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Abstract.  

One of the greatest threats to groundwater is contamination from fuel derivatives. Benzene, a highly mobile and 

toxic fuel derivative, can easily reach groundwater from fuel sources and lead to extensive groundwater 

contamination and drinking water disqualification. Modelling benzene transport in the unsaturated zone can 20 

provide quantification of the risk for groundwater contamination and needed remediation. Yet, characterization 

of the problem is often complicated, due to typical soil heterogeneity and numerous unknown site and solute 

parameters, as well as the difficulty in distinguishing important from non-important parameters, resulting in 

high uncertainty. Thus, the application of sensitivity analysis (SA) methods, such as global SA (GSA), is 

required to reduce uncertainty and detect important parameters for groundwater contamination, mitigation, and 25 

remediation. Nevertheless, studies devoted to identification of the driving parameters for fuel derivatives 

transport in the unsaturated zone are scarce.  Here, we performed GSA on a problem of benzene transport in the 

unsaturated zone. First, a simple GSA ‘Morris’ screening method was used for a homogenous sandy vadose 

zone. Then, a more computationally-demanding ‘Sobol’ variance-based GSA was run on the most influential 

parameters. Finally, the ‘Morris’ method was tested for a heterogeneous medium containing clay layers. To 30 

overcome the problem of model crashes during GSA, several methods were tested for imputation of missing 

data. The GSA results found benzene degradation rate (𝜆𝑘) to be the utmost influential parameter controlling 

benzene mobility. The depth of aquifer followed in importance in the homogenous media, while in the 

heterogeneous media parameters related to the clay layers, such as clay adsorption coefficient and the number of 

clay layers, followed in importance. The study emphasizes the significance of 𝜆𝑘 and the presence of clay layers 35 

in predicting aquifer contamination. The study also strengthen the importance of heterogenous media 

representation in the GSA, since different parameters control the transport in different soil layers. Overall, GSA 

is demonstrated here as an important tool for the analysis of transport models. The results also show that in 

higher dimensionality models, the radial basis function (RBF) is an efficient surrogate model for missing data 

imputation. 40 
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1. Introduction 

Petroleum products such as gasoline and diesel are of the most abundant chemicals of ecological concern used 

nowadays. During petroleum exploration, production, transport and storage, petroleum products often find their 

way to the environment by accidental leaks and spills (Logeshwaran et al., 2018; López et al., 2008; Nadim et 

al., 2000). Consequently, groundwater is often polluted from surface sources, posing a substantial potential risk 45 

to potable water worldwide (López et al., 2008; Nadim et al., 2000; Logeshwaran et al., 2018; Reshef and Gal, 

2017; Kessler, 2022). Since petroleum substances in general, and fuel components in particular, are considered 

toxic, carcinogenic, and mutagenic (Logeshwaran et al., 2018), strict regulations limit their maximum allowed 

concentration in groundwater to the parts per billion level (U.S EPA, 2006).  

Fuel products are usually comprised of different types of hydrocarbons. Fuel compounds like benzene are 50 

among the most commonly found groundwater pollutants (Schmidt et al., 2004; Logeshwaran et al., 2018). 

Benzene specifically, is highly soluble and thus of the most mobile fuel constituents in the subsurface 

(Farhadian et al., 2008). In the U.S. alone, during 1987–1993 about 0.9 million kg were reported to be released 

into the terrestrial and aquatic environment by the petroleum industries (Fan et al.,  2014). In Israel, benzene 

was detected in 60% of all sites monitored for fuel contamination (Reshef and Gal, 2017). Benzene low 55 

maximum allowed concentration of 5 g/l in drinking water (Farhadian et al., 2008; Kessler, 2022), arises great 

concerns that benzene leakages into groundwater will lead to disqualification of extremely large volumes of 

drinking water. Most fuel-related contamination reaches groundwater from the soil surface or near it (Troldborg 

et al., 2009). Therefore, it is important to assess the risk to groundwater from soil contamination and to 

understand the fate and transport of fuel components travelling from the soil surface, through the unsaturated 60 

zone, and down to the groundwater. 

Since actual water flow and contaminants transport in the subsurface are difficult to measure and predict, 

mathematical models are used to solve such transport problems (Bear and Cheng, 2010). Many studies have 
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been performed to examine the fate and transport of petroleum hydrocarbons, and specifically of benzene, most 

in saturated homogeneous porous media (Lu et al., 1999; Brauner and Widdowson, 2001; Choi et al., 2005, 65 

2009). Few studies have also dealt with the movement of benzene in unsaturated porous media (Berlin et al., 

2016; Berlin and Suresh, 2019; Troldborg et al., 2009; Ciriello et al., 2017). Benzene transport models typically 

combine Darcy-type water flow, advective–dispersive transport and a source/sink term considering various 

physical, chemical and biological processes including sorption, dissolution, and biodegradation (Mohamed and 

Sherif, 2010). Yet, due to the typical heterogeneity of the subsurface environment and the difficulty in obtaining 70 

sufficient relevant physical and bio-geochemical characterization of the site, these parameters entail high level 

of uncertainty (Ciriello et al., 2017; Tartakovsky, 2007). Soil heterogeneity and layering, for example, was 

shown to have considerable effect on contaminants transport in some studies (Rivett et al., 2011; Chen et al., 

2019), while in others the effect seemed negligible (Botros et al., 2012; Akbariyeh et al., 2018). This of course 

depends on the model scale, type of system (natural or irrigated), and type of contaminant tested. Also, the 75 

estimation of soil and contaminants parameters can be done in various methods, such as laboratory 

measurements, scaling and inverse modelling (Botros et al., 2012; Akbariyeh et al., 2018; Berlin et al., 2016; 

Berlin and Suresh, 2019; Troldborg et al., 2009; Ciriello et al., 2017) . This adds another aspect of uncertainty to 

the model. Thus, sensitivity analysis (SA) is required to determine the contribution of the individual input 

parameter to the uncertainty of the model output (Song et al., 2015). More specifically, SA can determine which 80 

are the non-influential input parameters that can be redundant or fixed, reveal the order of parameter 

importance, and the magnitude of parameter interactions (Razavi et al., 2021).  

Various SA methods are available; they can be generally divided into local sensitivity analysis (LSA) and global 

sensitivity analysis (GSA). LSA methods are mostly “one at a time” (OAT) methods (Saltelli and Annoni, 2010; 

Razavi et al., 2021). These methods are based on changing the uncertain input parameter by a specific interval 85 

several times around a ‘local point’ in the problem space (Saltelli and Annoni, 2010; Razavi et al., 2021). The 
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difference or the derivative of the output compared with the base-case output is then tested. LSA methods are 

usually simple and efficient in analysing simple models, but they are less suitable for multiple parameters, non-

linear and non-additive models. This is because derivatives are informative at the base point where they are 

computed, but do not enable exploration of the rest of the input parameter space (Saltelli and Annoni, 2010). 90 

Moreover, OAT methods are efficient in finding the most influential input parameters but cannot rank the 

influence of the input parameters or measure parameter interactions (Saltelli and Annoni, 2010). In GSA, on the 

other hand, the input parameters are changed over the entire sampling space, and the variance or probability 

distribution of the output is tested rather than the derivative. Variance based GSA methods are most commonly 

used since they are conceptually simple and easy to implement (Upreti et al., 2020; Khorashadi Zadeh et al., 95 

2017; Jaxa-Rozen et al., 2021; Saltelli et al., 2010; Sobol, 2001; Song et al., 2015; Saltelli et al., 2004; Nossent 

et al., 2011; Brunetti et al., 2016, 2017). Yet, when the model output is highly-skewed or multi-modal the 

variance may not adequately represent output uncertainty (Liu et al., 2006; Borgonovo, 2007). Therefore 

alternative methods like moment-independent (Liu et al., 2006; Borgonovo, 2007) and moment-based (Dell’Oca 

et al., 2017) methods were developed using the output probability density function (PDF) to fully characterize 100 

the output uncertainty. In some studies PDF methods were shown to perform better for parameters’ importance 

ranking, though highly influential parameters were usually common, and the ranking of these parameters was 

similar (Wang and Solomatine, 2019; Upreti et al., 2020; Khorashadi Zadeh et al., 2017), and in some cases 

variance-based methods were preferred (Upreti et al., 2020). In addition to finding the most influential input 

parameters, GSA can rank the parameters' influence and their interactions (Saltelli and Annoni, 2010; Razavi et 105 

al., 2021). Yet, the main drawback of GSA methods is their computational cost. 

