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Abstract 

Groundwater level (GWL) dynamics result from a complex interplay between groundwater systems and the Earth system. This 

study aims to identify common hydrogeological patterns and to gain a deeper understanding of the underlying similarities and 10 

their link to physiographic, climatic, and anthropogenic controls of coastal groundwater in coastal regions. The most striking 

aspects of GWL dynamics and their controls were identified through a combination of statistical metrics, calculated from about 

8,000 groundwater hydrographs, and pattern recognition using clustering algorithms, classification using Random Forest, and 

explanation using machine learning techniques and SHapley Additive exPlanations (SHAP). Overall,Hydrogeological 

similarity was defined by four different GWL dynamicsclusters representing distinct patterns emerge, independent of the 15 

different seasons, time series lengths, and periodsof GWL dynamics. We show in this study that similar GWL dynamicsThese 

clusters can be observed around the worldglobally across different continents and climate zones, but  simultaneously vary 

regionally and locally, suggesting a complicated interplay of controlling factors. The main controls differentiating GWL 

dynamics were identified, but we also provide evidence for the currently limited ability to explain GWL dynamics on large 

spatial scales, which we attribute mainly to uncertainties in the explanatory data. Finally, with different combinations of site 20 

characteristics, but also that the main factors differentiating these patterns can be identified. Three of the identified patterns 

exhibit high short-term and interannual variability and are most common in regions with low terrain elevation and shallow 

groundwater depth. Climate and soil characteristics are most important in differentiating these patterns. tThis study provides 

new insights into the hydrogeological behavior of groundwater in coastal regions and guidesance for systematic and holistic 

groundwater monitoring and modelling and motivatesing to consider various different aspects of GWL dynamics when, for 25 

example, when estimating predicting climate-driven induced GWL changes – , and to use explainable machine learning 

techniques to deal with GWL complexity – especially when information on potential controls is limited or needs to be verified. 

1. Introduction 

When GWL dynamics are tracked over time using groundwater hydrographs, the quantitative status of groundwater resources 

can be determined. Groundwater resources are exploitedtapped and measured locally, and GWL dynamics are subjectrespond 30 
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to processes in their immediate local and regional environment (Bear, 2012), such as groundwater recharge rates, groundwater 

flow and pumping, and seawater intrusion (SWI) in coastal aquifers (Costall et al., 2020; Parisi et al., 2023). Hence, they are 

strongly location-bound, and there is “a need for groundwater assessments at the field level” (United Nations, 2022). To this 

end, it is common practice in local studies to incorporate direct information from the groundwater system combined with expert 

knowledge of potential controls into numerical, statistical, or machine learning models (e.g. in Knowling et al. (2015), Güler 35 

et al. (2012), and Lee et al. (2019)). Knowling et al., 2015, Güler et al., 2012 and Lee et al., 2019). However, comprehensive 

knowledge of aquifer processes at the local scale is often lacking, posing even greater challenges for regional, continental, or 

global assessments of groundwater systems. Such larger scales are important, for example, concerning large or transboundary 

aquifer systems, global virtual water trade, and international frameworks such as the UN Sustainable Development Goals 

(Donnelly et al., 2018; Nimmo et al., 2021). A systemic understanding of aquifer properties is the key to sustainable 40 

groundwater management and governance (Guppy et al., 2018; Elshall et al., 2020). Generalized scientific understanding of 

processes currently relies heavily on aggregating and upscaling local knowledge of groundwater's interactions bidirectional 

connections with the land surface and submarine processesEarth system,  (Smerdon, 2017; Lall et al., 2020; Gleeson et al., 

2020), however, is often lacking direct observation-based evidence. 

While it is largely unclear how GWL dynamics compare at large scales, the classification of GWL time series applied on such 45 

scales holds the potential to provide valuable insights into hydrogeological similarity (Barthel et al., 2021). For instance, these 

insights can prove valuable in assessing the coherence of large-scale process-based models by focusing on similarities in 

patterns and spatial trends, rather than solely relying on the magnitude of aggregated errors, effectively mitigating the 

commensurability problem (Gleeson et al., 2021). In contrast, process understanding is limited when only the long-term mean 

or trend of GWL dynamics is usedconsidered (Lischeid et al., 2021; Gleeson et al., 2021; Baulon et al., 2022a). 50 

The present study provides, for the first time, a classification of GWL dynamics from the global scale, follows this idea and is 

motivated by (a) a large amount of GWL data available today – although not yet centralized and freely accessible for many 

regions of the world (United Nations, 2022) – and (b) the advancement of data-driven methods in earth Earth system sciences, 

which are not only capable of finding patterns unseen by humans but are also increasingly capable of explaining them 

(Reichstein et al., 2019; Shen et al., 2018). Previous studies have successfully applied inductive classification approaches 55 

(Olden et al., 2012), synthesizing different aspects of GWL dynamics at local to regional scales to investigate physiographic, 

climatic, and anthropogenic controls of GWL dynamics (Giese et al., 2020; Haaf et al., 2020; Ascott et al., 2020; Wunsch et 

al., 2021; Sorensen et al., 2021; Bosserelle et al., 2023), the function of groundwater in ecosystems (Martens et al., 2013), and  

or runoff processes (Rinderer et al., 2019).  

The primary focus of this study is to unveil GWL dynamics on global, regional, and local scales by analyzing local data that 60 

is distributed globally. The importance and vulnerability of coastal groundwater, which serves as a vital freshwater resource 

for ecosystems and large coastal communities with increasing water demands from groundwater (Oude Essink et al., 2010; 

Famiglietti, 2014; Ferguson and Gleeson, 2012; Moosdorf and Oehler, 2017), prompts this study to focus on disentangling 

GWL dynamics in coastal regions. Other studies have pointed out that understanding processes is limited when only the long-
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term mean or trend of GWL dynamics is used (Lischeid et al., 2021; Gleeson et al., 2021; Baulon et al., 2022a). In this study, 65 

wWe seek to aim at answering the following research questions: 

1. How is hydrogeological similarity observed on a global scale, and what are the implications of scaling on similarity 

patterns? 

