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Abstract 21 

Climate change influences the water cycle and alters the spatiotemporal distribution of hydrological 22 
variables, thus complicating the projection of future streamflow and hydrological droughts. Although 23 
machine learning is increasingly employed for hydrological simulations, few studies have used it to project 24 
hydrological droughts, not to mention the bivariate risks, referring to drought duration and severity, as well 25 
as their socioeconomic effects under climate change. We developed a cascade modeling chain to project 26 
future bivariate hydrological drought characteristics in 179 catchments over China, using 5 bias-corrected 27 
GCM outputs under three shared socioeconomic pathways, five hydrological models and a deep learning 28 
model. We quantified the contribution of various meteorological variables to daily streamflow by using a 29 
random forest model, then employ terrestrial water storage anomalies and a standardized runoff index to 30 
evaluate recent changes in hydrologic drought. Subsequently, we constructed a bivariate framework to jointly 31 
model drought duration and severity by using Copula functions and the most likely realization method. 32 
Finally, we used this framework to project future risks of hydrological droughts as well as associated exposure 33 
of gross domestic product and population. Results showed that our hybrid hydrological-deep learning model 34 
achieved >0.8 Kling-Gupta efficiency in 161 out of 179 catchments. By the late 21st century, bivariate drought 35 
risk is projected to double over 60% of catchments mainly located in Southwest China under SSP5-85, which 36 
shows the increase of drought duration and severity. Our hybrid model also projected substantial GDP and 37 
population exposures by increasing bivariate drought risks, suggesting an urgent need to design climate 38 
mitigation strategies toward a sustainable development pathway. 39 
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1 Introduction 40 

In a warming world, the change of the global water cycle is expected to alter the regional and seasonal 41 
distribution of key hydrological variables such as precipitation and evapotranspiration (Allan et al., 2020; 42 
Yin et al., 2023b). As precipitation patterns are particularly sensitive to changes in atmospheric forcing and 43 
local conditions, precipitation extremes are generally increasing globally, exacerbating spatial heterogeneity 44 
of precipitation (Donat et al., 2016; Tabari, 2020). A suite of Shared Socioeconomic Pathways (SSPs) has 45 
been proposed to simulate different possible future scenarios of social responses to climate change, and these 46 
are employed to investigate the possible effects of long-term climate change (Meinshausen et al., 2020; Zhang 47 
et al., 2021). By using the SSP framework, numerous works have indicated that the redistribution of 48 
precipitation may lead to the decline of water storage in some regions, and intensify water scarcity in arid 49 
regions (Sönmez and Kale, 2018; Woolway et al., 2020; Yao et al., 2023). Under increasing atmospheric 50 
greenhouse gases, numerous studies have reported a widespread increase in drought events, even in areas 51 
with increasing annual runoff (Dai et al., 2018). The rapidly changing distribution of precipitation and other 52 
meteorological elements under climate change complicates projection of future runoff and drought. 53 

China's socioeconomic development, particularly its agricultural sector, is threatened by the rapid 54 
intensification of extreme hazards under climate change (Piao et al., 2010). Over the past years, China has 55 
been hit by severe drought events which have caused considerable damage to ecosystem productivity and 56 
socio-economic growth (Yin et al., 2023; Zhai and Zou, 2005). For instance, one extreme drought in Sichuan 57 
Province in 2022 resulted in power shortages and led to economic losses of 669 million dollars. Water 58 
shortage is also a key challenge that hinders the sustainable development of the North China Plain (Chen and 59 
Yang, 2013). Over the period of 1985-2014, drought accounted for about 19% of economic losses among all 60 
meteorological hazards (Chen and Sun, 2019). With continuing global warming, the economic losses from 61 
severe drought events might increase by over ten billion US dollars per year by the late 21st century, 62 
underscoring the importance of projecting future droughts over China (Lu et al., 2023). 63 

Droughts can be triggered by divergent mechanisms, and are thus distinguished according to the type of 64 
drought, such as meteorological and hydrological drought (Yihdego et al., 2019). The majority of studies 65 
have focused on meteorological droughts, which can then be translated to a hydrological drought, while fewer 66 
works have focused on hydrological drought probably due to a lack of measurements like the standardized 67 
runoff index (SRI) (Barker et al., 2016; Kumar et al., 2016; Tirivarombo et al., 2018). Furthermore, 68 
hydrological droughts are not only affected by the water cycle but also by human interventions, which makes 69 
them difficult to accurately be predicted (Wu et al., 2021). Currently, the majority of drought impact 70 
assessments focus on the investigation of individual drought variables (i.e., drought duration, severity, 71 
intensity, etc.) through univariate probabilistic models and stochastic theory (Byakatonda et al., 2018; 72 
Myronidis et al., 2018; Zhang et al., 2022). However, univariate drought analysis cannot accurately describe 73 
the probability of drought events, because droughts of either long duration or severe intensity can lead to 74 
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substantial socio-ecosystem damages (Castle et al., 2014; Udall and Overpeck, 2017). Therefore, the bivariate 75 
framework based on Copula functions has been developed for drought projection, compensating for the 76 
incompleteness of a single variable analysis (Ayantobo et al., 2017; Nabaei et al., 2019). At present, studies 77 
on hydrological drought within a bivariate framework are still lacking. Beyond the choice of approach 78 
(univariate or bivariate), the Gravity Recovery and Climate Experiment (GRACE) and GRACE-FO (GRACE 79 
Follow-On) satellites now provide two decades of large-scale terrestrial water storage (TWS) data, which 80 
captures the water deficit in various forms on land and can be used to monitor droughts (Schmidt et al., 2006). 81 
The drought severity index based on TWS (TWS-DSI) can be used to monitor past drought events, which 82 
also shows potential advantages in drought warning, forecasting, and projection (Nie et al., 2018; Pokhrel et 83 
al., 2021).  84 

In recent decades, many studies have used bias-corrected outputs from Global Climate Models (GCMs) 85 
to project future hydrological drought scenarios (e.g., (Ashrafi et al., 2020; Dixit et al., 2022; Kim et al., 86 
2021). The growing application of machine learning has revealed a high potential for improving the accuracy 87 
of hydrological simulation and prediction (Mokhtar et al., 2021). In recent years, many machine learning 88 
algorithms have been adopted in drought simulation and produce good performance, such as wavelet neural 89 
networks (WNNs) (Xiujia et al., 2022),  support vector machines (SVMs) (Zhu et al., 2021) and long short-90 
term memory neural networks (LSTMs) (Dikshit et al., 2021a)). These algorithms can be used to simulate 91 
the evolution of future droughts and construct risk maps for drought contingency planning (Rahmati et al., 92 
2020). Among the different models, the LSTMs can effectively simulate short-term and long-term streamflow 93 
series, and their performances have been validated at short temporal scales (Dikshit et al., 2021b; Kang et al., 94 
2023).  95 

In this study, we projected changes in bivariate hydrological drought characteristics (duration and 96 
severity) and their associated socioeconomic risks under three SSPs (i.e., SSP1-26, SSP3-70, and SSP5-85) 97 
over 179 catchments in China. To achieve this, we combined five hydrological models and a deep learning 98 
model (i.e., the LSTM), and then drove the hybrid models with the five bias-corrected GCMs outputs under 99 
the Coupled Model Intercomparison Project phase six (CMIP6). Then, we employed a machine learning-100 
based framework (i.e., Random Forest, RF model) to quantify the sensitivity of daily streamflow to different 101 
meteorological variables. We employed the run theory and two drought metrics, the SRI and TWS-DSI, to 102 
identify and explore recent changes in drought characteristics. In addition, we used Copula functions to build 103 
the bivariate model of drought duration and severity during both reference and future periods. After 104 
identifying shifts in bivariate drought characteristics based on the most likely realization approach, we 105 
projected the exposure of gross domestic product (GDP) and population to increasing drought risks in the 106 
future. Finally, we decomposed the uncertainties arising from different sources by employing the multivariate 107 
analysis of variance (MANOVA) method. This study illustrated the used materials and methods in Section 2 108 
and Section 3, respectively. We compared SRI and TWS-DSI in assessing drought conditions in Section 4.1. 109 
The contribution of meteorological factors to simulate streamflow and the calibration of hybrid terrestrial 110 
models were shown in Section 4.2. The evolution of univariate droughts was projected in Section 4.3. The 111 
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bivariate droughts of future scenarios and associated socioeconomic exposures were evaluated in Section 4.4. 112 
We discussed the uncertainty of our analysis and main limitations of this study in Section 5, and finally 113 
summarized our work in Section 6. 114 

2. Methodology 115 

The workflow of this study is divided into four modules (Figure 1), described briefly below and detailed 116 
in the following sections. In step 1, the hydrological models and LSTM are trained using the ERA5-Land 117 
dataset, and then the output of HMs is used as input to feed the LSTM, thus we build the hybrid terrestrial 118 
models (HTMs). In step 2, the trained HTMs are validated using in situ streamflow observations, then driven 119 
by using the outputs of five GCMs from the CMIP6 to project streamflow and the SRI series. In step 3, 120 
monthly drought characteristics (i.e., drought duration and severity) are defined using run theory and 121 
combined with Copula functions to construct a bivariate drought framework. Future bivariate drought change 122 
is evaluated using the most likely realization method. Meanwhile, the TWS measurements from GRACE 123 
missions are also employed to characterize recent changes in TWS-based droughts, which are also compared 124 
with the hydrological droughts. In step 4, we employ future scenarios of GDP and population alongside our 125 
future drought projections to produce a socioeconomic assessment of drought exposure over China. Finally, 126 
we examine the contribution of uncertainty from different sources in projecting drought change and exposure. 127 

 128 

Figure 1. Schematic flowchart of the method, including ML-constrained hydrological simulations, evaluation of 129 
bivariate hydrologic drought characteristics and change, and the socioeconomic evaluation to drought exposure 130 
under climate change. 131 

