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Abstract. A series of numerical experiments were conducted to test the connection between streamflow hydrographs at the outlet 10 

of large watersheds and the time-series of hillslope-scale runoff yield. We used a distributed hydrological routing model that 

discretizes a large watershed (~17,000 km2) into small hillslope units (~0.1 km2) and applied distinct surface runoff time-series to 

each unit that deliver the same volume of water into the river network. The numerical simulations show that distinct runoff delivery 

time-series at the hillslope scale result in indistinguishable streamflow hydrographs at large scales. This limitation is imposed by 

space-time averaging of input flows into the river network that are draining the landscape. The results of the simulations presented 15 

in this paper show that under very general conditions of streamflow routing (i.e., nonlinear variable velocities in space and time), 

the streamflow hydrographs at the outlet of basins with Horton-Strahler (H-S) order five or above (larger than 100 km2 in our set 

up) contain very little information about the temporal variability of runoff production at the hillslope scale and therefore the 

processes from which they originate. In addition, our results indicate that the rate of convergence to a common hydrograph shape 

at larger scales (above H-S order 5) is directly proportional to how different the input signals are to each other at the hillslope scale. 20 

We conclude that the ability of a hydrological model to replicate outlet hydrographs does not imply that a correct and meaningful 

description of small-scale rainfall-runoff processes has been provided. Furthermore, our results provide context for other studies 

that demonstrate how the physics of runoff generation cannot be inferred from output signals in commonly used hydrological 

models.  

1 Introduction 25 

The question of how river flows will change in the presence of climatic and anthropogenic changes dominates the literature in 

water resources journals and research conducted around the world (Arnell & Lloyd-Hughes, 2014; Blöschl et al., 2019; 

Gudmundsson et al., 2021; Hirabayashi et al., 2013; Whitehead et al., 2018). Slowly evolving regional climatic changes and rapid 

anthropogenic modifications to the landscape will impact how watersheds deliver water to communities along the river network, 

and recognition of this fact has fostered the development of methods and techniques to address this urgent problem (Kang et al., 30 

2016; Kourtis & Tsihrintzis, 2021). Physics-based hydrological modeling has emerged as the preferred alternative for predicting 

the future of the hydrological cycle under the projected changes (Barnett et al., 2008). An example of rapid anthropogenic change 

in the US Midwest is the use of drainage tiling, which is effective for increasing corn yields by promoting the rapid movement of 

subsurface flows into rivers (Fonley et al., 2021; Schilling et al., 2019; Schilling & Helmers, 2008; Velásquez et al., 2021). This 

raises the question of how these landscape modifications will impact the cycles of flooding and droughts in future climatic scenarios 35 

(Akter et al., 2018; Júnior et al., 2015; Peng et al., 2019). In the typical approach to this question, a land-surface model is 
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conceptualized, calibrated, validated, and then forced with past and future climatic inputs (rainfall, radiation, relative humidity) 

derived from global circulation models (Barnett et al., 2008; Condon et al., 2015; Hidalgo et al., 2009; Sadeghi Loyeh & Massah 

Bavani, 2021; Taye et al., 2015; Quintero et al. 2018). The underlying premise is that the hillslope-scale process equations correctly 

describe the water movement and partitioning into runoff and infiltration. This premise allows changing parameter values to reflect 40 

future land-surface conditions (e.g., vegetation types, deforestation, land cover, land use) along with future conditions of 

meteorological forcing. Nevertheless, results from Huang et al. (2017) at 12 large-scale watersheds using nine models indicate 

significant limitations during extreme events. Some limitations can be improved by calibration at the cost of losing representation 

of processes such as evapotranspiration (Ahmed et al., 2023). 

