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Abstract 19 

Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological 20 
variables, thus complicating the projection of future streamflow and hydrological droughts. Although 21 
machine learning is increasingly employed for hydrological simulations, few studies have used it to project 22 
hydrological droughts, not to mention the bivariate risks of drought duration and severity as well as their 23 
socioeconomic effects under climate change. We develop a cascade modeling chain to project future bivariate 24 
hydrological drought characteristics in 179 catchments over China, using 5 bias-corrected GCM outputs 25 
under three shared socioeconomic pathways, five hydrological models and a deep learning model. We 26 
quantify the contribution of various meteorological variables to daily streamflow by using a random forest 27 
model, then employ terrestrial water storage anomalies and a standardized runoff index to evaluate recent 28 
changes in hydrologic drought. Subsequently, we construct a bivariate framework to jointly model drought 29 
duration and severity by using Copula functions and the most likely realization method. Finally, we use this 30 
framework to project future risks of hydrological droughts as well as associated exposure of gross domestic 31 
product and population. Results show that our hybrid hydrological-deep learning model achieves >0.8 Kling-32 
Gupta efficiency in 161 out of 179 catchments. By the late 21st century, bivariate drought risk is projected to 33 
double over 60% catchments, mainly located in Southwest China. Our hybrid model also projects substantial 34 
GDP and population exposures by increasing bivariate drought risks, suggesting an urgent need to design 35 
climate mitigation strategies towards a sustainable development pathway. 36 
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1 Introduction 37 

In a warming world, the acceleration of the global water cycle is expected to alter the regional and 38 
seasonal distribution of key hydrological variables such as precipitation and evapotranspiration (Allan et al., 39 
2020). As precipitation patterns are particularly sensitive to changes in atmospheric forcing and local 40 
conditions, precipitation extremes are generally increasing globally, exacerbating spatial heterogeneity of 41 
precipitation (Donat et al., 2016; Tabari, 2020). A suite of Shared Socioeconomic Pathways (SSPs) has been 42 
proposed to simulate different possible future scenarios of societal responses to climate change, and these are 43 
employed to investigate the possible effects of long-term climate change (Meinshausen et al., 2020; Zhang 44 
et al., 2021). By using the SSP framework, numerous works have indicated that the redistribution of 45 
precipitation may lead to the decline of water storage in some regions, and intensify water scarcity in arid 46 
regions (Sönmez and Kale, 2018; Woolway et al., 2020; Yao et al., 2023). Under increasing atmospheric 47 
greenhouse gases, numerous studies have reported a widespread increase in drought events, even in areas 48 
with increasing annual runoff (Dai et al., 2018). The uneven distribution of precipitation and other 49 
meteorological elements under climate change complicates predictions of future runoff and drought. 50 

China's socioeconomic development, and particularly its agricultural sector, is threatened by the rapid 51 
intensification of extreme hazards under climate change (Piao et al., 2010). Over the past years, China has 52 
been hit by severe drought events which have caused considerable damage to ecosystem productivity and 53 
socio-economic growth (Zhai and Zou, 2005; Yin et al., 2023). Water shortages, agricultural production, and 54 
associated ecological degradation are key challenges hindering the sustainable development of the North 55 
China Plain (Chen and Yang, 2013). Over the period of 1985-2014, drought accounted for about 19% of 56 
economic losses among all meteorological hazards (Chen and Sun, 2019). With continuing global warming, 57 
the economic losses from severe drought events might increase by over ten billions of US dollars per year by 58 
the late 21st century (Su et al., 2018). For instance, one extreme drought in Sichuan Province in 2022 resulted 59 
in power shortages and led to economic losses of 669 million dollars, underscoring the importance of 60 
projecting future droughts over China (Lu et al., 2023). 61 

Droughts can be triggered by divergent mechanisms, and are thus distinguished according to the type of 62 
drought, such as meteorological and hydrological drought (Yihdego et al., 2019). The majority of studies 63 
have focused on meteorological droughts, which can then be translated to a hydrological drought, while fewer 64 
works have focused on hydrological drought probably due to lack of measurements like the standardized 65 
runoff index (SRI) (Barker et al., 2016; Kumar et al., 2016; Tirivarombo et al., 2018). Furthermore, 66 
hydrological droughts are not only affected by the water cycle but also by human interventions, which makes 67 
them difficult to accurately be predicted (Wu et al., 2021). Currently, the majority of drought impact 68 
assessments focus on the investigation of individual drought variables (i.e., drought duration, severity and 69 
intensity, etc.) through univariate probabilistic models and stochastic theory (Myronidis et al., 2018; 70 
Byakatonda et al., 2018; Zhang et al., 2022). However, univariate drought analysis cannot accurately describe 71 
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the probability of drought events, because droughts of either long duration or severe intensity can lead to 72 
substantial socio-ecosystem damages (Castle et al., 2014; Udall and Overpeck, 2017). Therefore, the bivariate 73 
framework based on Copula functions has been developed for drought projection, compensating for the 74 
incompleteness of a single variable analysis (Ayantobo et al., 2017; Nabaei et al., 2019). At present, studies 75 
on hydrological drought within a bivariate framework are still lacking. Beyond the choice of approach 76 
(univariate or bivariate), the Gravity Recovery and Climate Experiment (GRACE) and GRACE-FO (GRACE 77 
Follow-On) satellites now provide two decades of large-scale terrestrial water storage (TWS) data, which 78 
captures the water deficit in various forms on land and can be used to monitor droughts (Schmidt et al., 2006). 79 
The drought severity index based on TWS (TWS-DSI) can be used to monitor past drought events, which 80 
also shows potential advantages in drought warning, forecasting, and projection (Nie et al., 2018; Pokhrel et 81 
al., 2021).  82 