Most hydrological models have numerous parameters resulting in high-dimensional and nonlinear problems. 

Therefore GSA methods are usually recommended in hydrological modelling (Song et al., 2015). Song et al. 

(2015) recommends GSA application before final modelling in order to better understand the model and its 
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dominating parameters, and as a tool to reduce the model parametric dimensionality. In his review, Song et al. 110 

(2015) identifies three main “hot spots” in GSA application with hydrological modelling, though these are 

relevant to many other disciplines. The three “hot spots” are: (1) Computational cost and subsequent meta-

modelling used instead of running the models multiple times, where the reliability and goodness-of-fit of meta-

models should be explored, (2) GSA method selection, convergence and reliability - selecting an appropriate 

GSA method, monitoring the convergence, and estimating the uncertainty of the GSA results are important for 115 

hydrological models, (3) GSA methods involve many hypotheses or have other limitations, including the 

independence of input variables, where in practice, the parameters employed by hydrological models usually 

have interactions or correlations that needs to be considered. So far, application of LSA/GSA for contaminant 

transport in the unsaturated zone is scarce (Davis et al., 1994; Gatel et al., 2019; Gribb et al., 2002; Pan et al., 

2011; X Song & Chen, 2018;  Ciriello et al., 2017), where most studies considered a homogenous media. 120 

Specifically for benzene, few LSA analyses indicated the degradation and adsorption coefficients as the most 

important parameters for benzene transport in the unsaturated zone (Gribb et al., 2002; Zanello et al., 2021). In 

one GSA performed for benzene risk assesment to groundwater (Ciriello et al., 2017), the porosity and hydraulic 

conductivity of the media were found to be the dominant parameters for the model uncertainty. Yet, properties 

related to benzene itself (such as its degradation rate or adsorption coefficient) were treated as deterministic 125 

quantities, and were not tested by the GSA (Ciriello et al., 2017). Moreover, we are not aware of any SA 

performed for benzene transport in layered heterogenoues unsturated media. Hence, there is a need for more 

research on the key parameters controlling contaminants transport in the subsurface, in general, and for benzene, 

in particular, for better prediction and mitigation of groundwater contamination. 

The objective of this study was to assess the specific impact of each of the multiple parameters that affect 130 

benzene transport in the unsaturated zone. For that purpose, a mechanistic model was used to simulate the 

transport of benzene in an unsaturated zone representing Israel's coastal plain vadose zone. Simulations of both 
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homogenous (sand) and heterogeneous (sand with clay layers) vadose zones were conducted. Two GSA 

methods were tested for the homogenous media simulations, to analyse the parameter importance: the Morris 

method (Morris, 1991), a reliable, computationally-cheap alternative to variance-based GSA; and the Sobol 135 

method (Sobol, 2001), a computationally heavy, variance-based and probably the most well-established and 

widely-applied GSA (Khorashadi Zadeh et al., 2017; Jaxa-Rozen et al., 2021; Saltelli et al., 2010; Sobol, 2001; 

Song et al., 2015; Saltelli et al., 2004; Nossent et al., 2011; Brunetti et al., 2016, 2017, and many more) (see 

Material and Methods section 2.3 for a description of these methods). The heterogeneous media simulation was 

tested by the Morris method, where the effect of the parameters of both soil types was tested as well as the clay 140 

layers’ distribution. 

A common, though usually overlooked, problem in GSA application is that some of the model runs do not 

converge but crash due to numerical instability and the assignment of random sets of parameters of different 

values (Razavi et al., 2021; Sheikholeslami et al., 2019). Owing to the novelty of GSA in hydrological research, 

there is not one agreed and established way to deal with these missing data, and the information in the literature 145 

is still scarce (Sheikholeslami et al., 2019). Consequently, and as part of the overall analysis done in this study, 

we also tested several methods for missing data imputation in cases where the model does not converge or 

crashes. 

2. Materials and methods 

A mechanistic model was generated to investigate the potential transport of benzene in the vadose zone 150 

underlain by Israel's coastal plain aquifer. The model was applied for both homogenous and heterogeneous 

media. For simplicity, initial runs solely included a homogenous sandy soil profile, as sand and sandstone are 

the main constituents of Israel's coastal plain aquifer (Kurkar Group; Turkeltauub, 2011). Yet, in most natural 

environments, the soil profile is non-homogenous, containing clay layers and other materials. In a study 
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conducted at Israel coastal plain vadoze zone, Rimon et al. (2007) reported that the occurrence of different soil 155 

materials, and specifically clay interbeds, strongly affected flow patterns to the aquifer. Therefore, later model 

runs included clay interbeds. 

2. 1 Mechanistic model and input parameters 

The one-dimensional mechanistic model included water flow, solute transport, biodegradation, adsorption, and 

volatilization. Water flow in the unsaturated zone was modelled by a modified form of Richard’s one -160 

dimensional equation, 

(1) 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾 (

𝜕ℎ

𝜕𝑧
+ 1)] 

where ℎ is the water matric head [L], 𝜃 is the volumetric water content, 𝑡 is time [T], 𝑧 is the vertical coordinate 

[L] (positive upward), and 𝐾 is the unsaturated hydraulic conductivity function [LT-1] given by,  

(2) 𝐾(ℎ, 𝑧) = 𝐾𝑠(𝑧)𝐾𝑟(ℎ, 𝑧) 165 

where 𝐾𝑟  is the relative hydraulic conductivity [-] and 𝐾𝑠 the saturated hydraulic conductivity [LT-1]. 

The unsaturated soil hydraulic properties 𝜃(ℎ)  and 𝐾(ℎ)  are described by the van Genuchten – Mualem 

formulation (Mualem, 1976; van Genuchten, 1980),  

(3) 𝜃(ℎ) =  𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[1+|𝛼ℎ|𝑛]𝑚    ℎ < 0 

(4) 𝐾(ℎ) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)

𝑚
]

2

 170 

(5) 𝑆𝑒  =  𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
 

where  

(6) 𝑚 = 1 − 1/𝑛 , 𝑛 > 1 

In Eq. (3-6),  𝜃𝑠 is the saturated water content and 𝜃𝑟 is the residual water content. 𝛼 [L-1], 𝑛 and 𝑚 are the van 

Genuchten fitting parameters; 𝑆𝑒 is the effective saturation, and 𝑙 is the pore-connectivity parameter (Eq. (4)).  175 
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Solute transport was described by the advection-dispersion equation, 

(7) 
𝜕𝜃𝑐

𝜕𝑡
+ 𝜌

𝜕𝑠

𝜕𝑡
+

𝜕𝑎𝑣𝑔

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜃𝐷𝑤 𝜕𝑐

𝜕𝑧
) +

𝜕

𝜕𝑧
(𝑎𝑣𝜏𝑔𝐷𝑔 𝜕𝑔

𝜕𝑧
) −

𝜕𝑞𝑐

𝜕𝑧
− 𝜆𝑘𝜃  

where 𝑐, 𝑠, and 𝑔 are solute concentrations in the liquid [ML-3], solid [MM-1], and gaseous [ML-3] phases, 

respectively. 𝜌 [ML-3] is the solid phase bulk density. 𝐷𝑤  is the dispersion coefficient in the liquid phase [L2T−1] 

given by Bear (1972) as, 180 

(8) 𝜃𝐷𝑤  =  𝛼𝐿 𝑞 +  𝜃𝐷𝑀𝜏𝑤 

where 𝐷𝑀 is the benzene’s molecular diffusion coefficient in the aqueous phase [L2T−1], 𝑞 is the absolute value 

of the Darcian fluid flux [LT-1] evaluated using the Darcy–Buckingham law, 𝑞 = −𝐾(
𝑑ℎ

𝑑𝑧
+ 1) . 𝛼𝐿  is the 

longitudinal dispersivity [L], and 𝜏𝑤 and 𝜏𝑔 are tortuosity factors in the liquid and gas phase respectively [-], 

evaluated using the relationship described by Millington & Quirk (1961). 𝑎𝑣 is the air content [L3L-3], and 𝐷𝑔 is 185 

the benzene molecular diffusion coefficient [L2T−1] in the gas phase and 𝜆𝑘 is a first-order rate biodegradation 

constant for benzene in the liquid phase [T-1] (solid and gas phase degradation were assumed negligible). 

