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Abstract.  

One of the greatest threats to groundwater is contamination from fuel derivatives. Benzene, a highly mobile and 

toxic fuel derivative, can easily reach groundwater from fuel sources and lead to extensive groundwater 

contamination and drinking water disqualification. Modelling benzene transport in the unsaturated zone can 20 

provide quantifyication of the risk for groundwater contamination and provide needed remediation strategies. 

Yet, characterization of the problem is often complicated, due to typical soil heterogeneity, and numerous 

unknown site and solute parameters, and the, as well as the difficulty in to distinguishing important from non-

important parameters, resulting in high uncertainty. Thus, the application of sensitivity analysis (SA) methods, 

such as global SA (GSA), is are appliedrequired to reduce uncertainty and detect importantkey parameters for 25 

groundwater contamination, mitigation, and remediation. Nevertheless, studies devoted to identifyingication of 

the parameters that driving determine transport parameters forof fuel derivatives transport in the unsaturated 

zone are scarce.  HereIn this study, we performed GSA on a problem ofto assess benzene transport in the 

unsaturated zone. First, a simple GSA (‘Morris)’ screening method was used for a homogenous sandy vadose 

zone. Then, a more computationally-demanding (‘Sobol)’ variance-based GSA was run on the most influential 30 

parameters. Finally, the ‘Morris’ method was tested for a heterogeneous medium containing clay layers. To 

overcome the problem of model crashes during GSA, several methods were tested for imputation of missing 

data. The GSA results found indicate that benzene degradation rate (𝜆𝑘) to beis the utmost influential parameter 

controlling benzene mobility,. followed by The aquifer depth of the aquifer (𝑧). followed in importance and tThe 

adsorption coefficient (𝐾𝑑) and thenumber of clay layers van Genuchten 𝑛 parameter of the sandy soil (𝑛1) were 35 

also highly influentialin the homogenous media, while in the heterogeneous media parameters related to the clay 

layers, such as clay adsorption coefficient and the number of clay layers, followed in importance. The study 

emphasizes the significance of 𝜆𝑘 and the presence of clay layers in predicting aquifer contamination. The study 

also strengthen indicates the importance of heterogenous media representation in the GSA, . since Though 
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different identical parameters control the transport in the different soil layerstypes, in the presence of both sand 40 

and clay, parameters directly affecting the solute concentration like 𝜆𝑘 and 𝐾𝑑 have increased influence in clay. 

Wheras 𝑛 is more influential for sand comprising most of the profile. Overall, GSA is demonstrated here as an 

important tool for the analysis of transport models. The results also show that in higher dimensionality models, 

the radial basis function (RBF) is an efficient surrogate model for missing data imputation. 

1. Introduction 45 

Petroleum products such as gasoline and diesel are of among the most abundant chemicals of ecological concern 

used nowadays. During petroleum exploration, production, transport and storage, petroleum products often find 

their way to the environment by accidental leaks and spills (Logeshwaran et al., 2018; López et al., 2008; Nadim 

et al., 2000). Consequently, groundwater is often polluted from surface sources, posing a substantial potential 

risk to potable water worldwide (López et al., 2008; Nadim et al., 2000; Logeshwaran et al., 2018; Reshef and 50 

Gal, 2017; Kessler, 2022). Since petroleum substances in general, and fuel components in particular, are 

considered toxic, carcinogenic, and mutagenic (Logeshwaran et al., 2018), strict regulations limit their 

maximum allowed concentration in groundwater to the parts per billion level (U.S EPA, 2006).  

Fuel products are usually comprised of different types of hydrocarbons. Fuel compounds like benzene are 

among the most commonly found groundwater pollutants (Schmidt et al., 2004; Logeshwaran et al., 2018). 55 

Specifically, bBenzene specifically, is highly soluble and thus one of the most mobile fuel constituents in the 

subsurface (Farhadian et al., 2008). In the U.S. alone, during 1987–1993 about 0.9 million kg were reported to 

be released into the terrestrial and aquatic environment by the petroleum industries between 1987 and 1993 (Fan 

et al.,  2014). In Israel, benzene was detected in 60% of all sites monitored for fuel contamination (Reshef and 

Gal, 2017). Benzene's low maximum acceptable concentration allowed concentration of 5 g/l in drinking water 60 

(Farhadian et al., 2008; Kessler, 2022), araises great concerns that benzene leakages into groundwater will may 
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lead to disqualifyication of extremely large volumes of drinking water. Most fuel-related contamination reaches 

groundwater from or near the soil surface or near it (Troldborg et al., 2009). Therefore, it is important to assess 

the risk to groundwater from soil contamination and to understand the fate and transport of fuel components 

travelling from the soil surface, through the unsaturated zone, and down to the groundwater. 65 

Since actual water flow and contaminants transport in the subsurface are difficult to measure and predict, 

mathematical models are used to solve such transport problems (Bear and Cheng, 2010). Many studies have 

been performed to examine the fate and transport of petroleum hydrocarbons, and specifically of benzene, 

mostly in saturated homogeneous porous media (Lu et al., 1999; Brauner and Widdowson, 2001; Choi et al., 

2005, 2009). Few studies have also dealt withassessed the movement of benzene in unsaturated porous media 70 

(Berlin et al., 2016; Berlin and Suresh, 2019; Troldborg et al., 2009; Ciriello et al., 2017). Benzene transport 

models typically combine Darcy-type water flow, advective–dispersive transport and a source/sink term 

considering various physical, chemical and biological processes including sorption, dissolution, and 

biodegradation (Mohamed and Sherif, 2010). Yet, due to the typical heterogeneity of the subsurface 

environment and the difficulty in obtaining sufficient relevant physical and bio-geochemical characterizations of 75 

the site, lead to high uncertainty of these parameters entail high level of uncertainty (Ciriello et al., 2017; 

Tartakovsky, 2007). Soil heterogeneity and layering, for example, was have been shown to have considerablye 

eaffect on contaminants transport in some studies (Rivett et al., 2011; Chen et al., 2019), while in others their 

effect seemed negligible (Botros et al., 2012; Akbariyeh et al., 2018). This of course depends on the model 

scale, type of system (natural or irrigated), and type of contaminant tested. Also, the estimation of soil and 80 

contaminants parameters can be done estimated usingin various methods, such as laboratory measurements, 

scaling, and inverse modelling (Botros et al., 2012; Akbariyeh et al., 2018; Berlin et al., 2016; Berlin and 

Suresh, 2019; Troldborg et al., 2009; Ciriello et al., 2017) . This adds another aspect of uncertainty to the model. 

Thus, sensitivity analysis (SA) is required to determine the contribution of the individual input parameter to the 
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uncertainty of the model output (Song et al., 2015). More specifically, SA can determine which are the non-85 

influential input parameters that are redundant or can be redundant or fixed, reveal the order of parameter 

importance, and the magnitude of parameter interactions (Razavi et al., 2021).  

Various SA methods are available; they can be generally divided classified asinto local sensitivity analysis 

(LSA) and or global sensitivity analysis (GSA) methods. LSA methods are mostly “one at a time” (OAT) 

methods (Saltelli and Annoni, 2010; Razavi et al., 2021). These methods are based on changing the uncertain 90 

input parameter by a specific interval several times around a ‘local point’ in the problem space (Saltelli and 

Annoni, 2010; Razavi et al., 2021). The difference or the derivative of the output compared with the base-case 

output is then tested. LSA methods are usually simple and efficient in analysing simple models, but they are less 

suitable for multiple parameters, non-linear and non-additive models. This is because derivatives are informative 

at the base point where they are computed, but do not enable exploration of the rest of the input parameter space 95 

(Saltelli and Annoni, 2010). Moreover, OAT methods are efficient in finding the most influential input 

parameters but cannot rank the influence of the input parameters or measure parameter interactions (Saltelli and 

Annoni, 2010). In GSA, on the other hand, the input parameters are changed over the entire sampling space, and 

the variance or probability distribution of the output is tested rather than the derivative. Variance based GSA 

methods are most commonly used since they are conceptually simple and easy to implement (Upreti et al., 2020; 100 

Khorashadi Zadeh et al., 2017; Jaxa-Rozen et al., 2021; Saltelli et al., 2010; Sobol, 2001; Song et al., 2015; 

Saltelli et al., 2004; Nossent et al., 2011; Brunetti et al., 2016, 2017). Yet, when the model output is highly-

skewed or multi-modal, the variance may not adequately represent output uncertainty (Liu et al., 2006; 

Borgonovo, 2007). Therefore alternative methods, such as like moment-independent (Liu et al., 2006; 

Borgonovo, 2007) and moment-based (Dell’Oca et al., 2017) methods, were developed using the output 105 

probability density function (PDF) to fully characterize the output uncertainty. In some studies, PDF methods 

were shown to perform better for ranking the importance of parameters’ importance ranking, though highly 
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influential parameters were usually common, and the ranking of these parameters was similar (Wang and 

Solomatine, 2019; Upreti et al., 2020; Khorashadi Zadeh et al., 2017), and in some cases variance-based 

methods were preferred (Upreti et al., 2020). In addition to finding the most influential input parameters, GSA 110 

can rank the parameters' influence and their interactions (Saltelli and Annoni, 2010; Razavi et al., 2021). Yet, 

the main drawback of GSA methods is their computational cost. 