2.1 Derivation of 2-meter relative and specific humidity 132 

As relative humidity and specific humidity are not directly available from the ERA5-land dataset, we 133 
estimate these two variables based on the physical relationship in atmosphere. The Clausius–Clapeyron 134 
relationship is used to derive saturated vapor pressure (𝑒𝑒𝑠𝑠) and air temperature (𝑇𝑇), and is expressed as follows 135 
(Koutsoyiannis, 2012): 136 
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where 0T  , 0e  , L0 and R0 are freezing temperature in Kelvin, saturated vapor pressure under freezing 138 

temperature, latent heat of vaporization and gas constant of water vapor, with a value of 273.15 K, 611 Pa, 139 
2.5×106 J kg-1, 461 J kg-1 K-1, respectively; 140 

Since near-surface relative humidity (RH) can’t be directly obtained from the ERA5-Land dataset, the 141 
2m temperature (T2m) and dew-point temperature (Td) are substituted into equation (1) to calculate RH: 142 
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Then, the near-surface air pressure (ps) and Td are used to deduce the specific humidity (SH), which is 144 
mathematically expressed as follows (Simmons et al., 1999): 145 
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2.2 Sensitivity analysis on meteorological variables for runoff 147 

The RF model (Catani et al., 2013) is used to calculate the sensitivity of runoff to different 148 
meteorological variables, including precipitation (pr), air pressure (ps), surface downwelling shortwave and 149 
longwave radiation (srsds and srlds), RH, SH, average temperature, maximum and minimum temperature. 150 
The contribution of a key variable is derived by using the pre-established model, the perturbed meteorological 151 
variable and remaining (non-perturbed) variables (Antoniadis et al., 2021; Green et al., 2020). The percentage 152 
change in streamflow is derived from the following equation: 153 
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where Si indicates the sensitivity of streamflow to ith meteorological variable, which are pr, ps, SH, RH, srlds, 155 
srsds and temperature; Robs is the observation of streamflow which has units of m3/s; R(i+1SD) is the simulated 156 
streamflow by perturbing i by +1 SD; R(all) is the streamflow simulated by all meteorological variables; stdev 157 
(Robs) represents the standard deviation of Robs. 158 

2.3 Deep learning-constrained hydrological modeling 159 

2.3.1 Conceptual hydrological models 160 

For preliminary hydrological simulations, we select five hydrological models to represent hydrological 161 
characteristics under different environments. The GR4J (Génie Rural à 4 paramètres Journalier ) is a lumped 162 
model with 4 parameters developed by Perrin et al. (2003). GR4J consists of two water store modules (runoff 163 
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yielding and routing) and uses daily rainfall and evapotranspiration as inputs to simulate streamflow series 164 
(Kunnath-Poovakka and Eldho, 2019). This model has been successfully used to simulate hybrid runoff 165 
processes on many continents (Gu et al., 2023; Shin and Kim, 2021). Additionally, we use the temperature-166 
based method (Oudin et al., 2005) to estimate the potential evapotranspiration of the GR4J model. 167 

The HBV (Hydrologiska Byråns Vattenbalansavdelning ) model was initially developed by the Swedish 168 
Meteorological and Hydrological Institute for Hydrological Forecasting (BERGSTRÖM and FORSMAN, 169 
1973). This model includes five modules and one transform function to quantify hydrological variables (i.e., 170 
precipitation, snow, soil moisture, runoff, baseflow) (Bergström, 1995). It has been widely employed to 171 
simulate streamflow, and it particularly has a good capacity for simulating snowmelt runoff (Kriauciuniene 172 
et al., 2013). 173 

The HMETS (hydrological model of École de technologie supérieure) model contains 21 parameters 174 
and two reservoirs (i.e., the saturated and vadose zones), which is considered to efficiently complete 175 
hydrological simulation in limited scales (Martel et al., 2017).  The model can simulate six processes in water 176 
cycle, including the accumulation, melts and refreezing of snow, water infiltration and routing, and 177 
evapotranspiration (Qi et al., 2020). It has been growly used for streamflow simulation under climate change 178 
and has shown great performance (Chen et al., 2018). 179 

The SIMHYD (simple lumped conceptual daily rainfall-runoff ) model is a daily rainfall-runoff model 180 
developed by Porter and McMahon (1975). There are four types of water fluxes from different sources: 181 
impervious areas, infiltration, interflow, and groundwater storage (Chiew et al., 2002). Although the model 182 
was developed earlier, it has shown good accuracy in simulating runoff over China (Yu and Zhu, 2015). 183 

The XAJ (Xinanjiang) model is a hydrological model, which can usually achieve better performance in 184 
humid and semi-humid areas than in arid areas (Ren-Jun, 1992). As the model was developed based on the 185 
underlying surface of the Yangtze River Basin in China, it is composed of a three-layer evapotranspiration 186 
module with four parameters and separates the runoff into four components (i.e., surface water, groundwater, 187 
interflow water and flow routing) (Tian et al., 2013). To date, it is widely reported that the XAJ model usually 188 
shows a great performance in simulating hydrological conditions in China (Hu et al., 2005; Jiang et al., 2007). 189 
However, due to inadequacies in the simulation of arid regions, the results of the XAJ model did not be 190 
considered as the best option in northern China. 191 

We used the SCE-UA (Shuffled Complex Evolution) approach to maximize the objective function (i.e., 192 
Kling-Gupta efficiency) to optimize these models (Duan et al., 1992). The most complete 20-year observation 193 
period is selected to calibrate five models in each watershed by a daily time step. To calibrate the hydrological 194 
models, a cross-validation method developed by Arsenault et al. (2017) is used for calibration, which employs 195 
the odd years of data to calibrate models, and the even years of data to validate. As catchments are located in 196 
different climatic regions, the parameters of models are calibrated for each catchment, which means that the 197 
parameters are not universal. Although uncertainties shown by hydrological models are ineradicable, the 198 
overall uncertainty is acceptable in the current scale after optimizing five hydrological models for each 199 
catchment. 200 
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2.3.2 Hybrid scheme of hydrological model and machine learning 201 

Recurrent neural network (RNN) models have had considerable success in hydrological modeling (Cho 202 
et al., 2014; Sherstinsky, 2020). However, when considering long input sequences, RNNs struggle to capture 203 
the relationships between distant points due to a phenomenon known as “long-term dependencies” (Yu et al., 204 
2019). With the development of deep learning, this problem can be successfully avoided by using LSTMs. 205 

An LSTM cell includes input, output and forget gates. The input gate determines which new information 206 
can be stored in the cell state, and the forget gate identifies which information will be discarded from the cell 207 
state. The output gate controls what part of the cell state is selected as the output. The updated cell state is a 208 
combination of the information retailed and the new information to be added. By using this architecture, the 209 
LSTM can avoid the problem of gradient vanishing or explosion during backpropagation, especially when a 210 
series is long (Gers et al., 2000). The LSTM can be expressed as follows: 211 

 1( )t hf t xf t ffg W hs W x bσ −= + +  (5) 212 

 1( )t hi t xi t fgig W hs W x bσ −= + +  (6) 213 

 1tanh( )t t thc xc cc W hs W x b−= + +
  

  (7) 214 

 

1t t t t tc fg c ig c−= ⋅ + ⋅  (8) 215 

 1( )t t o tho oxog W hs W x bσ −= + +  (9) 216 

 tanh( )t t ths og c= 
  (10) 217 

where 𝑥𝑥𝑡𝑡, 𝑓𝑓𝑓𝑓𝑡𝑡, 𝑖𝑖𝑓𝑓𝑡𝑡 and 𝑜𝑜𝑓𝑓𝑡𝑡 are input variables, and forget, input and output gates at time t, respectively; 𝑊𝑊∙  218 
are the weights, where 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑐𝑐̃, 𝑊𝑊𝑓𝑓 and 𝑊𝑊𝑜𝑜 are the weights of each gate, 𝑊𝑊𝑥𝑥∙ are the weights of each gate at 219 

time 𝑡𝑡, 𝑊𝑊ℎ∙ are the weights of each gate at the former time 𝑡𝑡 − 1; the operator ‘


’ is the symbol for the dot 220 

product of two vectors; 𝑐𝑐𝑡𝑡 and ℎ𝑠𝑠𝑡𝑡 are the cell state of the LSTM and the hidden unit at time 𝑡𝑡, respectively; 221 

𝑐𝑐𝑡𝑡−1 and ℎ𝑠𝑠𝑡𝑡−1 at the former time 𝑡𝑡 − 1; tc  is the activation function of hidden layer; 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑜𝑜 and 𝑏𝑏𝑐𝑐 are 222 

bias itemsand the; σ (⋅) and tanh (⋅) are the sigmoid function and the hyperbolic tangent function, 223 

respectively; at the initial moment, cell and hidden states are set to zero arrays. 224 
The hydrological outputs together with other climate variables are used as inputs to feed the LSTM 225 

model (i.e., the LSTM is thus constrained by the HMs). Because changes in meteorological variables require 226 
some time to converge before they are reflected in the runoff, it is essential to calculate the lag time caused 227 
by the flow convergence for the model. The catchment response lag time d is defined as the time during 228 
which precipitation accumulates in the river to generate runoff for the gauge downstream, and is 229 
mathematically expressed as follows (Berne et al., 2004; Ganguli and Merz, 2019): 230 
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 0.4 0.42.51 [ hrs ] 0.11 [ days ]d dd A A= =  (11) 231 

where Ad (km2) represents the catchment area; meteorological variables from day T-d to day T are employed 232 
to drive HTMs. 233 

We combine the five hydrological models with LSTM to construct five HTMs. To compare the 234 
performance of the HTMs, we use ten HTMs as candidates for streamflow simulation in each catchment. The 235 
calibrated HTMs are then driven by the outputs of five GCMs under each SSP (aggregated to produce a basin 236 
average series) during 1985-2100 over 179 catchments to project future daily streamflow.  237 

2.4 Drought indexes and run theory  238 

The TWS-DSI is employed to measure the degree of terrestrial drought severity (Zhao et al., 2017). It 239 
is a dimensionless standardized water storage anomaly index, which can indicate terrestrial drought 240 
conditions when below the mean standard value. The TWS-DSI can be mathematically expressed as follows: 241 