Benzene adsorption was assumed linear (Wołowiec and Malina, 2015; Baek et al., 2003) of the form 𝑠 =  𝐾𝑑𝑐, 

where 𝐾𝑑 is the distribution coefficient [L3M−1] (see Table S2 in the appendix  for literature values). 

The gaseous (g) and aqueous (c) phase concentrations in Eq. (7) are related by a linear expression of the form:  190 

(9) 𝑔 = 𝑘𝑔𝑐 

where 𝑘𝑔 is an empirical constant [-] equal to (𝐾𝐻𝑅𝑢𝑇𝐴)−1 (Stumm and Morgan, 1981), in which 𝐾𝐻 is Henry's 

law constant [MT2M-1L-2],  𝑅𝑢 is the universal gas constant [ML2T-2K-1 M-1] and 𝑇𝐴 is the absolute temperature 

[K]. 

The values of 𝜃𝑠, 𝜃𝑟, 𝑙, 𝐷𝑀, 𝐷𝑔, 𝐾𝐻, and 𝜌 were kept constant in the model and are listed in Table 1. 𝐷𝑀, 𝐷𝑔 195 

and 𝐾𝐻 are constant properties for benzene and were therefore not changed. The pore-connectivity parameter 𝑙 

in the hydraulic conductivity function was estimated  to be about 0.5 as an average for many types of soils 
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(Mualem, 1976). The range of 𝜃𝑠 , 𝜃𝑟 , and 𝜌  values in the literature was limited (Carsel & Parrish, 1988; 

Domenico & Schwartz, 1990; Gribb et al., 2002; Schaap et al., 2001). In a local sensitivity analysis of benzene 

transport in the vadose zone, Gribb et al. (2002) found that 𝜌  is an insignificant parameter and 𝜃𝑟  is only 200 

significant in pure clayey soils.  

The sensitivity of the model to the values of 𝛼, 𝑛, 𝐾𝑠, 𝛼𝐿, 𝜆𝑘 and 𝐾𝑑 values was tested in the GSA analysis. The 

range of tested values along with the corresponding references can be found in Table 2. Specifically, we found 

that 𝜆𝑘 values greatly vary between different studies, mainly due to the differences in experimental conditions 

and aquifer characteristics (See appendix Table S1 for literature values). Though the highest 𝜆𝑘  value we 205 

encountered in the litreture was 174 (day-1) (Lahvis et al., (1999); Table S1), we set the upper limit of 𝜆𝑘 to 1.5 

(day-1) (Table 2). This was done for two main reasons; A. from an early stage it was evident that 𝜆𝑘 is a very 

influential parameter and high values mostly resulted in output values of zero, thereby lowering the overall 

sensitivity. B. The Morris analysis takes the range and divides it into a given number of levels (four or six, in 

our case). Since the range of 𝜆𝑘 included values spanning over four orders of magnitude (1 𝑥 10−2 − 1 𝑥 102 210 

(day-1)), much of the range would have been missed by the analysis. 
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Table 1 Constant input parameters for the model: 

 225 

Parameter  value units Reference 

L 0.5  -- Mualem (1976) 

θr Sand 0.045  -- Carsel & Parrish (1988) 

θs Sand 0.43  -- Carsel & Parrish (1988) 

θr  Clay 0.068 -- Carsel & Parrish (1988) 

θs  Clay 0.38  -- Carsel & Parrish (1988) 

Ρ 1500 kg/m3 Levy (2015) 

Dm  Benzene  7.77E-05 m2/day EPA On-line Tools for Site Assessment Calculation  

Dg  Benzene  0.77414 m2/day  EPA On-line Tools for Site Assessment Calculation 

KH Benzene Henry’s constant  0.224 -- Du et al. (2010) 
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Table 2 Input parameters and their range used for GSA: 226 

 
Sandy soil Clayey soil 

Parameter 
Values 

range 
References Comments 

Values 

range 
References Comments 

𝜶 (m-1) 3.6 - 17 

 Carsel & 

Parrish, (1988), 

Domenico & 

Schwartz. 

(1990), Moret-

Fernández et al., 

(2017), Nemes et 

al., (1999) 

Fine to coarse 

sand Silt to sand 

0.5 - 

3.86 

Carsel & 

Parrish. 

(1988) Rawls 

et al. (1982) 

Clay  to clay 

loam 

       

𝒏 
1.1 -

2.9 

Domenico & 

Schwartz, 

(1990); Moret-

Fernández et al. 

(2017); Nemes et 

al. (1999) 

Fine to coarse 

sand 

0.13 - 

1.31 

Carsel & 

Parrish, 

(1988); 

Rawls et al. 

(1982) 

Clay  to clay 

loam 

       

𝑲𝒔 

(m/day) 

0.5 - 

250 

Domenico & 

Schwartz, (1990) 

Nemes et al., 

(1999) 

Values for fine to 

coarse sand are 

0.017-518 

(m/day). These 

were narrowed for 

model 

convergence 

(coastal aquifer 

typical  

0.001 - 

0.3144 

Rawls et al. 

(1982). 

Clay  to clay 

loam 

   

values are ~7 

m/day)    
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𝜶𝒍 (m) 0.01 - 5 
 

According to a 

rule of thumb 1/10 

of z (Bear & 

Cheng, 2010) 

0.01 - 5 
 

According to a 

rule of thumb 

1/10 of z (Bear & 

Cheng, 2010) 

       

𝑲𝒅  

(m3/kg) 

0.00007 

- 0.004  

Literature review 

for benzene in 

sandy soils (Table 

S2) 

0.00004 

- 0.0238  

Literature review 

for benzene in 

clayey soils 

(Table S2) 

       

𝝀𝒌  (day-1) 0 - 1.5 
 

Literature review 

for benzene in 

unsaturated media 

(Table S1). Upper 

value was set to 

1.5 to obtain 

output results >0 

0 - 1.5 
 

Literature review 

for benzene in 

unsaturated 

media (Table 

S1). Upper value 

was set to 1.5 to 

obtain output 

results >0 

       

𝑵 - - - 1 - 4 
 

See Table 7 

       

𝒃  (m) - - - 0.2 - 2 
 

See Table 7 

       

𝒛  (m) 5 - 50 
 

Typical aquifer 

depths 
10 - 50 

 

Lower value was 

increased for to 

allow space for 

clay layers 

insertion 
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2. 2 Model domain and boundary conditions 

The profile depth (𝑧) was set as a variable input parameter in the range of 5 - 50 m (Table 2). This range was obtained from a 

dataset of fuel-contaminated sites of the Israeli coastal plain (see Figure S1 in the appendix) received from Israel’s Ministry 

of Environmental Protection and reported by Israel’s Water Authority (Reshef and Gal, 2017). In runs that tested the 230 

occurrence of clay layers, the thickness (𝑏) and number (𝑁) of clay layers were additionally tested as variable GSA input 

parameters (Table 2). 