Most hydrological models have numerous parameters resulting in high-dimensional and nonlinear problems. 

Therefore GSA methods are usually recommended in hydrological modelling (Song et al., 2015). Song et al. 

(2015) recommendeds GSA application before final modelling in order to better understand the model and its 115 

dominating parameters, and as a tool to reduce the model parametric dimensionality. In his their review, Song et 

al. (2015) identifieds three main “hot spots” in GSA application with hydrological modelling, though thesethat 

are relevant to many other disciplines. The three “hot spots” are: (1) Computational cost and subsequent meta-

modelling are used instead of running the models multiple times, where the reliability and goodness-of-fit of 

meta-models should be explored;, (2) GSA method selection, convergence and reliability - selecting an 120 

appropriate GSA method, monitoring the convergence, and estimating the uncertainty of the GSA results are 

important for hydrological models;, (3) GSA methods involve many hypotheses or have other limitations, 

including the independence of input variables, where in practice, the parameters employed by hydrological 

models usually have interactions or correlations that needs to be considered. So far, application of LSA/GSA 

has rarely been applied for contaminant transport in the unsaturated zone is scarce (Davis et al., 1994; Gatel et 125 

al., 2019; Gribb et al., 2002; Pan et al., 2011; X Song & Chen, 2018;  Ciriello et al., 2017),; where most studies 

have considered a homogenous media. Specifically for benzene, few LSA analyses have indicated the 

degradation and adsorption coefficients as the most important parameters for benzene transport in the 

unsaturated zone (Gribb et al., 2002; Zanello et al., 2021). In one GSA performed for to assess the benzene risk 

assesment of benzene tocontamination of groundwater (Ciriello et al., 2017), the porosity and hydraulic 130 
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conductivity of the media were found to be the dominant parameters for the model uncertainty. Yet in that 

study, properties related to benzene itself (such as its degradation rate or adsorption coefficient) were treated as 

deterministic quantities, and were not tested by the GSA (Ciriello et al., 2017). Moreover, we are not aware of 

any SA performed for benzene transport in layered heterogenoues unsturated media. Hence, more research there 

is a needed for to understandmore research on the key parameters controlling contaminants transport in the 135 

subsurface, in general, and for benzene, in particular, for betterto improve prediction and mitigation of 

groundwater contamination. 

The objective of this study was to assess the specific impact of each of the multiple parameters that affect 

benzene transport in the unsaturated zone. For that purpose, a mechanistic model was used to simulate the 

transport of benzene in an unsaturated zone representing Israel's coastal plain vadose zone. Simulations of both 140 

homogenous (sand) and heterogeneous (sand with clay layers) vadose zones were conducted. Two GSA 

methods were tested for the homogenous media simulations, to analyse the parameter importance: the Morris 

method (Morris, 1991), a reliable, computationally-cheap alternative to variance-based GSA; and the Sobol 

method (Sobol, 2001), a computationally heavy, variance-based and probably the most well-established and 

widely-applied GSA (Khorashadi Zadeh et al., 2017; Jaxa-Rozen et al., 2021; Saltelli et al., 2010; Sobol, 2001; 145 

Song et al., 2015; Saltelli et al., 2004; Nossent et al., 2011; Brunetti et al., 2016, 2017, and many more) (see 

Material and Methods Ssection 2.3 for a description of these methods). The heterogeneous media simulation 

was tested by the Morris method, where the effect of the parameters of both soil types was tested as well as the 

clay layers’ distribution. 

A common, though usually overlooked, problem in GSA application is that some of the model runs do not 150 

converge but crash due to numerical instability and the assignment of random sets of parameters of different 

values (Razavi et al., 2021; Sheikholeslami et al., 2019). Owing to the novelty of GSA in hydrological research, 

there is not one agreed and established way to deal with these missing data, and the information in the literature 



 

 

8 

 

is still scarce (Sheikholeslami et al., 2019). Consequently, and as part of the overall analysis done in this study, 

we also tested several methods for missing data imputation in cases where the model does not converge or 155 

crashes. 

2. Materials and methods 

A mechanistic model was generated to investigate the potential transport of benzene in the vadose zone 

underlain by Israel's coastal plain aquifer. The model was applied for both homogenous and heterogeneous 

media. For simplicity, initial runs solely included a homogenous sandy soil profile, as sand and sandstone are 160 

the main constituents of Israel's coastal plain aquifer (Kurkar Group; Turkeltauub, 2011). Yet, in most natural 

environments, the soil profile is non-homogenous, containing clay layers and other materials. In a study 

conducted at Israel coastal plain vadoze zone, Rimon et al. (2007) reported that the occurrence of different soil 

materials, and specifically clay interbeds, strongly affectsed flow patterns to the aquifer. Therefore, later model 

runs included clay interbeds. 165 

2. 1 Mechanistic model and input parameters 

The one-dimensional mechanistic model included water flow, solute transport, biodegradation, adsorption, and 

volatilization. Water flow in the unsaturated zone was modelled by a modified form of Richard’s one -

dimensional equation, 

(1) 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾 (

𝜕ℎ

𝜕𝑧
+ 1)] 170 

where ℎ is the water matric head [L], 𝜃 is the volumetric water content, 𝑡 is time [T], 𝑧 is the vertical coordinate 

[L] (positive upward), and 𝐾 is the unsaturated hydraulic conductivity function [LT-1] given by,  

(2) 𝐾(ℎ, 𝑧) = 𝐾𝑠(𝑧)𝐾𝑟(ℎ, 𝑧) 

where 𝐾𝑟  is the relative hydraulic conductivity [-] and 𝐾𝑠 the saturated hydraulic conductivity [LT-1]. 
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The unsaturated soil hydraulic properties 𝜃(ℎ)  and 𝐾(ℎ)  are described by the van Genuchten – Mualem 175 

formulation (Mualem, 1976; van Genuchten, 1980),  

(3) 𝜃(ℎ) =  𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[1+|𝛼ℎ|𝑛]𝑚    ℎ < 0 

(4) 𝐾(ℎ) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)

𝑚
]

2

 

(5) 𝑆𝑒  =  𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
 

where  180 

(6) 𝑚 = 1 − 1/𝑛 , 𝑛 > 1 

In Equations . (3-6),  𝜃𝑠 is the saturated water content and 𝜃𝑟 is the residual water content. 𝛼 [L-1], 𝑛 and 𝑚 are 

the van Genuchten fitting parameters; 𝑆𝑒 is the effective saturation, and 𝑙 is the pore-connectivity parameter (Eq. 

(4)).  

Solute transport was described by the advection-dispersion equation, 185 

(7) 
𝜕𝜃𝑐

𝜕𝑡
+ 𝜌

𝜕𝑠

𝜕𝑡
+

𝜕𝑎𝑣𝑔

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜃𝐷𝑤 𝜕𝑐

𝜕𝑧
) +

𝜕

𝜕𝑧
(𝑎𝑣𝜏𝑔𝐷𝑔 𝜕𝑔

𝜕𝑧
) −

𝜕𝑞𝑐

𝜕𝑧
− 𝜆𝑘𝜃  

where 𝑐, 𝑠, and 𝑔 are solute concentrations in the liquid [ML-3], solid [MM-1], and gaseous [ML-3] phases, 

respectively. 𝜌 [ML-3] is the solid phase bulk density. 𝐷𝑤  is the dispersion coefficient in the liquid phase [L2T−1] 

given by Bear (1972) as, 

(8) 𝜃𝐷𝑤  =  𝛼𝐿 𝑞 +  𝜃𝐷𝑀𝜏𝑤 190 

where 𝐷𝑀 is the benzene’s molecular diffusion coefficient in the aqueous phase [L2T−1], 𝑞 is the absolute value 

of the Darcian fluid flux [LT-1] evaluated using the Darcy–Buckingham law, 𝑞 = −𝐾(
𝑑ℎ

𝑑𝑧
+ 1) . 𝛼𝐿  is the 

longitudinal dispersivity [L], and 𝜏𝑤 and 𝜏𝑔 are tortuosity factors in the liquid and gas phase respectively [-], 

evaluated using the relationship described by Millington & Quirk (1961). 𝑎𝑣 is the air content [L3L-3], and 𝐷𝑔 is 
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the benzene molecular diffusion coefficient [L2T−1] in the gas phase and 𝜆𝑘 is a first-order rate biodegradation 195 

constant for benzene in the liquid phase [T-1] (solid and gas phase degradation were assumed negligible). 