In recent decades, many studies have used bias-corrected outputs from Global Climate Models (GCMs) 83 
to project future hydrological drought scenarios (e.g., (Ashrafi et al., 2020; Kim et al., 2021; Dixit et al., 84 
2022). The growing application of machine learning has revealed high potential for improving the accuracy 85 
of hydrological simulation and prediction (Mokhtar et al., 2021). In recent years, many machine learning 86 
algorithms have been adopted in drought simulation and produce a good performance, such as wavelet neural 87 
networks (WNNs) (Xiujia et al., 2022),  support vector machines (SVMs) (Zhu et al., 2021) and long short-88 
term memory neural networks (LSTMs) (Dikshit et al., 2021a)). These algorithms can be used to simulate 89 
the evolution of future droughts and construct risk maps for drought contingency planning (Rahmati et al., 90 
2020). Among the different models, the LSTMs can effectively simulate short-term and long-term streamflow 91 
series, and their performances have been validated at short temporal scales (Dikshit et al., 2021b; Kang et al., 92 
2023).  93 

In this study, we project changes in bivariate hydrological drought characteristics (duration and severity) 94 
and their associated socioeconomic risks under three SSPs (i.e., SSP1-26, SSP3-70, and SSP5-85) over 179 95 
catchments in China. To achieve this, we combine five hydrological models and a deep learning model (i.e., 96 
the LSTM), and then drive the hybrid model with the five bias-corrected GCMs outputs under Coupled Model 97 
Intercomparison Project phase six (CMIP6). Then, we employ a machine learning-based framework (i.e., 98 
Random Forest, RF model) to quantify the sensitivity of different meteorological variables to daily 99 
streamflow. We employ the run theory and two drought metrics, the SRI and TWS-DSI, to identify and 100 
explore recent changes in drought characteristics. In addition, we use Copula functions to build the bivariate 101 
model of drought duration and severity during both reference and future periods. After identifying shifts in 102 
bivariate drought characteristics based on the most likely realization approach, we project the exposure of 103 
gross domestic product (GDP) and population to increasing drought risks in the future. Finally, we decompose 104 
the uncertainties arising from different sources by employing the multivariate analysis of variance 105 
(MANOVA) method. The paper provides a clear description of materials and methods used to analyze, and 106 
then shows the difference between two drought indexes to assess drought conditions, the contribution of 107 
meteorological factors to simulate streamflow, the validation of the accuracy of HTMs, the evolution of 108 
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univariate and bivariate droughts in future scenarios and the socioeconomic exposure to bivariate droughts. 109 
We also make a discussion of uncertainty from multisource data and cascade model chain, and reflect on 110 
limitations that could be improved to enhance the further study. All findings are summarized and targeted to 111 
propose drought mitigation strategies. 112 

2. Methodology 113 

The workflow of this study is divided into four modules (Figure 1), described briefly below and detailed 114 
in the following sections. In step 1, the hydrological models and LSTM are trained using the ERA5-Land 115 
dataset, then the output of HMs is used as input to feed the LSTM, thus we build the hybrid terrestrial models 116 
(HTMs). In step 2, the trained HTMs are validated using in situ streamflow observations, then driven by 117 
using the outputs of five GCMs from the CMIP6 to project streamflow and the SRI series. In step 3, monthly 118 
drought characteristics (i.e., drought duration and severity) are defined using run theory and combined with 119 
Copula functions to construct a bivariate drought framework. Future bivariate drought change is evaluated 120 
using the most likely realization method. Meanwhile, the TWS measurements from GRACE missions are 121 
also employed to characterize recent changes in TWS-based droughts, which are also compared with the 122 
hydrological droughts. In step 4, we employ future scenarios of GDP and population alongside our future 123 
drought projections to produce a socioeconomic assessment of drought exposure over China. Finally, we 124 
examine the contribution of uncertainty from different sources in projecting drought change and exposure. 125 

 126 

Figure 1. Schematic flowchart of the method, including ML-constrained hydrological simulations, evaluation of 127 
bivariate hydrologic drought characteristics and change, and the socioeconomic evaluation to drought exposure 128 
under climate change. 129 

2.1 Derivation of 2-meter relative and specific humidity 130 

The Clausius–Clapeyron relationship is used to derive saturated vapor pressure (𝑒𝑒𝑠𝑠) and air temperature 131 
(𝑇𝑇), and is expressed as follows (Koutsoyiannis, 2012): 132 
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where 0T , 0e , L0 and R0 are constants, with a value of 273.16 K, 611 Pa, 2.5×106 J kg-1, 461 J kg-1 K-1, 134 

respectively; 135 
Since near-surface relative humidity (RH) can’t be directly obtained from the ERA5-Land dataset, the 136 

2m temperature (T2m) and dew-point temperature (Td) are substituted into equation (1) to calculate RH: 137 
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Then, the near-surface air pressure (ps) and Td are used to deduce the specific humidity (SH), which is 139 
mathematically expressed as follows (Simmons et al., 1999): 140 

 0.622 ( )
0.378 ( )

s d

s d

e T
SH

ps e T
×

=
−

 (3) 141 

2.2 Sensitivity analysis on meteorological variables for runoff 142 

The RF model is used to calculate the sensitivity to different meteorological variables for runoff, 143 
including precipitation (pr), air pressure (ps), surface downwelling shortwave and longwave radiation ( srsds 144 
and srlds), RH, SH, average temperature, maximum and minimum temperature. The contribution of a key 145 
variable is derived by using the pre-established model, the perturbed meteorological variable and remaining 146 
(non-perturbed) variables (Antoniadis et al., 2021; Green et al., 2020). The percentage change in streamflow 147 
is derived from the following equation: 148 

 
( )

( )
( +1SD) ( ) mean

100%
stdev b
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i
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R