2. What are the key controlling factors for GWL dynamics patterns on a global scale, and how do they explain the 

variations observed at smaller scales? 70 

3. What are the current opportunities and barriers to deriving generalizations of dynamics-control relationships in 

groundwater using data-driven approaches? 

This study accessesThe basis for answering these research questions is a newly compiled large and diverse dataset of about 

8,000 GWL time series of coastal aquifers from five continents. Information from the compiled and pre-processed time series 

(Sect. 2.1) was analyzed holistically using a set of previously defined statistical metrics from Heudorfer et al. (2019) that were 75 

Heudorfer et al. 2019 computed from individual groundwater hydrographs (Sect. 2.2), thereby reducing their dimensionality 

(Wang et al., 2006). Sect. 3.1 derives GWL dynamics patterns in coastal regions by using unsupervised clustering techniques 

(Sect. 2.3) to group GWL time series based on information derived from these aforementioned statistical metrics (Sect. 2.3). 

The importance and vulnerability of coastal groundwater, which serves as a vital freshwater resource for ecosystems and large 

coastal communities with increasing water demands from groundwater (Oude Essink et al., 2010; Famiglietti, 2014; Ferguson 80 

and Gleeson, 2012; Moosdorf and Oehler, 2017), prompts this study to focus on disentangling GWL dynamics in coastal 

regions. To deepen our understanding and elucidate key controlling factors for GWL dynamics, To explain these findings, 

independent data encompassing various potential controls of GWL dynamics and associated surface processes were obtained 

from global map products (Sect. 2.4) and were used to predict clusters in a Random Forest (RF) classification task (Sect. 2.5) 

with the results being presented in Sect. 3.2. The RF approach is a robust choice for classifying groundwater dynamics, widely 85 

acknowledged in water science. With its capacity to capture non-linear dependencies and manage uncertainties such as 

unknown feature importance, overfitting, and outliers, RF provides a reliable tool for exploring complex interactions in natural 

processes (Tyralis et al., 2019). SHAP values were calculated for the RF model (Sect. 2.6). These are used to explain 

relationships between predicted clusters and descriptive features in Sect. 3.3.  Such approaches of explainable machine learning 

have been rarely used, but are increasingly and successfully applied in hydrology (Worland et al., 2019; Yang and Chui, 2021; 90 

Wunsch et al., 2022; Liu et al., 2022; Haaf et al., 2023). These are used to explain relationships between predicted clusters and 

descriptive features in Sect. 3.3. We then discuss hydrogeological similarity results and the scaling effect (Sect. 4.1), evaluate 

derived explanations for GWL dynamics patterns (Sect. 4.2), and contextualize our findings within the framework of a case 

study region (Sect. 4.3). Section 5 provides concluding remarks. 
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2. Data and methods 95 

The design of this study consists of the calculation of statistical metrics (hereafter referred to as indices) using compiled GWL 

time series, and the clustering of GWL dynamics by applying unsupervised algorithms on the calculated indices. Subsequently, 

the clustering result that best differentiates characteristic groups of GWL dynamics was fed into an RF classifier together with 

local and regional natural and anthropogenic characteristics (hereafter referred to as attributes) from global map products that 

are potentially related to GWL dynamics. SHAP values were derived to understand the salient controls of each group of GWL 100 

dynamics. Unless stated otherwise, data pre-processing, modelling, and visualizations were done using Python (Python 

Software Foundation, 2021). 

2.1 GWL time series and pre-processing 

The GWL time series data set analyzed in this study was compiled from the national or and state governmental agencies listed 

in Table A1, in the years 2019 to 2022. Although attempts were made to find data for all coastal regions in the world, data 105 

collection focused on regions with a long coastline and large quantities of digitally available data. The wells from the compiled 

data set are mainly located in northwestern Europe (Belgium, Denmark, France, Germany, Ireland, Netherlands, and Sweden), 

but also in Australia, South Africa, Brazil, Canada, and the United States. The wells are part of the GWL monitoring networks 

of the respective countries, but anthropogenic impact on GWL dynamics cannot be ruled out for all wells. In addition, wells 

may be affected by SWI and thus have variable density (Post et al., 2007). However, density gradients are not analyzed in this 110 

study, because our focus is on absolute variations of the GWL. The GWL time series were selected based on the following 

criteria:  

a) Availability of secondary information (in convertible units for homogenization): 

 Latitude and longitude of the well location (with variable accuracy) 

 Reference vertical point/datum to measure the GWL depth 115 

 Date of observation 

b) Well location and situation: 

­ Selection of wells located at the global coasts: Well is located within 100 km distance of the shoreline. This 

follows the definitions of Martínez et al. (2007) and Mangor et al. (2017), which focus on ecological, 

economic, and social importance concerning coastal water resource planning. Thus, we did not aim to select 120 

aquifers directly related to marine processes, such as SWI.. 

­ Selection of shallow aquifers with mean GWLs less than 100 m below ground surface. It is important to note 

that this criterion is used as a directional guideline rather than an exact marker, as there is uncertainty of up 

to a few meters in the absolute groundwater depth of observations referenced to sea level that were converted 

to ground surface reference with elevation data from the Shuttle Radar Topography Mission (SRTM) (Kulp 125 

and Strauss, 2018; Rodriguez et al., 2006; source-specific information in the Supplement). 
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c) Temporal availability: 

­ Data must be available for at least four complete calendar years during the period:within the years 1979 to -

2019. 