Benzene adsorption was assumed linear (Wołowiec and Malina, 2015; Baek et al., 2003) of the form 𝑠 =  𝐾𝑑𝑐, 

where 𝐾𝑑 is the distribution coefficient [L3M−1] (see Table S2 in the appendix  for literature values). 

The gaseous (g) and aqueous (c) phase concentrations in Eq.uation (7) are related by a linear expression of the 

form:  200 

(9) 𝑔 = 𝑘𝑔𝑐 

where 𝑘𝑔 is an empirical constant [-] equal to (𝐾𝐻𝑅𝑢𝑇𝐴)−1 (Stumm and Morgan, 1981), in which 𝐾𝐻 is Henry's 

law constant [MT2M-1L-2],  𝑅𝑢 is the universal gas constant [ML2T-2K-1 M-1] and 𝑇𝐴 is the absolute temperature 

[K]. 

The values of 𝜃𝑠, 𝜃𝑟, 𝑙, 𝐷𝑀, 𝐷𝑔, 𝐾𝐻, and 𝜌 were kept constant in the model and are listed in Table 1. 𝐷𝑀, 𝐷𝑔 205 

and 𝐾𝐻 are constant properties for benzene and were therefore not changed. The pore-connectivity parameter 𝑙 

in the hydraulic conductivity function was estimated  to be about 0.5 as an average for many types of soils 

(Mualem, 1976). The range of 𝜃𝑠 , 𝜃𝑟 , and 𝜌  values in the literature was limited (Carsel & Parrish, 1988; 

Domenico & Schwartz, 1990; Gribb et al., 2002; Schaap et al., 2001). In a local sensitivity analysis of benzene 

transport in the vadose zone, Gribb et al. (2002) found that 𝜌  is an insignificant parameter and 𝜃𝑟  is only 210 

significant in pure clayey soils.  

The sensitivity of the model to the values of 𝛼, 𝑛, 𝐾𝑠, 𝛼𝐿, 𝜆𝑘 and 𝐾𝑑 values was tested in the GSA analysis. The 

range of tested values along with the corresponding references can be found in Table 2. Specifically, we found 

that 𝜆𝑘 values greatly vary between different studies, mainly due to the differences in experimental conditions 

and aquifer characteristics (sSee appendix (Table S1) for literature values). Though the highest 𝜆𝑘  value we 215 

encountered in the litreture was 174 (day-1) (Lahvis et al., (1999); Table S1), we set the upper limit of 𝜆𝑘 to 1.5 

(day-1) (Table 2). This was done for two main reasons:; A. Ffrom an early stage it was evident that 𝜆𝑘 is a very 
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influential parameter and high values mostly resulted in output values of zero, thereby lowering the overall 

sensitivity. B. The Morris analysis takes the range and divides it into a given number of levels (four or six, in 

our case). Since the range of 𝜆𝑘 included values spanning over four orders of magnitude (1 𝑥 10−2 − 1 𝑥 102 220 

(day-1)), much of the range would have been missed by the analysis. 

 

 

 

 225 

Table 1 Constant input parameters for the model: 

 

Parameter  Vvalue Uunits Reference 

L 0.5  -- Mualem (1976) 

θr Sand 0.045  -- Carsel & Parrish (1988) 

θs Sand 0.43  -- Carsel & Parrish (1988) 

θr  Clay 0.068 -- Carsel & Parrish (1988) 

θs  Clay 0.38  -- Carsel & Parrish (1988) 

Ρ 1500 kg/m3 Levy (2015) 

Dm  Benzene  7.77E-05 m2/day 
EPA On-line Tools for Site 

Assessment Calculation  

Dg  Benzene  0.77414 m2/day  
EPA On-line Tools for Site 

Assessment Calculation 
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KH Benzene Henry’s 

constant  
0.224 -- Du et al. (2010) 
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Table 2 Input parameters and their range used for GSA: 228 

 
Sandy soil Clayey soil 

Parameter 
Values 

range 
References Comments 

Values 

range 
References Comments 

𝜶 (m-1) 3.6 - 17 

 Carsel & 

Parrish, (1988), 

Domenico & 

Schwartz. 

(1990), Moret-

Fernández et al., 

(2017), Nemes et 

al., (1999) 

Fine to coarse 

sand Silt to sand 

0.5 - 

3.86 

Carsel & 

Parrish. 

(1988) Rawls 

et al. (1982) 

Clay  to clay 

loam 

       

𝒏 
1.1 -

2.9 

Domenico & 

Schwartz, 

(1990); Moret-

Fernández et al. 

(2017); Nemes 

et al. (1999) 

Fine to coarse 

sand 

0.131.09 

- 1.31 

Carsel & 

Parrish, 

(1988); 

Rawls et al. 

(1982) 

Clay  to clay 

loam 

       

𝑲𝒔 

(m/day) 

0.5 - 

250 

Domenico & 

Schwartz, (1990) 

Nemes et al., 

(1999) 

Values for fine to 

coarse sand are 

0.017-518 

(m/day). These 

were narrowed for 

model 

convergence 

(coastal aquifer 

typical  

0.001 - 

0.3144 

Rawls et al. 

(1982). 

Clay  to clay 

loam 

   

values are ~7 

m/day)    
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𝜶𝒍 (m) 0.01 - 5 
 

According to a 

rule of thumb 1/10 

of z (Bear & 

Cheng, 2010) 

0.01 - 5 
 

According to a 

rule of thumb 

1/10 of z (Bear 

& Cheng, 2010) 

       

𝑲𝒅  

(m3/kg) 

0.00007 

- 0.004  

Literature review 

for benzene in 

sandy soils (Table 

S2) 

0.00004 

- 0.0238  

Literature review 

for benzene in 

clayey soils 

(Table S2) 

       

𝝀𝒌  (day-1) 0 - 1.5 
 

Literature review 

for benzene in 

unsaturated media 

(Table S1). Upper 

value was set to 

1.5 to obtain 

output results >0 

0 - 1.5 
 

Literature review 

for benzene in 

unsaturated 

media (Table 

S1). Upper value 

was set to 1.5 to 

obtain output 

results >0 

       

𝑵 - - - 1 - 4 
 

See Table 7 

       

𝒃  (m) - - - 0.2 - 2 
 

See Table 7 

       

𝒛  (m) 5 - 50 
 

Typical aquifer 

depths 
10 - 50 

 

Lower value was 

increased for to 

allow space for 

clay layers 

insertion 
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2. 2 Model domain and boundary conditions 

The profile depth (𝑧) was set as a variable input parameter in the range of 5 - 50 m (Table 2). This range was obtained from a 230 

dataset of fuel-contaminated sites of the Israel'si coastal plain (see Figure S1 in the appendix) received from Israel’s Ministry 

of Environmental Protection and reported by Israel’s Water Authority (Reshef and Gal, 2017). In runs that tested the 

occurrence of clay layers, the thickness (𝑏) and number (𝑁) of clay layers were additionally tested as variable GSA input 

parameters (Table 2). 

An upper atmospheric boundary condition (BC) was set at the top of the profile with average daily precipitation and 235 

potential evaporation data from the Beit Dagan meteorological station for 2019 (Fig. 1). Potential pan evaporation data was 

converted to Penman-Montieth potential evaporation by multiplying the data with monthly coefficients obtained for the 

Israeli coastal plain (by Gal et al., (2012). On days when evaporation data were not available, a monthly-averaged 

evaporation value of the available data for the specific month was used as input. At the bottom boundary, where the aquifer 

was positioned, a Dirichlet BC of constant matric head (ℎ =  0) was set. 240 

 

Figure 1 – Daily precipitation and potential evaporation data of Beit Dagan meteorological station for 2019 – set as the upper 

model BC 
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For the first ten years, only water flow was considered, to enable stabilization of the hydraulic conditions in the profile and 

establish annual periodic conditions. According to our tests, such stabilization takes about four years. Hence, benzene was 245 

introduced following ten years. 