R
S

R −
= ×  (4) 149 

where Si indicates the sensitivity of streamflow to ith meteorological variable, which are pr, ps, SH, RH, srlds, 150 
srsds and temperature; Robs is the observation of streamflow which has units of m3/s; R(i+1SD) is the simulated 151 
streamflow by perturbing i by +1 SD; R(all) is the streamflow simulated by all meteorological variables; stdev 152 
(Robs) represents the standard deviation of Robs. 153 

2.3 Deep learning-constrained hydrological modeling 154 

2.3.1 Conceptual hydrological models 155 

For preliminary hydrological simulations, we select five hydrological models to represent hydrological 156 
characteristics under different environments. The GR4J (Génie Rural à 4 paramètres Journalier ) is a lumped 157 
model with 4 parameters developed by Perrin et al. (2003). GR4J consists of two water store modules (runoff 158 
yielding and routing) and uses daily rainfall and evapotranspiration as inputs to simulate streamflow series 159 
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(Kunnath-Poovakka and Eldho, 2019). This model has been successfully used to simulate hybrid runoff 160 
processes in many continents (Shin and Kim, 2021; Gu et al., 2023). Additionaly, we use the temperature-161 
based method (Oudin et al., 2005) to estimate the potential evapotranspiration of the GR4J model. 162 

The HBV (Hydrologiska Byråns Vattenbalansavdelning ) model was initially developed by the Swedish 163 
Meteorological and Hydrological Institute for hydrological forecasting (BERGSTRÖM and FORSMAN, 164 
1973). This model including five modules and one transform function to quantify hydrological variables (i.e., 165 
precipitation, snow, soil moisture, runoff, baseflow) (Bergström, 1995). It has been widely employed to 166 
simulate streamflow, and it particularly has good capacity in simulating snowmelt runoff (Kriauciuniene et 167 
al., 2013). 168 

The HMETS (hydrological model of École de technologie supérieure) model contains 21 parameters 169 
and two reservoirs (i.e., the saturated and vadose zones), which makes it simplified and efficient to complete 170 
hydrological simulation (Martel et al., 2017).  The model can simulate six processes in water cycle, including 171 
the accumulation, melst and refreezing of snow, water infiltration and routing, evapotranspiration (Qi et al., 172 
2020). It has been growly used for streamflow simulation under climate change and has shown well 173 
performance (Chen et al., 2018). 174 

The SIMHYD (simple lumped conceptual daily rainfall-runoff ) model is a daily rainfall-runoff model 175 
developed by Porter and McMahon (1975). There are four types of runoff from different sourses: impervious 176 
areas, infiltration, interflow, and groundwater store (Chiew et al., 2002). Although the model was developed 177 
earlier, it has shown good accuracy in simulating runoff over China (Yu and Zhu, 2015). 178 

The XAJ (Xinanjiang) model is a hydrological model, which can usually achieves better performance 179 
in humid and semi-humid areas than in arid areas (Zhao, 1992). It is composed of a three-layer 180 
evapotranspiration module with four parameters and separates the runoff into four components (i.e., surface 181 
water, groundwater, interflow water and flow routing) (Tian et al., 2013). To date, it is widely reported that  182 
the XAJ model usually show the best accuracy in simulating hydrological conditions in China (Hu et al., 183 
2005).   184 

We use the SCE-UA (Shuffled Complex Evolution) approach with maximizing the objective function 185 
(i.e., Kling-Gupta efficiency) to optimize these models (Duan et al., 1992). The most complete 20-year 186 
observation period is selected to calibrate the models in each watershed. To calibrate the hydrological models, 187 
a cross-validation method developed by Arsenault et al. (2017) is used, which employs the odd years of data 188 
to calibrate models, and the even years of data to validate. 189 

2.3.2 Hybrid scheme of hydrological model and machine learning 190 

Recurrent neural network (RNN) models have had considerable success in hydrological modeling (Cho 191 
et al., 2014; Sherstinsky, 2020). However, when considering long input sequences, RNNs struggle to capture 192 
the relationships between distant points due to a phenomenon known as “long-term dependencies” (Yu et al., 193 
2019). With the development of deep leaning, this problem can be successfully avoided by using LSTMs. 194 

A LSTM cell includes input, output and forget gates. The input gate determines which new information 195 
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can be stored in the cell state, and the forget gate identifies which information will be discarded from the cell 196 
state. The output gate controls what part of the cell state is selected as the output. The updated cell state is a 197 
combination of the information retailed and the new information to be added. By using this architecture, the 198 
LSTM can avoid the problem of gradient vanishing or explosion during backpropagation, especially when a 199 
series is long (Gers et al., 2000). The LSTM can be expressed as follows: 200 

 1( )t hf t xf t ffg W hs W x bσ −= + +  (5) 201 

 1( )t hi t xi t fgig W hs W x bσ −= + +  (6) 202 

 1tanh( )t t thc xc cc W hs W x b−= + +
  

  (7) 203 

 

1t t t t tc fg c ig c−= ⋅ + ⋅  (8) 204 

 1( )t oh t ox t oog W hs W x bσ −= + +  (9) 205 

 tanh( )t t ths og c= 
  (10) 206 

where 𝑥𝑥𝑡𝑡, 𝑓𝑓𝑓𝑓𝑡𝑡, 𝑖𝑖𝑖𝑖𝑡𝑡 and 𝑜𝑜𝑜𝑜𝑡𝑡 are input variables, and forget, input and output gates at time t, respectively; 𝑊𝑊𝑖𝑖, 207 
𝑊𝑊𝑐𝑐̃, 𝑊𝑊𝑓𝑓 and 𝑊𝑊𝑜𝑜 are the weights of each gate; the operator ‘