­ Time series must not have more than ten percent missing observations with data gap lengths of no larger 130 

than two weeks after aggregation to weekly time steps. 

To obtain a homogeneous data set, fFurther source-specific pre-processing steps were necessary because ofdue to the very 

diverse data presentation, for example, regarding format, labels, and units. The reader is referred to the Supplement for notes 

on groundwater data collection and pre-processing. Potential anomalies or change points of the individual time series that 

indicate human activities, measurement,, or reporting errors were removed using Density-Based Spatial Clustering of 135 

Applications with Noise (DBSCAN; Ester et al., 1996) combined with -– due to the large number of time series -– visual 

inspection of suspicious time series, because we set the parameters rather conservatively, i.e. with the parameters set, DBSCAN 

detected outliers in more time series than we would have identified visually  (Fig. A1). In line with recent publications, aThe 

systematic and additional visual inspection of groundwater time series was found to be beneficial, in line with recent 

publications (Barthel et al., 2022; Berendrecht et al., 2022; Lehr and Lischeid, 2020; Retike et al., 2022). Subsequently, 140 

temporal availability criteria were checked once again, with remaining data gaps being linearly interpolated and time series 

were transformed to the 0-1 scale for calculating indices. 

2.2 Indices  

We calculated a total of 45 indices for all GWL time series using an unpublished R package (R Core Team, 2021) that was 

developed with the study conducted by Heudorfer et al. (2019). These indices statistically aggregate and describe various 145 

aspects of groundwater hydrographs:, its their structure (e.g., interannual fluctuation heights and changes), distribution (e.g., 

alignment of the GWL with upper or lower fluctuation limits), and its shape (e.g., steepness of hydrograph increases and 

decreases). For more detailed descriptions of the used indices (Table B1), we refer to Heudorfer et al. (2019). In addition, there 

are other promising signature-based time series characterizations for hydroclimatic time series, as selected and explored in 

Papacharalampous and Tyralis (2022), Papacharalampous et al. (2023) and Wunsch et al. (2021).  150 

For our approach, the indices were computed from weekly aggregated time series with a length of at least four years (Sect. 

2.1), which is at the lower end of the time period of four to eight years recommended in Heudorfer et al. (2019)Heudorfer et 

al. 2019. We decided to use short periods to enable a larger pool of time series to be taken into account for the global similarity 

analysis. The calculated set of indices transforms groundwater information into 45 static metrics. The resulting index value 

ranges were compared to those of Heudorfer et al. (2019) for quality control (Fig. B1). As a second n outlier treatment besides 155 

applying DBSCAN to the original time series (see Sect. 2.1), time series with index values in the outermost 0.001 % of the 

index value distribution (4 * σ) were discarded.  
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2.3 Cluster analysis  

Clustering of the indices was performed to find a generalized but robust representation of differing GWL dynamics in coastal 

regions. No specific indices were selected a priori to capture GWL dynamics holistically. This decision was made, because 160 

indices differ in their ability to describe GWL dynamics depending on the flow system and the groundwater regime (Heudorfer 

et al., 2019; Giese et al., 2020; Haaf et al., 2020). For a similar reason, Papacharalampous et al. (2023) recommended using a 

large variety of time series characteristics for similarity analysis in hydrology.  

A Principal Component Analysis (PCA) was applied to index values after standardization to avoid redundancies among the 45 

indices (Heudorfer et al., 2019; Fig. B2) and to reduce the number of features for clustering. The number of Principle 165 

Components (PCs) to be retained was set based on the scree plot and variance explained, yielding a dimensionality-reduced 

dataset, where indices are mapped as score values on the significant PCs. This was followed by a systematic search for the 

best aggregation on the scores using three different unsupervised clustering algorithms – agglomerative hierarchical clustering 

using the Ward criterion, k-means, and Gaussian mixture. Unsupervised methods aim to learn more about the internal 

dependencies among the explanatory variables (Bergen et al., 2019), meaning that no expectations regarding the number or 170 

patterns of clusters were pre-set. Instead, evaluation metrics (Rousseeuw, 1987; Caliński and Harabasz, 1974; Davies and 

Bouldin, 1979) were used to find the best arrangement of data points into clusters via optimizing within-cluster and between-

cluster similarity and dissimilarity.  

2.4 Attribute data 

Understanding GWL dynamics requires integrated information from its manifold controls. These are typically represented by 175 

attribute data from hydrogeology, climate, landuse and landcover, soil and lithology, surface waters, topography, subsurface 

structures, and (hydro)geology and anthropogenic activity (Moeck et al., 2020; Rajaee et al., 2019; Díaz-Alcaide and Martínez-

Santos, 2019). For river catchments, such datasets have already been collected for the regional scale (Addor et al., 2017; 

Klingler et al., 2021) and the global scale, most notably the HydroATLAS (Linke et al., 2019). However, to date, there are no 

global datasets available that encompass the above-mentioned attributes specifically for groundwater studies (Haaf et al., 180 

2020). Therefore, attributes mainly describing natural and anthropogenic characteristics and processes at the surface were 

collected from a variety of recent highest-resolution datasets available at the global scale (Table 1). These were used as proxies 

for global groundwater-specific datasets in this study. 