For the solute transport, an upper Dirichlet BC prescribing benzene saturation concentration (1.77 kg/m3  - solibiluty of 

benzene in water at 250 C; Stewart. (2010)) was set to mimic a constant fuel lens on the surface. A bottom Neumann BC of 

zero concentration gradient was set, enabling free drainage to the aquifer.  

The model was run using the Hydrus - 1D software package (Šimůnek et al., 2013), a finite element model for simulating the 250 

one-dimensional movement of water and solutes in variably saturated media. In the homogenous media analysis, the soil 

profile was divided into 51 equal nodes. Yet for the heterogeneous media wherewhen layers of clay layers were introduced, a 

higher resolution was required due to representto the heterogeneity of the profile and the smaller size ofthinner the layers, as 

compared to the whole profile. In these runs, the profile was divided such that the total number of nodes was equal to 

((𝑧 ∗  20)  +  1). Clay layers were assigned in the profile according to the number of clay layers (𝑁) and their thickness (𝑏), 255 

such that they were equally distributed in the profile, generating alternating sand and clay layers. Each of the layers of both 

clay and sand were divided into (𝑏 ∗  20) nodes. 

Heterogeneous media analysis included clay layers within the sandy soil to obtain a more realistic representation of Israel's 

coastal plain vadose zone, mostly comprising sandy soil but also including clay layers and interbeds (Ecker, 1999). 

To create a representative configuration of the clay layers in the vadoze zone above the Israel's coastal plain aquifer, we 260 

examined the distribution of clay layers in selected fuel-contaminated sites. For that purpose, we constructed a database 

consisting of records obtained from the Israel Ministry of Environmental Protection from 32 fuel-contaminated sites 

containing dozens of monitoring boreholes that were obtained from the Israel Ministry of Environmental Protection. Each 

borehole in the database was sampled at multiple depths and characterized for the soil type. We classified these soil types 

into four main categories: gravel, sand, clayey sand (consisting of 55 % sand and 45 % clay), and clay, according to the soil 265 

type name on the database (see Table S9 in the appendix for the categories). For each site, the percentages of each of the four 

soil types at each specific depth was extracted (i.e., the number of boreholes having a given soil type at a specific depth 
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divided by the total number of boreholes penetrating that depth). We then looked forrecorded the percentage of clay at each 

depth;, where a layers with having  a clay percentage higher than 25 % was were considered a clayey layer (Whiting et al., 

2011). This yielded the number of clay layers and their thicknesses of clay layers for each site (an example of one site can be 270 

foundis presented in Table S10 in the appendix). Based on this methodology, a the distribution of clay layers in 

contaminated sites at Israel’s coastal plain vadose zone was calculated and is presented in (Table 3).  

Table 3 – Summary of the distribution of clay layers distribution 

Number of 

clay layers 

Number of 

sites 

Percentage of 

sites 

Thickness of clay layers (m) 

Mean STDEV Max Min Median   

0 1 3.13 % -- -- -- -- -- 

1 16 50 % 3.8 3.21 11.7 0.1 3 

2 4 12.50 % 2.38 2.26 8.1 0.2 2 

3 5 15.63 % 1.135 0.94 3 0.1 1.95 

4 2 6.25 % 2.3 2.78 6.4 0.3 1 

5 2 6.25 % 4.2 6.76 12 0.1 0.5 

6 2 6.25 % 2.55 3.46 5 0.1 2.55 

 

Table 3 shows that only in 1 of the 32 examined sites, had there were no clay layers at all. Fifty percent of the sites had only 275 

one clay layer and most of the sites had 1-3 layers (~78 %), whereas almost 20 % had 4 - 6 layers. The mean of the layers' 

thickness ranged from 1-4 m. Yet, the standard deviation was high and the actual thickness ranged from 11.7 to 0.1 m. Due 

to this variance in the distribution of clay layers (Table 73), it was decided to examine the number of clay layers (𝑁) and 

their thickness (𝑏) as additional input parameters in the sensitivity analysis of the heterogeneous media within the range of 

values reported in Table 3. The range of tested 𝑁 and 𝑏 can be found in Table 2. We are not aware of other studies that tested 280 

the distribution of clay layers interbeds in a SA for contaminants transport. Yet, Dai et al., (2017) tested the spatial 

distribution uncertainty of other parameters in a GSA, such as like the elevations of the contact between aquifer and aquitard, 

the hourly head boundary conditions, and the hydraulic conductivity field. 
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The model was run for a total of either 100 years for the Morris analysis, or 60 years for the Sobol analysis (in this case, the 

number of years was reduced to save lower the computational cost due to the overall high computational cost of the Sobol 285 

analysis). At the end of each run, benzene concentration in the aquifer and the total flux to the aquifer were examined. 

2. 3 Global sensitivity analysis 

2.3. 1 The Morris method 

The Morris or the elementary effect (EE) method was introduced by Morris (1991) and improved by Campolongo et al. 

(2007). It can be viewed as an extension of the OAT method, since it randomly generates sets of reference values from the 290 

entire parameter space and computes the difference of output (EE) caused by a fixed parameter change, altering only one 

parameter at a time. However, it can also be viewed as a GSA method, since it averages multiple EEs computed at different 

points in the parameter space. This method provides qualitative sensitivity measures (i.e., ranking the input parameters in 

order of importance), however it does not quantify the relative importance of how much aeach given parameter is more 

important than another (Saltelli et al., 2004). 295 

In the Morris method, each input parameter (xi, where i =  1, . . . , k,) is assumed to vary across 𝑝 selected levels in the space 

of the input parameter. The parameter space is normalized to a uniform distribution in [0, 1] and partitioned into (𝑝  −   1) 

equal sections. The algorithm starts at a randomly chosen point in the 𝑘-dimensional space and creates a trajectory (or a 

path) through the 𝑘-dimensional variable space. Each parameter is randomly chosen from the set (𝑝 −  1) sections and a 

fixed increment 𝛥 (a multiple of 1 / (𝑝 −  1)) is added to each parameter in random order to compute an EE of each 300 

parameter, where EE is the difference of output 𝑦 caused by the change 𝛥 in the respective parameter. The EE for the ith 

input parameter can be described as, 

(10) 𝐸𝐸𝑖(𝑥1. . . 𝑥𝑘) = (
𝑌(𝑥1,𝑥2,…,𝑥𝑖+∆𝑖,….,𝑥𝑘)−𝑌(𝑥1,𝑥2,…,𝑥𝑖,….,𝑥𝑘)

∆𝑖
) 

Changing each parameter once from one set of reference values completes one path, which together with the base case 

requires (𝑘 +  1) simulations. By cConducting simulations over multiple paths, produces we have an ensemble of 𝐸𝐸𝑖s for 305 

each parameter. The number of required runs is then 𝑟 (𝑘 +  1), where 𝑟 is the number of paths or trajectories. All 𝐸𝐸𝑖  
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values computed for randomly chosen paths are used to compute two final sensitivity measures  𝜇𝑖
∗ and 𝜎𝑖 (Campolongo et 

al., 2007), 

(11) 𝜇𝑖
∗ =

1

𝑟
∑ |𝐸𝐸𝑖,𝑗|𝑟

𝑗=1 

where 𝜇𝑖
∗ is the mean of absolute values of the 𝐸𝐸𝑖 . 𝜇𝑖

∗ can be regarded as a global sensitivity index, since it represents the 310 

average effect of each parameter over the parameter space. Thus, it is used to identify influential and non-influential 

parameters. 

The second measure 𝜎𝑖 is the standard deviation of the 𝐸𝐸𝑖 , 

(12) 𝜎𝑖 = √1

𝑟
∑ (𝐸𝐸𝑗,𝑖 −

1

𝑟
∑ |𝐸𝐸𝑗,𝑖|

𝑟
𝑗=1 )

2
𝑟
𝑗=1 

It is used to identify non-linear and/or interaction effects.  315 

The review by Song et al. )2015) reported that in different studies, the number of paths (𝑟) varies from 20 to 1250 paths, 

representing a total of 280 to 40000 numerical simulations, with an average of 500 paths. Both Brunetti et al. (2018) and 

Turco et al. (2017) combined the Hydrus model (1D and 2D, respectively) with the Morris method. Brunetti et al. (2018) set 

𝑟 =  100 for a total of 1700 simulations, and Turco et al. (2017) set 𝑟 =  8 for a total of 40 simulations. In this study we set 

𝑟 =  250, considering that the data will be further analysed by the Sobol GSA. This gave us a total number of 3000 and 320 

4000 simulations for the analysis with and without clay layers, respectively. 

