive assessment. We will address his valuable 

suggestions as itemized below in our responses (blue).  

➔ Explanations regarding implemented changes in the updated manuscript are now 

itemized in red. 

Limited Machine Learning Methods Tested: The authors only tested two machine learning methods, 
LSTM and CNN. There are powerful alternatives like Transformers, which have outperformed LSTM in 
other studies (https://doi.org/10.1016/j.apr.2023.101833). LSTM models are designed for handling 
transient conditions, whereas CNNs are adapted to do so. There are various other methods like 
extreme gradient boosting that have been applied in hydrogeology that can be a powerful alternative 
to CNN (cite: https://doi.org/10.1016/j.watres.2023.119745, https://doi.org/10.1007/s10661-020-
08695-3, https://doi.org/10.1016/j.scitotenv.2021.151065). The authors should explain why they 
chose not to explore more advanced models before attributing out-of-sampling prediction issues to 
dataset limitations. 

Reviewer 1 is right in that potentially more powerful AI models might be available, when 
considering absolute performance. However, there are sound reasons why we chose to stick 
with LSTM (and CNN) models. First of all, as outlined in the introduction, and as elaborated in 
detail in a recent review by Tao et al. (2022) cited in the paper, LSTM and CNN are currently 
the predominant model class in groundwater level modelling. This is because they 
consistently deliver high-class performance while maintaining some degree of model 
simplicity, thereby satisfying Occam’s Razor. The mentioned extreme gradient boosting 
proved to be powerful in groundwater quality modeling. However, this is a related but 
different field from groundwater level modeling with a number of significant differences, 
making methods not directly transferable. Transformers seemed promising 1 or 2 years ago, 
and their suitability as a general-purpose method beyond its original domain (language 
modeling) are increasingly called into question because they can be outperformed by more 
simple linear DL models (Zeng et al., 2023), notably across the board (Das et al., 2023). In 
conclusion, while testing different newer/other models to increase overall performance is 
desirable, this needs a separate study with careful model selection and a clear experimental 
design geared towards appropriate research questions. This was out of scope for the study at 
hand, which deals with theoretical questions regarding entity awareness. Regarding this 
manuscript, we will further elaborate the choice of LSTM and CNN over other methods in the 
papers’ introduction along the line of above argumentation.  

➔ We significantly expanded the introduction according to our response in lines 89-115.  



Data Fusion Method Comparison: In Line 164, the authors propose a new data fusion method. Did 
they compare this method to existing methods to demonstrate its benefits and limitations? 
Comparing it to cited methods would provide valuable insights. 

The data fusion method used in the study is not new but well-established in various fields 
(e.g. Liu et al. 2022, Miebs et al., 2020). However it is true that it in other studies in 
neighboring disciplines (e.g. Kratzert et al. 2019), often a more simplistic approach of 
duplicating the static input features in each time step is used. As discussed e.g. in Miebs et al. 
(2020), this is not an optimal choice for an RNN architecture. Such an approach leads to a 
significant increase in the number of RNN parameters, since duplicated static features are 
evaluated each time for every sequence. Moreover, these duplicate data do not add any 
meaningful additional information. As a consequence, the training of such a network is both 
memory- and time-consuming (in our case it tripled the computation time in some initial 
experiments and, moreover, showed rather similar results). We are also aware that there are 
more sophisticated approaches of combining dynamic and static features in machine learning 
models (like using static features to initialize cell states in LSTMs or to learn attention 
weights). But even though we agree with the reviewer, that a comparison of different data 
fusion methods would provide valuable insights, this was not the scope of our study. Again, 
we chose a well-established method that yielded good results as a basis for our actual 
question of research. 

➔ We extended the argumentation in lines 203-211. 

Introduction: The introduction lacks a description of the study area, which should be addressed since 
the model applies to a single case study. Adding a figure depicting the study area and well 
distribution would enhance the paper's context. 

We thank Reviewer 1 for the useful suggestion. We will add a map with study are to the 
revised manuscript. 

➔ We added a map to the appendix of the manuscript. 

Well data selection (Line 104): Quantitatively explain what "spatial coverage as representative as 
possible" means. Clarify if there is a minimum distance between wells, data density per area, or any 
specific criteria used for well selection. Provide the original dataset size from which data was picked. 