An upper atmospheric boundary condition (BC) was set at the top of the profile with average daily precipitation and 

potential evaporation data from the Beit Dagan meteorological station for 2019 (Fig. 1). Potential pan evaporation data was 

converted to Penman-Montieth potential evaporation by multiplying the data with monthly coefficients obtained for the 235 

Israeli coastal plain by Gal et al. (2012). On days when evaporation data were not available, a monthly-averaged evaporation 

value of the available data for the specific month was used as input. At the bottom boundary, where the aquifer was 

positioned, a Dirichlet BC of constant matric head (ℎ =  0) was set. 
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Figure 1 – Daily precipitation and potential evaporation data of Beit Dagan meteorological station for 2019 – set as the upper 240 

model BC 

For the first ten years, only water flow was considered, to enable stabilization of the hydraulic conditions in the profile and 

establish annual periodic conditions. According to our tests, such stabilization takes about four years. Hence, benzene was 

introduced following ten years. 

For the solute transport, an upper Dirichlet BC prescribing benzene saturation concentration (1.77 kg/m3  - solibiluty of 245 

benzene in water at 250 C; Stewart. (2010)) was set to mimic a constant fuel lens on the surface. A bottom Neumann BC of 

zero concentration gradient was set, enabling free drainage to the aquifer.  

The model was run using the Hydrus - 1D software package (Šimůnek et al., 2013), a finite element model for simulating the 

one-dimensional movement of water and solutes in variably saturated media. In the homogenous media analysis, the soil 

profile was divided into 51 equal nodes. Yet for the heterogeneous media where layers of clay were introduced, a higher 250 

resolution was required due to the heterogeneity of the profile and the smaller size of the layers, as compared to the whole 

profile. In these runs, the profile was divided such that the total number of nodes was equal to ((𝑧 ∗  20)  +  1). Clay layers 

were assigned in the profile according to the number of clay layers (𝑁) and their thickness (𝑏), such that they were equally 

distributed in the profile, generating alternating sand and clay layers. Each of the layers of both clay and sand were divided 

into (𝑏 ∗  20) nodes. 255 

Heterogeneous media analysis included clay layers within the sandy soil to obtain a more realistic representation of Israel's 

coastal plain vadose zone, mostly comprising sandy soil but also including clay layers and interbeds (Ecker, 1999). 

To create a representative configuration of the clay layers in the vadoze zone above the Israel's coastal plain aquifer, we 

examined the distribution of clay layers in selected fuel-contaminated sites. For that purpose, we constructed a database 

consisting of records from 32 fuel-contaminated sites containing dozens of monitoring boreholes that were obtained from the 260 

Israel Ministry of Environmental Protection. Each borehole in the database was sampled at multiple depths and characterized 

for the soil type. We classified these soil types into four main categories: gravel, sand, clayey sand (consisting of 55 % sand 

and 45 % clay), and clay, according to the soil type name on the database (see Table S9 in the appendix for the categories). 
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For each site, the percentages of each of the four soil types at each specific depth was extracted (i.e., the number of boreholes 

having a given soil type at a specific depth divided by the total number of boreholes penetrating that depth). We then looked 265 

for the percentage of clay at each depth, where a layer having clay percentage higher than 25 % was considered a clayey 

layer (Whiting et al., 2011). This yielded the number and thicknesses of clay layers for each site (an example of one site can 

be found Table S10 in the appendix). Based on this methodology, a distribution of clay layers in contaminated sites at 

Israel’s coastal plain vadose zone was calculated and is presented in Table 3.  

Table 3 – Summary of clay layers distribution 270 

Number of 

clay layers 

Number of 

sites 

Percentage of 

sites 

Thickness of clay layers (m) 

Mean STDEV Max Min Median   

0 1 3.13 % -- -- -- -- -- 

1 16 50 % 3.8 3.21 11.7 0.1 3 

2 4 12.50 % 2.38 2.26 8.1 0.2 2 

3 5 15.63 % 1.135 0.94 3 0.1 1.95 

4 2 6.25 % 2.3 2.78 6.4 0.3 1 

5 2 6.25 % 4.2 6.76 12 0.1 0.5 

6 2 6.25 % 2.55 3.46 5 0.1 2.55 

 

Table 3 shows that only in 1 of the 32 examined sites, there were no clay layers at all. Fifty percent of the sites had only one 

clay layer and most of the sites had 1-3 layers (~78 %), whereas almost 20 % had 4 - 6 layers. The mean of the layers' 

thickness ranged from 1-4 m. Yet, the standard deviation was high and the actual thickness ranged from 11.7 to 0.1 m. Due 

to this variance in the distribution of clay layers (Table 7), it was decided to examine the number of clay layers (𝑁) and their 275 

thickness (𝑏) as additional input parameters in the sensitivity analysis of the heterogeneous media within the range of values 

reported in Table 3. The range of tested 𝑁 and 𝑏 can be found in Table 2. We are not aware of other studies that tested the 

distribution of clay layers interbeds in a SA for contaminants transport. Yet, Dai et al., (2017) tested the spatial distribution 
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uncertainty of other parameters in a GSA like the elevations of the contact between aquifer and aquitard, the hourly head 

boundary conditions and the hydraulic conductivity field. 280 

The model was run for a total of either 100 years for the Morris analysis, or 60 years for the Sobol analysis (in this case, the 

number of years was reduced to save computational cost due to the overall high computational cost of the Sobol analysis). At 

the end of each run, benzene concentration in the aquifer and the total flux to the aquifer were examined. 

2. 3 Global sensitivity analysis 

2.3. 1 The Morris method 285 

The Morris or the elementary effect (EE) method was introduced by Morris (1991) and improved by Campolongo et al. 

(2007). It can be viewed as an extension of the OAT method, since it randomly generates sets of reference values from the 

entire parameter space and computes the difference of output (EE) caused by a fixed parameter change, altering only one 

parameter at a time. However, it can also be viewed as a GSA method, since it averages multiple EEs computed at different 

points in the parameter space. This method provides qualitative sensitivity measures (i.e., ranking the input parameters in 290 

order of importance), however it does not quantify how much a given parameter is more important than another (Saltelli et 

al., 2004). 

In the Morris method, each input parameter xi, where i =  1, . . . , k, is assumed to vary across 𝑝 selected levels in the space of 

the input parameter. The parameter space is normalized to a uniform distribution in [0, 1] and partitioned into (𝑝  −   1) 

equal sections. The algorithm starts at a randomly chosen point in the 𝑘-dimensional space and creates a trajectory (or a 295 

path) through the 𝑘-dimensional variable space. Each parameter is randomly chosen from the set (𝑝 −  1) sections and a 

fixed increment 𝛥 (a multiple of 1 / (𝑝 −  1)) is added to each parameter in random order to compute an EE of each 

parameter, where EE is the difference of output 𝑦 caused by the change 𝛥 in the respective parameter. The EE for the ith 

input parameter can be described as, 

(10) 𝐸𝐸𝑖(𝑥1. . . 𝑥𝑘) = (
𝑌(𝑥1,𝑥2,…,𝑥𝑖+∆𝑖,….,𝑥𝑘)−𝑌(𝑥1,𝑥2,…,𝑥𝑖,….,𝑥𝑘)

∆𝑖
) 300 
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Changing each parameter once from one set of reference values completes one path, which together with the base case 

requires (𝑘 +  1)  simulations. By conducting simulations over multiple paths, we have an ensemble of 𝐸𝐸𝑖 s for each 

parameter. The number of required runs is then 𝑟 (𝑘 +  1), where 𝑟 is the number of paths or trajectories. All 𝐸𝐸𝑖  values 

computed for randomly chosen paths are used to compute two final sensitivity measures  𝜇𝑖
∗ and 𝜎𝑖  (Campolongo et al., 

2007), 305 

(11) 𝜇𝑖
∗ =

1

𝑟
∑ |𝐸𝐸𝑖,𝑗|𝑟

𝑗=1 

where 𝜇𝑖
∗ is the mean of absolute values of the 𝐸𝐸𝑖 . 𝜇𝑖

∗ can be regarded as a global sensitivity index, since it represents the 

average effect of each parameter over the parameter space. Thus, it is used to identify influential and non-influential 

parameters. 