While river catchments are typically well-defined by topography, subsurface catchments are often complex and vary on small 

scales (Vahdat-Aboueshagh et al., 2021). Despite recent efforts to develop a similar approach for calculating watersheds with 185 

a better representation for groundwater (Nölscher et al., 2022; Huggins et al., 2023), at the moment there is no best-accepted 

method for groundwater-relevant delineation of various surface attributes on large scales. One approach to defining the 

contributing area of a groundwater well is to rely on the immediate vicinity and place a circular buffer of selected diameter 

around the monitoring site (Johnson and Belitz, 2009; Knoll et al., 2019). Using this approach, we extracted attributes were 
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extracted as averagesas averages from buffers of a 500 meters bufferradius placed around the well sites. The prepared attributes 190 

are of numerical and categorical type and contain information from multiple periods that have been unified where possible. 

The spatial resolution of the underlying source data is less than 30 arcseconds, which is about 1,000 meters, except for 

hydrological data, which is derived from grids with a spatial resolution of only 1800 arcseconds (approximately 55 km). Single- 

or multi-dimensional  or multidimensional raster data and spatial vector data were downloaded and processed for the well 

locations as follows (applied to each dataset as indicated in column * in Table 1): 195 

1.  1 Average (median or majority) raster values were extracted for buffer geometries using the “zonal statistics” tool in 

ArcGIS Pro (Esri, 2022) usingwith a cell size of 250 m. 

2.  2 Earth Engine Python API was accessed to directly calculate median raster values for buffer geometries and data 

download. 

3.  3 Average (median or majority) values from geospatial vector data were extracted for buffer geometries using the 200 

“spatial join” tool in ArcGIS Pro. 

4.  4 Distance was calculated between well points and polylines using the “near” tool in ArcGIS Pro. 

5.  5 Multidimensional rasters were aggregated to a single raster layer that presents the median or majority of 

superimposed raster cells of the period from 1981 to the latest available temporal dimension (“make multidimensional 

raster” tool and “raster aggregation” tool in ArcGIS Pro). Thereafter, we  6 cCalculated the median of multiple raster 205 

files using the “cell statistics” tool in ArcGIS Pro. 6 

6. For the distance of the well location to the closest river, we selected  rRivers that have a catchment area of at least 10 

km² or an average river flow of at least 0.1 m³ /sec-1, or both. 

Table 1 List (alphabetically by attribute category) of numeric (num) and categorical (cat) attributes used to relate GWL dynamics 
to controls and processes in this study. Single or multidimensional raster data and spatial vector data were downloaded and 210 
processed for well locations as follows (*): 1 Average (median or majority) raster values were extracted for buffer geometries using 
the zonal statistics tool in ArcGIS Pro (Esri, 2022) using a cell size of 250 m. 2 Earth Engine Python API was accessed to directly 
calculate median raster values for buffer geometries and data download 3 Average (median or majority) values from geospatial 
vector data were extracted for buffer geometries using the spatial join tool in ArcGIS Pro. 4 Distance was calculated between well 
points and polylines using the near tool in ArcGIS Pro. 5 Multidimensional raster were aggregated to a single raster layer that 215 
presents the median or majority of superimposed raster cells of the period from 1981 to the latest available temporal dimension 
(make multidimensional raster tool and raster aggregation tool in ArcGIS Pro). 6 Calculated the median of multiple raster files using 
the cell statistics tool in ArcGIS Pro. 6 Rivers that have a catchment area of at least 10 km² or an average river flow of at least 0.1 
m³/sec, or both. 

category attribute name short description unit 
(conv-
erted) 

data 
type 

period 
(aver-
aged) 

source 
temporal 
resolution 

source 
spatial 
resolution 

reference  * 

anthro-
pogenic 

population_density population density persons 
km-2 

num 2000 annual 30 arc sec 
(≈1 km) 

CIESIN 
(2018) 

 1 

irrigation irrigated area serviced by 
groundwater 

% num 2000 multi-annual 5 acr min 
(≈10 km) 

(AQUAS
TAT, 
2021)Sie
bert et al. 
(2015) 

 1 
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groundwater_abstr
action 

actual net abstraction from 
groundwater 

kg m-2 
a-1 

num 1981-
2016 

monthly 1800 arc 
sec (≈55 
km) 

Müller 
Schmied 
et al. 
(2020) 

 5,1 

climate temperature_mean mean annual daily mean air 
temperatures 

°C num 1981-
2010 

period 
average 

30 arc sec 
(≈1 km) 

Karger et 
al. (2017) 

 1 

temperature_max highest temperature of any 
monthly daily mean 
maximum temperature 

°C num 1981-
2010 

period 
average 

30 arc sec 
(≈1 km) 

Karger et 
al. (2017) 

 1 

temperature_min lowest temperature of any 
monthly daily mean 
maximum minimum 
temperature 

°C num 1981-
2010 

period 
average 

30 arc sec 
(≈1 km) 

Karger et 
al. (2017) 

 1 

precipitation accumulated precipitation 
amount 

kg m-2 
a-1 

num 1981-
2010 

period 
average 

30 arc sec 
(≈1 km) 

Karger et 
al. (2017) 

 1 

PET evapotranspiration of 
reference crop (ET0) 

mm 
day-1 

num 1970-
2000 

period 
average 

30 arc sec 
(≈1 km) 

Trabucco 
and 
Zomer 
(2019) 

 1 

aridity aridity index (high for more 
humid conditions, and low 
for more arid conditions) 

- num 1970-
2000 

period 
average 

30 arc sec 
(≈1 km) 

Trabucco 
and 
Zomer 
(2019) 

 1 

landuse 
and 
landcover 

landuse major landuse class - cat 1981-
2019 

annual 30 arc sec 
(≈1 km) 

Winkler 
et al. 
(2020) 

 5,1 

ecosystem major terrestrial ecosystem 
class 

- cat - - 7.5 arc sec 
(≈250 m) 

Sayre et 
al. (2020) 