’ is the symbol for the dot product of two vectors; 208 

𝑐𝑐𝑡𝑡 and ℎ𝑠𝑠𝑡𝑡 are the cell state of the LSTM and the hidden unit at the time 𝑡𝑡, 𝑐𝑐𝑡𝑡−1 and ℎ𝑠𝑠𝑡𝑡−1 at the former time 209 

𝑡𝑡 − 1; tc  is the activation function of hidden layer; 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑜𝑜 and 𝑏𝑏𝑐𝑐 are bias itemsand the; σ (⋅) and tanh (⋅) 210 

are the sigmoid function and the hyperbolic tangent function, respectively; at the initial moment, cell and 211 
hidden states are set to zero arrays. 212 

The hydrological outputs together with other climate variables are used as inputs to feed the LSTM 213 
model (i.e., the HMs are thus constrained by the LSTM). Because changes in meteorological variables require 214 
some time to converge before they are reflected in the runoff, it is essential to calculate the lag time caused 215 
by the flow convergence for the model. The catchment response lag time d is defined as the time during 216 
which precipitation accumulates in the river to generate runoff for the gauge downstream, and is 217 
mathematically expressed as follows (Berne et al., 2004; Ganguli and Merz, 2019): 218 

 0.4 0.42.51 [ hrs ] 0.11 [ days ]d dd A A= =  (11) 219 

where Ad (km2) represents the catchment area; meteorological variables from day T-d to day T are employed 220 
to drive HTMs. 221 

We combine the five hydrological models with LSTM to construct five HTMs. To compare the 222 
performance of the HTMs, we use ten HTMs as candidates for streamflow simulation in each catchment. The 223 
calibrated HTMs are then driven by the outputs of five GCMs under each SSP (aggregated to produce a basin 224 
average series) during 1985-2100 over 179 catchments to project future daily streamflow.  225 
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2.4 Drought indexes and run theory  226 

The TWS-DSI is employed to measure the degree of terrestrial drought severity (Zhao et al., 2017). It 227 
is a dimensionless standardized water storage anomaly index, which can indicate terrestrial drought 228 
conditions when below the mean standard value. The TWS-DSI can be mathematically expressed as follows: 229 

 , ,- ( ) /x y x y y yTWS DSI TWS TWS σ= −  (12) 230 

where ,x yTWS  is the TWS at year x and month y; yTWSA and yσ  represent the means and standard deviation 231 

of TWS at month y, respectively. 232 
The SRI is a measure of the variability of runoff for a given duration based on the percentage of 233 

accumulated runoff. (Shukla and Wood, 2008). To calculate the SRI, we simulate the retrospective time series 234 
of streamflow and fit the sample series to a probability distribution. The SRI is considered to follow a  Pearson 235 
type-Ⅲ distribution (Vicente-Serrano et al., 2012), and is calculated as follows: 236 

 

2
0 1 2

2 3
1 2 3

2
0 1 2

2 3
1 2 3

( ) 0 ( ) 0.5
1

0.5 ( ) 1
1

c c r c r
r F x

d r d r d r
SRI

c c r c r
r F x

d r d r d r

 + +
− − < ≤

+ + += 
+ + − < ≤ + + +

 (13) 237 

where 2
1ln
( )

r
F x
 

=  
 

; ( )F x  is the cumulative probability density of SRI; 0c , 1c , 2c , 1d , 2d and 3d   are 238 

the empirical constants, taken as 2.516, 0.803, 0.010, 1.433, 0.189, 0.001, separately. 239 
After calculating the two drought indexes, the degree of water deficit can be determined according to 240 

the Grades of Meteorological Drought and the previous classification (Dikici, 2020). Table S1 presents the 241 
drought classification and thresholds used for identifying drought degrees. The run theory is employed to 242 
obtain characteristics of drought events from the time series (Yevjevich, 1967). When the drought index is 243 

below the mild drought (i.e.,≤-0.5 drought index), a drought event is detected (Figure 2), and then the drought 244 

duration and drought severity are extracted.  245 
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 246 
Figure 2. Drought duration and severity identification based on run theory, where -0.5 denotes the drought 247 
threshold (grey dash line). 248 

2.5 Socioeconomic exposure assessments based on the Copulas and most likely realization 249 

After extracting the drought duration (D) and severity (S), we fit their marginal distributions with seven 250 
distributions shown in Table S2. The OR case (i.e., a bivariate drought event is identified with either a high 251 
severity or long duration) of the joint return period (JRP) under a Copula-based framework is used to quantify 252 
the occurrence of drought events (Yin et al., 2020). The joint distribution of drought duration and severity is 253 
constructed by using a Copula function, which is valuable for describing correlated hydrological variables 254 
(Li, 1999). Unlike univariate drought frequency analysis, the JRP within a bivariate framework can be 255 
represented by an isoline, which contains infinite combinations of multivariate variables. It is important for 256 
risk assessments to select a representative combination along the isoline. Previous studies have typically 257 
selected joint design values according to the same frequency hypothesis, but this approach lacks a statistical 258 
basis and poorly describes the physical characteristics of droughts (Yin et al., 2018). In this paper, the joint 259 
probability density is used to optimize the most likely realization, which is mathematically expressed as 260 
follows: 261 

 
* *( , ) arg max ( , ) [ , ]

[ , ] 1 /
( , )

[ , ]
( ) ( )

d s d s

d s or

d s
d s

d s

d s f d s c F F f f
C F F T

dC F F
c F F

d F d F

µ


 = = = −

 =


 