The groundwater data used in this study was primarily chosen because it is a readily available 
dataset that is already published (Wunsch et al., 2022), enabling reproducibility and 
circumventing the need to assemble and publish a new dataset, which is a very time 
consuming and painful process in Germany due to data accessibility problems, unnecessarily 
delaying paper publication in a competitive field. We will remove the note on data 
distribution and will instead expand the justification to use a pre-published dataset for 
reproducibility and refer the reader to the published paper of Wunsch et al. (2022). We hope 
this, together with the visual evidence of the datasets’ actual distribution from the map (see 
comment above) will suffice Reviewer 1. 

➔ We changed text in lines 128-132. 

Upscaling (Line 136): Elaborate on the importance of not having too fine-grained categorical data. 
Describe the upscaling process and how the authors ensured that each category is correctly 
represented. Provide references or explore the effect of upscaling on training and prediction. 



We realize the passage in the manuscript is written ambiguously. There was no upscaling 
involved on our side. Instead, we simple had several categorical datasets of the same type at 
hand and chose the one with less categories. As an example, for soil type, we had the choice 
between a product called “buek200” with a scale of 1:200,000 which has more than 550 
different soil type categories, and another product called “buek5000” with a scale of 
1:5,000,000 which has only 23 categories, and which is a generalized version of buek200 on a 
larger scale. Buek5000 was chosen because communality of soil type classes between 
groundwater locations would be impossible with buek200: Using buek200 would almost 
certainly lead to every location having a unique soil type, thus not allowing any study of 
entity awareness. This is the selection process we wanted to describe in line 136. We will 
elaborate this better in the text.  

➔ We added further explanations in lines 165-170. 

MLP Classifier (Line 168): Explain the advantages of adding an MLP classifier rather than providing 
static features directly. Address concerns about uncertainty propagation due to MLP output in the 
concatenation. 

We are not sure what reviewer #1 means here. We did not use an MLP classifier, but an MLP 
for processing the static features (as a regression, not classification). We refer to the point 
above on data fusion. The chosen approach is a well-established method for the 
incorporation of static features into recurrent neural networks, see e.g. Miebs et al. 2020. 

➔ No action was required. 

MLP Output Nodes (Line 170): Specify the number of output nodes in the MLP. 

All numbers of output nodes are given in the text. In line 170 we write “with one fully 
connected (Dense) layer of size 128 in the static model thread.” 

➔ No action was required. 

Validation MSE (Figure 2): Explain the phenomenon where the validation MSE is smaller than the 
training MSE, especially in the initial epochs. This could indicate a bias in the validation dataset, and 
clarification is needed. 

We thank Reviewer 1 to point us towards this aspect that is not sufficiently elaborated yet. 
The shape of the losscurves indeed indicates bias in validation data, which is probably also 
the case for the test data. This is due to the fact that validation data is not uniformly sampled 
over the whole time period, but the fixed time period of 2008-2011 (and test data being 
2012-2015), as specified in the paper. These periods are the most recent data period, and it 
was consciously chosen as fixed due to the fact that the aim is forward prediction of 
groundwater levels, meaning that the most recent groundwater levels are most 
representative for a possible future (as opposed of choosing rolling time periods for 
validation and testing). We will elaborate this better in the revised version of the manuscript. 

➔ We added a paragraph at the end of Chapter 3.2 (lines 269-274). 

Feature Importance (Line 245): Suggest using the SHAP method (Lundeberg and Lee, 2017, 
https://doi.org/10.48550/arXiv.1705.07874) for more stable feature ranking, as it has been used 
effectively in similar studies (Ransom et al., 2020, https://doi.org/10.1016/j.scitotenv.2021.151065). 

https://doi.org/10.1016/j.scitotenv.2021.151065


Thank you for this suggestion. We are aware of the SHAP method and we have also used it 
ourselves before in other studies (i.e. Wunsch et al. 2022). However, it is quite 
computationally intensive, and that is why we preferred Permutation Feature Importance 
here. We will better explain the choice of Permutation Feature Importance over other XAI 
methods (like SHAP or Layerwise Relevance Propagation) in the revised version and we will 
take the suggestion up in the manuscripts’ discussion as a potential alternative method.  