The second measure 𝜎𝑖 is the standard deviation of the 𝐸𝐸𝑖 , 310 

(12) 𝜎𝑖 = √1

𝑟
∑ (𝐸𝐸𝑗,𝑖 −

1

𝑟
∑ |𝐸𝐸𝑗,𝑖|

𝑟
𝑗=1 )

2
𝑟
𝑗=1 

It is used to identify non-linear and/or interaction effects.  

The review by Song et al. )2015) reported that in different studies, the number of paths (𝑟) varies from 20 to 1250 paths, 

representing a total of 280 to 40000 numerical simulations, with an average of 500 paths. Both Brunetti et al. (2018) and 

Turco et al. (2017) combined the Hydrus model (1D and 2D, respectively) with the Morris method. Brunetti et al. (2018) set 315 

𝑟 =  100 for a total of 1700 simulations, and Turco et al. (2017) set 𝑟 =  8 for a total of 40 simulations. In this study we set 

𝑟 =  250, considering that the data will be further analysed by the Sobol GSA. This gave us a total number of 3000 and 

4000 simulations for the analysis with and without clay layers, respectively. 

2.3. 2 The Sobol method 

While the OAT and the Morris sensitivity methods are difference-based, the Sobol-Saltelli method is variance-based (Saltelli 320 

and Annoni, 2010). Variance-based methods are used to quantitatively identify both the importance of individual model 

parameters and parameter interactions. The Sobol method is based on a decomposition of the total model variance into two 
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main elements: variance of the individual parameter and variance due to interaction with other parameters (Sobol, 2001). 

Decomposition of the model variance can be written as follow (Saltelli et al., 2004), 

(13) V = ∑ Vi + ∑ ∑ Vij
k
j>𝑖

k
i=1

k
i=1 + ⋯ V1,2,…,k 325 

(14)  Vi = V[E(Y|xi)] 

(15) Vij = V[E(Y|xixj)] − Vi − Vj 

where 𝑉  stands for the total variance of the model output. 𝑉𝑖  is the variance of each input parameter 𝑥𝑖 , and 𝐸(𝑌│𝑥𝑖) 

represents the mean of the system response 𝑌 when the parameter 𝑥𝑖 is fixed at different values. 𝑉𝑖𝑗 represents the variance 

due to interactions between two parameters 𝑥𝑖 and 𝑥𝑗, and 𝑉1...𝑘 describes the variance among 𝑘 parameters. These elements, 330 

represented by Sobol’s sensitivity indices (SI’s), provide quantitative information about the variance associated with a single 

parameter or related to interactions of multiple parameters. The main sensitivity index or the first-order sensitivity index 𝑆𝑖 

quantifies the main effect of parameter 𝑥𝑖 on the total variance of 𝑌, excluding the interactions with other parameters,  

(16) 𝑆𝑖 =
𝑉𝑖

𝑉(𝑌)
 

The total-order sensitivity index 𝑆𝑇𝑖  of a single parameter 𝑥𝑖  includes both the parameter’s main variance effect and the 335 

proportion of the variance due to interactions of 𝑥𝑖 with the other parameters, 

(17) 𝑆𝑇𝑖
= 𝑆𝑖 + ∑ 𝑆𝑖𝑗 + ⋯ + 𝑆1…𝑘𝑖≠𝑗 

The values of the indices vary from 0 to 1, where 0 stands for no influence and 1 for a strong influence on the variance.  

Parameter spaces were sampled using the Sobol quasi-random, cross-sampling strategy (Sobol, 2001). Rather than 

generating random numbers, this technique generates a uniform distribution in the probability space. The distribution 340 

appears qualitatively random, but sampling only takes place in regions of the probability function that were not previously 

sampled. 

In order to assess the accuracy of the Sobol indices, confidence intervals of the indices should be constructed. The analytical 

procedure for confidence interval calculation involves repeating the 𝑟(2𝑘 + 2) model runs several times, which is too time 
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consuming and computationally demanding in this case. Therefore the bootstrapping approach was used instead (Efron and 345 

Tibshirani, 1986). Archer et al. (1997) suggested using bootstrap confidence intervals to produce confidence intervals of 

complicated data structures. The bootstrapping approach is based on resampling the parameter space of the already available 

data many times with replacement (randomly selecting values and allowing for duplicates), and constructing a distribution of 

the output (Efron and Tibshirani, 1986). Here, resamples were taken from the existing dataset 𝑌 with replacement, and the 

indices' values were recalculated. That gives an estimate of the mean and variance of each of the indices and allows 350 

calculation of the confidence interval. The method thus relies on computational cost rather than on an analytical cost 

(running the model again). Here, the samples used for the model evaluation were resampled 1000 times with replacement, 

and 95% confidence intervals were constructed (Archer et al., 1997). 

Still, confidence intervals for the first-order indices (S1), with the Sobol sampling method gave values of more than 100%. 

This was also observed by Brunetti et al. (2016) and Hartmann et al. (2018) who also studied transport in unsaturated media. 355 

This may be a result of insufficient sample size, since Sobol's convergence requires a very large sample size (Saltelli et al., 

2004). Therefore, here the S1 values were extracted using the delta method of Plischke et al. (2013), calculating S1 values 

from a given data through emulators and bootstrapping rather than running the model itself multiple times. 

More details on the Sobol sample size can be found in appendix. 

The Morris and the Sobol sensitivity analyses were executed using the Python programming language and specifically, the 360 

Sensitivity Analysis Library (SALib) (Herman & Usher, 2018). SALib uses a Python script that overwrites the input 

parameters given by the GSA in the relevant Hydrus 1D model input files. The script then executes the model and returns the 

final aquifer solute concentration and the total solute flux to the aquifer at the end of the simulation. This procedure is 

repeated for the number of runs set for the GSA, with changes in the input parameters according to the sampling technique. 

SALib then computes the indices of the two methods: 𝜇𝑖
∗ and 𝜎𝑖 and their confidence interval for the Morris method, and the 365 

Sobol indices and their confidence interval for the Sobol method. Both Morris and Sobol methods have already been applied 

with the Hydrus software package by Périard et al. (2013) (Hydrus - 2D / 3D), Brunetti et al. (2016, 2018) (Hydrus - 1D), 

Turco et al. (2017) (Hydrus - 2D), Hartmann et al. (2018) (Hydrus - 2D) and others. 
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2. 4 Treatment of missing output data 

Owing to the arbitrary choice of input parameters and multiple model runs, the model sometimes does not converge and 370 

crashes. This creates a problem in analysing the data because sampling order is important for the analysis results of most 

GSA methods. Since there is not yet an agreed and established way to handle these missing data (Sheikholeslami et al., 

2019), we tested the following methods:  

Missing data removal - by removing the missing data points, or by removing full trajectories, the order of sampling within 

trajectories remains undisturbed. Yet, by removing data, valuable information can be lost. In addition, in most methods, 375 

removing data may render the entire sample since it no longer follows the sampling sequence and data structure. Thus, this 

study only tested value removal for the Morris method where full trajectories can be removed. 

Missing data imputation – a missing value is replaced with some other value. The following missing data imputation 

approaches were tested: 

Constant value substitution is an easy and computationally cheap method for the imputation of missing data. The missing 380 

data can be replaced with zeros in cases where the output is typically near zero, or with the mean or the median, in cases 

where the distribution is skewed. Sheikholeslami et al. (2019) for example, used the median substitution technique for a 

rainfall-runoff model and a land surface hydrology model. A shortcoming of this replacement methods is the potential for 

reducing the variance and distorting other statistical properties of the output (Sheikholeslami et al., 2019). In this study, both 

the zero and the median substitutions gave similar final GSA indices, with slightly different confidence intervals. Therefore, 385 

only the zero substitution results are presented. 

K Nearest Neighbour (KNN) substitution - The KNN technique uses neighbourhood observations to fill in missing data. 