 (14) 262 

where [ , ]d sc F F   is the Copula probability density function; df   and sf   are the fitted probability density 263 

functions of D and S, respectively; dF and sF are the marginal distribution of D and S, respectively; * *( , )d s264 

is the most likely realization under a given JRP orT  ; µ   is the mean inter-arrival time between two 265 

consecutive droughts. 266 
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 267 
Figure 3. Joint distribution of drought duration and severity under a critical Tor. The green lines are two arbitrary 268 
values of duration and severity. The red line is the isoline line of two variables under a critical Tor, and the blue 269 
line denoted the traditional equal-frequency assumption. 270 
 271 

Socioeconomic exposure has previously been defined as ranging from 0 to 100% in the future period 272 
(Gu et al., 2020a), but dynamically shifting climate risks cannot be represented under this static definition. 273 
Here, the socioeconomic exposure is defined by considering the shift in JRP, and is expressed at the catchment 274 
scale as follows: 275 

 
( )h h f

POP
f d

T I T T
E POP

T A
−

= ×  (15) 276 

 
( )h h f

GDP
f d

T I T T
E GDP

T A
−

= ×  (16) 277 

where POPE  and GDPE   demote the population and GDP exposure; hT   and fT   demote the historical and 278 

future JRP, respectively; ( )·I   denotes the controlling function, which is 1 when 0h fT T− >  , or 0 when 279 

0h fT T− ≥   is recorded; POP (GDP) denotes the population (GDP) of a given catchment in the future 280 

climate. 281 
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2.6 Quantifying the uncertainty contributed by different sources 282 

Uncertainties in the future drought projections can arise from the SSPs, GCMs and HTMs. During both 283 
historical (1985-2014) and future periods (2071-2100), the combination of 3 SSPs, 5 GCMs and 5 HTMs 284 
through the impact modeling chain resulted in 150 hybrid combinations. The overall uncertainty is calculated 285 
from the variance of the future estimated JRP relative to the historical 50-year droughts. To partition the 286 
uncertaity from different sources of data and their interactions effects, the MANOVA is used and expressed 287 
as follows (Weinfurt, 1995): 288 

 , , , ,x y z x y z x y zy M S G H I∆ = + + + +  (17) 289 

where M   denotes the mean change of all indicator in models; xS  , yG   and zH   denote the impact on 290 

indicators of  the thx  SSP, thy  GCM and thz  HTM, respectively; , ,i j kI  is the overall impact arising from the 291 

interactions of different sources. And the overall variance V is then expressed as follows: 292 

 SG SH GH SGHV VS VG VH VI VI VI VI= + + + + + +  (18) 293 

where VS , VG , VH  are the variance from the SSPs, GCMs and HTMs, respectively. SGVI , SHVI  , GHVI294 

and SGHVI  denote the variance caused by the coupling between different sources of data. The contribution 295 

of each source to the overall uncertainty is quantified by the variance of each source by the total variance. 296 

3. Data and materials 297 

3.1 In situ observation dataset 298 

We use a gridded meteorological dataset with 0.5° × 0.5° resolution, including daily temperature 299 
(maximum, minimum and average, ℃) and daily precipitation (mm) from 1961 to 2018, provided by the 300 
National Meteorological Bureau of China. The dataset is regarded as the latest gridded meteorological dataset 301 
in China and has been applied to some studies (e.g., Wu et al., 2018; Yin et al., 2021a,b). Meanwhile, we 302 
gathered the daily streamflow of 463 in situ hydrological stations spanning different periods during 1961-303 
2018. The hydrological stations are densely distributed in East China, while West China has a sparser 304 
distribution.  Through rigorous data quality checks, 179 unnested basins with at least 20 years of data are 305 
selected, covering nine major watersheds in China. For more details on streamflow data processing and 306 
catchment screening, please refer to Yin et al. (2021b). 307 

3.2 GRACE/GRACE-FO measurements 308 

Temporal variations in the Earth's gravitational field observed by GRACE satellites have been used to 309 
retrieve TWS data (Tapley et al., 2004). Many international institutes have released the TWS mascon products 310 
at a monthly scale, including the JPL (Jet Propulsion Laboratory of the California Institute of Technology), 311 
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the GSFC (Goddard Space Flight Center of NASA), and the CSR (Center for Space Research of the 312 
University of Texas). As these three mason solutions are produced different spatial resolutions, we produce 313 
a blended TWS data based on the average of JPL, GSFC and CSR with 0.5°×0.5° resolution from 2002 to 314 
2022, and fill the missing data using a linear interpolation approach (Yin et al., 2022).  315 

3.3 ERA5-Land dataset 316 

ERA5-Land is a dataset that consists of a large volume of meteorological variables, including 317 
precipitation, temperature and air pressure etc. The spatial resolution of dataset is 9 km and the temporal 318 
resolution is one hour (Yilmaz, 2023). Under the latest global reanalysis and the lapse rate correction, the 319 
ERA5-Land reanalysis dataset provides a substitute for unavailable observed weather data, by taking the 320 
effect of altitude on the spatial scheme of climate variables into consideration (Pelosi et al., 2020). Six 321 
variables are used in the study (i.e., pr, ps, T2m, Tdew, srlds, srsds) and aggregated to a daily scale from the 322 
hourly scale before conducting data analysis. 323 

3.4 Bias-corrected GCM outputs and socioeconomic scenarios 324 

The climate outputs of five GCMs under historical scenario and three SSPs (i.e., SSP1-26, SSP3-70, 325 
SSP5-85) under CMIP6 are used to represent climate scenarios. The series of bias-corrected variables have 326 
been downscaled to 0.5° × 0.5°resolution from 1850 to 2100 under the Intersectoral Impact Model 327 
Intercomparison Project 3b (ISIMIP3b) (Lange, 2019). To reduce the systematical biases of CMIP6 raw 328 
outputs, seven variables from the bias-corrected ISMIP3b dataset have been used, namely temperature (daily 329 
average, maximum and minimum), pr, ps, srsds, srlds, RH and SH.  330 