➔ We changed/ expanded the text in lines 297-298 as well as lines 398-399. 
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C) Changes with respect to Reviewer #2 
 

Overview 

The authors develop an entity-aware deep learning model for spatially and temporally 

continuous groundwater level prediction using a combined Long Short-Term Memory 

(LSTM) and MultiLayer Perceptron (MLP) network. They rely on ground observations from 

108 wells in Germany and other dynamic and static predictor data obtained from multiple 

sources to train, validate, and test the model. The authors also perform some interesting 

comparisons of four model variants, namely, the time series feature-driven model (TSFeat), 

environmental feature-driven model (ENVfeat), random static features (RNDfeat), and 

dynamic inputs only features (DYNonlyfeat). While there are some issues with spatial 

generalizability in the out-of-sample setting, the model shows satisfactory performance with 

the Nash-Sutcliffe Efficiency (NSE) > 0.8 in an in-sample setting.  

Overall, the manuscript is generally well-structured, with detailed explanations of the 

methodologies and data. However, the following comments should be addressed before this 

manuscript is published.  

We thank Reviewer 2 for his positive assessment. We will address his valuable 

suggestions as itemized below in our responses (blue). For the sake of a clear 

overview, all references initially provided by Reviewer 2 were omitted from this 

answer. They can still be found in the original Review.  

➔ Explanations regarding implemented changes in the updated manuscript are now 

itemized in red. 

Major Comments 

The authors should discuss relevant literature that incorporates process-based, machine 

learning, or hybrid models and remote sensing data for groundwater level monitoring. The 

Introduction section should highlight the relevance of this topic more and refer to some of the 

negative impacts of groundwater depletion and why groundwater level monitoring is 

essential. 

Reviewer 2 is right in that the introduction could use some further expansion on the 

need for groundwater level monitoring and modeling due to threats to sustainable 

groundwater use as lined out beautifully by the literature provided by Reviewer 2. We 

will add some more sentences on these aspects in a revised version. 

Regarding discussion on process-based models, we refer to line 21-26, where it is 

argued that numerical models are not suitable for the national scale. Accordingly, there 

is no national numerical groundwater model that could be discussed. We will add this 

fact to the discussion in line 21-26, and will expand on alternative applications like 

e.g. the process-based estimation methods in the central valley study provided by 

Reviewer 2 – which are, however, also unavailable in Germany.  

Regarding remote sensing data studies, we point out that our study focusses primarily 

on analyzing a general theoretical problem with entity aware models, leaving the 

question open how remote sensing data could be generally beneficial in this. 



➔ We added further justifications in lines 24-30. 

In addition to the predictor data summary, the authors should include a description of the 

predictor data listed in Tables 1 and 2 and the associated uncertainty. In Table 2, what does 

selfderived mean? Would snow water equivalent and soil moisture be helpful as additional 

predictors to capture the groundwater dynamics better? The authors should make a stronger 

case for selecting HYRAS 3.0 than other globally available land-surface models like the 

Global Land Data Assimilation System (GLDAS), which provides spatially and temporally 

continuous estimates of various hydrological processes acting as critical drivers of 

groundwater dynamics. 

We agree with Reviewer 2 that descriptions of static features in table 2 are rather brief 

for readers who are unfamiliar with this data. We will add extended descriptions of the 

static features and the associated uncertainty in the revised manuscript. 

In table 2, self-derived means that we did not take these static features from an 

existing dataset, but we calculated them from the dynamic meteorological input 

features ourselves. We will clarify this in the table, thank you for highlighting the 

ambiguity.  

➔ We updated table 2 where we thought the explanations needed to be expanded. 

Descriptions in table 1 are exhaustive yet concise in our opinion. 

Yes, additional dynamic input features such as snow water equivalent, soil moisture or 

others have the potential to positively impact model performance. However, the 

overall best performance was not the scope of this study, which deals with theoretical 

considerations regarding entity awareness.  

We relied on the HYRAS dataset, as it has proved its suitability in several studies 

before (e.g. Wunsch et al. 2021, 2022), and has a higher spatial resolution than the 

global datasets available. Moreover, we used the same meteorological dataset as in 

Wunsch et al. (2022) allowing a better comparison with their results for the single well 

method. 

We will sharpen the formulation of the research aims in the introduction, and the data 

section regarding HYRAS in order to make this point clearer. 

➔ We extended argumentation in lines 139-140. 