 1 

soil and 
lithology 

soc soil organic carbon 0-5 cm 
mean 

dg kg-1 num - - 7.5 arc sec 
(≈250 m) 

Poggio et 
al. (2020) 

 2,3 

bdod bulk density 0-5 cm mean dg cm-3 num - - 7.5 arc sec 
(≈250 m) 

Poggio et 
al. (2020) 

 2,3 

clay clay content 0-5 cm mean g kg-1 num - - 7.5 arc sec 
(≈250 m) 

Poggio et 
al. (2020) 

 2,3 

sand sand content 0-5 cm mean g kg-1 num - - 7.5 arc sec 
(≈250 m) 

Poggio et 
al. (2020) 

 2,3 

silt silt content 0-5 cm mean g kg-1 num - - 7.5 arc sec 
(≈250 m) 

Poggio et 
al. (2020) 

 2,3 

lithology major lithological class - cat - - polygons Hartmann 
and 
Moosdorf 
(2012) 

 3 

unconsol_sediment unconsolidated sediments 
major class 

- cat - - polygons Börker et 
al. (2018) 

 3 

permeability surface permeability log(k) 
m2 

num -  polygons Huscroft 
et al. 
(2018) 

 3 

surface 
waters  

streamflow mean annual river discharge m3 s-1 num 1981-
2015 

annual 30 arc sec 
(≈1 km) 

Barbaross
a et al. 
(2018) 

 5,1 

distance_coast distance of well location to 
the coastline 

km num -  polyline Lehner 
and Grill 
(2013) 

 4 
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distance_stream distance of well location to 
the closest river 

km num -  polyline Lehner 
and Grill 
(2013) 

 4,6 

runoff runoff from land (sum of 
runoff components) 

kg m-2 
a-1 

num 1981-
2016 

monthly 1800 arc 
sec (≈55 
km) 

Müller 
Schmied 
et al. 
(2020) 

 5,1 

TWS total water storage (sum of 
all water storage 
compartments) 

kg m-2 num 1981-
2016 

monthly 1800 arc 
sec (≈55 
km) 

Müller 
Schmied 
et al. 
(2020) 

 5,1 

topo-
graphy 
and sub-
surface 
depths 

bedrock_depth absolute depth to bedrock cm num - - 7.5 arc sec 
(≈250 m) 

Shanggua
n et al. 
(2017) 

 1 

wtd water table depth to the 
shallow groundwater table 

m num - - 30 arc sec 
(≈1 km) 

Fan et al. 
(2013) 

 5,1 

elevation elevation  m num 1994 - 1 arc sec 
(≈30 m) 

Farr et al. 
(2007) 

 2,3 

slope steepness of elevation 
surface 

-° num 1994 - 1 arc sec 
(≈30 m) 

Farr et al. 
(2007) 

 2,3 

 220 

2.5 Random Forest model 

From n identified clusters (Sect. 2.3), tThe classification task was to assign the correct cluster from out of From n identified 

clusters (Sect. 2.3),  using ta set of attributes (Sect. 2.4). Well locations were considered for the RF classification (Breiman, 

2001) only when data for all attributes were available. Furthermore, to avoid multiple clusters for a single combination of 

attributes, the cluster with the highest frequency was selected. The instance was retained if the identified cluster constituted 225 

more than 50 % of all clusters associated with that specific combination of attributes. The categorical attributes landuse, 

ecosystem, unconsolidated sediment, and lithology were pre-processed for their use in the RF model using one-hot encoding. 

The RF model was optimized and evaluated with a stratified split of the dataset into a group for training and optimization (80 

% of the data) and a group for testing (20 % of the data), taking into account an imbalanced dataset, where not all clusters have 

equal numbers of wells assigned and where regions are not represented equally by the dataset. For model optimization, 230 

hyperparameters were tuned within a 5five-fold cross-validation framework. RF is a tree-based method that contains structures 

for feature selection (Breiman, 2001). No explicit feature selection was applied during pre-processing or model optimization, 

driven by the objective of exploring the relative importance and effects of all potential controls as well as their collective 

impacts on GWL dynamics. Evaluation during model optimization and with the testing data of the optimized model was carried 

out using the model accuracy, calculated as the total number of correctly assigned classes divided by the sample number. In 235 

addition, the optimized model, i.e. the success of the classifier, was evaluated with metrics for the individual clusters: precision; 

recall; F1-score. Here, precision is the number of correctly- identified wells per cluster divided by all the times the model 
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predicts that cluster. Recall is the number of correctly-identified wells per cluster divided by the total number of wells in that 

cluster. The F1-score is twice the multiplication of precision and recall (2 * precision * recall) divided by the sum of precision 

and recall. RF in general works reasonably well when using the default values of hyperparameters in common algorithms 240 

(Probst et al., 2019). However, performance improvements can still be achieved by tuning especially the number of trees that 

should be set high enough for robust results and the number of features considered for each time the tree is split. Up to 2,000 

trees were tested in combination with either all features or their square root being considered when looking for the best split 

using two different splitting criteria (“Gini” impurity and “Entropy”: Breiman, 2001).  