The use of land-surface models relies on their validation after parameter calibration (Beven, 1989). Historically, parameters in 45 

land-surface models are adjusted (calibrated) to match streamflow hydrographs at gauged sites in the outlet of large watersheds (> 

100 km2), and a portion of the data is left to validate the hydrological model using unobserved events (Bérubé et al., 2022; Gupta 

et al., 2006; Refsgaard, 1997; Shen et al., 2022). Once this test has been passed, a land-surface model is deemed appropriate to 

explore future scenarios (Sadeghi Loyeh & Massah Bavani, 2021; Schilling et al., 2008; Whitehead et al., 2018). Other data-based 

techniques for streamflow prediction are not appropriate to address these questions because their parameters cannot be directly 50 

linked to physical processes and because there is a recognition that non-stationarities render historical information unreliable to 

predict the future behavior of hydrological systems (Bayazit, 2015; Cancelliere, 2017; Milly et al., 2008; Salas et al., 2018). 

Furthermore, a recent simulation based study by Remmers et al. (2020) concluded that “it is challenging and in most cases 

impossible to infer model structure from model output for the part of model space, bucket-based hydrological models, that [were] 

sampled”. This raises the question, what are the mechanisms that blur such differences? In this sense, different authors have arrived 55 

at similar conclusions. According to De Boer-Euser et al. (2017), it is challenging to link hydrograph differences and model 

structure components. Moreover, in an intercomparison experiment of three models, Vetter et al. (2015) observed similar 

performance among them. Tijerina et al., (2021) described similar spatial performance of two hydrological models over the 

conterminous US. More recently, Mai et al. (2022) compared 13 models and obtained different orders in the best-performing 

models when evaluating discharge and distribution variables such as snow-water equivalent (SWE).  60 

 

 

 

 

To investigate the validity of using land-surface models to simulate future hydrological scenarios, we explored how different 65 

hillslope scale (~ 0.1 km2) surface runoff time-series correspond to hydrographs at the outlet of larger scales (> 100 km2) basins. 

For validation, we used a distributed hydrological model that discretizes the landscape into small hillslope control volumes 

interconnected by the full extent of the river network of the Cedar River basin (~17,000 km2). We created a set of forcing signals 

that are significantly different from each other but share the same volume of water injected into the hillslope surface. Each of the 

input signals represents the output of distinct land-surface process descriptions. Our results show that input signals that are very 70 

different from each other at the hillslope scale can produce streamflow hydrographs at large scales that are indistinguishable from 

each other. This result implies that our ability to reproduce hydrographs at the outlet of a large basin is not a reliable indicator that 

we have correctly described small-scale processes controlling runoff production that include the description of vegetation, soil 

types, land use practices, snowmelt rates, etc. Our results also provide an explanation for why it is difficult, if not imposible, to 

establish a causal link between runoff generation mechanisms and output hydrographs as discussed by Remmers et al., (2020). 75 
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Our paper is organized as follows: In section 2, we present the main methodological steps of our work, including the description 

of the routing model, the river network used, the input signals representing surface runoff, and the metrics for comparison of 

similarity between hydrographs.  In section 3, we present the main results of the simulations for three levels of complexity in the 

description of flow routing. Section 4 discusses the results and how they furnish the basis for the conclusions presented in Section 

5. 80 

2 Methodology and Data 

2.1 The Hydrological Model & The River Network 

The distributed hydrological model used in this study can be succinctly described as a nonlinear water transport equation through 

a directed river, which is the routing component of the operational flood forecasting model HLM (Mantilla et al., 2022). The model 

is formulated in the context of a mass conservation equation developed by Gupta and Waymire (1998), and uses the water velocity 85 

parameterization given by Mantilla (2007) where flow velocity for any link j in the river network at time t is given by 

𝑣(𝑗, 𝑡) = 𝑣!𝑞",$
%!𝐴"

%", where 𝑞",$ is the flow from the channel link j toward the downstream channel link n, which is further related 

to water storage in the link 𝑠&
〈"〉 by the relation 𝑞",$ =

)(",+)
-#

𝑠&
〈"〉(𝑡). The equation is non-homogeneous, therefore, the velocity 𝑣! 

given in [𝑚/𝑠] is a reference quantity that corresponds to the flow velocity for a channel link that drains a 1 𝑘𝑚. catchment when 