Population and GDP data under three SSPs are employed to evaluate the potential socioeconomic risks 331 
of drought in a warming world. An open-access population dataset is adopted which takes into consideration 332 
the universal two-child policy, the census results and the statistical annual report (Jiang et al., 2017). The 333 
economic index from 2010 to 2100 is estimated based on the Cobb-Douglas and Population-Environment-334 
Development model (Jiang et al., 2018). All of the data have been previously used to assess the socio-335 
economic impact of extreme hydrologic hazards (Yin et al., 2022; Yin et al., 2023). 336 

4. Results 337 

4.1 Observed changes in SRI and TWS based drought 338 

As there are insufficient streamflow observations to compute the SRI in northwest China, we also 339 
employ the TWS-DSI as a supplement. This approach enriches the variety of water storage or flux being 340 
evaluated. Trends in drought characteristics (i.e., frequency, duration and severity) are estimated by using the 341 
GRACE/GRACE-FO dataset and observed runoff across China. Figure 4 and Figure 5 show the drought 342 
trends based on the TWS-DSI and SRI, respectively. Overall, the two indexes show similar trends in most 343 
catchments, suggesting that drought hazards have increased in recent decades. TWS-DSI droughts have 344 
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increased in 54% of areas, which are mainly located in the Qinghai-Tibet Plateau, the North China Plain and 345 
the northwestern Xinjiang Province. Likewise, SRI droughts have increased over 51% of studied catchments, 346 
which mainly dominates northeastern and southeastern China.  The severity of droughts measured by the 347 
TWS-DSI index is twice of the hydrological drought, primarily because the TWS-DSI metric incorporates 348 
all vertical water fluxes, offering a comprehensive view of shifts in water scarcity. Some locations exhibit 349 
discrepancies depending on the index considered. For instance, droughts in the Qinghai-Tibet Plateau and 350 
Northeast China show opposite trends. Anomalies in the Qinghai-Tibetan plateau may be explained by the 351 
transformation of snowpack melt into surface runoff under the influence of climate change, which helps 352 
compensate for the lack of surface water in the area (Stewart, 2009). The discrepancy observed in 353 
Northeastern China could potentially be linked to the rise in soil moisture from increased infiltration, which 354 
causes a higher proportion of water to be stored within the soil than at the surface, interfering with the 355 
quantification of hydrological drought (Wang et al., 2017). Finally, both indicators show a consistent positive 356 
drought trend in most areas of China and particularly the North China Plain and Pearl River Basin.  357 
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 358 
Figure 4. Trends in drought frequency, duration and severity based on the TWS-DSI from 2002 to 2022 using 359 
three GRACE/GRACE-FO products (a-i) and the blended data (j-l). 360 
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 361 
Figure 5. Trends in drought frequency, duration and severity based on SRI over China. 362 

4.2 Machine Learning-constrained streamflow simulation and model evaluation 363 

The RF model is used to quantify the sensitivity of streamflow to different meteorological variables 364 
(Figure 6). Precipitation typically plays a major role in generating runoff in Southeast China, although SH 365 
plays the most important role in some regions such as Central, Southwest and Northeast China. Over 30% 366 
and 38% of stations show a sensitivity rate  of >10% in Western and Northeastern China, respectively. In 367 
contrast, RH and shortwave radiation have a negative contribution to streamflow; especially shortwave 368 
radiation, which has a pronounced negative sensitivity in 394 stations probably due to enhanced 369 
evapotranspiration (Ma et al., 2019). In general, RH contributes to increasing streamflow over most regions 370 
of China, but the opposite effect is observed in 179 stations mainly located in Southwestern China, Yellow 371 
River and Huaihe River basins. This is the result of the mutual feedback of water and heat dynamics (i.e., 372 
saturated vapor pressure increases with warming and intensifies evaporation, leading to a decrease in surface 373 
water), which was also found by Liu et al. (2017). The temperature has a positive contribution in Northeast 374 
China, suggesting that runoff in this region is likely to increase in the context of climate warming, leading to 375 
a reduction in drought over the regions. 376 
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 377 
Figure 6. Sensitivity of meteorological variables to daily streamflow. The figure uses a thin plate smoothing spline 378 
method to interpolate the point-based station data (circles). Gray areas indicate missing data.  379 

The performances of simulated streamflow by different HTMs are shown in Figure 7. The model that 380 
has the largest KGE is considered to be the best-performing in each catchment. In Fig 7. (a) and (b), the GR4J 381 
and GR4J-LSTM performed best in 77 out of 179 studied catchments. The median KGE value of GR4J is 382 
higher than 0.83, revealing a superior performance than the other hydrological models. Subsequently, the 383 
XAJ and XAJ-LSTM are the best models in 57 catchments, mainly located in the southern Yangtze River.. 384 
Last, the HBV and HBV-LSTM performed best in only 10 catchments, where the streamflow are impacted 385 
by snowfall in plateaus and northern frozen areas. All catchments exhibit KGE values greater than 0.9 during 386 
the calibration period in Figure 7c, showing good performance in simulation. During the validation period, 387 
only 18 catchments have KGE values below 0.6, and most of the catchments have KGE values greater than 388 
0.8 in Figure 7d. In summary, the trained models simulate streamflow well in all the studied catchments. 389 
Additionally, the KGE values in the southern region are generally higher than those in the northern region 390 
during the validation period, which is consistent with previous hydrological simulation works (Gu et al., 391 
2020b, 2021). This phenomenon may be attributed to the higher dependence of streamflow on rainfall in 392 
South China, which is governed by a humid climate pattern (Zheng et al., 2022). 393 
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 394 

Figure 7. Hydrological simulation performances of all candidate models. (a), The best-performing model with the 395 
highest KGE value. (b), Boxplots of all catchments for ten HTMs indicated by KGE values. (c)-(d), The highest 396 
KGE values during the calibration (c) and validation (d) period, respectively. 397 