2.6 SHAP analysis 245 

SHapley Additive exPlanations (SHAP) values (Lundberg et al., 2020) were used to investigate the feature attributions (feature 

importance and feature effects) to explain the RF classification. Such approaches of explainable machine learning have been 

rarely used, but are increasingly and successfully applied in hydrology (Worland et al., 2019; Yang and Chui, 2021; Wunsch 

et al., 2022; Liu et al., 2022; Haaf et al., 2023). The three-dimensional space of SHAP values for the multiclass problem of 

this study is given by the number of clusters, the number of samples, and the number of features, i.e. attributes. Larger SHAP 250 

values for a specific cluster correspond to a higher probability of the cluster label. SHAP values of the samples that are part of 

the test dataset were analyzed collectively to explain how attributes impact the classification of the model. This corresponds 

to a global explanation of the model. For some analyses, SHAP values were combined for the attribute categories listed in 

Table 1. The SHAP values of individual instances, i.e. for well sites, were combined with regional information to discuss the 

extent to which the generalized GWL dynamics derived through the indices approach of this study can be explained in a case 255 

study region. When explaining controls of GWL dynamics from SHAP values, it is important to consider the interrelationships 

between the features. From the point of redundant features, the model is mainly trained on the feature with the most significant 

information in combination with other selected features. Hence variables that combine information included in other features 

are generally ranked higher and reduce the ranking of the other redundant features. 

3. Results 260 

3.1 Identification of groundwater level dynamics patterns 

Application of the time series selection criteria from Sect. 2.1 resulted in a set of 8,574 GWL time series for which 45 indices 

were calculated, respectively. After removing time series with extreme index values (Sect. 2.2), a dataset with indices for 7,888 

time series remained. The value ranges for each of the different indices are comparable to those found by Heudorfer et al. 

(2019) (Fig. B1). Several indices showed a strong linear correlation (Fig. B2). From the PCA, five PCs represented 70 % of 265 

the variability of the linearly combined indices, while the first three PCs already described more than half of the variability 

Kommentiert [AN20]: Reviewer 2 asked for the Gini criterion 
and a reference in the results section, however we already provide 
the reference and information about the use for the criterion here. 

Kommentiert [AN21]: We changed the position of figures and 
Table 2 to follow the recommendation by reviewer 1 to display 
figures/tables after they have been explained 



11 
 

(Fig. C1). The top five PCs served as input for the three clustering algorithms. The threese algorithms yielded similar results, 

where the highest cluster separation was achieved with three or four clusters (CL). K-means yielded the best cluster separation 

compared to hierarchical clustering and Gaussian mixture on all three evaluation criteria for cluster separation (Fig. C2). 

Comparing the cluster membership of wells, cluster composition based on k-means clustering is found to be quite similar to 270 

hierarchical clustering for most well sites (Fig. C3). The various characteristics of GWL dynamics can be assumed to exhibit 

complex and non-linear interlinkages in the multidimensional space.  

Given the nature of the data set, the success of the different clustering approaches for disentangling GWL dynamics can be 

mainly attributed to the following two aspects. Firstly, it is plausible that the data distribution may not strictly follow Gaussian 

distributions because already individual indices show nonlinear behavior (Fig. B1; Haaf et al., 2020), limiting the effectiveness 275 

of Gaussian mixture models. In such cases, the characteristics of the dataset can favor clustering algorithms such as k-means 

and hierarchical clustering that are more flexible with regard to the range of cluster shapes and sizes. Secondly, 

multidimensional datasets with complex and non-linear interlinkages may often lack clearly defined and compact clusters 

(Campello et al., 2020). This , which becomes evident when upon analyzing the scatter plot of the first three PCs (Fig. C3). 

This , makinges clustering for with k-means and hierarchical clustering challenging. However, despite this limitation, these 280 

algorithms still exhibit advantages in terms of capturing the distribution requirements of the GWL dynamics dataset and k-

means best disentangles the main patterns within GWL dynamics. Therefore, k-means was chosen to cluster the indices. 

 

The predominant cluster differs between the coastal regions represented in this study. In regions with a high density of wells, 

usually all clusters are present (Fig. 1). Therefore, similar patterns of GWL dynamics are found in coastal aquifers across the 285 

globe. Regional spatial patterns, i.e. geographically concentrated clusters, are visible for South Africa and Australia where 

most wells belong to cluster CL3 and within Europe, where most of the wells in the dataset are located. For example, in 

Germany wells assigned to CL3 are mostly located around the Baltic Sea and further inland, while the other clusters are 

pronounced along the exposed west coast. In the Netherlands and Belgium, most wells belong to CL1 and CL2. Most wells in 

north-eastern France are assigned to CL3, whereas most wells in north-western France are assigned to CL2. Each cluster 290 

represents a distinct pattern of GWL dynamics, regardless of shifted or opposing seasons in different regions, as shown in Fig. 

2, . where, fFor example, the double hump in the average annual hydrograph of North America with time series from wells 

being located mainly in the upper latitudes could be attributed to snowmelt and is found in all clusters. Patterns are the most 

precise (smallest confidence intervals) for the European dataset.  
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 295 

Figure 1 Assignment of clusters to well locations globally (center) and in coastal regions in North America, Europe (enlarged map 
of France and northwestern Europe), Australia, South Africa, and Brazil. Due to the large scale, overlapping dots are not jittered, 
but well points are shuffled to prevent the same clusters from being constantly drawn over others. 

GWLs in three out of four clusters can be located either mostly at their upper (CL1) or lower (CL4) boundary during the year 

with high GWLs in winter and spring to low GWLs in summer, or the GWL fluctuates around its annual median during the 300 

year with high interannual amplitude (CL2). In contrast, are the GWLs of CL3 are characterized by, where the maximum of 

the water levels is being reached later in the year. 
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Figure 2 Annual hydrographs (median and 95 % confidence interval) from averaged groundwater depths of scaled GWL time series 
for each month per cluster, calculated and plotted for different the coastal regions in North America (NA), Europe (EU), South 305 
Africa (SAZA), and Australia (AU) when at least ten time series associated with the respective cluster were available. 

