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Abstract. The filling of the Grand Ethiopian Renaissance Dam (GERD) started in 2020, posing additional challenges for

downstream water management in the Blue Nile River in Sudan, which is already struggling to cope with the effects of cli-

mate change. This is also the case for many transboundary rivers that observe a lack of cooperation and transparency during

the filling and operation of new dams. Without information about water supply from neighbouring countries, it is risky to

manage downstream dams as usual and operation information is needed to apply modifications. This study aims to develop5

a novel approach/framework utilizing hydrological modelling in conjunction with remote sensing data to retrieve reservoir

filling strategies under limited data availability. Firstly, five rainfall products (namely; ARC2, CHIRPS, ERA5, GPCC, and

PERSIANN-CDR) were evaluated against historical measured rainfall at ten stations. Secondly, to account for input uncer-

tainty, the best three performing rainfall products were forced in the conceptual hydrological model HBV-light with potential

evapotranspiration and temperature data from ERA5. The model was calibrated during the period 2006 - 2019 and validated10

during the period 1991 - 1996. Thirdly, the parameter sets that obtained very good performance (NSE > 0.75) were utilized to

predict the inflow of GERD during the operation period (2020 - 2022). Then, from the water balance of GERD, the daily stor-

age was estimated and compared with the storage derived from Landsat and Sentinel imageries to evaluate the performance of

the selected rainfall products and the reliability of the framework. Finally, three years of GERD filling strategies were retrieved

using the best-performing simulation of CHIRPS with RMSE of 1.7 and 1.52 billion cubic meters (BCM) and NSE of 0.77 and15

0.86 when compared with Landsat- and Sentinel-derived reservoir storage, respectively. It was found that GERD stored 14%

of the monthly inflow of July 2020, 41% of July 2021, and 37% and 32% of July and August 2022, respectively. Annually,

GERD retained 5.2% and 7.4% of the annual inflow in the first two filling phases and between 12.9% and 13.7% in the third

phase. The results also revealed that the retrieval of filling strategies is more influenced by input uncertainty than parameter

uncertainty. The retrieved daily change in GERD storage with the measured outflow to Sudan allowed further interpretation20

of the downstream impacts of GERD. The findings of this study provide systematic steps to retrieve filling strategies, which

can serve as a base for future development in the field, especially for data-scarce regions. Locally, the analysis contributes

significantly to the future water management of the Roseires and Sennar dams in Sudan.

1



1 Introduction

The optimal management of water resources is challenging as we increasingly experience the impacts of climate change and25

increasing water demand due to population growth (Stakhiv, 2011). Transboundary rivers pose even greater challenges to water

management, for example, when structures such as dams are built by upstream countries, impacting downstream flow regime

(Biswas, 2008) and mean water availability during the filling phase. The absence of collaboration has disastrous impacts in

these regions, as collaboration increases water revenues and reduces the risk of extreme events (Basheer et al., 2018; Wheeler

et al., 2018). There is, however, the possibility of conflicting dynamics in many transboundary basins due to the different30

policies and strategies between neighbouring countries (Warner and Zawahri, 2012). As a result, a lack of transparency on the

filling/operation of dams and other infrastructures is often witnessed.

The Blue Nile River is an example of a transboundary river where infrastructure influences downstream dynamics. A current

challenge faced by the Ministry of Irrigation and Water Resources of Sudan (MoIWR) is the management of the Nile River.

Around two-thirds of Nile water is supplied by the Blue Nile River (Dumont, 1986). This river originates in Lake Tana,35

Ethiopia, and subsequently flows northward to meet the White Nile River (originates in Lake Victoria, Uganda), where the

Main Nile River starts in Khartoum, the capital of Sudan, as shown in Fig. 1.A. In April 2011, the Ethiopian government

started the construction of the Grand Ethiopian Renaissance Dam (GERD) in the Upper Blue Nile (UBN) basin, around 15

km east of the Ethiopia-Sudan border. The dam, when completed, will be the largest hydropower dam in Africa with a storage

capacity of 74 billion cubic meters (BCM) and a power capacity of 5150 Megawatts (Ezega News, 2019). It was constructed40

without an agreement with downstream countries (i.e., Sudan and Egypt), which caused hydro-political tension between Sudan,

Egypt, and Ethiopia (Gebrehiwet, 2020). Moreover, water management in Sudan is very closely tied to reservoirs. The Roseires

dam, for example, plays a significant role in managing drinking water as well as irrigation water for downstream projects and

is closely coordinated with the Sennar dam downstream (Alrajoula et al., 2016) (see Fig. 1.B). Around 35% of the Sudan

allocation of Nile water is consumed by the Gezira scheme, which is supplied by the Sennar dam (Adam et al., 2003). The45

Gezira scheme, with a total area of 8800 km2, is regarded as one of the largest irrigation schemes in the world under a single

management structure (Ahmed et al., 2006). It, therefore, plays a considerable role in the socio-economy of Sudan.

The construction of GERD, in combination with a low level of coordination between Ethiopia and Sudan, poses a threat to

water management in Sudan. For instance, floods are frequently experienced in Khartoum state, where 16% of the population

lives (World Population Review, 2022). In the past 35 years, flood events were observed, on average, every 5 years. The latest50

flood of 2020 was unprecedented, where water levels exceeded all previous events (NASA Earth Observatory, 2020). In the

same year, the filling of GERD started without sharing information with Sudan and Egypt. As shown in Fig. 1.B, the Roseires

dam is located only around 120 km downstream of GERD. Without knowledge of GERD operation strategies, management of

the Roseires dam is a considerable challenge. Knowledge of operation strategies is thus essential for flow prediction and water

management in downstream areas.55

It is clear that the operation of the dams along the Blue Nile River has significant implications for food security, flood pro-

tection, water availability, and hydropower generation downstream in the Main Nile River. Nonetheless, Ethiopia has yet to
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Figure 1. Study area overview: (A) The geographical location of the Blue Nile Basin with the Upper and Lower parts, and (B) a Digital

Elevation Model (SRTM 30m) map of the Blue Nile Basin and location of the Gezira Irrigation Scheme, dams and the Eldiem streamflow

station, (C) Upper Blue Nile subbasins with the location of the rainfall gauge stations. Basins boundaries and drainage network are obtained

from the HydroSHEDS dataset (Lehner et al., 2008) and national boundaries were based on the Database of Global Administrative Areas

(GADM, 2012). The name and coordinates of each rainfall gauge station are demonstrated in Table 3.

share information on GERD filling, thus hindering water management in Sudan. Therefore, obtaining filling/operation infor-

mation using alternative means is urgently needed to support the operation of both; the Roseires and Sennar dams. Different

approaches exist to understand dam operation and reservoir water storage. One approach relies on satellite remote sensing60

and radar altimetry. At a global scale, satellite-derived water heights and extents were used to reconstruct storage dynamics

(Hou et al., 2022). Vu et al. (2022) revealed reservoir filling strategies and operating rules of ten dams along the Upper Mekong

River using Landsat images & radar altimetry. Another approach is using a process-based hydrological model to simulate water

inflow, storage, and release. Eldardiry and Hossain (2019) predicted reservoir operating rules of High Aswan Dam in the lower

Nile River basin using satellite hydrometeorological observation and a macroscale hydrologic model. Also, Wannasin et al.65

(2021) simulated the daily storages of two reservoirs using a distributed hydrological model and a reservoir operation module.

In this study, we aim to develop a novel approach to infer reservoir management strategies under limited data availability.

In our approach, two techniques, hydrological modelling and Earth observation, are combined to retrieve reliable reservoir

records. Then, we reconstruct management strategies based on further analysis of the retrieved records. The merits of this

approach include: (1) facilitating proactive flow forecasting for real-time operations, (2) generating refined and more consistent70

reservoir data, thereby supporting hydrological analyses at various temporal scales, and (3) permitting the assessment of the

influence of different input uncertainties on the inference of the management strategies.
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As part of this study, we will analyze the implications of input data and parameter uncertainty in inferring the filling strate-

gies. As a case study, the research will be conducted on the UBN basin to understand the filling stages of GERD and its impact

on downstream discharge. Specifically, the study will quantify the volume of water stored behind the GERD based on known75

outgoing flow to Sudan as well as the daily reservoir storage change. The output of this study intends to provide information

to support the management of the Lower Blue Nile River in Sudan. Nonetheless, the work does not attempt to use the findings

to optimize current management practices since this would go beyond the goal of this study. Therefore, we will aim to answer

the following questions:

1. How can hydrological modelling and remote sensing be leveraged to effectively infer GERD management strategies?80

2. What is the implication of rainfall selection and parameter uncertainty on the inference of GERD management strategies?