2.3. 2 The Sobol method 

While the OAT and the Morris sensitivity methods are difference-based, the Sobol-Saltelli method is variance-based (Saltelli 

and Annoni, 2010). Variance-based methods are used to quantitatively identify both the importance of individual model 

parameters and parameter interactions. The Sobol method is based on a decomposition of the total model variance into two 325 

main elements: variance of the individual parameter and variance due to interaction with other parameters (Sobol, 2001). 

Decomposition of the model variance can be written as follow (Saltelli et al., 2004), 

(13) V = ∑ Vi + ∑ ∑ Vij
k
j>𝑖

k
i=1

k
i=1 + ⋯ V1,2,…,k 
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(14)  Vi = V[E(Y|xi)] 

(15) Vij = V[E(Y|xixj)] − Vi − Vj 330 

where 𝑉  stands for the total variance of the model output. 𝑉𝑖  is the variance of each input parameter 𝑥𝑖 , and 𝐸(𝑌│𝑥𝑖) 

represents the mean of the system response 𝑌 when the parameter 𝑥𝑖 is fixed at different values. 𝑉𝑖𝑗 represents the variance 

due to interactions between two parameters 𝑥𝑖 and 𝑥𝑗, and 𝑉1...𝑘 describes the variance among 𝑘 parameters. These elements, 

represented by Sobol’s sensitivity indices (SI’s), provide quantitative information about the variance associated with a single 

parameter or related to interactions of multiple parameters. The main sensitivity index or the first-order sensitivity index 𝑆𝑖 335 

quantifies the main effect of parameter 𝑥𝑖 on the total variance of 𝑌, excluding the interactions with other parameters,  

(16) 𝑆𝑖 =
𝑉𝑖

𝑉(𝑌)
 

The total-order sensitivity index 𝑆𝑇𝑖  of a single parameter 𝑥𝑖  includes both the parameter’s main variance effect and the 

proportion of the variance due to interactions of 𝑥𝑖 with the other parameters, 

(17) 𝑆𝑇𝑖
= 𝑆𝑖 + ∑ 𝑆𝑖𝑗 + ⋯ + 𝑆1…𝑘𝑖≠𝑗 340 

The values of the indices vary from 0 to 1, where 0 stands indicatesfor no influence and 1 for indicates a strong influence on 

the variance.  

Parameter spaces were sampled using the Sobol quasi-random, cross-sampling strategy (Sobol, 2001). Rather than 

generating random numbers, this technique generates a uniform distribution in the probability space. The distribution 

appears qualitatively random, but sampling only takes place in regions of the probability function that were not previously 345 

sampled. 

TIn order to assess the accuracy of the Sobol indices, confidence intervals of the indices should be constructed. The 

analytical procedure for confidence interval calculation involves repeating the 𝑟(2𝑘 + 2) model runs several times, which 

wasis too time consuming and computationally demanding in this case. Therefore the bootstrapping approach was used 

instead (Efron and Tibshirani, 1986). Archer et al. (1997) suggested using bootstrap confidence intervals to produce 350 

confidence intervals of complicated data structures. The bootstrapping approach is based on resampling the parameter space 
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of the already available data many times with replacement (randomly selecting values and allowing for duplicates), and 

constructing a distribution of the output (Efron and Tibshirani, 1986). Here, resamples were taken from the existing dataset 𝑌 

with replacement, and the indices' values were recalculated. The result isat gives an estimate of the mean and variance of 

each of the indices and allows to calculateion of the confidence interval. The method thus relies on computational cost rather 355 

than on an analytical cost (running the model again). Here, the samples used for the model evaluation were resampled 1000 

times with replacement, and 95% confidence intervals were constructed (Archer et al., 1997). 

Still, confidence intervals for the first-order indices (S1) using, with the Sobol sampling method gave values of more than 

100%. This was also observed by Brunetti et al. (2016) and Hartmann et al. (2018) who also studied transport in unsaturated 

media. This may be a result of insufficient sample size, since Sobol's convergence requires a very large sample size (Saltelli 360 

et al., 2004). Therefore, here wethe extracted S1 values were extracted using the delta method developed byof Plischke et al. 

(2013), by calculating S1 values from a given data through emulators and bootstrapping rather than running the model itself 

multiple times. 

More details on the Sobol sample size can be found in the appendix. 

The Morris and the Sobol sensitivity analyses were executed using the Python programming language and specifically, the 365 

Sensitivity Analysis Library (SALib) (Herman & Usher, 2018). SALib uses a Python script that overwrites the input 

parameters given by the GSA in the relevant Hydrus 1D model input files. The script then executes the model and returns the 

final aquifer solute concentration and the total solute flux to the aquifer at the end of the simulation. This procedure is 

repeated for the number of runs set for the GSA, with changes in the input parameters according to the sampling technique. 

SALib then computes the indices of the two methods: 𝜇𝑖
∗ and 𝜎𝑖 and their confidence interval for the Morris method, and the 370 

Sobol indices and their confidence interval for the Sobol method. Both Morris and Sobol methods have already been applied 

with the Hydrus software package by Périard et al. (2013);  (Hydrus - 2D / 3D), Brunetti et al. (2016, 2018) (; Hydrus - 1D), 

Turco et al. (2017) (; Hydrus - 2D), Hartmann et al. (2018) (; Hydrus - 2D) and others. 



 

 

22 

 

2. 4 Treatment of missing output data 

Owing to the arbitrary choice of input parameters and multiple model runs, the model sometimes does not converge and 375 

crashes. This makes data analysis creates a problematic in analysing the data because sampling order is important for the 

analysis results of most GSA methods. Since there is not yet an agreed and established way to handle these missing data 

(Sheikholeslami et al., 2019), we tested the following methods:  

Missing data removal - by removing the missing data points, or by removing full trajectories, the order of sampling within 

trajectories remains undisturbed. Yet, by removing data, valuable information can be lost. In addition, in most methods, 380 

removing data may render the entire sample since it no longer follows the sampling sequence and data structure. Thus, this 

study only tested value removal for the Morris method where full trajectories can be removed. 

Missing data imputation – a missing value is replaced with some other value. The following missing data imputation 

approaches were tested: 

Constant value substitution is an easy and computationally cheap method for the imputingation of missing data. The 385 

missing data can be replaced with zeros in cases where the output is typically near zero, or with the mean or the median, in 

cases where the distribution is skewed. Sheikholeslami et al. (2019) for example, used the median substitution technique for 

a rainfall-runoff model and a land surface hydrology model. A shortcoming of this replacement methods is the potential for 

reducing the variance and distorting other statistical properties of the output (Sheikholeslami et al., 2019). In this study, both 

the zero and the median substitutions gave similar final GSA indices, with slightly different confidence intervals. Therefore, 390 

only the zero substitution results are presented. 

K Nearest Neighbour (KNN) substitution - The KNN technique uses neighbourhood observations to fill in missing data. 

The underlying rationale behind the KNN-based techniques is that the sample points closer to 𝑥𝑖  should provide better 

information for imputing the failed output, where 𝑥𝑖 is an input parameter vector for which a simulation model fails to return 

an outcome. In the KNN method, the failed output is replaced by a response value of a weighted average of the K (the 395 

number of samples) nearest neighbours (KNN). The KNN algorithm computes the distance of the test observation to every 

observation in the K nearest neighbours and then imputes the missing value with the average model response of the K 
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simulations (Duneja and Puyalnithi, 2017). The computed neighbouring distance between the samples is typically the 

Euclidean distance (Duneja & Puyalnithi, 2017; Troyanskaya et al., 2001). Lower K values generally result in predictions 

with high variance and low bias and vice versa for high K values (Hastie et al., 2009). Thus, in this study, we tested both a 400 

lower K value of five, as was used by Shapiro & Day‐Lewis (2022) for groundwater hydrology models, and a higher K equal 

to the square root of the size of the data set - a rule of thumb in the KNN method reported to correctly distinguish signal 

from noise (Duneja and Puyalnithi, 2017). The KNN analysis was conducted using the programming language Python with 

the scikit-learn KNN regressor.  