The authors should include the model forecasts beyond January 2016. While it may be 

challenging to obtain in-situ groundwater levels between 2016-present, it would be interesting 

to observe how the model predictions compare to the GRACE- and GRACE Follow-On 

(GRACEFO)-based total water storage changes (https://grace.jpl.nasa.gov/data/data-analysis-

tool/) at a regional or national scale. This comparison would serve as an additional model 

validation and strengthen the manuscript.  

We agree that inclusion of model forecasts beyond 2016 would be advantageous. 

However, because we rely on a previously published dataset, we have no way of 

updating this data.  

Also, we argue that GRACE could not feasibly be used as a substitute for groundwater 

level measurements or as a comparison within the scope of our study, due to its 

inherent coarse spatial and temporal (monthly) resolution. Moreover, it constitutes a 



different variable (total water storage changes, as opposed to groundwater level 

directly) with inherent uncertainties in the computation of groundwater storage and 

subsequently groundwater levels, relying on various additional data. This would 

distort the original scope of our study, which focuses on theoretical and 

methodological considerations regarding entity awareness. 

➔ No action was required. 

There should be an additional section (or a subsection within the Introduction) describing the 

study area and related studies on groundwater level changes. Also, the spatial distribution of 

the 108 well locations should be shown on a map.  

We agree with Reviewer 2, that a (sub-)section describing study area, accompanied by 

a map, will be useful. We will include it.  

➔ We added the map to the appendix and discussed the study area in more depth in 

lines 127-132. 

Regarding a (sub-)section on ‘related studies on groundwater level changes’, it is 

unclear what reviewer 2 means by this broad formulation. There are multiple entire 

research fields occupied with groundwater level changes. We are confident that we 

reviewed the literature relevant to our study’s domain allocation appropriately in the 

introduction, but will happily update this discussion with the resourced provided by 

Reviewer 2 (e.g. the ones provided in Reviewer 2’s final major comment).  

➔ We added citations to the introduction, see answer to last comment of reviewer. 

What are the 11 land cover classes in the CLC data? How are these used in the model? Can 

the categories be reduced by aggregating to a base class? E.g., crops aggregated to ‘

Agriculture,’ urban/industry to ‘Urban,’ and so on? Is there no significant change in 

built-up or irrigated areas within the temporal domain of the model? The potential effects of 

land use changes on the model performance should be discussed. Also, the percentage of land 

use classes should be described in the Study Area section. 

The CLC is used as a one-hot-encoded static feature input to the ENVfeat model 

variant, next to the other 17 static environmental features. Yes, they could be reduced 

to fewer classes, there are e.g. 3 forest classes that could be combined into one, and 4 

different urban classes that could be combined. However, from our conceptional 

understanding, using the single classes as defined makes more sense (e.g. the 

groundwater recharge in coniferous forest is significantly smaller than in deciduous 

forest, thus groundwater level should react differently in both forest classes to 

meteorological inputs, the same applies to continuous and discontinuous urban fabric 

etc.). 

Second, yes, there can be land use change over time, but in general, Germany – as a 

highly developed and densely populated country where use of land is subjugated to 

densely layered interests with extensive laws preventing unauthorized land use change 

– has very limited land use change over time. There is one notable exception, namely 

that about 8% of the countries area switched from arable land to forests over the period 

1982-2016 (Song, 2018). All other land use types remained stable. We therefore 



consider land-use as a quasi-static feature. We will add text to explaining this aspect in 

the revised version of the manuscript. 

➔ We added further elaborations in lines 177-180. 

The corresponding time series of the dynamic predictors for the two wells in Figure 5 should 

be added and tied up with the discussion related to the permutation feature importance. 

Thank you for this suggestion. We could add a figure that includes the dynamic 

predictors (at least P, T and rH) for the shown wells. However, we think that this 

would overload figure 5 at the present state and distract the reader from the actual 

point of discussion in figure 5 (i.e. the comparison of the in-sample and out-of-sample 

performance). If you insist, we suggest adding a separate figure. However, we think 

that setting the dynamic inputs features for selected single wells into relation to the 

permutation feature importance, which shows an average importance over all wells, is 

difficult anyway. 

➔ Because the offered choices were not addressed by editor or reviewer, we stick 

with the argumentation in our response and leave it as it is. 