4.3 Projected changes in univariate drought characteristics 398 

We project the future daily runoff series by driving the HTMs with the bias-corrected CMIP6 variables, 399 
and then we estimate the monthly SRI to identify drought duration and severity. Based on the maximum 400 
Bayesian Information Criterion (BIC), we select the best-performing marginal distributions for duration and 401 
severity from seven candidate distributions, based on historical data for each catchment. Figure 8 and Figure 402 
9 show the multi-model ensemble average severity and duration for the 50-year historical return period (RP).  403 

In western China, we project a significantly increasing drought trend under the three SSPs, which 404 
indicates potential for increased water scarcity and more frequent extreme drought events. In Southeast China, 405 
we project that droughts are likely to intensify under SSP3-70 but not under SSP5-85. It is generally 406 
considered that SSP5-85 is accompanied by higher carbon emissions than that of SSP3-70 (O’Neill et al., 407 
2016). However, future works also take significant action to control the extent of climate change combined 408 
with strong climate policies under SSP5-85 (Fujimori et al., 2017). As a result, there is no deterioration of 409 
drought severity with policy interventions, which emphasizes the significance of ensuring the implementation 410 
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of climate strategies. In northern China, in contrast, we find that future drought risks are projected to decrease 411 
under the three scenarios, which is possibly related to more moisture convergence from the East Asian 412 
monsoon circulation as the warming climate (Chowdary et al., 2019). 413 

 414 
Figure 8. Multi-model ensemble average design severity (dimensionless) under a 50-year RP for three SSPs, and 415 
relative changes (%) in 2071-2100 compared to 1985-2014.  416 
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 417 
Figure 9. Multi-model ensemble average design duration (months) of the multi-model for a 50-year RP for three 418 
SSPs, and relative changes (%) in 2071-2100 compared to 1985-2014. 419 

We display the relative change of drought characteristics under 50-year RP for all catchments for five 420 
GCMs under the three SSPs using violin plots (Figure 10). For most catchments, the relative change of 421 
drought duration and severity is negative. However, the relative change under some scenarios reached a 422 
maximum of 400%, highlighting the extreme change of drought. The median relative change of severity 423 
based on the IPSL_CM6A_LR under SSP3-70 are 30%, and 22% of catchments have a relative change over 424 
200%, representing the most severe case of drought evolution. Furthermore, the distributions of the 425 
projections based on the MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL models are highly skewed 426 
and bimodal under SSP3-70 and SSP5-85, revealing substantial spatial heterogeneity across China. Overall, 427 
the severity and duration of droughts slight increase in some catchments and have the risk of extreme 428 
intensification as global warming. 429 
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 430 
Figure 10. Violin plots of relative changes (%) in severity and duration to the historical drought event with 50-431 
year RP under three SSPs. The white circles are the median values of relative changes. 432 

4.4 Bivariate drought changes and corresponding socioeconomic risks 433 

To capture the complex dependence structure between drought severity and duration, we use a Copula 434 
function to quantify the bivariate risk of hydrological droughts under climate change. Changes in the JRP of 435 
the historical (1985-2014) drought event with 50-year JRP in the future (2071-2100) period are shown in 436 
Figure 11. The medians of the projected future JRP are 38.78, 14.52 and 19.24 under SSP1-26, SSP3-70 and 437 
SSP5-85, respectively. For 69% and 60% catchments under SSP3-70 and SSP-5-85, we find the JRP of the 438 
50-year drought is reduced to less than 25 years in the future period, suggesting that the risk of drought 439 
increases over 2 times in these catchments. Besides, we find a marked increase in the number of catchments 440 
with increased drought risk compared to the univariate drought assessments. The JRP of catchments in 441 
Northeastern and Central China tends to decrease, suggesting higher changes in risks than univariate 442 
assessments. This result is consistent with previous studies (He et al., 2011; Xu et al., 2015), which indicates 443 
that the use of bivariate drought analysis can synthesize the effects of two drought characteristics.  444 

Future GDP and population exposed to increasing bivariate drought risk under three scenarios are shown 445 
in Figure 12. The eastern coastal regions have a higher significant economic exposure such as the Huaihe 446 
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River Basin, the Yangtze River Basin and the Pearl River Basin, which is consistent with the distribution of 447 
economically developed regions in China. The medians of GDP exposure are 5.5, 9.8 and 14.3 million 448 
dollars/km2 under three SSPs respectively, which indicates the vulnerability of economic losses to drought 449 
disasters under global warming. The population affected by drought is mainly located in the southern Yangtze 450 
River Basin and the Huaihe River Basin under SSP3-70, as the median exposure is 525 and 205 people/km2 451 
under SSP3-70 and SSP5-85, respectively. This is because the increase in population is higher in the Sichuan, 452 
Guangdong and Zhejiang provinces than in other Chinese provinces under SSP3-70 (Chen et al., 2020). 453 
Overall, the exposure of GDP and population shows large heterogeneity in their sensitivity to different 454 
scenarios, and the distribution of the affected catchments is consistent with economic and social development. 455 

 456 
Figure 11. The future multi-model ensemble means JRP of the historical drought with a 50-year RP based on 457 
the bivariate approach. The future JRPs of 179 catchments under three SSPs are presented in (a)-(c), while (d) 458 
displays raincloud plots of the projected JRP under each SSP.  459 
 460 
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 461 
Figure 12. The multi-model ensemble means exposure of GDP (a-c) and population (d-f) to bivariate drought 462 
characteristics under different SSPs in the future period. 463 