 , ,- ( ) /x y x y y yTWS DSI TWS TWS σ= −  (12) 242 

where ,x yTWS  is the TWS at year x and month y; yTWS and yσ  represent the means and standard deviation 243 

of TWS at month y, respectively. 244 
The SRI is a measure of the variability of runoff for a given duration based on the percentage of 245 

accumulated runoff. (Shukla and Wood, 2008). The hydrological drought classification and ranges indicated 246 
by SRI are shown in Table S1. To calculate the SRI, we simulate the retrospective time series of streamflow 247 
and fit the sample series to a probability distribution. The SRI is considered to follow a  Pearson type-Ⅲ 248 
distribution (Vicente-Serrano et al., 2012), and is calculated as follows: 249 

 

2
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2 3
1 2 3

2
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2 3
1 2 3

( ) 0 ( ) 0.5
1

0.5 ( ) 1
1

c c r c r
r F x

d r d r d r
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c c r c r
r F x

d r d r d r

 + +
− − < ≤

+ + += 
+ + − < ≤ + + +

 (13) 250 

where 2
1ln
( )

r
F x
 

=  
 

; ( )F x  is the cumulative probability density of SRI; 0c , 1c , 2c , 1d , 2d and 3d   are 251 

the empirical constants, taken as 2.516, 0.803, 0.010, 1.433, 0.189, 0.001, separately. 252 
After calculating the two drought indexes, the degree of water deficit can be determined according to 253 

the Grades of Meteorological Drought and the previous classification (Dikici, 2020). Table S1 presents the 254 
drought classification and thresholds used for identifying drought degrees. The run theory is employed to 255 
obtain characteristics of drought events from the time series (Yevjevich, 1967). When the drought index is 256 

below the mild drought (i.e., ≤-0.5 drought index), a drought event is detected (Figure 2), and then the drought 257 

duration and drought severity are extracted.  258 
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 259 
Figure 2. Drought duration and severity identification based on run theory, where -0.5 denotes the drought 260 
threshold (grey dash line). 261 

2.5 Socioeconomic exposure assessments based on the Copulas and most likely realization 262 

To integrate the assessment of drought change arising from the duration and severity under climate 263 
change, we employed a Copula framework by constructing joint probability distribution of two variables. 264 
After extracting the drought duration (D) and severity (S), we fit their marginal distributions with seven 265 
distributions shown in Table S2. The OR case (i.e., a bivariate drought event is identified with either a high 266 
severity or long duration) of the joint return period (JRP) under a Copula-based framework is used to quantify 267 
the occurrence of drought events (Yin et al., 2020). The joint distribution of drought duration and severity is 268 
constructed by using a Copula function, which is valuable for describing correlated hydrological variables 269 
(Li, 1999). Unlike univariate drought frequency analysis, the JRP within a bivariate framework can be 270 
represented by an isoline, which contains infinite combinations of values of these two multivariate arrays of 271 
variables. It is important for risk assessments to select a representative combination along the isoline. 272 
Previous studies have only selected joint design values according to the same frequency hypothesis that 273 
considering two correlated variables follow the same cumulative probability in their distributions, but this 274 
approach lacks a statistical basis and poorly describes the physical characteristics of droughts  (Yin et al., 275 
2018). In this paper, the joint probability density is used to optimize the most likely realization, which is 276 
mathematically expressed as follows: 277 

 
* *( , ) arg max ( , ) [ , ]

[ , ] 1 /
( , )

[ , ]
( ) ( )

d s d s

d s or

d s
d s

d s

d s f d s c F F f f
C F F T

dC F F
c F F

d F d F

µ


 = = = −

 =


 

 (14) 278 

where [ , ]d sc F F   is the Copula probability density function; df   and sf   are the fitted probability density 279 

functions of D and S, respectively; dF and sF are the marginal distribution of D and S, respectively; * *( , )d s280 
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is the most likely realization under a given JRP orT  ; µ   is the mean inter-arrival time between two 281 

consecutive droughts. 282 

 283 
Figure 3. Joint distribution of drought duration and severity under a critical Tor. The green lines are two arbitrary 284 
values of duration and severity. The red line is the isoline line of two variables under a critical Tor, and the blue 285 
line denotes the traditional equal-frequency assumption. The 𝒅𝒅𝑻𝑻 and 𝒔𝒔𝑻𝑻 are marginal distribution quantiles for a 286 
given probability level T; 𝑭𝑭𝑺𝑺 and 𝑭𝑭𝑫𝑫 are cumulative probability density of severity and duration, respectively. 𝑻𝑻𝒐𝒐𝒐𝒐 287 
is a given probability level under the OR case. 288 
 289 

The future socioeconomic exposure after 2020s has directly been defined as ranging from 0 to 100% 290 
(Gu et al., 2020a), but dynamically shifting climate risks cannot be represented under this definition, without 291 
considering fluctuation in the frequency of hazards. Here, the socioeconomic exposure is defined by 292 
considering the shift in JRP, and is expressed at the catchment scale as follows: 293 

 
( )h h f

POP
f d

T I T T
E POP

T A
−

= ×  (15) 294 

 
( )h h f

GDP
f d

T I T T
E GDP

T A
−

= ×  (16) 295 

where POPE and GDPE  denote the population and GDP exposure; hT  and fT  denote the historical and future 296 

JRP, respectively; ( )·I   denotes the controlling function, which is 1 when 0h fT T− <  , or 0 when 297 

0h fT T− ≥  is recorded; POP and GDP denote the population and the gross domestic product (in USD) of a 298 
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given catchment in the future climate, respectively. 299 

2.6 Quantifying the uncertainty contributed by different sources 300 

Uncertainties in the future drought projections can arise from the SSPs, GCMs and HTMs. During both 301 
historical (1985-2014) and future periods (2071-2100), the combination of 3 SSPs, 5 GCMs and 10 HTMs 302 
through the impact modeling chain resulted in 150 hybrid combinations. The overall uncertainty is calculated 303 
from the variance of the future estimated JRP relative to the historical 50-year droughts. To partition the 304 
uncertainty from different sources of data and their interaction effects, the MANOVA is used and expressed 305 
as follows (Weinfurt, 1995): 306 

 , , , ,x y z x y z x y zy M S G H I∆ = + + + +  (17) 307 

where M   denotes the mean change of all indicators in models; xS  , yG   and zH   denote the impact on 308 

indicators of  the thx  SSP, thy  GCM and thz  HTM, respectively; , ,i j kI  is the overall impact arising from the 309 

interactions of different sources. The overall variance V is then expressed as follows: 310 

 SG SH GH SGHV VS VG VH VI VI VI VI= + + + + + +  (18) 311 

where VS , VG , VH  are the variance from the SSPs, GCMs and HTMs, respectively. SGVI , SHVI  , GHVI312 

and SGHVI  denote the variance caused by the coupling between different sources of data. The contribution 313 

of each source to the overall uncertainty is quantified by the variance of each source to the total variance. 314 

3. Data and materials 315 

3.1 In situ observation dataset 316 

We use a gridded meteorological dataset with 0.5° × 0.5° resolution, including daily temperature 317 
(maximum, minimum and average, ℃) and daily precipitation (mm) from 1961 to 2018, provided by the 318 
National Meteorological Bureau of China. The dataset is regarded as the latest gridded meteorological dataset 319 
in China and has been applied to some studies (e.g., Wu et al., 2018; Yin et al., 2021a,b). Meanwhile, we 320 
gathered the daily streamflow of 463 in situ hydrological stations spanning different periods during 1961-321 
2018. The hydrological stations are densely distributed in East China, while West China has a sparser 322 
distribution.  Through rigorous data quality checks, 179 unnested basins with at least 20 years of data were 323 
selected, covering nine major watersheds in China. For more details on streamflow data processing and 324 
catchment screening, please refer to Yin et al. (2021b). 325 

3.2 GRACE/GRACE-FO measurements 326 

Temporal variations in the Earth's gravitational field observed by GRACE satellites have been used to 327 
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retrieve TWS data (Tapley et al., 2004). Many international institutes have released the TWS mascon products 328 
at a monthly scale, including the JPL (Jet Propulsion Laboratory of the California Institute of Technology), 329 
the GSFC (Goddard Space Flight Center of NASA), and the CSR (Center for Space Research of the 330 
University of Texas). As these three mason solutions are produced at different spatial resolutions, we 331 
generated blended TWS data based on the average of JPL, GSFC and CSR with 0.5°×0.5° resolution from 332 
2002 to 2022, and fill the missing data using a linear interpolation approach (Yin et al., 2022).  333 

3.3 ERA5-Land dataset 334 

ERA5-Land is a dataset that consists of a large volume of meteorological variables, including 335 
precipitation, temperature, air pressure etc. The spatial resolution of the dataset is 9 km and the temporal 336 
resolution is one hour (Yilmaz, 2023). Under the latest global reanalysis and the lapse rate correction, the 337 
ERA5-Land reanalysis dataset provides a substitute for unavailable observed weather data, by taking the 338 
effect of altitude on the spatial scheme of climate variables into consideration (Pelosi et al., 2020). Six 339 
variables are used in the study (i.e., pr, ps, T2m, Td, srlds, srsds) and aggregated to a daily scale from the 340 
hourly scale before conducting data analysis. 341 

3.4 Bias-corrected GCM outputs and socioeconomic scenarios 342 

The climate outputs of five GCMs of the historical scenario and three SSPs (i.e., SSP1-26, SSP3-70, 343 
SSP5-85) under CMIP6 are used to represent different climate scenarios. Generally, the SSP5-85 configured 344 
the highest carbon emission and human interference with the natural environment. The SSP3-70 and the 345 
SSP1-26 have progressively conservative changes to represent climate change resulting from different levels 346 
of human activity. The series of bias-corrected variables have been downscaled to 0.5° × 0.5°resolution from 347 
1850 to 2100 under the Intersectoral Impact Model Intercomparison Project 3b (ISIMIP3b) (Lange, 2019). 348 
To reduce the systematical biases of CMIP6 raw outputs, seven variables from the bias-corrected ISMIP3b 349 
dataset have been used, namely temperature (daily average, maximum and minimum), pr, ps, srsds, srlds, 350 
RH and SH.  351 