The underlying rationale behind the KNN-based techniques is that the sample points closer to 𝑥𝑖  should provide better 

information for imputing the failed output, where 𝑥𝑖 is an input parameter vector for which a simulation model fails to return 

an outcome. In the KNN method, the failed output is replaced by a response value of a weighted average of the K (the 390 

number of samples) nearest neighbours (KNN). The KNN algorithm computes the distance of the test observation to every 

observation in the K nearest neighbours and then imputes the missing value with the average model response of the K 
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simulations (Duneja and Puyalnithi, 2017). The computed neighbouring distance between the samples is typically the 

Euclidean distance (Duneja & Puyalnithi, 2017; Troyanskaya et al., 2001). Lower K values generally result in predictions 

with high variance and low bias and vice versa for high K values (Hastie et al., 2009). Thus, in this study, we tested both a 395 

lower K value of five, as was used by Shapiro & Day‐Lewis (2022) for groundwater hydrology model, and a higher K equal 

to the square root of the size of the data set - a rule of thumb in the KNN method reported to correctly distinguish signal 

from noise (Duneja and Puyalnithi, 2017). The KNN analysis was conducted using the programming language Python with 

the scikit-learn KNN regressor.  

RBF emulation-based substitution - Model emulation or surrogate modelling, is a strategy that develops statistical, cheap-400 

to-run surrogates for the output of complex, computationally intensive models (Razavi et al., 2012a). The emulator usually 

uses a low computational cost function that fits the non-missing response values 𝑌𝑎 to predict the values for the missing 

response 𝑌𝑚. There are various types of model emulations that can be used for hydrological models such as polynomial 

regressions, kriging, artificial neural networks, radial basis functions (RBFs), and support vector machines (Razavi et al., 

2012; Zhou et al., 2022). RBF is one of the most commonly used function approximation techniques, because it can provide 405 

an accurate emulation of high-dimensional problems for low computational cost. Sheikholeslami et al. (2019), for example, 

employed the RBF approximation for crashed model simulation emulation which performed better than all other methods 

tested in that study. The RBF approximation is a weighted summation of 𝑛𝑎 number of functions that can approximate the 

predictive response 𝑌 at a point 𝑥𝑖. Here 𝑛𝑎 was set to the number of non-missing sample points. Detailed equations of the 

RBF approximation can be found in the appendix SI. The RBF imputation analysis was also conducted with the Python 410 

program using the SciPy RBF interpolation package.  
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3. Results & discussion 

3. 1 Homogenous media analyses 

3.1.1 Morris analysis for homogenous sandy soil 

In this analysis, the model's sensitivity to seven input parameters (𝑘) was tested (Table 1), considering two model outputs: 415 

benzene aquifer concentration at the end of the simulation and benzene cumulative flux to the aquifer. The analysis was 

conducted for 250 paths (𝑟) and six levels (𝑝; i.e., dividing the parameters' space to five equal segments, where the parameter 

can be assigned six different values) for 2000 simulations overall (𝑟 (𝑘 +  1)). Out of these simulations, only 42 simulations 

(2.1 %) did not converge or crashed. To avoid bias in the results, we used the methodology described in Section 2.4 to either 

replace the missing values or remove the trajectories that contain missing values. Three imputation methods are presented: 420 

zero substitution, the RBF emulator, and the KNN method with K = 5 and K =  45 (representing the square root of the 

sample size). Figure 2 presents 𝜇∗ for these different methods. Detailed values of all indices for the different methods can be 

found in the appendix (Tables S3 - S4). Small differences were observed between the different methods for 𝜇∗ , 𝜇∗ 

confidence interval, and 𝜎 values for each of the input parameters, with the same order of parameter importance. The 

similarity between the different methods stems from the scarce missing values, hardly affecting the overall results. In all 425 

strategies for handling missing data, it is evident that the GSA performed the worst for the weakly influential parameters - 𝛼, 

𝐾𝑠 and 𝛼𝑙, exhibiting a high ratio of 𝜇∗ to 𝜇∗ confidence interval (Fig. 2, Tables S3 - S4) this was also evident in GSAs 

obtained with the Hydrus model for other hydrological problems (Brunetti et al., 2016, 2022; Hartmann et al., 2018; Zhou et 

al., 2022; Brunetti et al., 2017). 
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Figure 2 – Morris analysis results for homogenous sandy soil obtained with the different methods for missing data 

imputation/removal for: a. Cumulative benzene flux to the aquifer and b. Final benzene concentration in the aquifer. Black bars 

represent * confidence intervals.  

The effect of the different parameters on the output can also be seen in Figures 3a and 3b, where 𝜇∗ versus 𝜎 is presented for 435 

the Morris analysis conducted with the RBF emulation substitution method used to replace the crashed data. Though 

minimal differences were observed between all methods (Fig. 2), the RBF results are shown here for consistency purposes, 

since the RBF method gave the best results in the heterogeneous media case (see Section 3.2.2). 

In all cases, the input parameter with the strongest effect on the system was the degradation rate 𝜆𝑘, followed by the profile 

depth 𝑧 (Figs. 2 and 3). The next two influential parameters are the adsorption coefficient 𝐾𝑑  and the van Genuchten 𝑛 440 

parameter. Both showed a similar effect on the concentration, though the effect of 𝑛 on the flux to the aquifer was much 

more pronounced. Finally, the van Genuchten 𝛼 parameter, the hydraulic conductivity 𝐾𝑠 and the dispersivity 𝛼𝑙 , showed 

little effect on the model results. 

Zanello et al. (2021) reported similar results in a LSA for a model of BTEX transport in an unsaturated homogenoues sandy 

soil using Hydrus 2D/3D software. They found that the order of the input parameters' influence on BTEX arrival to the 445 

aquifer (tested as concentration) was 𝜆𝑘 > 𝐾𝑑 > 𝑧 > 𝐾𝑠. The stronger influence of 𝐾𝑑 compared to z in that study is probably 

the result of the low 𝑧 values tested there (2.5 - 4 m), representing a shallow aquifer. In another study, Davis et al. (1994) 

modeled the constant leakage of benzene in a loamy sand soil to an aquifer beneath a manufacturing facility. Benzene 

concentrations of ~1 mg/l were found in the groundwater beneath the source (~25 mg/l), though in monitoring wells ~100 m 

from the source no bezene was detected. In their LSA they too found that 𝜆𝑘 was the “dominant mechanism” for benzene 450 

attenuation and found 𝐾𝑑 to be very influential. Moreover, similarly to our study, their model was insensitive to 𝛼𝑙 , (Davis et 

al., 1994). Indeed, the great importance of biodegradation for the removal of gasoline hydrocarbons in aerobic environments 

has been recognized and reported in the literature (Lahvis et al., 1999; Berlin et al., 2016; Yadav and Hassanizadeh, 2011; 

Berlin and Suresh, 2019; Alvarez et al., 1991; Abu Hamed et al., 2004), here it is demonstrated once again. 

Generally, the order of influence of the parameters was similar for the cumulative flux to the aquifer and for the final 455 

concentration in the aquifer (Fig. 3). For both the flux and the concentration, a correlation between 𝜇∗ and 𝜎 is observed, as 
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reflected in their arrangement around the same diagonal line (Fig. 3, red line), indicating that none of the parameters have 

solely a linear effect (𝜇∗  being the mean effect). Instead, all parameters exhibit an interaction effect (𝜎  - the standard 

deviation of the effect), where the interactions increases with the increase in the mean.  

 460 

Figure 3 - Morris analysis results for homogenous sandy soil with RBF imputation for: A. Cumulative benzene flux to the aquifer 

and B. Final benzene concentration in the aquifer. 