1 𝑚//𝑠 flows through. The parameterization replaces the momentum conservation equation (see Mantilla (2007) for details) and 90 

is equivalent to the kinematic wave simplification of the Saint-Venant equations integrated over the channel length. The 

parameterization is given by, 

01#,%(+)

0+
=

)&1#,%
'! (+)2#

'"

-#(34%!)
.𝑞5,&(𝑗, 𝑡) − 𝑞",$(𝑡) + ∑ 𝑞6,"(𝑡)6→" 2   (1) 

The parameters 𝜆3 and 𝜆. represent nonlinearities introduced by changes in the link flow velocity as a function of storage in the 

channel and on systematic changes in local and downstream hydraulic geometry, which are a function of the upstream area A 95 

[𝑘𝑚.] and streamflow 𝑞",$ given in [m3/s]. The index f in the equation refers to the set of upstream links draining into link j. The 

parameterization is equivalent to assuming that the channel slope is equal to the slope of the water surface (normal flow) and that 

the flow is purely kinematic, obeying a power law relation between flow depth and velocity (such as Manning, Chezy, or the 

Darcy-Weisbach equations). The function 𝑞5,&(𝑗, 𝑡) represents the flow from the hillslope j into the channel link j. For this paper, 

the runoff function is, 100 

𝑞5,&(𝑗, 𝑡) = 𝑞5,&(𝑗, 0) + 𝑎8
⟨"⟩ ∫ 𝑝(𝑡 − 𝜏)𝑒4;(<𝑑𝜏+

=     (2) 

where the parameter 𝑘5 is the inverse residence time in the hillslope surface when water flows at constant velocity 𝑣8 , i.e. 

𝑞5,&(𝑗, 𝑡) = 𝑎8
⟨"⟩𝑘5𝑠5

⟨"⟩ = 𝑎8
⟨"⟩ ;))

-)
⟨#⟩< 𝑠5

⟨"⟩ over the hillslope length 𝑙8
⟨"⟩, and 𝑝(𝑡) represents the flow of water into the hillslope surface 

in units of [L/T] (e.g., mm/hr). In hydrological models, the function 𝑝(𝑡) can represent precipitation or be the result of other 

physical processes represented in the land-surface model that control the vertical movement of water into the hillslope surface, 105 

including interception, evaporation, infiltration, and exfiltration.  

The river network chosen for this study was the Cedar River upstream of Cedar Rapids, Iowa (Figure 1). We chose this network 

to maintain the realism of the connectivity structure. However, simulations not presented in this paper indicate that our results can 

be generalized to any random-self similar network. At the outlet, the network reaches a Horton order of 8, with a width function 

that shows the largest accumulation of channels at a common distance in the upper region of the watershed (Figure 1a). We also 110 
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show width functions for select smaller Horton-order locations in the river network to illustrate the natural variability of river 

network connectivity across scales. 

2.2 Development of Hillslope-scale Runoff Fluctuations 

In general, any rainfall pattern which is integrable over an interval of length can be written in terms of a Fourier series expansion 

as 115 

𝑝(𝑡) = >,
.
+∑ 𝑎$ 	cos B

.?$+
@-

− 𝜑$DA
$B3 ,     (3) 

where phase shifts allow us to represent sines (typically present in the Fourier series expansion) in terms of cosines of the same 

period. In this format, the coefficients can be chosen to sufficiently represent any function, including those that are not smooth.  

We applied inverted and shifted cosines representing one, two, three, and four cosine waves distributed over the course of one or 

three days. The cosines were shifted to affirm they were nonnegative and inverted—beginning and ending with zero precipitation 120 

intensity—to impose smoothness on the rainfall signal. We included both right-skewed and left-skewed sawtooth (linear) patterns 

and signals depicting uniform precipitation over 1, 2, 3, and 6 days.  