Population and GDP data under three SSPs are employed to evaluate the potential socioeconomic risks 352 
of drought in a warming world. An open-access population dataset is adopted which takes into consideration 353 
the universal two-child policy, the census results and the statistical annual report (Jiang et al., 2017). The 354 
economic index from 2010 to 2100 is estimated based on the Cobb-Douglas and Population-Environment-355 
Development model (Jiang et al., 2018). All of the data have been previously used to assess the socio-356 
economic impact of extreme hydrologic hazards (Yin et al., 2022; Yin et al., 2023). 357 

4. Results 358 

4.1 Observed changes in SRI and TWS-DSI based drought 359 

As there are insufficient streamflow observations to compute the SRI in northwest China, we also 360 
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employed the TWS-DSI as a supplement. This approach enriches the variety of water storage or flux being 361 
evaluated. Based on linear regression and least square method, trends in drought characteristics (i.e., 362 
frequency, duration and severity) are estimated by using the GRACE/GRACE-FO dataset and observed 363 
runoff across China. Figure 4 and Figure 5 show the drought trends based on the TWS-DSI and SRI, 364 
respectively. Overall, the two indexes show similar trends in most catchments, suggesting that drought 365 
hazards have increased during 2002-2022. TWS-DSI droughts have increased in 54% of areas, which are 366 
mainly located in the Qinghai-Tibet Plateau, the North China Plain and the northwestern Xinjiang Province. 367 
Likewise, SRI droughts have increased over 51% of studied catchments, which mainly dominate northeastern 368 
and southeastern China.  The severity of droughts measured by the TWS-DSI index is twice of the 369 
hydrological drought, primarily because the TWS-DSI metric incorporates all vertical water fluxes, offering 370 
a comprehensive view of shifts in water scarcity. On the other hand, TWS-DSI can difficultly represent the 371 
aquifer recharge processes, which are fundamental physical process of baseflow and the hydrological drought 372 
in its entire extension. Therefore, catchments with aquifer recharge and storage capacity will exceed several 373 
times the time step of the analysis, enlarging the severity of droughts. Some locations exhibit discrepancies 374 
depending on the index considered. For instance, droughts in the Qinghai-Tibet Plateau and Northeast China 375 
show opposite trends. Anomalies in the Qinghai-Tibetan plateau may be explained by the transformation of 376 
snowpack melt into surface runoff under the influence of climate change, which helps compensate for the 377 
lack of surface water in the area (Stewart, 2009). The discrepancy observed in Northeastern China could 378 
potentially be linked to the rise in soil moisture from increased infiltration, which causes a higher proportion 379 
of water to be stored within the soil than at the surface, interfering with the quantification of hydrological 380 
drought (Wang et al., 2017). Finally, both indicators show a consistent positive drought trend in most areas 381 
of China and particularly the North China Plain and Pearl River Basin.  382 
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 383 
Figure 4. Trends in drought frequency, duration and severity based on the TWS-DSI from 2002 to 2022 using 384 
three GRACE/GRACE-FO products (a-i) and the blended data (j-l). 385 
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 386 
Figure 5. Trends in drought frequency, duration and severity from 2002 to 2022 over China. (c), the index of 387 
severity is based on the SRI statistic (Eq. 13). 388 

4.2 Machine Learning-constrained streamflow simulation and model evaluation 389 

The RF model was used to quantify the sensitivity of streamflow to different meteorological variables 390 
(Figure 6). Since a station can be attributed to catchments of different sizes, we only considered the largest 391 
catchment scales in analysis.We quantified the sensitivity of seven historical mean meteorological variables 392 
(i.e., pr, ps, SH, RH, srlds, srsds, temperature) to monthly streamflow in each grid. Due to the sparse number 393 
of observation stations in Northwestern China, the reliability of the sensitivity analysis for these regions is 394 
lower than that of the dense observed areas. Precipitation typically plays a major role in generating runoff in 395 
Southeast China, although SH plays the most important role in some regions such as Central, Southwest and 396 
Northeast China. Over 30% and 38% of stations show the SH sensitivity rate of >10% in Western and 397 
Northeastern China respectively, indicating the dominance of SH in these areas. In contrast, RH and 398 
shortwave radiation have a negative contribution to streamflow; especially shortwave radiation, which has a 399 
pronounced negative sensitivity in 394 stations probably due to enhanced evapotranspiration (Ma et al., 2019). 400 
These negative contributions mean enhancement of these two variables will inhibit the generation of 401 
streamflow, showing the potential adverse effects of climate change on streamflow generation. In general, 402 
RH contributes to increasing streamflow over most regions of China, but the opposite effect is observed in 403 
179 stations mainly located in Southwestern China, Yellow River and Huaihe River basins. This is the result 404 
of the mutual feedback of water and heat dynamics (i.e., saturated vapor pressure increases with warming 405 
and intensifies evaporation, leading to a decrease in surface water), which was also found by Liu et al. (2017). 406 
The temperature has a positive contribution to streamflow generation in Northeast China, suggesting a 407 
potential mitigation for the deficiency of surface flow. However, there is interactive feedback between 408 
hydrological and thermal factors that result in an inability to directly assess the impact of temperature on 409 
hydrologic droughts (Fig. 6i and 6f). 410 
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 411 

Figure 6. Sensitivity of meteorological variables to daily streamflow. The figure uses a thin plate smoothing spline 412 
method to interpolate the point-based station data (circles). Gray areas indicate missing data.  413 

The performances of simulated streamflow by different HTMs are shown in Figure 7. The model that 414 
has the largest Kling-Gupta efficiency (KGE) is considered to be the best-performing in each catchment. In 415 
Fig 7. (a) and (b), the GR4J and GR4J-LSTM performed best in 77 out of 179 studied catchments. The 416 
median KGE value of GR4J is higher than 0.83, revealing a superior performance than the other hydrological 417 
models. Subsequently, the XAJ and XAJ-LSTM are the best models in 57 catchments, mainly located in the 418 
southern Yangtze River. Last, the HBV and HBV-LSTM performed best in only 10 catchments, where the 419 
streamflow are impacted by snowfall in plateaus and northern frozen areas. All catchments exhibit KGE 420 
values greater than 0.9 during the calibration period in Figure 7c, showing good performance in simulation. 421 
During the validation period, only 18 catchments have KGE values below 0.6, and most of the catchments 422 
have KGE values greater than 0.8 in Figure 7d. In summary, the trained models simulate streamflow well in 423 
all the studied catchments. Additionally, the KGE values in the southern region are generally higher than 424 
those in the northern region during the validation period, which is consistent with previous hydrological 425 
simulation works (Gu et al., 2020b, 2021). This phenomenon may be attributed to the higher dependence of 426 
streamflow on rainfall in South China, which is governed by a humid climate pattern (Zheng et al., 2022). 427 
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 428 

Figure 7. Hydrological simulation performances of all candidate models. (a), The best-performing model with the 429 
highest KGE value. The catchments are colored according to the best performing models. (b), Boxplots of all 430 
catchments for ten HTMs indicated by KGE values. (c)-(d), The highest KGE values during the calibration (c) 431 
and validation (d) period, respectively. 432 

4.3 Projected changes in univariate drought characteristics 433 

We projected the future daily runoff series by driving the HTMs with the bias-corrected CMIP6 variables, 434 
and then we estimated the monthly SRI to identify drought duration and severity. Based on the maximum 435 
Bayesian Information Criterion (BIC), we selected the best-performing marginal distributions for duration 436 
and severity from seven candidate distributions shown in Table S2, based on historical data for each 437 
catchment. Figure 8 and Figure 9 show the multi-model ensemble average severity and duration for the 50-438 
year historical return period (RP).  439 

In western China, we projected a significantly increasing drought trend under the three SSPs, which 440 
indicates potential for increased water scarcity and more frequent extreme drought events. In Southeast China, 441 
we projected that drought events are likely to intensify under SSP3-70 but not under SSP5-85. It is generally 442 
considered that SSP5-85 is accompanied by higher carbon emissions than that of SSP3-70 (O’Neill et al., 443 
2016). However, future works also take significant action to control the extent of climate change combined 444 
with strong climate policies under SSP5-85 (Fujimori et al., 2017). As a result, there is no deterioration of 445 
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drought severity with policy interventions, which emphasizes the significance of ensuring the implementation 446 
of climate strategies. In northern China, in contrast, we found that future drought risks are projected to 447 
decrease under the three scenarios, which is possibly related to more moisture convergence from the East 448 
Asian monsoon circulation as the warming climate (Chowdary et al., 2019). 449 

 450 
Figure 8. Multi-model ensemble average design severity (dimensionless) under a 50-year RP for three SSPs, and 451 
relative changes (%) in 2071-2100 compared to 1985-2014.  452 
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 453 
Figure 9. Multi-model ensemble average design duration (months) of the multi-model for a 50-year RP for three 454 
SSPs, and relative changes (%) in 2071-2100 compared to 1985-2014. 455 

We display the relative change of drought characteristics under 50-year RP for all catchments for five 456 
GCMs under the three SSPs using violin plots (Figure 10). For most catchments, the relative change of 457 
drought duration and severity is negative. However, the relative change under some scenarios reached a 458 
maximum of 400%, highlighting the extreme change of drought. The median relative change of severity 459 
based on the IPSL-CM6A-LR under SSP3-70 are 30%, and 22% of catchments have a relative change over 460 
200%, representing the most severe case of drought evolution. Furthermore, the distributions of the 461 
projections based on the MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL models are highly skewed 462 
and bimodal under SSP3-70 and SSP5-85, revealing substantial spatial heterogeneity across China. Overall, 463 
the severity and duration of droughts slightly increase in some catchments and have the risk of extreme 464 
intensification as a result of global warming. 465 
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 466 
Figure 10. Violin plots of relative changes (%) in severity and duration to the historical drought event with 50-467 
year RP under three SSPs. The white circles are the median values of relative changes. 468 