3. What is the impact of GERD reservoir filling on the flow to Sudan during the first three phases (2020 - 2022)?

The outline of the study is as follows: the study area and data are briefly described in Section 2. The methodology, including

the evaluation of selected rainfall products, the use of hydrological modelling, and the inference of reservoir storage, are

detailed in Section 3. In Section 4, the results of the study are presented and discussed in Section 5. Finally, the conclusion of85

the work done is summarized in Section 6.

2 Study area and data

2.1 Upper Blue Nile basin

The Blue Nile River basin has a drainage area of 310,000 km2 that is shared between Ethiopia (64%) and Sudan (36%). From

lake Tana, in the north-western Ethiopian Highlands, at 1780 m a.s.l the water is supplied and flows clockwise through the90

eastern mountainous side of the basin to the western lower altitude side. A few kilometres after the Ethiopia-Sudan border,

the water is measured at the outlet of the UBN basin at Eldiem station (481 m a.s.l). Afterward, the water is drained from the

Lower Blue Nile (LBN) basin through the Blue Nile River and its tributaries; the Dinder River and the Rahad River, to the

Main Nile River as shown in Fig. 1.B.

The UBN basin will be the area of interest for this study which covers an area of around 176,000 km2. The basin is subdivided95

into 14 sub-basins as shown in Fig. 1.C. The rainfall of the UBN basin ranges from 1000 mm yr−1 near the Ethiopia-Sudan

border to 2200 mm yr−1 in the Didessa and Dabus subbasins, reflecting the high spatial variability of precipitation associated

with topographical features (i.e., so-called water towers) that is typical for much of Eastern Africa (Wamucii et al., 2021). There

is a high, but spatially variable, mean potential evapotranspiration, which varies between 1000 and 1800 mm yr−1 (Conway,

2000). A typical annual air temperature in the basin ranges from 13◦C to 26◦C (Tekleab et al., 2013). The discharge regime of100

the Blue Nile River is highly seasonal, with more than 80% of its annual discharge occurring between July and October and

only 4% between January and April (Kim and Kaluarachchi, 2009; Sutcliffe et al., 1999).
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Table 1. Main characteristics of the available ground measurements.

Data Type Temporal

Resolution

No. of Stations Available

Years

Discharge Daily 1 1990 - 2022

Rainfall Monthly 8 1984 - 2005

Rainfall Monthly 2 (St. 6&7)* 1993 - 1999

* See Fig. 1.C

Four main land uses dominate in the UBN basin, which are cropland (54.74%), open forest (23.62%), shrubland (8.29%), and

closed forest (7.94%) while, the remaining land uses cover only 5.41% of the total area based on the Copernicus Global Land

Service (Buchhorn et al., 2020). The large basin is composed of heterogeneous soil types. According to SoilGRIDS dataset105

(Hengl et al., 2017), the most common types are Leptosols, Luvisols, Vertisols, and Nitisols, respectively, which collectively

occupy 96% of the area.

2.2 Ground measurements

The scarcity of ground measurements in terms of availability and accessibility is a challenge and motivation for this study.

Streamflow stations are scattered in the basin and cover many subbasins, but they are not publicly available. Downstream110

GERD, and after the border, Sudan measures the incoming water at Eldiem station since the 1960s (Fig. 1.B). This data was

obtained from the MoIWR for the period 1990-2022 with a daily timestep. Consequently, the calibration and validation of the

hydrological model will be based on these measurements as will be detailed later. It is worth mentioning that the discharge

at Eldiem station is estimated from measured water levels using rating curves. From 2012 onwards, the Eldiem Station is

influenced by the backwater effect of the Roseires dam during filling months (June - October). During these months, the115

MoIWR estimates the discharge from the water balance of the Roseires dam.

Despite the availability of more than 1200 meteorological stations in Ethiopia, the existing stations within the UBN basin

are not sufficient to cover the spatial variability of the rainfall. Additionally, the measured rainfall data is not freely available

from the National Meteorological Agency of Ethiopia. However, historical monthly rainfall measurements at ten stations were

obtained from the National Meteorological Agency as indicated in Fig. 1.C and Table 1. Therefore, rainfall measurements will120

be used to validate satellite and reanalysis rainfall products available for this region, as remote sensing products cover the entire

basin and recent data are available.

2.3 Input data

Due to the unavailability of the required observed input data, remote-sensing products will be used in this study. These data in-

clude meteorological forcing data (precipitation, potential evapotranspiration, and temperature), and satellite imagery (Landsat125
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Table 2. Summary of the remote sensing products used as inputs in the hydrological modelling over the Upper Blue Nile (UBN) basin.

Input Dataset Spatial resolution Reference

Satellite imagery Landsat 30 m (Survey, 2022)

Sentinel 10 m (Drusch et al., 2012)

Potential Evapotranspiration ERA5 0.25° (Hersbach et al., 2019)

Temperature ERA5 0.25° (Hersbach et al., 2019)

Precipitation ARC 2.0 0.1° (Novella and Thiaw, 2013)

CHIRPS 0.05° (Funk et al., 2014)

ERA5 0.25° (Hersbach et al., 2019)

GPCC 1.0° (Ziese et al., 2020)

PERSIANN-CDR 0.25° (Ashouri et al., 2015)

and Sentinel). The spatial resolution and references of the selected datasets are summarized in Table 2 and will be utilized for

different purposes which are detailed in the following sections.

In this study, the quality of five rainfall products will be tested including the African Rainfall Climatology version 2 (ARC2),

the Climate Hazards Group InfraRed Precipitation with Station Version 2 (CHIRPS), the fifth-generation ECMWF atmospheric

reanalysis (ERA5), the Global Precipitation Climatology Centre full data reanalysis version 7 (GPCC), and Precipitation Esti-130

mation from Remotely Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIANN-CDR). The

potential evaporation and temperature data are retrieved from ERA5.

3 Methodology

3.1 Evaluation of selected rainfall products

As rainfall products will be used as forcing data, it is important to understand how these data perform in comparison with the135

available ground measurements. The selection of a representative product is likely to be crucial in minimizing model output

uncertainty. In this step, the available monthly rainfall observations in the sites shown in Fig. 1.C were used to investigate the

performance of the five mentioned rainfall products using a point-to-pixel approach (see Fig. 2). The approach compares the

time series of observed rainfall to the gridded products assuming that grid-cell values are represented by the corresponding rain

gauge measurements (e.g., Thiemig et al., 2012; Basheer and Elagib, 2019; McNamara et al., 2021). This approach is useful140

for data-scarce regions.

A statistical validation using six performance metrics (three linear fit metrics: R2, Intercept, and Slope; and three error

metrics: MAE, MBE, and RMSE) were calculated using the equations in Table B1 in the appendices. Additionally, to draw

general conclusions, the products were ranked based on the calculation of the Unified Metric (UM: Eq.(1)) and the Overall

Unified Metric (OUM: Eq.(2)) (Elagib and Mansell, 2000). The UM indicates the ranking of each product at each station, while145
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Figure 2. Flowchart representing research methodology. Steps are shown in chronological order, the execution is carried out from left to

right. For rainfall product validation five products are selected which are ARC 2.0, CHIRPS 2.0, ERA5, GPCC, and PERSIANN-CDR. For

storage validation, observed storage will be computed by converting the water surface area observed by Landsat/Sentinel to water volume

using an Elevation-Area-Storage relationship of the GERD reservoir.

the OUM is the sum of the UMs for each product at all stations. Firstly, each product is ranked per station for each metric.

Secondly, the performance rankings are summed up per product with a low value indicating good performance and a high value

indicating poor performance relative to each other.

UMp,i =

K∑
m=1

Rp,m,i (1)

OUMp =

L∑
i=1

UMp,i (2)150

where Rp,m,i is the rank of the product p based on the performance metric m at station i, and OUMp is the Overall Unified

Metric of the rainfall product p. While K and L are the number of considered performance metrics and rainfall stations,

respectively. UM ranges from K = 6 to K× No. of rainfall products = 30. While the minimum OUM value is 60 (K ×L) and

the maximum value is 300 (K ×L× No. of rainfall products).

