Preprints
https://doi.org/10.5194/hess-2023-181
https://doi.org/10.5194/hess-2023-181
06 Sep 2023
 | 06 Sep 2023
Status: a revised version of this preprint was accepted for the journal HESS and is expected to appear here in due course.

Machine learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks

Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, and Aliaksandr Volchak

Abstract. Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. Although machine learning is increasingly employed for hydrological simulations, few studies have used it to project hydrological droughts, not to mention the bivariate risks of drought duration and severity as well as their socioeconomic effects under climate change. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics in 179 catchments over China, using 5 bias-corrected GCM outputs under three shared socioeconomic pathways, five hydrological models and a deep learning model. We quantify the contribution of various meteorological variables to daily streamflow by using a random forest model, then employ terrestrial water storage anomalies and a standardized runoff index to evaluate recent changes in hydrologic drought. Subsequently, we construct a bivariate framework to jointly model drought duration and severity by using Copula functions and the most likely realization method. Finally, we use this framework to project future risks of hydrological droughts as well as associated exposure of gross domestic product and population. Results show that our hybrid hydrological-deep learning model achieves >0.8 Kling-Gupta efficiency in 161 out of 179 catchments. By the late 21st century, bivariate drought risk is projected to double over 60 % catchments, mainly located in Southwest China. Our hybrid model also projects substantial GDP and population exposures by increasing bivariate drought risks, suggesting an urgent need to design climate mitigation strategies towards a sustainable development pathway.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, and Aliaksandr Volchak

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on hess-2023-181', Anonymous Referee #1, 04 Oct 2023
    • AC1: 'Reply on RC1', Jiabo Yin, 12 Oct 2023
  • RC2: 'Comment on hess-2023-181', Anonymous Referee #2, 03 Jan 2024
    • AC2: 'Reply on RC2', Jiabo Yin, 06 Jan 2024

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on hess-2023-181', Anonymous Referee #1, 04 Oct 2023
    • AC1: 'Reply on RC1', Jiabo Yin, 12 Oct 2023
  • RC2: 'Comment on hess-2023-181', Anonymous Referee #2, 03 Jan 2024
    • AC2: 'Reply on RC2', Jiabo Yin, 06 Jan 2024
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, and Aliaksandr Volchak
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, and Aliaksandr Volchak

Viewed

Total article views: 826 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
603 182 41 826 122 24 28
  • HTML: 603
  • PDF: 182
  • XML: 41
  • Total: 826
  • Supplement: 122
  • BibTeX: 24
  • EndNote: 28
Views and downloads (calculated since 06 Sep 2023)
Cumulative views and downloads (calculated since 06 Sep 2023)

Viewed (geographical distribution)

Total article views: 763 (including HTML, PDF, and XML) Thereof 763 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 11 Jun 2024
Download
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using 5 bias-corrected GCM outputs under three shared socioeconomic pathways, five hydrological models and a deep learning model.