4.4 Bivariate drought changes and corresponding socioeconomic risks 469 

To capture the complex dependence structure between drought severity and duration, we used a Copula 470 
function to quantify the bivariate risk of hydrological droughts under climate change. Changes in the JRP of 471 
the historical (1985-2014) drought event with 50-year JRP in the future (2071-2100) period are shown in 472 
Figure 11. The medians of the projected future JRP are 38.78 years, 14.52 years and 19.24 years under SSP1-473 
26, SSP3-70 and SSP5-85, respectively. For 69% and 60% catchments under SSP3-70 and SSP5-85, we find 474 
the JRP of the 50-year drought is reduced to less than 25 years in the future period, suggesting that the risk 475 
of drought increases over 2 times in these catchments. Besides, we find a marked increase in the number of 476 
catchments with increased drought risk compared to the univariate drought assessments. The JRP of 477 
catchments in Northeastern and Central China tends to decrease, suggesting higher changes in risks than 478 
univariate assessments. This result is consistent with previous studies (He et al., 2011; Xu et al., 2015), which 479 
indicates that the use of bivariate drought analysis can amplify the individual effects of two drought 480 
characteristics.  481 

Future GDP and population exposed to increasing bivariate drought risk under three scenarios are shown 482 
in Figure 12. The eastern coastal regions have a higher significant economic exposure such as the Huaihe 483 
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River Basin, the Yangtze River Basin and the Pearl River Basin, which is consistent with the distribution of 484 
economically developed regions in China. The medians of GDP exposure are 5.5, 9.8 and 14.3 million 485 
dollars/km2 under three SSPs respectively, which indicates the vulnerability of economic losses to drought 486 
disasters under global warming. The population affected by drought is mainly located in the southern Yangtze 487 
River Basin and the Huaihe River Basin under SSP3-70, as the median exposure is 525 and 205 people/km2 488 
under SSP3-70 and SSP5-85, respectively. This is because the increase in population is higher in the Sichuan, 489 
Guangdong and Zhejiang provinces than in other Chinese provinces under SSP3-70 (Chen et al., 2020). 490 
Overall, the exposure of GDP and population shows large heterogeneity in their sensitivity to different 491 
scenarios, and the distribution of the affected catchments is consistent with economic and social development. 492 

 493 
Figure 11. The future multi-model ensemble means JRP of the historical drought with a 50-year 𝑻𝑻𝒐𝒐𝒐𝒐based on the 494 
bivariate approach. The future JRPs of 179 catchments under three SSPs are presented in (a)-(c), while (d) 495 
displays raincloud plots of the projected JRP under each SSP.  496 
 497 
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 498 
Figure 12. The multi-model ensemble means exposure of GDP (a-c) and population (d-f) to bivariate drought 499 
characteristics under different SSPs in the future period. 500 

5. Discussion 501 

5.1 Uncertainty decomposition 502 

The overall uncertainty in our projections arises from the different SSPs, GCMs and HTMs as well as 503 
their interactions. We assemble these seven sources using MANOVA ( Figure 13). For GDP and POP exposure, 504 
we find HTM is the main source of uncertainty, and contributes 27.55% and 26.14% uncertainty, respectively. 505 
This indicates that the quality of the HTM is important for the accuracy of socioeconomic predictions. 506 
Likewise, the GCM and GCM-HTM provide over 30% of the uncertainty in GDP and population exposures, 507 
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which indicates the critical importance of bias-corrected GCM outputs for accurate projections. Further, the 508 
contributions of the SSPs to population exposure is 1.5 times than that of GDP exposure, which shows that 509 
the effect of climate change is greater for POP exposure than GDP exposure. In particular, the independent 510 
factors (i.e., SSP, GCM, HTM) contribute over 50% to the uncertainty of GDP and population exposures, 511 
suggesting that GDP and population exposures are less responsive to complex coupling. In contrast, the 512 
coupled factors (i.e., the combination of SSP, GCM or HTM) mainly contribute to the uncertainty of the JRP, 513 
accounting for 82.63% of the overall uncertainty, especially the SSM-GCM-HTM, which accounts for 36.97% 514 
of uncertainty. Finally, the relatively low contribution of the choice of SSP, SSP-GCM and SSP-HTM to JRP 515 
uncertainty indicates that the future risk projection uncertainty is relatively stable in future risk projections  516 

 517 
Figure 13. The fractional uncertainty contributions of all sources to the GDP exposure, population exposure, and 518 
JRP estimate for all 179 catchments (a, c, e) and the average fractional contribution of each source (b, d, f).  519 

5.2 Limitations and future work 520 

The uncertainty caused by the underlying surface situation and the coupling relationships behind 521 
interrelated variables remains unexplained in this study. Therefore, revealing interactions among multisource 522 
data is important to understand how the drivers affect the water cycle under climate change. Here, only five 523 
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GCM outputs and one in situ observation dataset were used to drive our HTM models. The sparse dataset 524 
may undermine the robustness of the approach. Providing a larger number of GCMs and observational data 525 
to assemble a more sophisticated model might be an effective approach to improve accuracy and reliability. 526 
Although the catchments gathered in this study cover nine major watersheds in China, there is still a 527 
requirement for streamflow data with a more uniform spatial density. Considering geospatial sampling 528 
techniques, a homogeneous density of catchments is significant to reveal the spatial distribution of drought. 529 
On the other hand, due to the heterogeneity of different climatic regions in China, we would like to expand 530 
hydrological models (e.g., the weather research and forecasting model hydrological modeling system, soil 531 
and water assessment tool or the hydrological modules of land surface process models) to reduce uncertainty 532 
in future research. Finally, the GDP and population projections cannot well reflect future economic 533 
development and population migration, especially the governmental intervention in immigration and 534 
economic policies. It is better to consider the dynamic impact of human management on socioeconomic 535 
development, which is essential for the construction of a more reliable projection framework.  536 

5.3 Suggestions for drought mitigation in China 537 

In order to curb global warming and mitigate the threats of climate change, the Chinese government is 538 
striving to reach its carbon peak before 2030, achieve carbon neutrality before 2060, and bolster efforts in 539 
disaster reduction (Kundzewicz et al., 2019; Liu et al., 2022b). China has nonetheless experienced several 540 
extreme drought events during the past 5 years, threatening the population’s health and economic 541 
development (Ding and Gao, 2020; Liu et al., 2022a; Mallapaty, 2022). The Intergovernmental Panel on 542 
Climate Change (IPCC) has emphasized that projections of future climate trends can equip policymakers 543 
with the scientific insight needed to navigate the challenges of climate change (Pörtner et al., 2022). The 544 
results of this study aim to alert policymakers to drought risk in Southwestern China which was just hit by 545 
severe drought events and expected to significantly intensify with climate change. We strongly highlight the 546 
importance of strictly implementing carbon emission reduction initiatives and developing prevention 547 
programs to limit potential drought losses. Preserving local ecological balance and employing rational use of 548 
water resources could be the key to mitigating potential losses from extreme droughts (Chang et al., 2019; 549 
Sohn et al., 2016). Although China has constructed hydraulic structures with a total water storage capacity of 550 
over 7,064 billion m3, current irrigation facilities need to expand to mitigate the challenge of drought under 551 
climate change  (Cai et al., 2015; Xiao-jun et al., 2012). In addition, it is also beneficial for policymakers that 552 
establish a drought information system to get a comprehensive collection of drought impacts from all 553 
potential sectors, which can link the government and research organizations (Wilhite et al., 2007).  554 

The Intergovernmental Panel on Climate Change (IPCC) has emphasized that projections of future 555 
climate trends can equip policymakers with the scientific insight needed to navigate the challenges of climate 556 
change (Pörtner et al., 2022). The results of this study aim to alert policymakers to drought risk in 557 
Southwestern China, which is expected to intensify with climate change. Preserving local ecological balance 558 
and employing rational use of water resources could be the key in mitigating potential losses from extreme 559 
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droughts (Chang et al., 2019; Sohn et al., 2016). Finally, this work highlights the importance of strictly 560 
implementing carbon emission reduction initiatives and developing prevention programs to limit potential 561 
drought losses.  562 

6. Conclusions 563 

In this study, the hybrid LSTM-constrained hydrological models show high efficiency in studied 564 
catchments over China, demonstrating that machine learning can effectively constrain the hydrological 565 
simulation. Projected changes in 50-year bivariate drought characteristics, expressed as a JRP, indicate that 566 
the risk of hydrological drought is likely to more than double in over 60% of catchments by the end of the 567 
21st century under SSP5-85. The spatial distribution of change reveals that the catchments with severely 568 
increased drought risk are mainly located in southwestern China. Notably, the exposure of GDP and 569 
population varies greatly across different SSPs. The median GDP exposure under SSP5-85 is 1.5 times that 570 
of SSP3-70, but the median population exposure is just 40% that of SSP3-70. The higher population exposure 571 
under SSP3-70 can be attributed to rapid population growth. Finally, we find the interaction between multiple 572 
sources of data explains more than 80% of the uncertainty in future changes in JRPs, showing the importance 573 
of considering the relationships between model components. Our findings demonstrate that China will face 574 
higher drought risks in a warmer future, emphasizing the urgency of implementing strategies to reduce carbon 575 
emissions. Our study is insufficient in the revelation of drought hazard drivers and needs to expand datasets 576 
and hydrological models to promote the reliability of simulation in future studies. We would also like to take 577 
governmental interference of economic and demographic policies into consideration. 578 
 579 

Data availability  580 

The gridded meteorological dataset for China can be obtained from http://www.cma.gov.cn. The 581 
ISIMIP3b data can be downloaded from https://data.isimip.org. The ERA5-Land data can be 582 
downloaded from https://www.ecmwf.int/en/era5-land. Streamflow simulations used in this study 583 
are available at https://osf.io/fvyse/.  584 