Based on this analysis, the first three ranked rainfall products will be selected to analyse the influence of the uncertainty in155

the rainfall product on retrieving reservoir storage strategies. This is due to the fact that precipitation changes can dominate

reservoir volume changes (Hou et al., 2022). It is important to note that the rank of the rainfall products might differ if the

analysis was based on the daily timestep that is used in our hydrological model simulations.

3.2 Hydrological modelling

From 57 previous studies in the literature between 2007 and 2022, 26 hydrological models have been implemented in the160

Upper Blue Nile basin (see Table C1). The Soil and Water Assessment Tool (SWAT) and the Hydrologiska Byråns Vattenbal-

ansavdelning (HBV) are the most commonly used models, utilized in 23 and 13 studies, respectively. Both models performed

well in simulating the runoff at the outlet of the UBN basin (Betrie et al., 2009; Teklesadik et al., 2017). Bizuneh et al. (2021)
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compared their performance in the UBN basin and concluded a better performance of SWAT in the three studied watersheds.

However, the HBV conceptual model will be used due to its lower demand for input data compared to the SWAT model and the165

limited number of parameters. HBV is a widely used conceptual hydrological model developed by Bergström et al. (1995), but

with several different implementations being used (Jansen et al., 2021). In this study, a lumped representation of the original

HBV model will be used which is HBV-light (Seibert and Vis, 2012). The lumped model simulates daily discharges using daily

average precipitation, temperature, and potential evapotranspiration over the basin as input (Seibert, 1996). In addition to its

flexibility and computational efficiency, HBV has been successfully applied in the UBN basin (e.g., Uhlenbrook et al., 2010).170

HBV-light will be calibrated for a period of 14 years (70%) from 2006 to 2019 and afterward validated for 6 years (30%)

from 1991 to 1996 (see Fig. 2). The selection of the years was due to a considerable gap in the measurements from 1997 to

2000. Although the climate might show non-stationarity, we still consider the optimized parameters robust enough to draw

conclusions for two reasons. First, the calibration and validation periods extend over a long duration. Second, as noted by

Melsen et al. (2018), parameter sets are not typically the dominating source of uncertainty when considering long-term changes175

simulated with hydrological models such as HBV, which was also employed in this study. Additionally, as a warm-up year, one

year before each period (i.e., 2005 and 1990) will be used to avoid the effect of the initial values. Furthermore, to account for

parameter uncertainty, the generalized likelihood uncertainty estimation (GLUE) method will be adopted (Beven and Freer,

2001). The GLUE method was employed as it is simple and commonly used in hydrology. In hydrological models, Nash-

Sutcliffe Efficiency (NSE) proposed by Nash and Sutcliffe (1970) is widely used as the objective function (Setegn et al., 2010).180

Therefore, different parameter sets will be selected based on NSE exceeding a threshold value of 0.75 which is classified as

very good performance according to Moriasi et al. (2007). Moreover, to evaluate the performance of the hydrological model,

Moriasi et al. (2007) classification will be used.

3.3 Retrieving GERD filling strategies

3.3.1 Reservoir area and storage from satellite observations185

As observations of GERD filling are currently not available, the quantification of the reservoir storage using satellite imagery

will allow to validate the ability of the hydrological modelling in retrieving the filling strategies (see Fig. 2). This can also

provide insights into the sensitivity of storage estimation to the selection of rainfall products.

On the one hand, to derive reservoir storage from Landsat images, Landsat Collection 2 Level 2 was obtained. Landsat was

selected due to its high spatial resolution (30 m) as well as its reasonable revisit time (16 days). Additionally, to increase the190

temporal resolution up to 8 days, images from multiple satellites (i.e., Landsat 7/8/9) were used (steps are shown in Fig. A1.A).

Different indices allow the estimation of the Water Surface Area (WSA), in this study the Normalized Difference Water Index

(NDWI) based on Eq.(3) was selected. Hence, three bands are needed from Landsat which is: the Green (GRN), Near Infrared

(NIR), and Quality Assessment bands.

NDWI =
GRN−NIR
GRN+NIR

(3)195
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Firstly, the images over the GERD reservoir were obtained from the three satellites. However, the images of Landsat 7

contain missing data stripes caused by the Scan Line Corrector (SLC) failure (Scaramuzza and Barsi, 2005). The missing data

were filled using the Fill nodata tool of the Quantum GIS (QGIS, 2009). Then, as the GERD reservoir is covered by two tiles,

the tiles were mosaicked and clipped over the reservoir extent. Based on the NDWI maps, the algorithm of Vu et al. (2022) use

the data to estimate the WSA. This algorithm is an improvement of the algorithm introduced by Gao et al. (2012) and modified200

by Zhang et al. (2014) to allow for the use of Landsat Collection 1 data. The algorithm improves the estimation of the images

with clouds using the cloudless images by removing the clouds, clouds’ shadows, and no-data pixels. The improvement is

two-fold; the selection of cloudless images and the identification of additional water zones. From 2022 onwards, Collection 2

structures only will be used for new Landsat data. Therefore, the algorithm was adapted for the processing of all new Landsat

acquisitions.205

On the other hand, the computation of WSA from Sentinel-2 imagery was performed using the PyGEE-SWToolbox (Owusu

et al., 2022). This open-source toolbox was observed to be a user-friendly, adaptable, and dependable method for quantifying

WSA. The software provides a graphical user interface for obtaining WSA time-series data from diverse satellite imagery

datasets, including Sentinel-2. Consequently, by utilizing NDWI calculations and a predetermined threshold value of 0, we can

accurately detect and classify pixels as water bodies (i.e., NDWI > 0). Detailed steps can be seen in Fig. A1.B.210

Finally, to convert the estimated WSA to storage, an Area-Storage relationship is required. For this, the Elevation-Area-

Storage relationship of the reservoir was produced from the Shuttle Radar Topography Mission (SRTM) digital elevation model

(Farr et al., 2007) using the python code written by Vu et al. (2022). Finally, dates with suspicious values were checked man-

ually and erroneous values were removed. The unrealistic values were found to occur mainly when the images are completely

covered with clouds.215

3.3.2 Reservoir storage from hydrological modelling

Since July 2020, GERD started filling and the assumption that the observed flow to Sudan (at Eldiem) is equal to the incoming

flow to GERD is no longer valid. Accordingly, to predict the unknown inflow of GERD after 2020, the calibrated hydrological

models will be utilized. HBV-light will be run for the period 2020-2022 using the optimized parameter sets (see Fig. 2).

Thereafter, the observed and simulated discharge together will be used to estimate the water storage volume at the reservoir220

using the following equations:

Qout =Qin −
dS

dt
−E (4)

dS

dt
= θ ·Qin −E (5)

θ = 1− Qout

Qin
(6)

where Qin and Qout are the daily inflow to and outflow from the dam, respectively, dS
dt is the daily change in reservoir225

storage volume, E is the evaporated volume of water from the reservoir, and θ is the fraction of inflow volume retained by the

reservoir which ranges between 0 and 1. The last two equations (i.e., Eq. 5 and 6) are used to estimate the daily storage which
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when accumulated gives the total stored water in the reservoir. The daily inflow Qin will be estimated from the hydrological

modelling, while the daily outflow Qout will be based on discharge measurements at Eldiem station. To calculate E for each

timestep, the estimated daily average evaporation per month obtained from Khairy et al. (2019) is multiplied by the reservoir230

surface area at that timestep. The area is estimated from the storage using the acquired Area-Storage relationship.

4 Results

4.1 Performance of the rainfall products

The performance of the five selected rainfall products based on ten rain gauge stations was estimated and illustrated in a

boxplot for each performance metric as shown in Fig. 3. From the boxplots, it can be revealed that CHIRPS has the most235

accurate estimates as it is the closest product to the optimal values (horizontal dashed red lines) in most of the evaluated

metrics. CHIRPS has a high mean R2 of 0.89, a mean slope of 0.96, and a relatively low mean intercept of 10 mm. CHIRPS

has the lowest values for the error metrics which were found to be 36.66 mm for the RMSE, 5.31 mm for the MBE, and 23.7

mm for the MAE. Moreover, GPCC and ARC2 exhibited the best mean slope and intercept, respectively. On the other hand,

ERA5 shows the highest overestimation (mean slope of 1.28) and the highest error values. Additionally, it is also clear that240

ARC2 consistently underestimates the rainfall in all locations (negative MBE values). The performance of the rainfall products

also varied spatially at the different stations. The spatial distribution of the calculated metrics (see Fig. B1) demonstrated

consistent performance of CHIRPS over the spatial extent and high spatial variation of ERA5. For further demonstration of the

metrics’ values and spatial distribution see Fig. B1 and B2 in the appendices.