5. Discussion 464 

5.1 Uncertainty decomposition 465 

The overall uncertainty in our projections arises from the different SSPs, GCMs and HTMs as well as 466 
their interactions. We assemble these seven sources using MANOVA ( Figure 13). For GDP and POP exposure, 467 
we find HTM is the main source of uncertainty, and contributes 27.55% and 26.14% uncertainty, respectively. 468 
This indicates that the quality of the HTM is important for the accuracy of socioeconomic predictions. 469 
Likewise, the GCM and GCM-HTM provide over 30% of the uncertainty in GDP and population exposures, 470 
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which indicates the critical importance of bias-corrected GCM outputs for accurate projections. Further, the 471 
contributions of the SSPs to population exposure is 1.5 times than that of GDP exposure, which shows that 472 
the effect of climate change is greater for POP exposure than GDP exposure. In particular, the independent 473 
factors (i.e., SSP, GCM, HTM) contribute over 50% to the uncertainty of GDP and population exposures, 474 
suggesting that GDP and population exposures are less responsive to complex coupling. In contrast, the 475 
coupled factors (i.e., the combination of SSP, GCM or HTM) mainly contribute to the uncertainty of the JRP, 476 
accounting for 82.63% of the overall uncertainty, especially the SSM-GCM-HTM, which accounts for 36.97% 477 
of uncertainty. Finally, the relatively low contribution of the choice of SSP, SSP-GCM and SSP-HTM to JRP 478 
uncertainty indicates that the future risk projection uncertainty is relatively stable in future risk projections  479 

 480 
Figure 13. The fractional uncertainty contributions of all sources to the GDP exposure, population exposure, and 481 
JRP estimate for all 179 catchments (a, c, e) and the average fractional contribution of each source (b, d, f).  482 

5.2 Limitations and future work 483 

As hydrological drought is a complex weather-related hazard influenced by both nature and human 484 
intervention, further work is still required to reveal the principles of drought generation. Although the hybrid 485 
models show good performance in streamflow simulation over the selected period, the underlying uncertainty 486 
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and the coupling relationships behind interrelated variables remain unexplained in this study. Therefore, the 487 
study of the interactions among data sources is important to reveal the drivers affecting the water cycle under 488 
climate change. Here, only five GCM outputs and one in situ observation dataset were used to drive our HTM 489 
models. The sparse dataset may undermine the robustness of the approach, particularly when attempting to 490 
simulate extreme drought events (e.g., the extreme drought in the Yangtze River Basin in 2022). Although 491 
the machine learning model show good performance herein, significantly reducing the reliance on 492 
observational data, continuous streamflow observations are still important to improve model accuracy. 493 
Providing a larger number of GCMs and observational data to assemble a more sophisticated model might 494 
be an effective approach to improve the accuracy and reliability of the model. Finally, the GDP and population 495 
projections cannot well reflect future economic development and population migration. In particular, 496 
government interference in immigration policies is likely to lead to large uncertainties in the projections. 497 
Therefore, considering the dynamic impact of human management on socioeconomic development is 498 
essential for the construction of a reliable projection framework. 499 

5.3 Suggestions for drought mitigation in China 500 

In order to curb global warming and mitigate the threats by climate change, the Chinese government is 501 
striving to reach its carbon peak before 2030, achieve carbon neutrality before 2060, and bolster efforts in 502 
disaster reduction (Kundzewicz et al., 2019; Liu et al., 2022b). China has nonetheless experienced several 503 
extreme drought events during the past 5 years, threatening the population’s health and economic 504 
development. (Ding and Gao, 2020; Mallapaty, 2022; Liu et al., 2022a) The Intergovernmental Panel on 505 
Climate Change (IPCC) has emphasized that projections of future climate trends can equip policymakers 506 
with the scientific insight needed to navigate the challenges of climate change (Pörtner et al., 2022). The 507 
results of this study aim to alert policymakers to drought risk in Southwestern China, which is expected to 508 
intensify with climate change. Preserving local ecological balance and employing rational use of water 509 
resources could be the key in mitigating potential losses from extreme droughts (Sohn et al., 2016; Chang et 510 
al., 2019). Finally, this work highlights the importance of strictly implementing carbon emission reduction 511 
initiatives and developing prevention programs to limit potential drought losses.  512 

6. Conclusions 513 

In this study, the hybrid LSTM-constrained hydrological models show high accuracy in studied 514 
catchments over China, demonstrating that machine learning can effectively constrain the hydrological 515 
projections. Projected changes in 50-year bivariate drought characteristics, expressed as a JRP, indicate that 516 
the risk of hydrological drought is likely to more than double in over 60% of catchments by the end of the 517 
21st century under SSP5-85. The spatial distribution of change reveals that the catchments with severely 518 
increased drought risk are mainly located in southwestern China. Notably, the exposure of GDP and 519 
population varies greatly across different SSPs. The median GDP exposure under SSP5-85 is 1.5 times that 520 
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of SSP3-70, but the median population exposure is just 40% that of SSP3-70. The higher population exposure 521 
under SSP3-70 can be attributed to rapid population growth. Finally, we find the interaction between multiple 522 
sources of data explains more than 80% of the uncertainty in future changes in JRPs, showing the importance 523 
of considering the relationships between model components. Our findings demonstrate that China is facing 524 
a high risk of drought under climate change and rising pressures on population and economic growth, 525 
emphasizing the urgency of achieving carbon neutrality goals and implementing strategies to reduce carbon 526 
emissions. 527 
 528 
Data availability  529 
 530 
The gridded meteorological dataset for China can be obtained from http://www.cma.gov.cn. The 531 
ISIMIP3b data can be downloaded from https://data.isimip.org. The ERA5-Land data can be 532 
downloaded from https://www.ecmwf.int/en/era5-land. Streamflow simulations used in this study 533 
are available at https://osf.io/fvyse/.  534 
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