Acknowledgments 585 

J.Y. acknowledges support from the National Natural Science Foundation of China (Grant NOs. 586 
52361145864; 52261145744). L.S. is supported by UKRI (MR/V022008/1).  J.G. is supported by the 587 
National Natural Science Foundation of China (NO. 52179018). This work is also supported by the 588 
Undergraduate Training Programs for Innovation and Entrepreneurship of Wuhan University. The 589 
numerical calculations in this paper have been performed on the supercomputing system in the 590 
Supercomputing Center of Wuhan University.  591 

Competing interests 592 

http://www.cma.gov.cn/
https://data.isimip.org/
https://www.ecmwf.int/en/era5-land
https://osf.io/fvyse/


25 

 

At least one of the (co-)authors is a member of the editorial board of Hydrology and Earth System 593 
Sciences. 594 

References 595 

Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., Gan, T. Y., Pendergrass, 596 
A. G., Rosenfeld, D., Swann, A. L. S., Wilcox, L. J., and Zolina, O.: Advances in understanding 597 
large-scale responses of the water cycle to climate change, Annals of the New York Academy of 598 
Sciences, 1472, 49–75, https://doi.org/10.1111/nyas.14337, 2020. 599 

Antoniadis, A., Lambert-Lacroix, S., and Poggi, J.-M.: Random forests for global sensitivity analysis: A 600 
selective review, Reliability Engineering & System Safety, 206, 107312, 2021. 601 

Arsenault, R., Essou, G. R., and Brissette, F. P.: Improving hydrological model simulations with combined 602 
multi-input and multimodel averaging frameworks, Journal of Hydrologic Engineering, 22, 04016066, 603 
2017. 604 

Ashrafi, S. M., Gholami, H., and Najafi, M. R.: Uncertainties in runoff projection and hydrological drought 605 
assessment over Gharesu basin under CMIP5 RCP scenarios, Journal of Water and Climate Change, 606 
11, 145–163, 2020. 607 

Ayantobo, O. O., Li, Y., Song, S., and Yao, N.: Spatial comparability of drought characteristics and related 608 
return periods in mainland China over 1961–2013, Journal of Hydrology, 550, 549–567, 2017. 609 

Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought 610 
using standardised indicators, Hydrology and Earth System Sciences, 20, 2483–2505, 2016. 611 

Bergström, S.: The HBV model, Computer models of watershed hydrology, 443–476, 1995. 612 
BERGSTRÖM, S. and FORSMAN, A.: DEVELOPMENT OF A CONCEPTUAL DETERMINISTIC 613 

RAINFALL-RUNOFF MODEL, Hydrology Research, 4, 147–170, 1973. 614 
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall 615 

measurements required for urban hydrology, Journal of Hydrology, 299, 166–179, 2004. 616 
Byakatonda, J., Parida, B. P., Moalafhi, D. B., and Kenabatho, P. K.: Analysis of long term drought 617 

severity characteristics and trends across semiarid Botswana using two drought indices, Atmospheric 618 
research, 213, 492–508, 2018. 619 

Cai, X., Zeng, R., Kang, W. H., Song, J., and Valocchi, A. J.: Strategic Planning for Drought Mitigation 620 
under Climate Change, Journal of Water Resources Planning and Management, 141, 04015004, 621 
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000510, 2015. 622 

Castle, S. L., Thomas, B. F., Reager, J. T., Rodell, M., Swenson, S. C., and Famiglietti, J. S.: Groundwater 623 
depletion during drought threatens future water security of the Colorado River Basin, Geophysical 624 
research letters, 41, 5904–5911, 2014. 625 

Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V.: Landslide susceptibility estimation by random 626 
forests technique: sensitivity and scaling issues, Natural Hazards and Earth System Sciences, 13, 627 
2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, 2013. 628 

Chang, J., Guo, A., Wang, Y., Ha, Y., Zhang, R., Xue, L., and Tu, Z.: Reservoir operations to mitigate 629 
drought effects with a hedging policy triggered by the drought prevention limiting water level, Water 630 
Resources Research, 55, 904–922, 2019. 631 

Chen, H. and Sun, J.: Increased population exposure to extreme droughts in China due to 0.5 °C of 632 
additional warming, Environ. Res. Lett., 14, 064011, https://doi.org/10.1088/1748-9326/ab072e, 2019. 633 

Chen, J., Li, C., Brissette, F. P., Chen, H., Wang, M., and Essou, G. R.: Impacts of correcting the inter-634 
variable correlation of climate model outputs on hydrological modeling, Journal of hydrology, 560, 635 
326–341, 2018. 636 

Chen, Y., Guo, F., Wang, J., Cai, W., Wang, C., and Wang, K.: Provincial and gridded population 637 
projection for China under shared socioeconomic pathways from 2010 to 2100, Scientific Data, 7, 83, 638 
https://doi.org/10.1038/s41597-020-0421-y, 2020. 639 

Chen, Z. and Yang, G.: Analysis of drought hazards in North China: distribution and interpretation, Nat 640 
Hazards, 65, 279–294, https://doi.org/10.1007/s11069-012-0358-3, 2013. 641 

Chiew, F. H. S., Peel, M. C., and Western, A. W.: Application and testing of the simple rainfall-runoff 642 
model SIMHYD., Mathematical models of small watershed hydrology and applications, 335–367, 643 
2002. 644 



26 

 

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.: 645 
Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv 646 
preprint arXiv:1406.1078, 2014. 647 

Chowdary, J. S., Hu, K., Srinivas, G., Kosaka, Y., Wang, L., and Rao, K. K.: The Eurasian jet streams as 648 
conduits for East Asian monsoon variability, Current Climate Change Reports, 5, 233–244, 2019. 649 

Dai, A., Zhao, T., and Chen, J.: Climate Change and Drought: a Precipitation and Evaporation Perspective, 650 
Curr Clim Change Rep, 4, 301–312, https://doi.org/10.1007/s40641-018-0101-6, 2018. 651 

Dikici, M.: Drought analysis with different indices for the Asi Basin (Turkey), Sci Rep, 10, 20739, 652 
https://doi.org/10.1038/s41598-020-77827-z, 2020. 653 

Dikshit, A., Pradhan, B., and Huete, A.: An improved SPEI drought forecasting approach using the long 654 
short-term memory neural network, Journal of environmental management, 283, 111979, 2021a. 655 

Dikshit, A., Pradhan, B., and Alamri, A. M.: Long lead time drought forecasting using lagged climate 656 
variables and a stacked long short-term memory model, Science of The Total Environment, 755, 657 
142638, 2021b. 658 

Ding, T. and Gao, H.: The record-breaking extreme drought in Yunnan Province, Southwest China during 659 
spring-early summer of 2019 and possible causes, Journal of Meteorological Research, 34, 997–1012, 660 
2020. 661 

Dixit, S., Atla, B. M., and Jayakumar, K. V.: Evolution and drought hazard mapping of future 662 
meteorological and hydrological droughts using CMIP6 model, Stochastic Environmental Research 663 
and Risk Assessment, 36, 3857–3874, 2022. 664 

Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., and Maher, N.: More extreme 665 
precipitation in the world’s dry and wet regions, Nature Climate Change, 6, 508–513, 2016. 666 

Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-667 
runoff models, , 28, 1015–1031, 1992. 668 

Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai, H., Hijioka, Y., and Kainuma, M.: 669 
SSP3: AIM implementation of shared socioeconomic pathways, Global Environmental Change, 42, 670 
268–283, 2017. 671 

Ganguli, P. and Merz, B.: Trends in compound flooding in northwestern Europe during 1901–2014, 672 
Geophysical Research Letters, 46, 10810–10820, 2019. 673 

Gers, F. A., Schmidhuber, J., and Cummins, F.: Learning to forget: continual prediction with LSTM, 674 
Neural Comput, 12, 2451–71, 2000. 675 

Green, J. K., Berry, J., Ciais, P., Zhang, Y., and Gentine, P.: Amazon rainforest photosynthesis increases in 676 
response to atmospheric dryness, Science Advances, 6, eabb7232, 2020. 677 

Gu, L., Chen, J., Yin, J., Sullivan, S. C., Wang, H.-M., Guo, S., Zhang, L., and Kim, J.-S.: Projected 678 
increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2&thinsp;°C 679 
warmer climates, Hydrology and Earth System Sciences, 24, 451–472, https://doi.org/10.5194/hess-680 
24-451-2020, 2020a. 681 

Gu, L., Chen, J., Yin, J., Xu, C.-Y., and Zhou, J.: Responses of precipitation and runoff to climate warming 682 
and implications for future drought changes in China, Earth’s Future, 8, e2020EF001718, 2020b. 683 

Gu, L., Yin, J., Zhang, H., Wang, H.-M., Yang, G., and Wu, X.: On future flood magnitudes and estimation 684 
uncertainty across 151 catchments in mainland China, International Journal of Climatology, 41, E779–685 
E800, 2021. 686 

Gu, L., Yin, J., Wang, S., Chen, J., Qin, H., Yan, X., He, S., and Zhao, T.: How well do the multi-satellite 687 
and atmospheric reanalysis products perform in hydrological modelling, Journal of Hydrology, 617, 688 
128920, https://doi.org/10.1016/j.jhydrol.2022.128920, 2023. 689 

He, B., Lü, A., Wu, J., Zhao, L., and Liu, M.: Drought hazard assessment and spatial characteristics 690 
analysis in China, Journal of Geographical Sciences, 21, 235–249, 2011. 691 

Hu, C., Guo, S., Xiong, L., and Peng, D.: A modified Xinanjiang model and its application in northern 692 
China, Hydrology Research, 36, 175–192, 2005. 693 

Jiang, T., Chen, Y. D., Xu, C., Chen, X., Chen, X., and Singh, V. P.: Comparison of hydrological impacts 694 
of climate change simulated by six hydrological models in the Dongjiang Basin, South China, Journal 695 
of Hydrology, 336, 316–333, https://doi.org/10.1016/j.jhydrol.2007.01.010, 2007. 696 