Furthermore, the UM in Table 3 emphasizes the accuracy of CHIRPS (i.e., has the lowest values) almost in all stations,245

unlike ERA5 which was the least accurate product. Additionally, the calculation of the OUM concluded that the overall best-

performing product is CHIRPS followed by PERSIANN-CDR, ARC2, GPCC, and ERA5. Therefore, CHIRPS is expected to

perform better in simulating the discharge in the river, estimating the water stored behind the dam, and retrieving the filling

strategies. However, the first three rainfall products were selected as forcing data for the hydrological modelling to account for

the input uncertainty in retrieving the filling strategies.250

4.2 Hydrological modelling using HBV-light

4.2.1 Model calibration and validation

The HBV-light model was forced by ERA5 temperature and potential evapotranspiration estimates while CHIRPS, PERSIANN-

CDR, and ARC2 rainfall data were provided to account for input uncertainty. Initially, the parameter ranges tested in the Gilgel

Abay catchment in the UBN basin by Uhlenbrook et al. (2010) were adopted. However, the model performance was limited by255

the initial range of the maximum soil moisture (FC) which was 200 to 600 mm. Therefore, a new range was selected from 200

to 1000 mm which was sufficient to tackle this issue. HBV-light routines, parameters symbol and description, and parameter

ranges are listed in Table D1.
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Figure 3. Performance of the five selected rainfall products. Each box reflects the distribution over ten stations (see Fig. 1.C and Table 3).

The horizontal dashed red lines indicate the optimal values. Detailed calculations are illustrated in Fig. B2 and the equations are listed in

Table B1.

Table 3. Ranking of the Satellite and Reanalysis Rainfall Products for each station based on ten selected rain gauge stations. UM is the

Unified Metric and OUM is the Overall Unified Metric.

No. Station Longitude Latitude
Unified Metric (UM)

CHIRPS GPCC ERA5 PERSIANN-CDR ARC 2.0

1 Mekelle 39.5 13.5 7 16 25 25 17

2 Gonder Airport 37.4 12.6 11 8 27 20 24

3 B-dar Synoptic 37.4 11.6 8 25 18 15 24

4 Combolcha 39.7 11.1 9 19 28 16 18

5 Debre Markos 37.7 10.3 7 23 29 15 16

6 Mehal Meda 39.7 10.2 14 19 30 13 14

7 Shola Gebeya 39.4 9.2 8 15 29 16 22

8 Addis Ababa Bole 38.8 9.0 9 23 29 15 14

9 Jimma 36.8 7.7 8 27 20 13 22

10 Robe 40.0 7.1 11 24 26 15 14

OUM 92 199 261 163 185

Overall rank 1 4 5 2 3
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To account for parameter uncertainty, 10,000 random parameter sets were generated by the Monte Carlo runs of HBV-light

based on the parameter ranges and assuming a uniform distribution. After running the model during the calibration period, 1756260

model simulations achieved NSE > 0.75 when using CHIRPS while only 269 and 244 simulations in the case of PERSIANN-

CDR and ARC2, respectively. In further analysis, we rely on the parameter set that resulted in the best model performance

(best simulation). However, we acknowledge that other parameter sets with a high performance may be equally valid. Fig. D1

shows the range of each parameter for the very good simulations in comparison to the applied parameter range (with narrower

ranges indicating sensitivity). As a result, the simulated discharge was found to be sensitive to FC, BETA, K1, and K2 when265

using the three rainfall products.

Fig. 4.A and 4.B show the daily time series of simulated, using CHIRPS, and observed discharges over the calibration

and validation periods, respectively (see Fig. D2.A and D2.B for both PERSIANN-CDR and ARC2). The parameter set that

obtained the highest performance for each rainfall product is indicated in Table D1. Looking at the best simulation, it can

be revealed that HBV-light was able to capture the intra-annual seasonality in the three rainfall cases and in both periods but270

hardly capture the daily variation in discharge, especially in high flows which were also remarked by Uhlenbrook et al. (2010).

Accordingly, the models resulted in very good NSE values (as shown in Table 4) and dropped after removing the seasonality

to satisfactory (0.51) and unsatisfactory (-0.32 and -0.25) for CHIRPS, PERSIANN-CDR and ARC2 during calibration years,

respectively.

Table 4 also allows comparing the behaviour of the model when utilizing the different rainfall products. Firstly, the per-275

formance of the best simulations was represented by the first three metrics (NSE, PBIAS, and RSR) with their equations in

Table B1. For all rainfall products, NSE and RSR was found to be very good in the calibration and validation runs except for

PERSIANN-CDR during validation which were found to be good, confirming the skilful predictability of the HBV-light model.

On the other hand, PBIAS was generally very good but ARC2 and PERSIANN-CDR overestimated the discharge when applied

from 1991 to 1996, resulting in satisfactory and unsatisfactory performance, respectively. Secondly, the P-Factor and R-Factor280

were used to measure the uncertainty. The highest percentage of the observations bracketed by the 95PPU was in the case of

CHIRPS (78% and 85%) whereas the lowest percentages were ARC2 during calibration (38%) and PERSIANN-CDR during

validation (49%). Additionally, the uncertainty range of CHIRPS was found to be the widest (0.73 and 0.78) and ARC2 the

narrowest (0.35 and 0.39). Overall, from the analysis of model performance and uncertainty, it can be concluded that CHIRPS

is the best product for simulating the discharge at the outlet of the UBN basin followed by ARC2 and then PERSIANN-CDR.285

4.2.2 Predicted inflow to GERD

Since 2020, the inflow to the GERD dam remains unknown to Sudan due to data sharing challenges. Therefore, the main

purpose of the HBV-light model in this study was the predictability of the inflow to GERD. The selected parameter sets in the

last step were run from 2020 to 2022. Fig. 4.C illustrates the daily inflow (from HBV-light using CHIRPS) and outflow (from

Eldiem station) of GERD (see Fig. D2.C for both PERSIANN-CDR and ARC2). It is important to note that PERSIANN-CDR290

data were available up to June 2022 (before the third filling phase).
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Figure 4. Temporal dynamics of daily simulated and observed discharge at the Upper Blue Nile basin outlet. Simulations forced with

CHIRPS rainfall are shown during (A) the calibration period, (B) the validation period, and (C) the operation period. The best simulation was

based on the parameter sets that achieved the highest NSE value during calibration. The 95% Prediction Uncertainty (95PPU) represents the

95th percentile of all very good simulations (NSE > 0.75) that was obtained by random generation of the parameter sets. The vertical grey

shaded areas in the operation period roughly indicate the days in which the dam is filling. MCM stands for Million Cubic Meters.

Firstly, for the three rainfall products, it is obvious that during filling dates (vertical grey shaded areas) the inflows were

greater than the outflow indicating the occurrence of reservoir filling. However, the filling periods were better captured by

CHIRPS followed by PERSIANN-CDR and ARC2 which gave longer filling periods (longer periods where inflow > outflow).

Moreover, PERSIANN-CDR demonstrates two filling phases in July and August of the first year.295

Secondly, during no-fill dates, water passes through the dam so it is expected that the inflow is equal to the outflow. However,

due to model, parameter, and data uncertainties, this is difficult thus outflow is supposed to be within the uncertainty range.

Only for CHIRPS runs, the 95PPU range was able to bracket the discharge during no-fill dates. In the case of PERSIANN-

CDR, the inflow was significantly lower than the outflow, falsely indicating a release from the reservoir (no emptying of the

reservoir occurred during this period). Lastly, ARC2 showed very high inflows from June to October suggesting a large storage300

amount.
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Table 4. The statistic summary of HBV-light simulations.