3.1.2 .Sobol analysis for homogenous sandy soil:  

The Sobol analysis for homogenous media was conducted for the four most influential parameters of the Morris analysis: 𝜆𝑘, 

𝑧, 𝑛, and 𝐾𝑑, to obtain more quantitative information on the parameters' influence and interactions. Five thousand sets of 465 

parameters were generated, constituting an overall total of 50000 model runs for 𝑟 (2𝑘 + 2). Of the 50000 model runs, 881 

samples did not converge. The same methodology used for the Morris analysis was used for missing values imputation 

(Section 2.4). Yet, with the Sobol analysis, it was impossible to remove the missing points, since the order of sampling is 

significant to the overall analysis, and sampling is not divided into sets of trajectories. Hence, the data removal method was 

not used.  470 

Figures 4 and 5 show the S1 and ST Sobol indices for the different methods of missing data replacement. Detailed and 

averaged values of all methods can be found in the appendix (Tables S5 - S10). All missing data imputation methods gave 
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similar results (Figs. 4 and 5, and Tables 5 and 6). This is expected given the low dimensionality of the model (four input 

parameters). Here, the GSA also performed the worst for the weakly influential parameters (𝑛 and 𝐾𝑑) exhibiting a high 

confidence interval to indices ratio.  475 

 

Figure 4 – The Sobol total indices (ST) for homogenous sandy soil obtained using different methods for missing data imputation 

for: a. Cumulative benzene flux to the aquifer and b. Final benzene concentration in the aquifer. Black bars represent ST
 

confidence intervals. 

A similar effect of the different parameters' order and magnitude of importance on the two outputs was observed. Just like 480 

the Morris analysis, here as well, 𝜆𝑘 and 𝑧 were found to be the most influential parameters with the highest total order (ST) 

and first order (S1) indices values (Figs. 4 and 5). ST, unlike S1, often sums to more than 100% because it is the sum of S1 and 

all the higher-order Sobol indices involving the parameter (Saltelli et al., 2004). The difference ST – S1 is a measure of how 

much parameter xi is involved in interactions with any other input variable (Saltelli et al., 2004). The total index ST (Figs. 4 

and 5) demonstrates that most of the variance in both flux and concentration is caused by 𝜆𝑘, consisting of the variation of 𝜆𝑘 485 

itself (S1 of ~11.38 % and 13.21 % for the flux and concentration, respectively, Tables S5 and S6) and the interactions with 
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other parameters. It should be noted that 𝑧 has a relatively low main effect (S1 of 1.85 % and 1.17 % for the flux and 

concentration, respectively, Tables S5 and S6) but a high total effect of ~58 % and 78 % for the flux and concentration, 

respectively (Tables S7 and S8), indicating that this parameter has a limited direct impact on the variance of the output, but a 

strong interaction effect, most likely with the degradation coefficient. The total Sobol’ index of an input parameter is the sum 490 

of the first-order Sobol’ index and all the higher-order Sobol’ indices involving that parameter. Hence, The sum of the total 

Sobol sensitivity indices is equal to or greater than one (Gatel et al., 2020). If no higher order interactions are present, the 

sum of both the first and total order Sobol indices are equal to one. Sum of ST values >100% was also reported by Brunetti et 

al. (2017), Schübl et al. (2022), Zhou et al. (2022) and (Nossent et al., 2011). 

 Ciriello et al. (2017) performed a Sobol analysis for benzene contamination in an unsaturated soil assuming very deep 495 

aquifer where contamination will not arrive, and in a shallow aquifer. They reported 𝐾𝑠  as one of the most important 

parameters, while  and 𝑛 were both found mostly insignificant. Yet, it is hard to compare between that study and this one 

because 𝜆𝑘, 𝐾𝑑 and 𝑧 that were found here highly significant, were not tested in that study as well as moderate aquifer depths 

(more than 5 m) that were tested here. 



 

 

29 

 

500 

 

Figure 5 – Sobol first order indices (S1) for homogenous sandy soil obtained using different methods for missing data imputation 

for: a. Cumulative benzene flux to the aquifer and b. Final benzene concentration in the aquifer. Black bars represent µ* 

confidence intervals. 
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𝜆𝑘 is the only parameter with S1 higher than 10 %, hence the only parameter with a strong main effect on the output variance. 505 

When the sum of all first order indices is less than 100 %, the model is non-additive, meaning that it is affected by 

interactions (Neumann, 2012; Nossent et al., 2011). Here, the sum of all first-order indices is < 15 %, indicating that the 

model is non-additive and very much affected by interactions. Only 13.7 % and 14.8 % of the variance for the flux and 

concentration, respectively, are attributable to the first-order effect (Tables S5 and S6; showing the sum of S1 for the flux and 

concentration, respectively), highlighting the fundamental role of interactions between parameters.  510 

Overall, the Sobol method results agreed with those of the Morris method. Indeed, the Morris method was proposed as an 

efficient tool to be used prior to variance-based GSA, in order to screen important and unimportant factors and to provide the 

first inspection of the model’s behaviour at a reasonable computational cost (Brunetti et al., 2018; Song et al., 2015; 

Wainwright et al., 2013). Similarity between Morris and variance-based methods was also observed by Herman et al. (2013) 

and Sarrazin et al. (2016).  515 

3. 2  Heterogeneous media 

3.2.1 Morris analysis for heterogeneous media: 

In this analysis, 12 parameters concerning the soil type were examined: 𝛼, 𝑛, 𝐾𝑠, 𝛼𝑙, 𝜆𝑘  and 𝐾𝑑, both for sand and clayey soil 

(represented below with a subscript of 1 and 2, respectively). Three additional general profile parameters were tested: 𝑧, 𝑁 520 

and 𝑏, comprising 15 parameters overall (Table 2). 

The analysis was conducted for 250 paths (𝑟) and four levels for an overall total of 4000 simulations (𝑟 (𝑘 +  1)), from 

which 338 did not converge or crashed. The increase in the ratio of failures compared with the previous analysis (2.1 % for 

the homogeneous Morris analysis versus 8.45 % here) can be attributed to the complex transport in the heterogeneous 

medium, and the difficulity in modeling flow between sand and clay layers, as well as to the increase in the number of model 525 

parameters (dimensionality of the parameter space) increasing the arbitrary combinations of parameters during GSA 

(Sheikholeslami et al., 2019). The same methodology was used for missing data imputation or removal, as discussed above. 
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Unlike the previous analyses, the different methods for missing values imputation yielded dissimilar confidence interval 

levels, as well as dissimilar 𝜇∗ values for some parameters (Fig. 6). Also, an overall increase in the ratio between 𝜇∗ and its 

confidence interval was observed (Fig. 6). Again, the GSA performed the poorest for the less influential parameters, 530 

exhibiting the highest ratio of confidence interval to 𝜇∗, as evident in Figure 6 for the parameters on the right side of the 

charts.  In the appendix, the ratio between 𝜇∗ confidence interval to 𝜇∗ is presented in Fig. S2 for a clearer view on the 

diffrence between the different methods and parameters. GSA results with high confidence interval values were also reported 

by other studies that used Hydrus models (Brunetti et al., 2016, 2022; Hartmann et al., 2018; Zhou et al., 2022; Brunetti et 

al., 2017). Though the authors do not address this issue, it indicates the need for more model runs to obtain convergence of 535 

the indices (Sarrazin et al., 2016). Yet, a clear 𝜇∗ ranking is observed with an overall consistency with the previous results of 

the homogeneuous case and between the different methods. 