RBF emulation-based substitution - Model emulation, or surrogate modelling, is a strategy that develops statistical, cheap-405 

to-run surrogates for the output of complex, computationally intensive models (Razavi et al., 2012a). The emulator usually 

uses a low computational cost function that fits the non-missing response values 𝑌𝑎 to predict the values for the missing 

response 𝑌𝑚. There are various types of model emulations that can be used for hydrological models such as polynomial 

regressions, kriging, artificial neural networks, radial basis functions (RBFs), and support vector machines (Razavi et al., 

2012; Zhou et al., 2022). RBF is one of the most commonly used function approximation techniques, because it can provide 410 

an accurate emulation of high-dimensional problems for a low computational cost. Sheikholeslami et al. (2019), for example, 

employed the RBF approximation for crashed model simulation emulation which performed better than all other methods 

tested in that study. The RBF approximation is a weighted summation of 𝑛𝑎 number of functions that can approximate the 

predictive response 𝑌 at a point 𝑥𝑖. Here 𝑛𝑎 was set to the number of non-missing sample points. Detailed equations of the 

RBF approximation can be found in the appendix SI. The RBF imputation analysis was also conducted with the Python 415 

program using the SciPy RBF interpolation package.  
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3. Results & discussion 

3. 1 Homogenous media analyses 

3.1.1 Morris analysis for homogenous sandy soil 

In this analysis, the model's sensitivity to seven input parameters (𝑘) was tested (Table 1), considering two model outputs: 420 

benzene aquifer concentration at the end of the simulation and benzene cumulative flux to the aquifer. The analysis was 

conducted for 250 paths (𝑟) and six levels (𝑝; i.e., dividing the parameters' space to five equal segments, where the parameter 

can be assigned six different values) for 2000 simulations overall (𝑟 (𝑘 +  1)). Out of these simulations, only 42 simulations 

(2.1 %) did not converge or crashed. To avoid bias in the results, we used the methodology described in Section 2.4 to either 

replace the missing values or remove the trajectories that contain missing values. Three imputation methods are presented: 425 

zero substitution, the RBF emulator, and the KNN method with K = 5 and K =  45 (representing the square root of the 

sample size). Figure 2 presents 𝜇∗ for these different methods. Detailed values of all indices for the different methods can be 

found in the appendix (Tables S3 - S4). Small differences were observed between the different methods for 𝜇∗ , 𝜇∗ 

confidence interval, and 𝜎 values for each of the input parameters, with the same order of parameter importance. The 

similarity between the different methods stems from the scarce missing values, hardly affecting the overall results. In all 430 

strategies for handling missing data, it is evident that the GSA performed the worst for the weakly influential parameters - 𝛼, 

𝐾𝑠 and 𝛼𝑙, exhibiting a high ratio of 𝜇∗ to 𝜇∗ confidence interval (Fig. 2, Tables S3 - S4). tThis was also evident in GSAs 

obtained with using the Hydrus model for other hydrological problems (Brunetti et al., 2016, 2022; Hartmann et al., 2018; 

Zhou et al., 2022; Brunetti et al., 2017). 
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 435 

 

Figure 2 – Morris analysis results for homogenous sandy soil obtained with theusing different methods for missing data 

imputation/removal for: a. Ccumulative benzene flux to the aquifer; and b. Ffinal benzene concentration in the aquifer. Black bars 

represent * confidence intervals.  
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The effect of the different parameters on the output can also be seen in Figures 3a and 3b, where 𝜇∗ versus 𝜎 is presented for 440 

the Morris analysis conducted with the RBF emulation substitution method used to replace the crashed data. Though 

minimal differences were observed between among all methods (Fig. 2), the RBF results are shown here for consistency 

purposes, since the RBF method gave the best results in the heterogeneous media case (see Section 3.2.2). 

In all cases, the input parameter with the strongest effect on the system was the degradation rate 𝜆𝑘, followed by the profile 

depth 𝑧 (Figs. 2 and 3). The next two influential parameters are the adsorption coefficient 𝐾𝑑  and the van Genuchten 𝑛 445 

parameter. Both showed a similar effect on the concentration, though the effect of 𝑛 on the flux to the aquifer was much 

more pronounced and 𝐾𝑑 was slightly more influential for the concentration. Finally, the van Genuchten 𝛼 parameter, the 

hydraulic conductivity 𝐾𝑠 and the dispersivity 𝛼𝑙 , showed little effect on the model results. 

Zanello et al. (2021) reported similar results in a LSA for a model of BTEX transport in an unsaturated homogenoues sandy 

soil using Hydrus 2D/3D software. They found that the order of the input parameters' influence on BTEX arrival to the 450 

aquifer (tested as concentration) was 𝜆𝑘 > 𝐾𝑑 > 𝑧 > 𝐾𝑠. The stronger influence of 𝐾𝑑 compared to 𝑧 in that study is probably 

the resultdue to of the low 𝑧 values tested there (2.5 - 4 m), representing a shallow aquifer. In another study, Davis et al. 

(1994) modeled the constant leakage of benzene in a loamy sand soil to an aquifer beneath a manufacturing facility. Benzene 

concentrations of ~1 mg/l were found in the groundwater beneath the source (~25 mg/l), though in monitoring wells ~100 m 

from the source no bezene was detected. In their LSA, they too found that 𝜆𝑘 was the “dominant mechanism” for benzene 455 

attenuation and found 𝐾𝑑 to be very influential. Moreover, similarly to our study, their model was insensitive to 𝛼𝑙 , (Davis et 

al., 1994). Indeed, the great importance of biodegradation for the removal of gasoline hydrocarbons in aerobic environments 

has been recognized and reported in the literature (Lahvis et al., 1999; Berlin et al., 2016; Yadav and Hassanizadeh, 2011; 

Berlin and Suresh, 2019; Alvarez et al., 1991; Abu Hamed et al., 2004). This result is , here it is demonstrated once again in 

our study. 460 

Generally, the order of influence of the parameters was similar for the cumulative flux to the aquifer and for the final 

concentration in the aquifer (Fig. 3), except for 𝐾𝑑  and 𝑛  as stated above. For both the flux and the concentration, a 
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correlation between 𝜇∗ and 𝜎 is observed, as reflected in their arrangement around the same diagonal line (Fig. 3, red line), 

indicating that none of the parameters have solely a linear effect (𝜇∗ being the mean effect). Instead, all parameters exhibit an 

interaction effect (𝜎 - the standard deviation of the effect), where the interactions increases with the increase in the mean.  465 

 

Figure 3 - Morris analysis results for homogenous sandy soil with RBF imputation for: A. cCumulative benzene flux to the 

aquifer; and B. fFinal benzene concentration in the aquifer. 

3.1.2 . Sobol analysis for homogenous sandy soil:  

The Sobol analysis for homogenous media was conducted for the four most influential parameters of the Morris analysis: 𝜆𝑘, 470 

𝑧, 𝑛, and 𝐾𝑑, to obtain more quantitative information on the parameters' influence and interactions. Five thousand sets of 

parameters were generated, constituting an overall total of 50000 model runs for 𝑟 (2𝑘 + 2). Of the 50000 model runs, 881 

samples did not converge. The same methodology used for the Morris analysis was used for imputation of missing values 

imputation (Section 2.4). Yet, with the Sobol analysis, it was impossible to remove the missing points, since the order of 

sampling is significant to the overall analysis, and sampling is not divided into sets of trajectories. Hence, the data removal 475 

method was not used.  

Figures 4 and 5 show the S1 and ST Sobol indices for the different methods of missing data replacement. Detailed and 

averaged values of all methods can be found in the appendix (Tables S5 - S10). All missing data imputation methods gave 
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similar results (Figs. 4 and 5, and Tables 5 and 6). This is expected given the low dimensionality of the model (four input 

parameters). Here, the GSA also performed the worst for the weakly influential parameters (𝑛 and 𝐾𝑑) exhibiting a high 480 

confidence interval to indices ratio.  
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Figure 4 – The Sobol total indices (ST) for homogenous sandy soil obtained using different methods for missing data imputation 

for: a. Ccumulative benzene flux to the aquifer; and b. fFinal benzene concentration in the aquifer. Black bars represent ST
 485 

confidence intervals. 

A similar effect of the different parameters' order and magnitude of importance on the two outputs was observed. Just lLike 

the Morris analysis, here as well, 𝜆𝑘 and 𝑧 were found to be the most influential parameters with the highest total order (ST) 

and first order (S1) indexices values (Figs. 4 and 5). ST, unlike S1, often sums to more than 100% because it is the sum of S1 

and all the higher-order Sobol indices involving the parameter (Saltelli et al., 2004). The difference ST – S1 is a measure of 490 

how much parameter xi is involved in interactions with any other input variable (Saltelli et al., 2004). The total index ST 

(Figs. 4 and 5) demonstrates that most of the variance in both flux and concentration is caused by 𝜆𝑘, consisting of the 

variation of 𝜆𝑘 itself (S1 of ~11.38 % and 13.21 % for the flux and concentration, respectively;, Tables S5 and S6) and the 

interactions with other parameters. It should be noted that 𝑧 has a relatively low main effect (S1 of 1.85 % and 1.17 % for the 

flux and concentration, respectively,; Tables S5 and S6) but a high total effect of ~58 % and 78 % for the flux and 495 

concentration, respectively (Tables S7 and S8), indicating that this parameter has a limited direct impact on the variance of 

the output, but a strong interaction effect, most likely with the degradation coefficient. The total Sobol index of an input 
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parameter is the sum of the first-order Sobol index and all the higher-order Sobol’ indices involving that parameter. Hence, 

The the sum of the total Sobol sensitivity indices is equal to or greater than one (Gatel et al., 2020). If no higher order 

interactions are present, the sum of both the first and total order Sobol indices are equal to one. Sums of ST values >100% 500 

was were also reported by Brunetti et al. (2017), Schübl et al. (2022), Zhou et al. (2022) and (Nossent et al., 2011). 