Product NSE RSR PBIAS (%) P-Factor (%) R-Factor

Calibration (2006 - 2019)

CHIRPS 0.90 (Very good) 0.32 (Very good) −3.61 (Very good) 77.84 0.73

PERCIANN-CDR 0.80 (Very good) 0.45 (Very good) −5.06 (Very good) 54.98 0.40

ARC2 0.79 (Very good) 0.46 (Very good) 1.53 (Very good) 37.65 0.35

Validation (1991 - 1996)

CHIRPS 0.91 (Very good) 0.3 (Very good) 4.64 (Very good) 85.13 0.78

PERSIANN-CDR 0.74 (Good) 0.52 (Good) 32.20 (Unsatisfactory) 49.18 0.50

ARC2 0.81 (Very good) 0.44 (Very good) 22.88 (Satisfactory) 58.02 0.39

The classification according to Moriasi et al. (2007) is as follows:

Very good: 0.75 < NSE ≤ 1.0; 0 ≤ RSR ≤ 0.5; PBIAS < ±10

Good: 0.65 < NSE ≤ 0.75; 0.5 < RSR ≤ 0.6; ±10 ≤ PBIAS < ±15

Satisfactory: 0.50 < NSE ≤ 0.65; 0.6 < RSR ≤ 0.7; ±15 ≤ PBIAS < ±25

Unsatisfactory: NSE ≤ 0.5; RSR > 0.7; PBIAS ≥ ±25

Overall, based on the analysis during the filling period, CHIRPS was efficient in reproducing the hydrological properties of

the system after 2020, while PERSIANN-CDR and ARC2 missed important features (i.e., filling dates).

4.3 Reservoir storage estimation

4.3.1 Elevation-Area-Storage (E-A-S) relationship305

The Elevation-Area-Storage (E-A-S) relationship is essential in this work for two reasons; (1) converting the WSAs observed

by satellite imageries to storages and (2) estimating the WSA corresponding to daily modelled GERD storage hence calcu-

lating the total daily evaporation from the reservoir. Therefore, the E-A-S relationship was derived from the SRTM starting

with estimating the area corresponding to each water level (E-A relationship) at 1 m increments. Next, the reservoir volume

corresponding to each water level was calculated using the trapezoidal approximation (Gao et al., 2012; Bonnema and Hossain,310

2019). The obtained E-A, A-S, and E-S relationships were fitted with a fifth-degree polynomial as illustrated in Fig. 5. Further

detailed information about the approximation can be found in the study by Vu et al. (2022).

On behalf of ten Nile Basin countries, the Nile Basin Initiative (NBI) has been commissioned to conduct studies in the region.

The Eastern Nile Technical Regional Office of the NBI produced the E-A-S relationship of GERD reservoir and was published

in Wheeler et al. (2016). When comparing the relationships derived from the DEM with the NBI, there is an agreement in the315

Elevation-Area relationship (see Fig. 5.A). However, the latter underestimates the storage corresponding to the water levels

and surface areas (see Fig. 5.B and 5.C).
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Figure 5. Elevation-Area-Storage (E-A-S) relationship of GERD reservoir obtained from SRTM digital elevation model in comparison with

Nile Basin Initiative relationship. (A) Elevation-Area relationship, (B) Area-Storage relationship, and (C) Elevation-Storage relationship.

The DEM-derived lines are the results of a fifth-degree polynomial fitting to the data points obtained at 1 m intervals of water levels.

To validate the relationship, the intersected dotted grey lines in Fig. 5 demonstrate the reported characteristics of GERD by

the International Panel of Experts (IPOE), (IPoE, 2013). The most important for this study is the A-S relationship and especially

for the areas less than 1000 km2 in size, as GERD recently started to fill. For this range, the DEM-derived relationship intersects320

with the values reported by IPOE indicating better estimation than the NBI (see Fig. 5.B). Moreover, SRTM was commonly

applied to obtain the E-A-S relationship of GERD (Kansara et al., 2021; Chen et al., 2021; Salama et al., 2022). For this reason,

the following analysis will be based on the DEM-derived relationship.

4.3.2 Satellite-derived reservoir area and storage

The Water Surface Area (WSA) of the GERD reservoir was estimated using Landsat and Sentinel images (steps are shown in325

Fig. A1). The results (i.e., reservoir area and storage) were more or less similar. Therefore, we will focus on discussing Landsat

results and refer to Sentinel when necessary.

WSA estimation from Landsat images was based on the algorithm modified by Vu et al. (2022). The algorithm uses the

cloudless images (i.e., images with less than 20% clouds) to create an expanded mask and zone mask to correct the disturbed

images. 133 Landsat images are available from January 2020 to September 2022, in which 70 images (53%) were classified330

as cloudless images. Fig. 6.A presents the WSA time series and revealed a significant increase in the WSA after improvement

(green points) when compared with the WSA before improvement (light orange points). Additionally, the abrupt changes in

the reservoir area are less observed after improvement, showing an important enhancement made by the algorithm. However,

the WSA was underestimated in some images due to the high cloud coverage.

As can be seen in Fig. 6.A and 6.B, there are missing data during the wetting season (between June and September) of335

the three years which is due to the high cloud coverage. The first observed storage after the filling was on 19 August 2020
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Figure 6. Satellite-derived GERD reservoir information during the filling period 2020 - 2022. Panel (A) shows the derived water surface area,

while panel (B) shows the derived storage volume of GERD using Landsat (Green: before improvement; Light orange: after improvement)

and Sentinel (blue). The WSA maps of the dates specified in cyan dotted lines are illustrated in Fig. 7. Note that not filling the gaps induced

by the Scan Line failure of Landsat 7 produces NDWI = 0 in these gaps when using the algorithm of Vu et al. (2022). Therefore, in case of

negative NDWI thresholds (which were the case here), Landsat 7 overestimates the areas and storages.

with a volume of 3.82 BCM and continued to decrease to 2.97 BCM on 11 June 2021. After the second phase, the storage

jumped to 8.76 BCM (increased by 5.8 BCM) and gradually decrease till 2 March 2022 when a sudden decrease occurred. The

water decreased from 8.06 BCM to reach 5.77 BCM by 3 April 2022. This decrease can be attributed to the announced 375

Megawatts electricity generation that was started on 20 February 2022 according to Africa News (2022). In the third phase, the340

storage increased by 17 BCM reaching 23.1 BCM.

Furthermore, the increase in the WSA due to the filling was well captured by Landsat (and Sentinel) as illustrated in Fig. 7.

The area was estimated to be 3.1% of the WSA at the Full Supply Level (FSL; 1874 km2) before filling started and dramatically

increased to reach 12%, 22%, and 44% during the first three filling phases, respectively. This indicates the considerable amount

of water stored thus the importance of understanding the filling process for downstream water management.345

The utilized algorithm was not always accurate in determining the threshold value of NDWI which in turn influenced the

quantification of the area. Therefore, a visual inspection of the threshold was done to improve the estimation. Additionally, in

fully cloud images the algorithm still provided additional water which is not true and needs to be checked manually.

It is important to point out that open-access radar altimetry datasets provide valuable information for this validation step.

Therefore, for further validation, we also considered radar altimetry data from G-REALM (Birkett et al., 2011) using the350
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Figure 7. Landsat-derived water surface areas of Grand Ethiopian Renaissance Dam, using the modified algorithm by Vu et al. (2022),

showing reservoir development through the first three filling phases from 2020 to 2022. The location of the zoomed area in the left figure is

indicated by the rectangle (in red dotted line) in the right figure.

Elevation-Storage relationship shown in Fig. 5.C. However, the storage volume derived from G-REALM showed unrealistic

behaviour in the recession and only added a few data points during the filling periods, which made us decide to exclude this

source from the validation.

4.3.3 Model-derived reservoir storage

The performance of storage volume quantification from HBV-light and the uncertainty due to model parameters and rainfall355

product selection are highlighted in Fig. 8. The very high modelled storage due to the use of PERSIANN-CDR and ARC2

resulted only in negative NSE values while CHIRPS was the only product that provided reliable reservoir storage as suggested

by Fig. 8.A and 8.B. Around 629 runs of CHIRPS (out of 1756) have positive NSE values of which 407 simulations have NSE

> 0.5. Additionally, the long filling periods suggested by ARC2 produced the highest RMSE values and range (between 44
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Figure 8. HBV-light performance in retrieving the storage volume of GERD from 2020 to 2022. (A, B) The Nash-Sutcliffe Efficiency (NSE)

and (C, D) the Root Mean Square Error (RMSE) between the satellite observed storage (using Landsat) and the simulated GERD reservoir

storage (using HBV-light). Panel (B) is a zoom-in of (A) showing NSE between 0 and 1 while (D) presents the RMSE of all simulations

with NSE > 0. The x-axis is the three tested rainfall products for input uncertainty while the whiskers demonstrate HBV-light parameter

uncertainty. The performance against Sentinel is shown in Fig. D3.

Table 5. The performance of HBV-Light best simulation in retrieving the storage volume of GERD reservoir taking Satellite-derived storage

volume as reference.