Input to the model was applied as flux into a hillslope surface represented by a linear reservoir that feeds into the adjacent river 

link. Each input waas designed to deliver 48 mm of water to the hillslope, and each signal began at time zero. Flow in the river 

network was primed by simulating a one-day rainfall event and allowing the system to drain for ten days before applying the 125 

rainfall signal so that each link of the river network had an initial flow that was commensurate with the watershed it drained. 

2.3 Developing a Reference Hydrograph for Each Location in the River Network 

Comparing hydrographs across scales can be difficult due to the variability involved. To address this difficulty, we created 

dimensionless hydrographs for all locations in the river network with the following equations: 

𝑞∗ = 1
1-./

  and   𝑡∗ = +
+-./

    (4) 130 

where 𝑞DE6  is a reference maximum streamflow and 𝑡DE6  is a reference hydrograph time to peak. For reference we chose the 

instantaneous unit hydrgraph that resulted from applying precipitation via a delta-Dirac function, such that the volume of water 

was directly applied as an initial condition onto the hillslope surface, acting as an instantaneous event. From that hydrograph, we 

identified the peak flow and the time to peak flow for every link in the river network. We defined an event’s 'end' as the moment 

when the flow was smaller than 1% of the peak flow. 135 

2.4 Analysis of Convergence of Streamflow Signals at Larger Scales 

To analyze the convergence of the hydrographs for streams of order ω, we compared moments about the time-axis (𝑡∗) and about 

the streamflow-axis (𝑞∗). We computed the first moment in 𝑡∗ and in 𝑞∗ as 

𝑀3
+∗(𝜔) = ∫ +∗∙1∗(+∗)0+∗1∗

,

∫ 1∗(+∗)0+∗1∗
,

       (5) 

𝑀3
1∗(𝜔) = ∫ 1∗(+∗)0+∗1∗

,

∫ +∗0+∗1∗
,

,       (6) 140 

and the second-centered moment with the following equations, 

𝑀.
+∗(𝜔) = ∫ (+∗4H!2

∗
)"∙1∗(+∗)0+∗1∗

,

∫ 1∗(+∗)0+∗1∗
,

      (7) 
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𝑀.
1∗(𝜔) = ∫ (1∗4H!

3∗)"0+∗1∗
,

∫ +∗0+∗1∗
,

       (8) 

Using these definitions of moments, a ratio of the moments between two different hydrographs can be defined as 

𝑅I(2|K)L (𝜔") =
M>NOH4

5PQ#R6,H4
5PQ#R7S

MI$OH4
5PQ#R6,H4

5PQ#R7S
      (9) 145 

where 𝑍 represents the variable of interest (in this case 𝑞∗ and 𝑡∗). If the moments of two different functions, A and B, approach 

each other, then equation (9) tends to one in the limit as, 

𝑙𝑖𝑚
Q→T

𝑅I(2|K)L (𝜔) = 1        (10) 

The min and max functions in equation (8) guarantee that the limit will be reached from above in all cases. This property allowed 

us to define a sigmoid function to characterize the rate of convergence to the limit of 𝜔 as, 150 

𝑅KI(K)L (𝜔) = 𝑆6 ∙ B1 −
3

3UE894:9∙<=
D      (11) 

where 𝑆6 is a scale factor, 𝜔I is the starting Horton order, and 𝛼 is a parameter controlling the shape of the curve. Larger values of 

𝛼 indicate rapid convergence of the curve to 1 as the Horton-order of the basin increases, and conversely, small values of 𝛼 indicate 

slower convergence to 1. 

 155 

3 Results 

For each of the proposed input signals, we integrated the HLM routing equations using different assumptions about the distribution 

of velocity in space and time, including linear routing with constant velocity in space and time, nonlinear global self-similar routing, 

and locally self-similar nonlinear routing (Velasquez & Mantilla, 2020). For each setup, we obtained hydrographs at all the 

watershed links (43,000 in total). At the smaller scales (𝜔 = 2, 3,	or 4), each signal produced a distinct hydrograph. However, the 160 

hydrographs became indistinguishable with increasing Horton order. 