Ciriello et al. (2017) performed a Sobol analysis for benzene contamination in an unsaturated soil assuming a very deep 

aquifer where that contamination will not arrivedoes not reach, and in a shallow aquifer. They reported 𝐾𝑠 as one of the most 

important parameters, while  and 𝑛 were both found to be mostly insignificant. Yet, it is hard to compare between that 

study and this one because 𝜆𝑘, 𝐾𝑑 and 𝑧, that which were found here to be highly significant in this study, were not tested in 505 

that study. In addition, as well as we tested moderate aquifer depths (more than 5 m) that were tested here. 
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Figure 5 – Sobol first order indices (S1) for homogenous sandy soil obtained using different methods for missing data imputation 

for: a. cCumulative benzene flux to the aquifer; and b. Ffinal benzene concentration in the aquifer. Black bars represent µ* 510 
confidence intervals. 
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𝜆𝑘 is the only parameter with S1 higher than 10 %, hence the only parameter with a strong main effect on the output variance. 

When the sum of all first order indices is less than 100 %, the model is non-additive, meaning that it is affected by 

interactions (Neumann, 2012; Nossent et al., 2011). Here, the sum of all first-order indices is < 15 %, indicating that the 

model is non-additive and very much affected by interactions. Only 13.7 % and 14.8 % of the variance for the flux and 515 

concentration, respectively, are attributable to the first-order effect (Tables S5 and S6; showing the sum of S1 for the flux and 

concentration, respectively), highlighting the fundamental role of interactions between parameters.  

Overall, the Sobol method results agreed with those of the Morris method. Indeed, the Morris method was proposed as an 

efficient tool to be used prior to variance-based GSA, in order to screen important and unimportant factors and to provide the 

first inspection of the model’s behaviour at a reasonable computational cost (Brunetti et al., 2018; Song et al., 2015; 520 

Wainwright et al., 2013). Similaritiesy between Morris and variance-based methods was were also observed by Herman et 

al. (2013) and Sarrazin et al. (2016).  

3. 2  Heterogeneous media 

3.2.1 Morris analysis for heterogeneous media: 

In this analysis, 12 parameters concerning the soil type were examined: 𝛼, 𝑛, 𝐾𝑠, 𝛼𝑙, 𝜆𝑘  and 𝐾𝑑, both for sand and clayey soil 525 

(represented below with a subscript of 1 and 2, respectively). Three additional general profile parameters were tested: 𝑧, 𝑁 

and 𝑏, comprising 15 parameters overall (Table 2). 

The analysis was conducted for 250 paths (𝑟) and four levels for an overall total of 4000 simulations (𝑟 (𝑘 +  1)), from 

which 338 959 did not converge or crashed. The increase in the ratio of failures compared with the previous analysis (2.1 % 

for the homogeneous Morris analysis versus 8.45~24 % here) can be attributed to the complex transport in the heterogeneous 530 

medium, and the difficulity in modeling flow between sand and clay layers, as well as to the increase in the number of model 

parameters (dimensionality of the parameter space) increasing the arbitrary combinations of parameters during GSA 

(Sheikholeslami et al., 2019). The same methodology was used for missing data imputation or removal, as discussed above. 

Unlike the previous analyses, the different methods for missing values imputation yielded dissimilar confidence interval 
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levels, as well as dissimilar 𝜇∗ values for some parameters (Fig. 6). Also, an overall increase in the ratio between 𝜇∗ and its 535 

confidence interval was observed (Fig. 6). Again, the GSA performed the poorest for the less influential parameters, 

exhibiting the highest ratio of confidence interval to 𝜇∗, as evident in Figure 6 for the parameters on the right side of the 

charts. In the appendix, the ratio between 𝜇∗ confidence interval to 𝜇∗ is presented in Fig.ure S2 for toa clearly illustrateer 

view on the difference between the different methods and parameters. GSA results with high confidence interval values were 

also reported by other studies that used Hydrus models (Brunetti et al., 2016, 2022; Hartmann et al., 2018; Zhou et al., 2022; 540 

Brunetti et al., 2017). Though the authors do not address this issue, it indicates the thatneed for more model runs are needed 

for the indices to obtain convergence of the indices (Sarrazin et al., 2016). Yet, a clear 𝜇∗ ranking is observed with an overall 

consistency with the previous results of the homogeneuous case and between among the different methods. 

Full trajectory removal performed the poorest for most parameters, while the RBF emulation method performed the best 

(Fig. 6 and Fig. S2). The two KNN methods gave better results than the zero substitution, especially when the effect on the 545 

concentration was examined (Fig. 6b). For the concentration, the 45NN performed better than the 5NN. Differences between 

the two KNN methods were less pronounced for the cumulative flux. These results are similar to those reported by 

Sheikholeslami et al. (2019), where in which the RBF emulation-based substitution performed better than the single NN and 

than a constant value substitution (the median, in their case). Detailed values of all methods' indices can be found in the 

appendix (Tables S11 - S12). A correlation between 𝜇∗  and 𝜎  for all input parameters is again demonstrated by their 550 

arrangement around one diagonal line (the red line in Figures 7a and 7b), indicating that the interactions' effect increases 

with the increase in the total effect of each parameter.  
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 560 

Figure 6 – Morris analysis results for heterogeneous media, µ* values for: a. cumulative benzene flux to the aquifer; and b. final 

benzene concentration in the aquifer. 

In Figures 7a and 7b, show the effect of the different parameters on the outputs, in terms of 𝜇∗ versus 𝜎, when using the RBF 

method, is shown. Like the GSA results of the homogenous media, it is evident that the degradation coefficients 𝜆𝑘2, and the 
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sorption coefficient  𝐾𝑑2 of both the clay soil,s as well as the depth 𝑧, and the van Genuchten 𝑛1 parameter of the sand layers, 565 

𝑛1 are the most dominant factors controlling benzene transport to the aquifer. The degradation coefficient of the sand clay 

layers 𝜆𝑘12 was found to be the most dominant parameter, considering both the cumulative flux and the concentration at the 

end of the simulation. Next, tThe degradation sorption coefficient of the clay layers 𝐾𝑑2 𝜆𝑘2 and 𝑛1 share the  is second and 

third most influential for the concentration, but equally important as the depth 𝑧, which comes in third place for the flux, 

followed by 𝑛1 in fourth place. Benzene adsorption for clay minerals is higher than that for sand (Berlin and Suresh, 2019; 570 

Zytner, 1994), and was set accordingly in the GSA (Table 1); therefore, its overall increased influence is not surprising, as 

well as the increased influence of 𝜆𝑘2 in these layers, as the solute is attenuated due to sorption. The stronger effect of   

While 𝑛1 was found to be more influential for the flux, 𝜆𝐾𝑘𝑑2 had a stronger effect on the concentration. This makes sense as 

compared with the flux is expected, since sorption that directly   𝑛 primarily affects water flow, whereas 𝜆𝑘2 affectssing  

benzenethe solute concentration directly. On the other hand 𝑛1 of the sand was much more influential than 𝑛2 probably since 575 

it is a parameter affecting the flow and sand comprises most of the profile. In the Morris homogenous analysis 𝑛 also 

affected the flux more than the concentration. Therefore, although the two parameters are substantial, we see that the relative 

effect also depends on the output tested. We note that 𝑛1 was also third/fourth in these four parameters were also found to be 

significance significant for homogenous soil analysis; thus, it is a very significant parameterthey should be carefully 

examined when modelling the fate and transport of benzene. In the fourth place here, the clay adsorption coefficient 𝐾𝑑2 was 580 

found to be equally influential for both outputs, exhibiting an increased interaction effect (high 𝜎). Benzene adsorption for 

clay materials is higher than that of sand (Berlin and Suresh, 2019; Zytner, 1994), and was set accordingly in the GSA (Table 

1); therefore, its increased influence is not surprising.  