Satellite Rainfall Product
Landsat Sentinel

NSE RMSE (BCM) NSE RMSE (BCM)

CHIRPS 0.77 1.70 0.86 1.52

PERSIANN-CDR −4.47 6.26 −2.27 −7.37

ARC2 −307.14 62.40 −206.52 −58.71

and 78 BCM). Comparing the other two products, Fig. 8.C displays a higher and narrower interquartile range in the case of360

PERSIANN-CDR compared to CHRIPS. The performance of the best simulation of each rainfall product is exhibited in Table

5. Ultimately, the large difference between the rainfall products compared to the deviation caused by parameter uncertainty

seen in Fig. 8, concludes that filling strategies are more influenced by input uncertainty than parameter uncertainty.

The modelled daily fraction of retained inflow, reservoir storage and area, and evaporated volume of water from HBV-light

using CHIRPS are shown in Fig. 9 (for PERSIANN-CDR and ARC2 see Fig. D4). From the first row, it is clear that the duration365

of filling increases with time suggesting around 13, 20, and 25 days for the first three phases, respectively. Looking at the storage

retrieved from HBV-light shown in the second row, one can see the increase in the uncertainty through time which is due to the

accumulation of discharge uncertainty with time. It is also important to note that the decrease witnessed by Landsat/Sentinel

in 2022, due to the hydropower generation, was not captured by the model which does not include release/operation terms thus

resulting in additional errors (i.e., lower RMSE can be achieved if this release was included). Additionally, the best simulation370
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suggests that the dead storage (14.79 BCM) was exceeded after the filling of 2022. The last two rows of Fig. 9 exhibit the daily

area of the reservoir and the evaporation from the reservoir surface. Obviously, the evaporation increases with time due to the

surface area increase which causes a slight gradual decrease in the storage.

4.4 Filling strategies and downstream discharge

4.4.1 GERD filling strategies375

Fig. 10 exemplifies GERD filling strategies retrieved from CHIRPS since the other two rainfall products provided insufficient

results. The figure shows a time series of monthly θ values and the percentage of reservoir filling. The θ values of May and

June 2020 are more than zero due to the low flows in these months and the uncertainty in the model (see also θ in Fig. 9).

According to the red line, the filling of the three years started in July but continued till August in the year 2022. The percentage

of the retained flow were found to be 14% in July 2020, 41% in July 2021, and 37% and 32% in July and August 2022,380

respectively. Besides the best simulation, the parameter sets that reached NSE > 0.8 in retrieving the storage (Fig. 8.B) were

able to well capture the filling dates. For other parameter sets, they suggest filling during other months (see green areas in

Fig. 10). Moreover, in terms of annual volume, 5.2% and 7.4% of the total annual flow were retained in the first two years

and between 12.9 - 13.7% in the following year. Retaining more than 10% of yearly flow in weeks is significant in terms of

volume, and impacts downstream management. Due to parameter uncertainty, the minimum and maximum retained frictions385

based on the 407 parameter sets (i.e., with NSE > 0.5) were written in Fig. 10. As far as the percentage of filling is concerned,

HBV-light suggests that the filling reached 5.3% of the full storage capacity in the first year and considerably rose to reach

12.3% and 22.6% in 2021 and 2022, respectively.

4.4.2 Effect of GERD filling on the inflow to Sudan

With the filling strategies retrieved from the hydrological modelling, the observed daily discharge flowing to Sudan can be390

better interpreted. Fig. 11 shows further analysis of the filling phases of GERD. At first, the discharge in the last three years

showed unnatural behaviour when compared with the discharge before 2020 (see blue lines in Fig. 4). To investigate the role

of GERD on the observed hydrograph, the difference in the inflow to Sudan after the construction of GERD and in case of

no GERD was estimated and demonstrated in Fig. 11.A. The filling of GERD altered the hydrograph of the flowing water to

Sudan. The monthly discharge to Sudan after 2020 showed a notable increase throughout the year except in the filling months395

(i.e., July 2020-2022, and August 2022) where the flow substantially decreased. This increase is partly due to heavy rains in

2020 and partly due to the operation of GERD. In terms of volume, the filling of the first two years did not influence the

annual volume flowing to Sudan unlike in 2022. However, the decrease in the filling months influences the management of the

Roseires and Sennar dams to store and divert enough water to the Gezira scheme and to meet other downstream demands.

Moreover, there are abnormal high flows caused by the highly intense rainfalls such as in August to October 2020 and May400

2021 (see Fig. 11.B and 11.C). However, the considerable rise in the flowing water observed in March and April 2022 occurred

as a result of the hydropower generation that started in February 2022 (see GERD release in Fig. 6.B). Paying attention to the

19



Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022
0

0.5

1

Dead storage volume

Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022
0

20k

40k

60k

Surface area at MOL

Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022
0

500

1000

1500

Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022
0

2

4

6

8

95PPU 60PPU 40PPU 20PPU Best simulation Landsat-driven Sentinel-driven
St

or
ag

e 
(M

C
M

)
A

re
a 

(k
m

 2  )
Ev

ap
or

at
io

n 
(M

C
M

)

Figure 9. Temporal dynamics of inferred GERD filling strategies. The first three years of the Grand Ethiopian Renaissance Dam (GERD)

filling strategies were retrieved from HBV-light lumped model using CHIRPS. The first row is the daily fraction of inflow volume retained by

GERD. The second and third rows are the daily water storage and the corresponding water surface area of the GERD reservoir, respectively.

The last row is the daily evaporated volume of water from the reservoir surface. The prediction uncertainty ranges indicate the 95, 60, 40,

and 20 percentiles of the results obtained from the simulations classified as very good which were 1756.
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Figure 11. The impact of GERD filling on flow to Sudan: (A) the monthly impact of GERD on the incoming flow to Sudan: calculated as the

difference between the inflow to Sudan with GERD and the inflow in case of no GERD, (B) The rainfall time series retrieved from CHIRPS,

and (C) The daily change in storage of GERD reservoir and its implication on downstream daily discharge measured in Sudan. The change

in storage is defined as the difference between two consecutive daily storage volumes.

storage change in Fig. 11.C, the relatively low outflows during filling days are followed by a sudden and steady increase in the

outflow causing a linear hydrograph. Additionally, Table 6 illustrates the start and end dates of these changes and the magnitude

of daily increase. The results revealed that the outflow increments are significant and decreased from around 77 MCM per day405

in 2020 to 40 MCM per day in 2022.
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Table 6. Dates and volumes of the sudden changes in the downstream discharge after the completion of each GERD filling phase.

Filling phase
Start End Average daily

increase (MCM)Date Discharge (MCM) Date Discharge (MCM)

1st phase (2020) 21 July 104.82 26 July 489.18 76.87

2nd phase (2021) 21 July 100.40 4 August 805.36 50.35

3rd phase (2022) 13 August 159.91 22 August 522.90 40.33

5 Discussion

The current work might be of interest to studies on ungauged basins. One of the remaining challenges in ungauged basins is

the need for more easily accessible data (Hrachowitz et al., 2013). The deficiencies of meteorological stations were replaced

by a selection of a representative rainfall product based on the performance rankings adopted from Elagib and Mansell (2000).410

The ranking was found to give a first impression of the hydrological model performance to quantify the discharge as well

as retrieve the filling strategies. Additionally, the calibration and validation of the hydrological model based on pre-operation

years allowed for successful prediction of the inflow during post-operation years which was proved by the utilization of Earth

observation. Moreover, coupling the retrieved change in storage with the measured outflow of the dam allowed a further

understanding of the downstream impact of the filling process (Vu et al., 2022).415

The retrieved GERD storage results are dependent on HBV-light performance, which is subject to various sources of un-

certainty, including observed discharge, meteorological products, and model parameters and structures. Rainfall products were

found to be a main source of uncertainty with a high influence on the HBV-light results, followed by model parameters (as

discussed in section 4.3.3). Although uncertainty arising from potential evapotranspiration products was not investigated, pre-

vious studies (Nonki et al., 2021; Wang et al., 2022) have concluded that it is unlikely to have a significant effect on HBV-light420

performance and simulations. The selected model structure, HBV-light, is also likely to impact the results. However, the limited

data availability limits opportunities to explore more complex structures.