3.1 Comparing hydrographs at multiple scales 

In Figure 2, we show the resulting hydrographs at multiple scales for input signals with a duration of 3 days. The top-left panel in 

Figure 2 shows the different input signals used in this experiment. We chose locations in the river network corresponding to 

complete order streams of orders 2 to 8 to illustrate differences in hydrograph shapes at different scales. The first set of graphs 165 

shows the hydrographs calculated under the assumption of constant flow velocity in the channels (i.e. 𝜆3 = 0 and 𝜆. = 0) for 

locations with increasing Horton order. We repeated the calculation using more complex nonlinear routing assumptions. In the 

global self-similar case, we assumed 𝑣=, 𝜆3 and 𝜆. to be the same in the entire network (yellow shade panels in Figure 2), while in 

the local self-similar case, the same parameters are variable throughout the catchment (green shaded panels in Figure 2). 

3.2 Convergence 170 

In Figure 2, we illustrate how all the 3-day duration signals tend to converge. Moreover, we can define the convergence of two or 

more signals relative to any signal by comparing their moments. Figure 3 shows the average value of 𝑅2|K for the first (circles) 

and the second (triangles) moments when we compare moment ratios between the LTri3Day signal with the 3DayUniform one. In 

both dimensions (time and magnitude, Figures 3a and b, respectively), the value of 𝑅2|K tends towards one with the increase of the 

Horton order. In the supplemental material, we illustrate how the convergence of hydrographs occurs for all links in the network 175 
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(Figure S1). The convergence of hydrographs also holds for the more complex cases of nonlinear routing under the assumption of 

global and local self-similarity. 

3.3 General convergence to the Instantaneous Hydrograph (Dirac simulation) 

To obtain a more general idea of the convergence, we computed 𝑅2|K for all the input signals using the Dirac function as a reference. 

𝑅2|K at each Horton order 𝜔 was the median value obtained for all the links of order 𝜔. The dots in Figure 4 correspond to the 180 

computed median value of 𝑅2|K. According to our results, each signal has a different 𝑅2|K for 𝜔 = 2, and in all the cases, tends to 

converge toward 1 with increasing values of 𝜔. Moreover, the convergence rate increases as a function of the initial differences. 

Signals with higher 𝑅2|K	values at 𝜔 = 2 tend to converge at a faster rate than others. 

We describe the convergence rate of the median values in Figure 4 using equation (7). In the equation, we fixed the scale factor 𝑆6 

to 1.3, and we took 𝜔I = 2 as the reference Horton order. Then, using the nonlinear least squares method, we adjusted the 185 

parameter 𝛼 for a set of generated hydrographs. With this approach, we obtained a good representation of the signal’s convergence 

starting at 𝜔 = 2 (continuous lines in Figure 4). 

According to Figure 4, the parameter 𝛼 is an index of the convergence rate for any signal. Larger values of 𝛼 correspond to faster 

convergence rates. Moreover, we found that 𝛼 depends on the order of the moment, the dimension being considered (t* or q*), and 

the streamflow routing approach. In Figure 5, we present 𝛼 vs 𝑅2|K(𝜔 = 2) for each moment order, dimension, and assumptions 190 

on the variability of velocities in space and time. In all cases,	𝛼 was proportional to 𝑅2|K(𝜔 = 2). This means that the more 

different the hydrographs are at smaller scales, the faster the convergence rate will be to the Dirac shape at larger scales. The 

supplemental material presents convergence for the nonlinear global and local self-similarity cases (Figures S2 and S3). 

We found that the lower 𝛼 values in the ratio of the second moment in time (Figure 5b) correspond to lower values of 𝑅2|K (Figure 

4b). Additionally, higher 𝛼 values occur for the ratios of the second moment in q (Figure 5d), which coincide with large 𝑅2|K 195 

values (Figure 4b). Also, we found that the convergence rates of the linear, nonlinear, and self-similar HLM setups are more alike 

in 𝑡∗ than in 𝑞∗. 