A large group of moderately influential parameters Ffollowing these four very most influential parameters, we see a large 

group of moderately influential parameters. For both outputsthe flux, 𝛼1 and 𝛼2 follow in importance in fifth and sixth place, 585 

followed by the sand's saturated hydraulic conductivity adsorption coefficient 𝐾𝑠𝑑1  and , which comes in seventh place. For 

the concentration 𝛼2 is also at the fifth place, however, 𝐾𝑑1 and 𝜆𝑘1 are more influential and come in sixth and seventh place 
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respectively, showing also a greater degree of interaction effect, just before 𝛼1 at the eighth place. The parameters 𝐾𝑑1 and 

𝜆𝑘1 are likely to affect concentration more than flux, since they affect benzene directly similarly to 𝐾𝑑2 here, andthe number 

of clay layers 𝑁 are close together in the fifth and sixth place for the flux, and seventh and eighth place for the concentration. 590 

In both cases 𝐾𝑠1 shows a higher total effect (𝜇∗) and a smaller interaction effect (𝜎) than 𝑁. For the flux, 𝐾𝑠1 and 𝑁 are 

more influential than the profile depth 𝑧 positioned in seventh place, whereas for the concentration, it's the other way around 

and 𝑧 occupies the fifth place in importance. Compared to the homogenous sandy media, 𝑧 moved downward in order of 

importance, mostly due to the increased influence of the clay layers in retardation of benzene, as manifested by the high 

importance of clay parameters like 𝜆𝑘2, K𝑑2, and 𝑁. Contradictory to 𝑧, K𝑠1 moved upward in the rank of importance. Since 595 

sand comprises most of the profile and the movement in the sand is faster than in the clay layers, this parameter now plays a 

significant role, especially for the flux. The number of clay layers 𝑁 moderately affects both outputs, while the layers' 

thickness 𝑏 also moderately affects the concentration, but is somewhat less important for the flux. The adsorption coefficient 

of sand K𝑑1 is moderately-high in importance (seventh place) for concentration, whereas for the flux it is only at the 11th 

place. A similar trend was observed in the homogenous media analysis where 𝐾𝑑1 in the homogenous media analysishad a 600 

stronger effect on the concentration. They, probably both since sorption lowersing benzene concentrations, but have less a 

lower effect on total flux. 
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Figure 7 – Morris analysis results for heterogeneous media for: a. cCumulative benzene flux to the aquifer; and b. fFinal benzene 605 
concentration in the aquifer.  

Following these influential parameters, the clay layers’ dispersivity dispersivities 𝛼𝑙2, and 𝛼𝑙1 of both soil typesthe sand 

layers, are less influential but still somewhat close to the middle of the graph, together with clay layers distribution 

parameters,  𝑏 and 𝑁, and with 𝜆𝑘1 for the flux. The least influential parameters are mostly soil properties of the clay layers, 

such as  𝑛2  of the clay layer and the clay hydraulic conductivity conductivities of both soil types, 𝐾𝑠1  and 610 

𝐾𝑠2, 𝑛2 and 𝛼2 parameters, and the dispersivity of the sand layers 𝛼𝑙1. Interestingly, Gribb et al. (2002), who conducted 



 

 

39 

 

LSA for a risk assessment model of benzene and naphtelene transport to groundwater through sand, loam, and clay soils, 

also reported high model sensitivity to 𝜆𝑘 and 𝐾𝑑 for all soils. In their case, the model was also less sensitive to K𝑠, except 

for pure loam and clay soils. For other parameters that were not tested here (porosity, bulk density, residual water content 

and initial concentration), the model was only sensitive in the case of pure clayey soil. Yet, their study assumed homogenous 615 

media of each soil type, which may have obscured the effect of a specific parameter for different soil types in a single 

profile. HereIn the present study, most clay parameters are less influential, probably due to the smaller fraction of clay, as 

compared with the sand layers, which comprise most of the profile, it is also evident that 𝜆𝑘 and 𝐾𝑑 are very influential, 

depending also on the soil type, whereas  𝐾𝑠 is the least influential parameter.  

The results for both the homogenous and heterogeneous media showed indicate that the most dominant factor controlling 620 

benzene arrival to the aquifer is 𝜆𝑘 , especially in the sand layers, which occupy most of the profile ., 𝜆𝑘  is the rate of 

benzene removal from the media by biological degradation. This rate can vary greatly from extremely fast to very slow rates, 

depending on parameters such as initial benzene concentration and soil water content (Table S1). In general, the degradation 

rate is lower for higher concentrations and lower water content, and vice versa. Since the values of 𝜆𝑘 vary greatly in the 

literature, this parameter a must be carefully examination and selectedion of this parameter is recommended in hydrological 625 

modelling for benzene transport, and further research to elucidate its value onsite is encourged.  

The parameters Following After 𝜆𝑘 , - 𝑧 , 𝐾𝑑  and 𝑛1  was found to be highly dominant in this analysis, whereas in the 

homogenous media 𝑧  was more significantfollowed 𝜆𝑘  in importance; where 𝐾𝑑  usually had a stronger effect on the 

concentration than on the flux. The aquifer depth is an easy-to-measure parameter, and it should be included in any model 

for benzene transport.  Also,Likewise, 𝑛 can be established evaluated quite easily using tools like such as Rosetta to establish 630 

soil texture (Schaap et al., 2001). Therefore, examination of soil types onsite is also extremely important. The adsorption 

coefficient of the clay layers was also found to be highly significant as well as the number of clay layers. Therefore, 

examination and characterization of the onsite soil types is also extremely important. Most studies that tested SA for benzene 

transport in different soils types, used homogenous media representation of each soil type, and tested one soil type at the a 
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time (Davis et al., 1994; Gatel et al., 2019; Gribb et al., 2002). HereIn this study, we tested the effects of both the parameters 635 

of the individual soil types and the distribution of the clay layers through using 𝑏 and 𝑁. This Thus, we providesoffer an a 

better improved assessment of the importance of each parameter of each soil type, and shows that the representation of clay 

layers distribution should be represented and characterized, though the exact layering distribution is only moderately 

influentialconsidered carefully. ThereforeIt is important and consider, the occurrence and number ofall clay layers should be 

characterized and considered when examining contaminated sites, even for the occurrence of thin layersones. On the other 640 

hand, literature values may be used for non-influential parameters,  may be fixed to literature values. Those parameters 

includinge soil properties of the clay layers, such as the claythe hydraulic conductivity conductivities 𝐾𝑠1  and 𝐾𝑠2  and 

𝑛2, as well as parameters like the dispersivity 𝛼𝑙  and van Genuchten’s 𝛼 parameter of both layers. 

4. Summary & conclusions 

This paper explores the effect of different model parameters on benzene transport in the vadose zone of Israel’s coastal plain 645 

aquifer and its potential arrival to the aquifer below. A physical model was implemented to simulate benzene transport in the 

unsaturated zone. The model was initially employed for homogenous sandy soil, as sand comprises the vast majority of the 

vadose zone. Next, the model was set to describe heterogeneous soil containing clay layers representing lithology obtained 

from data of contaminated sites. Two GSA methods were applied to examine the effect of the model input parameters on 

benzene concentration in the aquifer at the end of the simulation, and on benzene cumulative flux to the aquifer. 650 

Additionally, treatment of missing data due to model crashes was demonstrated. 

The results for both the homogenous and heterogeneous media showed that the most dominant factor controlling benzene 

arrival to the aquifer is benzene degradation coefficient 

(𝜆𝑘), especially in the sand layers which occupy most of the profile. Following 𝜆𝑘, van Genuchten 𝑛 parameter was found 

to be highly dominant, mainly in the heterogeneous media, whereas in the homogenous media the depth (𝑧) of the aquifer 655 
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was more highly significant. The adsorption coefficient 𝐾𝑑of the clay layers  and van Genuchten 𝑛 parameter of the sand 

soilthe number of clay layers were also found to be highly significant.  

A substantial interaction effect between the parameters was observed;, where the parameters with the highest individual 

effect showed a high interaction effect and vice versa. The degree of individual parameter influence on the model was shown 

to be small (< 15 %) by the Sobol analysis, indicating the great importance of interactions between parameters. 660 

The different methods for missing data handling yielded a similar overall ranking of the influential parameters identified by 

the GSA. However, the RBF emulation-based substitution showed better results compared to the KNN and zero substitution 

techniques, particularly when the transport between layers was considered, and the model dimensionality and subsequent 

number of failures was high. In that case, the data removal technique performed markedly worst. Last, it was observed that 

the GSA and different methods for data imputation performed the best for the more influential parameters. 665 
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