The unforeseeable construction progress of GERD complicates the predictability of the years required to completely fill the

dam. Nevertheless, some trends can be expected based on the results of the current research. Retaining 20% of the average

annual flow at the dam location (around 50 BCM) is equivalent to storing 10 BCM a year. Therefore, given the current stored425

water (Landsat: 23.1 BCM; Sentinel: 20 BCM) and the retrieved friction of retained annual flow, GERD will need at least 5

more years (8 years in total) to complete filling under average flow conditions. However, a minimum of additional 3 years will

be needed under wet conditions (6 years in total). During these years, it is important to reduce the risk of water diversions in

Sudan by the adaptive management of reservoir operations (Wheeler et al., 2016). Other cooperative options for mitigating the

effect of GERD on downstream flow, are coupling the operation of GERD with solar and wind power (Sterl et al., 2021) and430

applying water sharing policy during drought conditions (Wheeler et al., 2016; Yang and Block, 2021).
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The operation of downstream dams (i.e., Roseires and Sennar) depends on the management of the GERD dam. Thus, the

outcomes of this approach provide information that can support downstream dam operations. The findings of this study indicate

that lower discharge levels were observed during July and August, while higher discharge rates were observed during other

periods. It suggests that additional water should be stored during GERD-non-filling periods to achieve the targeted monthly435

elevation of the Roseires reservoir. A substantial increase in discharge is noted during March-June and October-December. We

propose that effective management of Roseires and Sennar should involve storing additional water during these months to com-

pensate for shortages during filling periods. Additionally, for adaptive management of Sudanese reservoirs, the existing model

should be expanded to include the Lower Blue Nile basin and used to evaluate alternative operation scenarios for Roseires and

Sennar dams. This approach will enable a comprehensive understanding of the implications of various management decisions440

and facilitate the development of optimized reservoir management plans.

It is worth mentioning the main advantages of the proposed approach. Besides the approach discussed here, the downstream

analysis can also be based on satellite images using, for example, the approach as proposed by Vu et al. (2022). However,

relying on the latter approach for real-time operation presents certain challenges. Firstly, given the current availability of free

satellite data (such as Sentinel and Landsat), it is not feasible to achieve daily time steps, unlike in the case of relying on445

hydrological modelling. Secondly, waiting for a few days to acquire satellite data can be problematic, particularly during flood

events, such as those experienced in Sudan in 2020. Moreover, hydrological modelling allows to investigate future scenarios

under different management strategies. It is important to note that our proposed approach relies on outflow observations, which

may not always be available/accessible. As such, both approaches have their respective advantages and limitations.”

Worldwide, there are 286 transboundary rivers covering 50% of the global land surface (De Stefano et al., 2017; Draper,450

2007). Going a step forward, the novel methodology described in this paper can be adopted on a global scale, especially for

data-scarce regions and transboundary rivers. However, discharge observations and the selection of representative precipitation

products are crucial. The global implementation will raise the practical question: "How is the precipitation product selected?

the best product globally? or a precipitation product per climate zone? or per reservoir?". Another important aspect is the

reliability of the current methodology. With the current error of around 1.7 BCM (or 1.52 BCM as suggested by Sentinel), the455

reliability increases with the increase of reservoir storage capacity. Thus, it is preferable to adopt the methodology for dams

with large storage capacities. Nonetheless, further improvements in the methodology are needed to increase model efficiency

and thus cover small reservoirs. The improvements are (but are not limited to):

– Including more observations (e.g. soil moisture, groundwater measurements): with this additional data, independent val-

idation can be done which can help in eliminating many of the high-performed discharges due to their low performance460

on the other component (i.e., the additional used observation).

– Validating both the precipitation and evapotranspiration when using remote sensing data: to minimize the uncertainty.

– Utilizing actual evaporation measurements/validated product: to improve capturing the day-to-day variation in reservoir

storage.
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– Including seepage term in the quantification of reservoir storage from reservoir water balance: new water levels are465

reached during filling, requiring more water initially than the obtained from the Elevation-Storage relationship to reach

a certain level.

– Using a more spatially representative hydrological model: daily variation in discharge can be better captured, but it

requires extra information which may not be available.

6 Conclusions470

The work done in this paper demonstrated a novel approach that utilize hydrological modelling with limited ground mea-

surements to infer GERD filling strategies using three-steps validation. These steps are: (1) precipitation products with rain

gauges, (2) simulated discharge with streamflow gauge, and (3) inferred storage with satellite-driven storage. Therefore, the

lack of information was compensated by the use of available Earth observation. First, from the evaluation of five selected

rainfall products, CHIRPS was found to be the best-performing product in time (monthly) and space when compared with475

ten rain gauge stations, followed by PERSIANN-CDR, ARC2, GPCC, and ERA5, respectively. Second, considering the top

three products, HBV-light was calibrated and validated which resulted in high performance when the model was forced by

CHIRPS, ARC2, and PERSIANN-CDR, respectively. Third, during the operation period (2020 onwards), CHIRPS outper-

formed PERSIANN-CDR and ARC2 in capturing the filling properties (dates and magnitudes). The retrieved three years of

GERD storage were compared with Landsat and Sentinel imagery, CHIRPS was the only product that produced positive NSE480

values thus the lowest RMSE values. Subsequently, the selection of the rainfall product was found to have more influence

on inferring GERD filling strategies than parameter uncertainty. Additionally, the best simulation of CHIRPS (i.e., simulation

with the highest NSE value during calibration), was found to have an NSE of 0.77 and 0.86, and RMSE of 1.7 and 1.52 BCM

when compared with Landsat and Sentinel, respectively. It inferred that the friction of the monthly retained inflow was 14%

for July 2020, 41% for July 2021, and 37% and 32% for July and August 2022, respectively. Moreover, around 5.2% and485

7.4% of the annual inflow to Sudan were retained by the dam in 2020 and 2021, respectively. While after the third phase, in

2022, the reservoir retained between 12.9% and 13.7% of the annual inflow reaching around 22.6% of the full storage capacity.

Furthermore, it was revealed that the first three years started to impact the flow downstream. During filling months, the inflow

to Sudan significantly decreased below average (2002 - 2019), suggesting the need for adapting reservoir management of the

Roseires and Sennar dams to meet downstream demands.490

Data availability. The publicly available data used in this study are the forcing data of the hydrological modelling (i.e., rainfall, temperature,

and potential evapotranspiration) as well as the satellite imagery. Landsat Collection 2 Level 2 was retrieved from https://earthexplorer.usgs.gov/.

The datasets of CHIRPS, PERSIANN-CDR and ERA5 were downloaded from the Climate Engine research app (Huntington et al., 2017). The

data of ARC2 is available in https://ftp.cpc.ncep.noaa.gov. Additionally, the GPCC dataset can be downloaded from https://opendata.dwd.de.

For the rain gauge data, it is not publicaly available but can be obtained from the Ethiopian National Meteorological Agency website495
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http://www.ethiomet.gov.et/ (navigate to "Data Service" and then select "Station Information" a request form will appear once a station has

been selected). The hydrological data within the Nile system is not publicly available due to governmental restrictions. However, the flow

data collected and maintained by the Nile Waters Directorate of the Ministry of Irrigation and Water Resources, Sudan, was made avail-

able for this study. Because we cannot share this data directly, we provide the successful HBV-light parameter sets and runs (NSE > 0.75)

as a best approximation of the observed flow at https://doi.org/10.4211/hs.ed4530307dda435e9d3dcdb74da86a30 in addition to the E-A-S500

relationship derived from SRTM DEM (Ali, 2022)
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Appendix A: Satellite-based reservoir information

Obtain images (tile 52 and 53, path 171)

Landsat 7 Landsat 8/9

Band 2: Green
Band 4: Near InfraRed

Quality Assessment

Band 3: Green
Band 5: Near InfraRed

Quality Assessment

Gap filling 
(Scan Line Corrector)

Mosaic (52 with 53 of each band) & Clip

𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝑁 + 𝑁𝐼𝑅

A-S relationship

Reservoir storage

Water surface area

WSA Algorithm

Remove unrealistic 
values (Inspection)

A Landsat-driven storage

Obtain images

Sentinel 2

Band 3: Green
Band 8: Near InfraRed

Mosaic & Clip

𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝑁 + 𝑁𝐼𝑅

A-S relationship

Reservoir storage

Water surface area

NDWI > 0

Remove unrealistic 
values (Inspection)

B Sentinel-driven storage

PyGEE-SWToolbox

Figure A1. Procedure to derive GERD reservoir characteristics using Landsat (A) and Sentinel (B). Landsat water surface area (WSA) was

estimated based on the modified algorithm by Vu et al. (2022). Fixed NDWI threshold was used to estimate WSA for Sentinel images using

PyGEE-SWToolbox (Owusu et al., 2022).
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Appendix B: Additional data on performance metrics

Table B1. Statistical performance metrics applied in the evaluation of the satellite rainfall products and/or the simulated discharge and

reservoir storage.