Evapotranspiration (ET) is the second largest component of the water cycle after precipitation 

(https://openetdata.org/what-is-evapotranspiration) and is a critical driver of groundwater use, 

which, in turn, is correlated to groundwater levels (Majumdar et al., 2020; 2022; Brookfield et 

al., 2023; Melton et al., 2021; Senay et al., 2022). Why didn’t the authors include it as a 

dynamic predictor and instead rely on the potential ET (Table 2)? While the OpenET and the 

Landsat-derived actual ET products are currently available only over the conterminous United 

States (CONUS), the globally available 500 m MOD16 actual ET is available within the 

temporal domain of the model. Thus, the authors should justify the choice of their predictors. 

We agree that ET is an important dynamic predictor for groundwater levels, which 

could potentially improve the overall model performance. But as pointed out already 

above, we stick to the HYRAS dataset for the dynamic meteorological inputs (which 

does not include ET as a modelled parameter) for several good reasons. Moreover, ET 

is mainly controlled by temperature and relative humidity, which are included in our 

dynamic predictors. 

➔ No action was required. 

Lines 50-60: While the proposed machine learning-based method of using multiple wells to 

develop an entity-aware global groundwater level prediction model is new, earlier studies 

have integrated remote sensing, climate, and hydrogeologic data in a machine learning 

framework for estimating annual groundwater withdrawals (Majumdar et al., 2020; 2021; 

2022; Wei et al., 2022) and land subsidence (Smith & Majumdar, 2020; Hasan et al., 2023). 

For the studies on groundwater withdrawal estimation, a single machine learning model was 

trained and validated using in-situ pumping measurements from multiple wells across vast 

geographical areas (states of Kansas and Arizona in the U.S.). Thus, the authors should 

clearly convey that the novelty lies in groundwater level monitoring rather than the entire 

hydrogeology domain. 

We thank Reviewer 2 for highlighting this research. We were not aware of these 

studies and will include them in the introduction section where existing global models 



are discussed (line 50 ff.), and point to the novelty concerning groundwater level 

modelling. 

➔ We added relevant citation lines 58-59. 

Minor Comments 

Line 94- Fix typo: followed by a brief introduction. 

We will fix this, thank you.  

➔ Fixed. 

What are the spatial resolutions of the predictor data listed in Table 2? How do the authors 

map the groundwater wells to these gridded raster datasets? 

Thanks for spotting this. We forgot to add the information that environmental feature 

values were simply selected at the location of the respective groundwater well. We 

will add this information and will specify resolution in Table 2.  

➔ We added the information to the table caption that environmental feature values 

were simply selected at the location of the respective groundwater well. Due to this 

sampling method, specifying resolution is redundant information and was left out, 

as no spatial aggregation/ data fusion was performed.  

Report other error metrics like the coefficient of determination (R2), root mean square error 

(RMSE), and the mean absolute error (MAE) in Table 3. 

Yes, we can report other error metrics. We will add R^2 and KGE in table 3 (Reviewer 

2 probably means table 3 here). RMSE and MAE are not suitable, because they are not 

comparable between different sites due to different reference height, amplitude etc.  

➔ In the end we added R2 and RMSE, as sadly KGE was not available for the 

published benchmark single-well models. 

The CLC acronym is not defined. 

Thank you for pointing this out. CLC first appears in Table 2, we will add definition 

there. 

➔ Implemented as promised. 

Do the authors scale all the features? What scaling is applied? 

As mentioned in line 187, all dynamic features were standardized, i.e. standard scaled. 

However, we realized that the scaling method for the static features is not mentioned 

in the paper. Thank you for pointing this out, we will add this information in section 

2.2 or 3.1. Numerical static features were standard scaled as well, categoric static 

features were one-hot encoded. 

➔ We added explanations in lines 189-190. 

Lines 235-240: For the out-of-sample setting, are the scores only calculated for the testing 

period of a well that has been left out of model training? Why not calculate the score for the 

entire period? 



Yes indeed, scores are only calculated for the testing period of each well. We will point this 

out in the revised version.  From the aspect of data leakage, it would have been possible to 

include the scores for the entire period of the left-out wells in the out-of-sample setting. 

However, we decided to stick with the same test period to allow direct comparability with 

the scores in the in-sample setting. As reviewer #1has correctly remarked, there is a (for 

groundwater level time series practically unavoidable) bias in the test set, thus, changing it 

would mean to lose this comparability. 

➔ We realised this information is already included in the manuscript; see middle of last 

paragraph in chapter 3.1 (where NSE is defined). Still, we still extended it a little bit in 

lines 225-229. 
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