Full trajectory removal performed the poorest for most parameters, while the RBF emulation method performed the best 

(Fig. 6 and Fig. S2). The KNN method gave better results than the zero substitution, especially when the effect on the 

concentration was examined (Fig. 6b). For the concentration, the 45NN performed better than the 5NN. Differences between 540 

the two KNN methods were less pronounced for the cumulative flux. These results are similar to those reported by 

Sheikholeslami et al. (2019), where the RBF emulation-based substitution performed better than the single NN and than a 

constant value substitution (the median, in their case). Detailed values of all methods indices can be found in the appendix 

Tables S11 - S12. A correlation between 𝜇∗  and 𝜎  for all input parameters is again demonstrated by their arrangement 

around one diagonal line (the red line in Figures 7a and 7b), indicating that the interactions' effect increases with the increase 545 

in the total effect of each parameter.  
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Figure 6 – Morris analysis results for heterogeneous media, µ* values for: a. cumulative benzene flux to the aquifer; b. final 

benzene concentration in the aquifer. 550 

In Figures 7a and 7b, the effect of the different parameters on the outputs, in terms of 𝜇∗ versus 𝜎, when using the RBF 

method, is shown. Like the GSA results of the homogenous media, it is evident that the degradation coefficients of both soils 

and the van Genuchten 𝑛 parameter of the sand layers 𝑛1 are the most dominant factors controlling benzene transport to the 

aquifer. The degradation coefficient of the sand layers 𝜆𝑘1 was found to be the most dominant parameter, considering both 

the cumulative flux and the concentration at the end of the simulation. Next, the degradation coefficient of the clay layers 555 

𝜆𝑘2 and 𝑛1 share the second and third places of influence. While 𝑛1 was found to be more influential for the flux, 𝜆𝑘2 had a 

stronger effect on the concentration. This makes sense since 𝑛 primarily affects water flow, whereas 𝜆𝑘2 affects benzene 

directly. In the Morris homogenous analysis 𝑛 also affected the flux more than the concentration. Therefore, although the 

two parameters are substantial, we see that the relative effect also depends on the output tested. We note that 𝑛1 was also 

third/fourth in significance for homogenous soil analysis; thus, it is a very significant parameter for modeling the transport of 560 

benzene. In the fourth place here, the clay adsorption coefficient K𝑑2 was found to be equally influential for both outputs, 

exhibiting an increased interaction effect (high 𝜎). Benzene adsorption for clay materials is higher than that of sand (Berlin 

and Suresh, 2019; Zytner, 1994), and was set accordingly in the GSA (Table 1); therefore, its increased influence is not 

surprising.  

Following these four very influential parameters, we see a large group of moderately influential parameters. For both 565 

outputs, the sand's saturated hydraulic conductivity 𝐾𝑠1  and the number of clay layers 𝑁 are close together in the fifth and 

sixth place for the flux, and seventh and eighth place for the concentration. In both cases 𝐾𝑠1 shows a higher total effect (𝜇∗) 

and a smaller interaction effect (𝜎) than 𝑁. For the flux, 𝐾𝑠1 and 𝑁 are more influential than the profile depth 𝑧 positioned in 

seventh place, whereas for the concentration, it's the other way around and 𝑧  occupies the fifth place in importance. 

Compared to the homogenous sandy media, 𝑧  moved downward in order of importance, mostly due to the increased 570 

influence of the clay layers in retardation of benzene, as manifested by the high importance of clay parameters like 𝜆𝑘2, K𝑑2, 

and 𝑁. Contradictory to 𝑧, K𝑠1 moved upward in the rank of importance. Since sand comprises most of the profile and the 
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movement in the sand is faster than in the clay layers, this parameter now plays a significant role, especially for the flux. The 

number of clay layers 𝑁  moderately affects both outputs, while the layers' thickness 𝑏  also moderately affects the 

concentration, but is somewhat less important for the flux. The adsorption coefficient of sand K𝑑1 is moderately-high in 575 

importance (seventh place) for concentration, whereas for the flux it is only at the 11th place. A similar trend was observed in 

the homogenous media analysis where K𝑑1  had a stronger effect on the concentration, probably since sorption lowers 

benzene concentration but has a lower effect on total flux. 

  

Figure 7 – Morris analysis results for heterogeneous media for: a. Cumulative benzene flux to the aquifer and b. Final benzene 580 
concentration in the aquifer.  

Following these influential parameters, the clay layers’ dispersivity 𝛼𝑙2, and 𝛼1 of the sand layers, are less influential but still 

somewhat close to the middle of the graph. The least influential parameters are mostly soil properties of the clay layers, such 

as the clay hydraulic conductivity 𝐾𝑠2, 𝑛2 and 𝛼2 parameters, and the dispersivity of the sand layers 𝛼𝑙1. Interestingly, Gribb 

et al. (2002), who conducted LSA for a risk assessment model of benzene and naphtelene transport to groundwater through 585 

sand, loam, and clay soils, also reported high model sensitivity to 𝜆𝑘 and K𝑑 for all soils. In their case, the model was also 

less sensitive to K𝑠 , except for pure loam and clay soils. For other parameters that were not tested here (porosity, bulk 

density, residual water content and initial concentration), the model was only sensitive in the case of pure clayey soil. Yet, 
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their study assumed homogenous media of each soil type. Here, most clay parameters are less influential, probably due to the 

smaller fraction of clay, as compared with the sand layers, which comprise most of the profile.  590 

The results for both the homogenous and heterogeneous media showed that the most dominant factor controlling benzene 

arrival to the aquifer is 𝜆𝑘, especially in the sand layers, which occupy most of the profile. Since the values of 𝜆𝑘  vary 

greatly in the literature, a careful examination and selection of this parameter is recommended in hydrological modeling for 

benzene transport, and further research to elucidate its value onsite is encourged.  

Following 𝜆𝑘 , 𝑛1  was found to be highly dominant in this analysis, whereas in the homogenous media 𝑧  was more 595 

significant. The aquifer depth is an easy-to-measure parameter, and it should be included in any model for benzene transport. 

Also, 𝑛 can be established quite easily using tools like Rosetta to establish soil texture (Schaap et al., 2001). Therefore, 

examination of soil types onsite is also extremely important. The adsorption coefficient of the clay layers was also found to 

be highly significant as well as the number of clay layers. Most studies that tested SA for benzene transport in different soils 

types, used homogenous media representation of each soil type and tested one soil type at the time (Davis et al., 1994; Gatel 600 

et al., 2019; Gribb et al., 2002). Here, we test the effects of both the parameters of the individual soil types and the 

distribution of the clay layers through 𝑏 and 𝑁. This provides a better assessment of the importance of each parameter of 

each soil type, and shows that the representation of clay layers distribution should be considered carefully. Therefore, the 

occurrence and number of clay layers should be characterized and considered when examining contaminated sites, even for 

the occurrence of thin layers. On the other hand, non-influential parameters may be fixed to literature values. Those 605 

parameters include soil properties of the clay layers, such as the clay hydraulic conductivity 𝐾𝑠2  and 𝑛2 , as well as 

parameters like the dispersivity 𝛼𝑙 and van Genuchten’s 𝛼 parameter of both layers. 

4. Summary & conclusions 

This paper explores the effect of different model parameters on benzene transport in the vadose zone of Israel’s coastal plain 

aquifer and its potential arrival to the aquifer below. A physical model was implemented to simulate benzene transport in the 610 
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unsaturated zone. The model was initially employed for homogenous sandy soil, as sand comprises the vast majority of the 

vadose zone. Next, the model was set to describe heterogeneous soil containing clay layers representing lithology obtained 

from data of contaminated sites. Two GSA methods were applied to examine the effect of the model input parameters on 

benzene concentration in the aquifer at the end of the simulation, and on benzene cumulative flux to the aquifer. 

Additionally, treatment of missing data due to model crashes was demonstrated. 615 

The results for both the homogenous and heterogeneous media showed that the most dominant factor controlling benzene 

arrival to the aquifer is benzene degradation coefficient (𝜆𝑘), especially in the sand layers which occupy most of the profile. 

Following 𝜆𝑘, van Genuchten 𝑛 parameter was found to be highly dominant, mainly in the heterogeneous media, whereas in 

the homogenous media the depth (𝑧) was more significant. The adsorption coefficient of the clay layers and the number of 

clay layers were also found highly significant.  620 

A substantial interaction effect between the parameters was observed, where the parameters with the highest individual effect 

showed a high interaction effect and vice versa. The degree of individual parameter influence on the model was shown to be 

small (< 15 %) by the Sobol analysis, indicating the great importance of interactions between parameters. 

The different methods for missing data handling yielded a similar overall ranking of the influential parameters identified by 

the GSA. However, the RBF emulation-based substitution showed better results compared to the KNN and zero substitution 625 

techniques, particularly when the transport between layers was considered, and the model dimensionality and subsequent 

number of failures was high. In that case, the data removal technique performed markedly worst. Last, it was observed that 

the GSA and different methods for data imputation performed the best for the more influential parameters. 
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