Name Symbol/Formula Optimal value

Root Mean Square Error RMSE =
√

1
N

∑N
i=1(Si −Oi)2 0

RMSE-observations Standard deviation Ratio RSR= RMSE
σo

0

Mean Bias Error MBE = 1
N

∑N
i=1(Si −Oi) 0

Mean Absolute Error MAE = 1
N

∑N
i=1 |Si −Oi| 0

Percentage Bias PBIAS =
∑N

i=1(Si−Oi)∑N
i=1Oi

× 100 100

Nash-Sutcliffe Efficiency NSE = 1−
∑N

i=1(Si−Oi)
2∑N

i=1(Oi−µo)2
1

Coefficient of Determination R2 =

( ∑N
i=1(Oi−µo)(Si−µs)√∑N
i=1(Oi−µo)2(Si−µs)2

)2

0

Slope Slope=
(
∑N

i=1Oi·Si)−
(
∑N

i=1 Oi)(
∑N

i=1 Si)

N

(
∑N

i=1O2
i )−

(
∑N

i=1
Oi)

2

N

1

Intercept Intercept= µs −Slope×µo 0

O = Observed value, S = Gridded product or simulated value, N = Number of samples, µo = Mean value of O,

µs = Mean value of S, σo = Standard deviation value of O, σs = Standard deviation value of S. The coefficient

of determination, intercept and slope are computed using linear fit.
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R-squared
0.85 - 1
0.7 - 0.85
0.55 - 0.7
0.4 - 0.55
< 0.4

ARC2

N

Slope
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Figure B1. Spatial distribution of the statistical performance metrics over the Upper Blue Nile basin based on the point-to-pixel approach

at a monthly scale from 1984 to 2005. Six out of the ten stations are outside the UBN boundaries. However, all are included in the analysis

to strengthen the evaluation of the rainfall products over the region. Basins boundaries and drainage network are obtained from the Hy-

droSHEDS dataset (Lehner et al., 2008).
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Figure B2. Statistical performance metrics of five remote sensing rainfall products evaluated at ten stations (coordinates in Table 3).
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Appendix C: Hydrological models applied in the Upper Blue Nile basin

Table C1. Hydrological models applied over the Upper Blue Nile basin from 57 studies in the literature.

No. Model Name No. of studies References

1 SWAT 23

Betrie et al. (2009); Schmidt and Zemadim (2015); Wosenie (2015);

Lemann et al. (2016); Roth and Lemann (2016); Chakilu and Moges (2017);

Lemann et al. (2017); Polanco et al. (2017); Tegegne et al. (2017);

Teklesadik et al. (2017); Woldesenbet et al. (2017); Lemann et al. (2018);

Woldesenbet et al. (2018); Boru et al. (2019); Kessete et al. (2019);

Nigussie et al. (2019); Sultana et al. (2019); Teshome et al. (2019);

Adem et al. (2020); Sinshaw et al. (2020); Bizuneh et al. (2021);

Getachew et al. (2021); Mengistu et al. (2021)

2 HBV 13

Ymeti (2007); Gragne et al. (2008); Wale et al. (2008);

Uhlenbrook et al. (2010); Asnik (2015); Gebre et al. (2015);

Meresa and Gatachew (2015); Teklesadik et al. (2017); Worqlul et al. (2017);

Bihonegn et al. (2020); Bizuneh et al. (2021); Wubneh et al. (2022a, b)

3 HEC-HMS 5
Gebre (2015); Gebre and Ludwig (2015); Agegn (2016);

Zelelew and Melesse (2018); Bihonegn et al. (2020)

4 PED 5
Enku et al. (2014); Zimale et al. (2016); Worqlul et al. (2017);

Akale et al. (2019); Bihonegn et al. (2020)

5 CREST 3 Lakew et al. (2017); Lakew (2020); Lakew and Moges (2021)

6 SWIM 2 Aich et al. (2014); Teklesadik et al. (2017)

7 GR4J 2 Meresa and Gatachew (2015); Tegegne et al. (2017)

8 Thornthwaite and Mather (1955) 2 Collick et al. (2009); Legesse (2009)

9 FLexB 1 Wosenie (2015)

10 LAPSUS_D 1 Getahun (2016)

11 mHM 1 Teklesadik et al. (2017)

12 VIC 1 Teklesadik et al. (2017)

13 WaterGAP3 1 Teklesadik et al. (2017)

14 CREST- SVAS 1 Lazin et al. (2020)

15 IHACRES 1 Tegegne et al. (2017)

16 JGrass-NewAge 1 Abera et al. (2017)

17 PCRaster 1 Tekleab et al. (2015)

18 Hydro-BEAM 1 Abd-El Moneim et al. (2017)

19 HBV-light-WEAP21 1 Asitatikie and Gebeyehu (2021)

20 GBHM 1 Abdel-Aziz (2014)

21 MCDE 1 Nigussie et al. (2019)

22 SAC-SMA 1 Ymeti (2007)

23 RIBASIM 1 Ghorab et al. (2013)

24 HMETS 1 Meresa and Gatachew (2015)

25 TOPMODEL 1 Deginet (2008)

26 HBV-RIBASIM 1 Booij et al. (2011)
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Appendix D: HBV-light simulaitons505

Table D1. HBV-Light parameters, selected parameter ranges for Monte Carlo Simulations and optimized values of each selected satellite

rainfall product.

Parameter Description Unit
Range Optimize values

Min. Max. CHIRPS PERSIANN-CDR ARC2

Soil moisture routine

FC Maximum soil moisture mm 200 1000 992.26 938.10 974.28

LP Soil moisture threshold for evaporation reduction - 0.5 0.7 0.528 0.510 0.520

BETA Shape coefficient - 1 4 1.78 1.43 1.06

Groundwater and response routine

PERC Maximal flow from upper to lower GW-box mm d−1 1.4 2.8 1.71 1.85 1.48

UZL Threshold for K0-outflow mm 10.2 25.6 22.13 14.78 22.09

K0 Recession coefficient d−1 0.05 0.2 0.188 0.073 0.119

K1 Recession coefficient d−1 0.01 0.2 0.130 0.119 0.086

K2 Recession coefficient d−1 0.006 0.05 0.041 0.049 0.049

Routing routine

MAXBAS Length of weighting function d 1.5 2.9 2.14 1.73 2.76

FC LP BETA PERC UZL K0 K1 K2 MAXBAS
0
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0.4
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Figure D1. The standardized sensitive value ranges of HBV-light parameters for the simulations that classified as very good (i.e., NSE >

0.75) when using ARC2, CHIRPS, and PERSIANN-CDR as forcing data.
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Figure D2. Temporal dynamics of daily simulated and observed discharge at the Upper Blue Nile basin outlet. Simulations forced with

PERSIANN-CDR (left column) and ARC2 (right column) are shown during (A) Calibration period, (B) Validation period, and (C) Operation

period. The best simulation was based on the parameter sets that achieved the highest NSE value during calibration. The 95% Prediction

Uncertainty (95PPU) represents the 95th percentile of all very good simulations (NSE > 0.75) that was obtained by random generation of

the parameter sets. The vertical grey shaded areas in the operation period roughly indicate the days in which the dam is filling.
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Figure D3. HBV-light performance in retrieving the storage volume of GERD from 2020 to 2022. (A, B) The Nash-Sutcliffe Efficiency

(NSE) and (C, D) the Root Mean Square Error (RMSE) between the satellite observed storage (using Sentinel) and the simulated GERD

reservoir storage (using HBV-light). Panel (B) is a zoom-in of (A) showing NSE between 0 and 1 while (D) presents the RMSE of all

simulations with NSE > 0. The x-axis is the three tested rainfall products for input uncertainty while the whiskers demonstrate HBV-light

parameter uncertainty.
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Figure D4. Temporal dynamics of inferred GERD filling strategies. The first three years of the Grand Ethiopian Renaissance Dam (GERD)

filling strategies were retrieved from HBV-light lumped model using PERSIANN-CDR (left column) and ARC2 (right column). The first

row is the daily fraction of inflow volume retained by GERD. The second and third rows are the daily water storage and the corresponding

water surface area of the GERD reservoir, respectively. The last row is the daily evaporated volume of water from the reservoir surface. The

prediction uncertainty ranges indicate the 95, 60, 40, and 20 percentiles of the results obtained from the simulations classified as very good

which were 269 for PERSIANN-CDR and 244 for ARC2.
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