Jiang, T., Jing, Z., Cheng, J., Lige, C., Yanjun, W., Hemin, S., Anqian, W., Jinlong, H., Buda, S., and Run, 697 
W.: National and provincial population projected to 2100 under the shared socioeconomic pathways in 698 
China, Advances in Climate Change Research, 13, 128, 2017. 699 



27 

 

Jiang, T., Jing, Z., Li-Ge, C. A. O., Yan-Jun, W., Bu-Da, S. U., Cheng, J., Run, W., and Chao, G. A. O.: 700 
Projection of national and provincial economy under the shared socioeconomic pathways in China, 701 
Advances in Climate Change Research, 14, 50, 2018. 702 

Kim, J. H., Sung, J. H., Chung, E.-S., Kim, S. U., Son, M., and Shiru, M. S.: Comparison of Projection in 703 
Meteorological and Hydrological Droughts in the Cheongmicheon Watershed for RCP4. 5 and SSP2-704 
4.5, Sustainability, 13, 2066, 2021. 705 

Koutsoyiannis, D.: Clausius–Clapeyron equation and saturation vapour pressure: simple theory reconciled 706 
with practice, European Journal of physics, 33, 295, 2012. 707 

Kriauciuniene, J., Jakimavicius, D., Sarauskiene, D., and Kaliatka, T.: Estimation of uncertainty sources in 708 
the projections of Lithuanian river runoff, Stochastic Environmental Research and Risk Assessment, 709 
27, 769–784, 2013. 710 

Kumar, R., Musuuza, J. L., Van Loon, A. F., Teuling, A. J., Barthel, R., Ten Broek, J., Mai, J., Samaniego, 711 
L., and Attinger, S.: Multiscale evaluation of the Standardized Precipitation Index as a groundwater 712 
drought indicator, Hydrology and Earth System Sciences, 20, 1117–1131, 2016. 713 

Kundzewicz, Z., Su, B., Wang, Y., Xia, J., Huang, J., and Jiang, T.: Flood risk and its reduction in China, 714 
Advances in Water Resources, 130, 37–45, https://doi.org/10.1016/j.advwatres.2019.05.020, 2019. 715 

Kunnath-Poovakka, A. and Eldho, T. I.: A comparative study of conceptual rainfall-runoff models GR4J, 716 
AWBM and Sacramento at catchments in the upper Godavari river basin, India, J Earth Syst Sci, 128, 717 
33, https://doi.org/10.1007/s12040-018-1055-8, 2019. 718 

Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), 719 
Geoscientific Model Development, 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019. 720 

Li, D. X.: On default correlation: A copula function approach, Available at SSRN 187289, 721 
https://doi.org/10.2139/ssrn.187289, 1999. 722 

Liu, J., Zhang, Q., Singh, V. P., and Shi, P.: Contribution of multiple climatic variables and human 723 
activities to streamflow changes across China, Journal of Hydrology, 545, 145–162, 724 
https://doi.org/10.1016/j.jhydrol.2016.12.016, 2017. 725 

Liu, Y., Hu, Z.-Z., Wu, R., and Yuan, X.: Causes and predictability of the 2021 spring southwestern China 726 
severe drought, Advances in Atmospheric Sciences, 39, 1766–1776, 2022a. 727 

Liu, Z., Deng, Z., He, G., Wang, H., Zhang, X., Lin, J., Qi, Y., and Liang, X.: Challenges and opportunities 728 
for carbon neutrality in China, Nat Rev Earth Environ, 3, 141–155, https://doi.org/10.1038/s43017-729 
021-00244-x, 2022b. 730 

Lu, R., Xu, K., Chen, R., Chen, W., Li, F., and Lv, C.: Heat waves in summer 2022 and increasing concern 731 
regarding heat waves in general, Atmospheric and Oceanic Science Letters, 16, 100290, 732 
https://doi.org/10.1016/j.aosl.2022.100290, 2023. 733 

Ma, N., Szilagyi, J., Zhang, Y., and Liu, W.: Complementary-Relationship-Based Modeling of Terrestrial 734 
Evapotranspiration Across China During 1982–2012: Validations and Spatiotemporal Analyses, 735 
Journal of Geophysical Research: Atmospheres, 124, 4326–4351, 736 
https://doi.org/10.1029/2018JD029850, 2019. 737 

Mallapaty, S.: China’s extreme weather challenges scientists studying it, Nature, 609, 888, 2022. 738 
Martel, J., Demeester, K., Brissette, F., Poulin, A., and Arsenault, R.: HMETS-A simple and efficient 739 

hydrology model for teaching hydrological modelling, flow forecasting and climate change impacts, 740 
International Journal of Engineering Education, 2017. 741 

Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., 742 
Nauels, A., and Bauer, N.: The shared socio-economic pathway (SSP) greenhouse gas concentrations 743 
and their extensions to 2500, Geoscientific Model Development, 13, 3571–3605, 2020. 744 

Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., Abdo, H. G., Sammen, S. S., 745 
Gyasi-Agyei, Y., and Rodrigo-Comino, J.: Estimation of SPEI meteorological drought using machine 746 
learning algorithms, IEEE Access, 9, 65503–65523, 2021. 747 

Myronidis, D., Ioannou, K., Fotakis, D., and Dörflinger, G.: Streamflow and hydrological drought trend 748 
analysis and forecasting in Cyprus, Water resources management, 32, 1759–1776, 2018. 749 

Nabaei, S., Sharafati, A., Yaseen, Z. M., and Shahid, S.: Copula based assessment of meteorological 750 
drought characteristics: regional investigation of Iran, Agricultural and Forest Meteorology, 276, 751 
107611, 2019. 752 

Nie, N., Zhang, W., Chen, H., and Guo, H.: A global hydrological drought index dataset based on gravity 753 
recovery and climate experiment (GRACE) data, Water Resources Management, 32, 1275–1290, 754 



28 

 

2018. 755 
O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., 756 

Kriegler, E., Lamarque, J.-F., and Lowe, J.: The scenario model intercomparison project 757 
(ScenarioMIP) for CMIP6, Geoscientific Model Development, 9, 3461–3482, 2016. 758 

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.: Which 759 
potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and 760 
efficient potential evapotranspiration model for rainfall–runoff modelling, Journal of Hydrology, 303, 761 
290–306, 2005. 762 

Pelosi, A., Terribile, F., D’Urso, G., and Chirico, G. B.: Comparison of ERA5-Land and UERRA 763 
MESCAN-SURFEX reanalysis data with spatially interpolated weather observations for the regional 764 
assessment of reference evapotranspiration, Water, 12, 1669, 2020. 765 

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow 766 
simulation, Journal of hydrology, 279, 275–289, 2003. 767 

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, 768 
P., Liu, C., Tan, K., Yu, Y., Zhang, T., and Fang, J.: The impacts of climate change on water resources 769 
and agriculture in China, Nature, 467, 43–51, https://doi.org/10.1038/nature09364, 2010. 770 

Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N., 771 
Grillakis, M., and Gudmundsson, L.: Global terrestrial water storage and drought severity under 772 
climate change, Nature Climate Change, 11, 226–233, 2021. 773 

Porter, J. W. and McMahon, T. A.: Application of a catchment model in southeastern Australia, Journal of 774 
Hydrology, 24, 121–134, 1975. 775 

Pörtner, H.-O., Roberts, D. C., Poloczanska, E. S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., 776 
Langsdorf, S., Löschke, S., and Möller, V.: IPCC, 2022: Summary for policymakers, 2022. 777 

Qi, W., Chen, J., Li, L., Xu, C., Li, J., Xiang, Y., and Zhang, S.: A framework to regionalize conceptual 778 
model parameters for global hydrological modeling, Hydrology and Earth System Sciences 779 
Discussions, 1–28, https://doi.org/10.5194/hess-2020-127, 2020. 780 

Rahmati, O., Falah, F., Dayal, K. S., Deo, R. C., Mohammadi, F., Biggs, T., Moghaddam, D. D., Naghibi, 781 
S. A., and Bui, D. T.: Machine learning approaches for spatial modeling of agricultural droughts in the 782 
south-east region of Queensland Australia, Science of the Total Environment, 699, 134230, 2020. 783 

Ren-Jun, Z.: The Xinanjiang model applied in China, Journal of hydrology, 135, 371–381, 1992. 784 
Schmidt, R., Schwintzer, P., Flechtner, F., Reigber, C., Güntner, A., Döll, P., Ramillien, G., Cazenave, A., 785 

Petrovic, S., and Jochmann, H.: GRACE observations of changes in continental water storage, Global 786 
and Planetary Change, 50, 112–126, 2006. 787 

Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) 788 
network, Physica D: Nonlinear Phenomena, 404, 132306, 2020. 789 

Shin, M.-J. and Kim, C.-S.: Component combination test to investigate improvement of the IHACRES and 790 
GR4J rainfall–runoff models, Water, 13, 2126, 2021. 791 

Shukla, S. and Wood, A. W.: Use of a standardized runoff index for characterizing hydrologic drought, 792 
Geophysical research letters, 35, 2008. 793 

Simmons, A. J., Untch, A., Jakob, C., Kållberg, P., and Undén, P.: Stratospheric water vapour and tropical 794 
tropopause temperatures in Ecmwf analyses and multi-year simulations, , 125, 353–386, 1999. 795 

Sohn, J. A., Saha, S., and Bauhus, J.: Potential of forest thinning to mitigate drought stress: A meta-796 
analysis, Forest Ecology and Management, 380, 261–273, 797 
https://doi.org/10.1016/j.foreco.2016.07.046, 2016. 798 

Sönmez, A. Y. and Kale, S.: Climate change effects on annual streamflow of Filyos River (Turkey), 799 
Journal of Water and Climate Change, 11, 420–433, https://doi.org/10.2166/wcc.2018.060, 2018. 800 

Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain regions, Hydrological 801 
Processes, 23, 78–94, https://doi.org/10.1002/hyp.7128, 2009. 802 

Tabari, H.: Climate change impact on flood and extreme precipitation increases with water availability, 803 
Scientific reports, 10, 1–10, 2020. 804 

Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.: GRACE measurements of 805 
mass variability in the Earth system, science, 305, 503–505, 2004. 806 

Tian, Y., Xu, Y.-P., and Zhang, X.-J.: Assessment of Climate Change Impacts on River High Flows 807 
through Comparative Use of GR4J, HBV and Xinanjiang Models, Water Resources Management, 27, 808 
2871–2888, 2013. 809 



29 

 

Tirivarombo, S., Osupile, D., and Eliasson, P.: Drought monitoring and analysis: standardised precipitation 810 
evapotranspiration index (SPEI) and standardised precipitation index (SPI), Physics and Chemistry of 811 
the Earth, Parts A/B/C, 106, 1–10, 2018. 812 

Udall, B. and Overpeck, J.: The twenty‐first century Colorado River hot drought and implications for the 813 
future, Water Resources Research, 53, 2404–2418, 2017. 814 

Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., and 815 
Morán-Tejeda, E.: Accurate computation of a streamflow drought index, Journal of Hydrologic 816 
Engineering, 17, 318–332, 2012. 817 

Wang, Z., Li, J., Lai, C., Zeng, Z., Zhong, R., Chen, X., Zhou, X., and Wang, M.: Does drought in China 818 
show a significant decreasing trend from 1961 to 2009?, Science of The Total Environment, 579, 314–819 
324, https://doi.org/10.1016/j.scitotenv.2016.11.098, 2017. 820 

Weinfurt, K. P.: Multivariate analysis of variance, in: Reading and understanding multivariate statistics, 821 
American Psychological Association, Washington, DC, US, 245–276, 1995. 822 

Wilhite, D. A., Svoboda, M. D., and Hayes, M. J.: Understanding the complex impacts of drought: A key to 823 
enhancing drought mitigation and preparedness, Water Resour Manage, 21, 763–774, 824 
https://doi.org/10.1007/s11269-006-9076-5, 2007. 825 

Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., and Sharma, S.: Global 826 
lake responses to climate change, Nat Rev Earth Environ, 1, 388–403, https://doi.org/10.1038/s43017-827 
020-0067-5, 2020. 828 

Wu, J., Chen, X., Yao, H., and Zhang, D.: Multi-timescale assessment of propagation thresholds from 829 
meteorological to hydrological drought, Science of the Total Environment, 765, 144232, 2021. 830 

Wu, X., Guo, S., Yin, J., Yang, G., Zhong, Y., and Liu, D.: On the event-based extreme precipitation across 831 
China: Time distribution patterns, trends, and return levels, Journal of hydrology, 562, 305–317, 2018. 832 

Xiao-jun, W., Jian-yun, Z., Shahid, S., ElMahdi, A., Rui-min, H., Zhen-xin, B., and Ali, M.: Water 833 
resources management strategy for adaptation to droughts in China, Mitig Adapt Strateg Glob Change, 834 
17, 923–937, https://doi.org/10.1007/s11027-011-9352-4, 2012. 835 

Xiujia, C., Guanghua, Y., Jian, G., Ningning, M., and Zihao, W.: Application of WNN-PSO model in 836 
drought prediction at crop growth stages: A case study of spring maize in semi-arid regions of 837 
northern China, Computers and Electronics in Agriculture, 199, 107155, 2022. 838 

Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., and Shen, Y.: Spatio-temporal variation of drought in China 839 
during 1961–2012: A climatic perspective, Journal of Hydrology, 526, 253–264, 2015. 840 

Yao, F., Livneh, B., Rajagopalan, B., Wang, J., Crétaux, J.-F., Wada, Y., and Berge-Nguyen, M.: Satellites 841 
reveal widespread decline in global lake water storage, Science, 380, 743–749, 842 
https://doi.org/10.1126/science.abo2812, 2023. 843 

Yevjevich, V. M.: Objective approach to definitions and investigations of continental hydrologic droughts, 844 
An, PhD Thesis, Colorado State University. Libraries, 1967. 845 

Yihdego, Y., Vaheddoost, B., and Al-Weshah, R. A.: Drought indices and indicators revisited, Arab J 846 
Geosci, 12, 69, https://doi.org/10.1007/s12517-019-4237-z, 2019. 847 

Yilmaz, M.: Accuracy assessment of temperature trends from ERA5 and ERA5-Land, Science of The Total 848 
Environment, 856, 159182, https://doi.org/10.1016/j.scitotenv.2022.159182, 2023. 849 

Yin, J., Guo, S., He, S., Guo, J., Hong, X., and Liu, Z.: A copula-based analysis of projected climate 850 
changes to bivariate flood quantiles, Journal of hydrology, 566, 23–42, 2018. 851 

Yin, J., Guo, S., Gu, L., He, S., Ba, H., Tian, J., Li, Q., and Chen, J.: Projected changes of bivariate flood 852 
quantiles and estimation uncertainty based on multi-model ensembles over China, Journal of 853 
Hydrology, 585, 124760, 2020. 854 

Yin, J., Guo, S., Gu, L., Zeng, Z., Liu, D., Chen, J., Shen, Y., and Xu, C.-Y.: Blending multi-satellite, 855 
atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling, Journal 856 
of Hydrology, 593, 125878, 2021a. 857 

Yin, J., Guo, S., Gentine, P., Sullivan, S. C., Gu, L., He, S., Chen, J., and Liu, P.: Does the hook structure 858 
constrain future flood intensification under anthropogenic climate warming?, Water Resources 859 
Research, 57, e2020WR028491, 2021b. 860 

Yin, J., Guo, S., Yang, Y., Chen, J., Gu, L., Wang, J., He, S., Wu, B., and Xiong, J.: Projection of droughts 861 
and their socioeconomic exposures based on terrestrial water storage anomaly over China, Sci. China 862 
Earth Sci., 65, 1772–1787, https://doi.org/10.1007/s11430-021-9927-x, 2022. 863 

Yin, J., Gentine, P., Slater, L., Gu, L., Pokhrel, Y., Hanasaki, N., Guo, S., Xiong, L., and Schlenker, W.: 864 



30 

 

Future socio-ecosystem productivity threatened by compound drought–heatwave events, Nat Sustain, 865 
6, 259–272, https://doi.org/10.1038/s41893-022-01024-1, 2023a. 866 

Yin, J., Guo, S., Wang, J., Chen, J., Zhang, Q., Gu, L., Yang, Y., Tian, J., Xiong, L., and Zhang, Y.: 867 
Thermodynamic driving mechanisms for the formation of global precipitation extremes and 868 
ecohydrological effects, Sci. China Earth Sci., 66, 92–110, https://doi.org/10.1007/s11430-022-9987-869 
0, 2023b. 870 

Yu, B. and Zhu, Z.: A comparative assessment of AWBM and SimHyd for forested watersheds, 871 
Hydrological sciences journal, 60, 1200–1212, 2015. 872 

Yu, Y., Si, X., Hu, C., and Zhang, J.: A Review of Recurrent Neural Networks: LSTM Cells and Network 873 
Architectures, Neural Comput, 31, 1235–1270, 2019. 874 

Zhai, P. M. and Zou, X. K.: Changes in temperature and precipitation and their impacts on drought in 875 
China during 1951–2003, Advances in Climate Change Research, 1, 16–18, 2005. 876 

Zhang, F., Deng, X., Xie, L., and Xu, N.: China’s energy-related carbon emissions projections for the 877 
shared socioeconomic pathways, Resources, Conservation and Recycling, 168, 105456, 2021. 878 

Zhang, G., Gan, T. Y., and Su, X.: Twenty-first century drought analysis across China under climate 879 
change, Climate Dynamics, 59, 1665–1685, 2022. 880 

Zhao, M., A, G., Velicogna, I., and Kimball, J. S.: Satellite Observations of Regional Drought Severity in 881 
the Continental United States Using GRACE-Based Terrestrial Water Storage Changes, Journal of 882 
Climate, 30, 6297–6308, https://doi.org/10.1175/JCLI-D-16-0458.1, 2017. 883 

Zheng, J., Wang, H., and Liu, B.: Impact of the long-term precipitation and land use changes on runoff 884 
variations in a humid subtropical river basin of China, Journal of Hydrology: Regional Studies, 42, 885 
101136, 2022. 886 

Zhu, Q., Luo, Y., Zhou, D., Xu, Y.-P., Wang, G., and Tian, Y.: Drought prediction using in situ and remote 887 
sensing products with SVM over the Xiang River Basin, China, Natural Hazards, 105, 2161–2185, 888 
2021. 889 

 890 


	Abstract
	1 Introduction
	2. Methodology
	2.1 Derivation of 2-meter relative and specific humidity
	2.2 Sensitivity analysis on meteorological variables for runoff
	2.3 Deep learning-constrained hydrological modeling
	2.3.1 Conceptual hydrological models
	2.3.2 Hybrid scheme of hydrological model and machine learning

	2.4 Drought indexes and run theory
	2.5 Socioeconomic exposure assessments based on the Copulas and most likely realization
	2.6 Quantifying the uncertainty contributed by different sources

	3. Data and materials
	3.1 In situ observation dataset
	3.2 GRACE/GRACE-FO measurements
	3.3 ERA5-Land dataset
	3.4 Bias-corrected GCM outputs and socioeconomic scenarios

	4. Results
	4.1 Observed changes in SRI and TWS-DSI based drought
	4.2 Machine Learning-constrained streamflow simulation and model evaluation
	4.3 Projected changes in univariate drought characteristics
	4.4 Bivariate drought changes and corresponding socioeconomic risks

	5. Discussion
	5.1 Uncertainty decomposition
	5.2 Limitations and future work
	5.3 Suggestions for drought mitigation in China

	6. Conclusions
	Data availability
	Acknowledgments
	Competing interests
	References