4 Discussion & Conclusions 

Hydrologists strive to “be right for the right reasons” when modeling the hydrologic cycle, however, the datasets available to 

validate hydrological models are sparse and often comprise only streamflow observations at the outlets of large catchments. 200 

Typically, hydrologic modelers calibrate and validate their models using available streamflow observations. Our study sheds some 

new light on the limits of this strategy and provides and explanation for the difficulty in establishing a causal link between small 

scale runoff generation processes and hydrograph shapes at the outlets of large river basins. 

The moment ratios expressed in Equation 8 show how hydrographs generated by different hillslope scale runoff signals differ from 

each other across Horton order scales. Our study demonstrates that differences in the hydrographs at the hillslope scale are 205 

smoothed out for larger scales. The processes controlling the convergence rate are the spatial aggregation imposed by the self-

similar river network draining the landscape and the attenuation that is controlled by the flow routing equations. Simulations not 

shown in this paper indicate that our results hold true for any self-similar network structure. However, a systematic analysis of 

how different network configurations determine the rate of convergence, and if self-similarity is a necessary condition, remain to 

be done. Two interesting findings of our study are that i) the rate of convergence of hydrographs to a common shape at larger 210 
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scales is proportional to how different the input signals are at the hillslope scale, and ii) that the convergence is independent of the 

assumptions on the spatial and temporal variability of in-channel velocities imposed in the routing scheme. 

Typically, validation of small-scale land-surface representations relies on the ability to reproduce streamflow hydrographs at the 

outlet of large catchments where historical records are available. An intermediate step in developing a site-specific hydrological 

model is calibrating its parameters that control the rainfall-runoff transformation (e.g., infiltration rates, hydraulic conductivity, 215 

interception rates) and runoff routing through the river network (e.g., channel and floodplain friction coefficients). Our results 

suggest that two very different descriptions of small-scale processes (e.g., variable saturated area vs. variable infiltration rates) can 

lead to equivalent hydrographs at larger scales. The fact that two competing hypotheses lead to the same result hampers the 

possibility of determining how changes in the small-scale process will affect streamflow hydrographs in larger catchments. Our 

analysis show that the river network connectivity leads to an averaging of the runoff produced in different locations and at different 220 

times indicating that if the right volume of runoff is applied at a given Horton-scale, the hydrographs for the network five orders 

or above would be indistigushible. 

The generic routing schemes tested in this study give us confidence that our results can be generalized to any hydrological 

distributed model of any basin that explicitly includes a river network with Horton-Strahler order five or larger. This extends the 

problem of model “equifinality” to a larger problem of “equivalent models” where distinct descriptions of hillslope scale 225 

descriptions lead to the same resulting outlet hydrograph. 

5 Data and Software 

Data and software for this research can be found at: https://doi.org/10.5281/zenodo.7083172  
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 335 
Figure 1. Cedar River watershed network structure (right) with the width function at the outlet (w = 8) and at nested sub-watersheds 
with orders w = 2 to 7. 
 

 
Figure 2. Three-day duration input signals and resulting hydrographs at subwatersheds of orders between 2 and 8. The magnitude and 340 
time duration of the hydrographs is standardized relative to the 3Day1Cos (blue) hydrograph. 
 

https://doi.org/10.5194/hess-2023-187
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.



12 
 

 
Figure 3. Changes of the first (circles) and second (triangles) moment ratios of the LTri3Day signal with respect to the 3DayUniform 
signal for different routing schemes. In panel a) moment ratios about the relative time 𝑹𝒊(𝑩)

𝒕∗ , and in panel b) moment ratios about the 345 
relative streamflow 𝑹𝒊(𝑩)

𝒒∗ . 

 
Figure 4. Convergence for all the signals relative to the Dirac assuming constant velocity routing. The dots correspond to the median 
value of the moments ratio 𝑹, and the lines correspond to equation (7) results. 
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 350 
Figure 5. Values of the estimated parameter 𝜶 as a function of moment ratios for hydographs at order 2 streams for different scenarios 
of routing. 
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