The clusters can be distinguished with respect to multiple features of the hydrograph, expressed by indices. Thus, the salient 

pattern of each cluster is defined by several indices, not by an individual one. However, some individual indices allow to 

separate clusters or groups of clusters better than the others. Fig. 3 shows how different aspects of GWL dynamics, each 

described by multiple indices (Table B1), contribute to disentangling patterns of GWL dynamics. Many indices of multiple 310 

components clearly separate clusters concerning the hydrograph structure, including the regularity of the seasonal amplitude 

(parde.seasonality) that is small for CL1 and CL3 and largest for CL2, the size of the global amplitude of the unscaled GWL 

that is comparatively small for CL4, the manifestation of interannual variation (e.g. from Base Flow Stability - BFS that implies 

that interannual variation is rather stable in CL3 and unstable in CL4) and different order of flashiness (e.g. from Base Flow 

Index - BFI where the baseflow component is large for CL3 and small for CL4). From the time series distribution aspect, GWL 315 

dynamics from CL1 can be characterized as upper bounded, while GWL dynamics from CL4 are slightly lower bounded (e.g. 

from median). Dispersion over the range of GWLs (e.g. from the range of duration curve (fdc.range) between different 

percentiles) is smallest in CL1 and largest in CL2. The shape of GWL time series in terms of both scale (hydrograph magnitude 

– sqr.avg) and slope (e.g. from rise.avg) distinguish the clusters quite well from each other. For example, CL3 is particularly 

noticeable for combining GWL time series with a small slope while CL4 combines such with a large slope.  320 

Kommentiert [AN23]: Color scheme improved. 

Kommentiert [AN24]: Added to follow the request by reviewer 
1 

Kommentiert [AN25]: Added to follow the request by reviewer 
1 



14 
 

 

Figure 3 Example groundwater time series from the European continent illustrate typical scaled GWL time series where one aspect 
from each component of the Heudorfer et al. (2019) typology of GWL dynamics (Table B1) is weak (left column) and strong (right 
column), using with an example index from that component that is displayed showing within-cluster variability (see Fig. C4 for 
within-cluster variability for all indices). 325 

Kommentiert [AN26]: Color scheme improved. 



15 
 

3.2 Classification of groundwater level dynamics patterns 

In the classification task using RF, controls of GWL dynamics were investigated using more than 5,000 unique cluster-attribute 

relationships. Stable classification accuracy during hyperparameter tuning was achieved with more than 100 trees. Both 

splitting criteria that were tested performed equally well in terms of classification accuracy, whereas the consideration of 

different features for the splits lead to a significantly better higher accuracy (Fig. D1). The final model of this study was set up 330 

using the Gini criterion, randomly varied subsets (square root) of features for each split and 700 trees. 

With the final model, approximately 62 % of the clusters on average were classified correctly, i.e. were assigned to the correct 

cluster out of four. Comparing the model's result accuracy to a scenario where descriptors were shuffled shows an improvement 

in accuracy of about 60 %. By shuffling the attributes, the relationships between the descriptors and the target variable (clusters) 

are disrupted, and any observed accuracy in the shuffled model is purely due to chance. These results suggest the presence of 335 

moderately strong linkages between the attributes and clusters describing distinct GWL dynamic patterns within the RF model. 

Fig. 4 shows that the classification performance is distributed slightly partly unequally across the different clusters. From the 

confusion matrix, it can be seen that CL3 is most often (78 %) predicted correctly and, if not, is either confused with CL1 or 

CL2, but almost not with CL4. The other clusters are predicted correctly similarly often, with accuracies ranging from 55 % 

to 60 %. Recall and precision of the clusters are quite similar. Considering the slightly different support of each cluster, the 340 

classification performs on average similarly well in terms of false positive cluster assignments (e.g. a well site is classified as 

CL1 when it actually belongs to another cluster), and false negative assignments (e.g. a well site that belongs to CL1 is not 

classified as CL1 but to as another cluster). Overall, tThere is are only not muchminor differences in classification performance 

between among the different various coastal regions. 

 345 

Figure 4 Performance of the classification task using Random Forest (Breiman, 2001). Left: Evaluation metrics of classification 
(precision, recall, and f1-score) given per cluster and for the weighted average (performance metrics weighted accordingly to the 
support of each cluster). Right: Normalized confusion matrix. Rows represent the actual cluster, while columns represent the 
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predicted cluster. Thus, the percentages of correctly predicted classes are represented on the diagonal elements and the confusion 
(i.e. misclassification) is represented on the off-diagonal elements. 350 

3.3 Model explanations from SHAP values 

SHAP values that were calculated for the classification model are used in the discussion to explain the importance and effects 

of different controls on GWL dynamics, while general results for the RF model are presented here.  

Firstly, bBy analyzing the correlation of SHAP values, we can detect where feature importance may be affected by information 

redundancy (Fig. E1). In this study, the redundancy among features tends to be small or moderate, and patterns are not very 355 

consistent across the clusters. Specifically, the redundancy between feature groups (in correspondence with categories of 

attributes in Table 1) is minimal for cluster CL3 in the model, whereas it is more evident for cluster CL4. In the case of cluster 

CL2 exhibits , there is a redundant contributions of from anthropogenic features with and features derived from surface waters, 

with climate features being additionally redundant to the prediction of cluster CL1. 

Secondly, tThree groups of features are ranked higher in terms of overall feature importance in the global model compared to 360 

the remaining three groups (Fig. E2). These are topography and subsurface depths, followed by soil and lithology, and climate, 

with only minor differences in the importance of the features between the clusters. The largest difference is that the feature 

group topography and subsurface depths are about twice as important in the model for predicting CL3 compared to as the 

other three clusters. F, for which these clusters, the feature groups soil and lithology and climate are as similarly important as 

topography and subsurface depths. Therefore, features of the group topography and subsurface depths primarily play a role 365 

in distinguishing CL3 from the other clusters.  

More in-depth insights into how the model can distinguish the clusters and in particular CL1, CL2, and CL4 from each other 

through the various features can be derived when using SHAP values to link the feature impacts to their effects (Table 2; Fig. 

E3). From the individual features, elevation, slope, and water table depth (wtd) are most important within the feature group 

topography and subsurface depths, soil fractions and the (non)occurrence of specific unconsolidated sediments are most 370 

important within the feature group soil and lithology, temperature is most important within the feature group climate, irrigation 

is most important within the feature group anthropogenic, distance to the coast is most important within the feature group 

surface waters and the (non)occurrence of a specific terrestrial ecosystem type is most important within the feature group 

landuse and landcover.  

The most significant effects that features have on predicting clusters in the RF model are those that best separate clusters from 375 

each other (Table 2). CL3 is best distinguished from the other clusters by a comparatively large elevation, large wtd, and large 

slope. In addition, some effects specifically separate (a) CL3 from CL4, (b) CL4 from CL1 and CL2, and (c) CL1 from CL2, 

although the latter is the least successful in the model (largest confusion values of CL1 and CL2 in Fig. 4). Thirdly, prevailing 

effects that features have on the prediction of clusters in the RF model (Table 2) are those that separate CL3 from the other 

clusters, effects that specifically separate CL3 from CL4, effects that separate CL4 from CL1 and CL2, and effects that separate 380 

CL1 from CL2, although the latter is least successful in the model (largest confusion values in Fig. 4). CL3 is best distinguished 
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from the other clusters by a comparatively large elevation, large water level depth, and large slope. In comparison with CL2, 

CL3 combines well locations with lower minimum and average temperatures and sediments typical for glaciofluvial deposits. 

In comparison with CL1, CL3 combines well locations with less precipitation, more coarse-grained soils and less 

anthropogenic activity. Feature effects between CL3 and CL4 are most often oppositecontrary, although less pronounced for 385 

climate. Where CL1 CL2 is predicted, there are also comparatively more coarse-grained soils, and rather not sediments typical 

for aeolian deposits, and anthropogenic activity is low. These characteristics from soil and lithology as well as anthropogenic 

activity also separate CL4 from CL2. Less differentiates CL4 from CL1. It is noticeable that the distance of the well to the 

coast is generally higher in CL4 compared to CL1. The typical well locations in CL1 and CL2 differ in their soil fractions 

(finer-grained soils in CL1) and anthropogenic activity (larger in CL1).  390 

Table 2 Qualitative description of the more important and in their effects more differentiable features, starting with the feature 
group with the greatest importance for the model (Fig. E2), for the prediction of the individual clusters in comparison based on Fig. 
E3. “<” and “>” mark smaller and larger feature values for one or more clusters compared to one or more other clusters, while 
there is no unique clear information for --. *aridity index: see Table 1. 

category attribute/feature (name) CL1 CL2 CL3 CL4 

topography and subsurface depths elevation < < > < 

wtd < < > < 

slope -- < > < 

soil and lithology soil fractiongrain size (clay; silt; sand) < > > < 

aeolian deposits (unconsol_sediment_Ae) -- < < > 

glaciofluviale deposits (unconsol_sediment_Gf) -- < > -- 

climate temperature (_min; _mean) -- > < -- 

precipitation > -- < -- 

aridity* > > < > 

anthropogenic irrigation > -- < > 

population_density -- < < > 

surface waters distance_coast < -- -- > 

landuse and landcover cold temperate moist grassland on plains > -- < > 

 395 

LastlyFinally, SHAP values for individual wells that are all located in the same region in northern Germany (Fig. 5) can be 

used to understand to what extenthow the results of the feature importance and effects also derived from the global data set 

apply regionally. We analyzed the SHAP values were analyzed forof  four well sites from the case study region that have 

located in northern Germany (Fig. 5) with the highest model’s probability of being predicted by the model for predicting each 

cluster in the test dataset (Figs. E4-E7). While tThe wells that are most likely to be predicted as CL1 and CL3 belong toare 400 

also included in these clusters, whereas the wells that are most likely to be predicted as CL2 and CL4 belong toare part of CL3. 

Thus, although CL3 is overall the best-identified cluster by the model (Fig. 4), in the case study region, where most of the 

wells belong to CL3, it is confused with CL2 and CL4 for the example wells. Theat CL1 is correctly prediction of CL1ed is 
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due to the low elevation and wtd at the well location as well as the presence of grassland (Fig. E4). Due to these characteristics, 

the well is also not predicted to be CL3, while the region'sand mean temperatures around 10 °C also favor CL3 at this well 405 

site.. The statistically averaged temperatures, which should be very constant for the region, can sometimes favor and sometimes 

disfavor all clusters. According to local feature importance in this region, temperature is the most important attribute following 

elevation and wtd for the prediction of GWL dynamics types at specific wells. However, when analyzing SHAP values for a 

model trained on a global dataset, we are primarily examining the global context for a local feature, not the local context. 

Besides confirming temperature, With these characteristics, the model predicts CL1 and CL3 over CL2 and CL4 in the case 410 

study region. CL3 is also correctly predicted where its prediction probability is largest, because of comparably large at the well 

location both elevation in the study region and anthropogenic activity are high andbecause there is no irrigation (Fig. E6). In 

contrast, a CL3 well is incorrectly predicted at the other well location as CL2 with low elevation and a population density that 

is below average for the region (Fig. E5). Another hen the opposite is true. As CL4, CL3 well is also incorrectly predicted as 

CL4 with when low elevation is low and and one of the highest clay contents for the region (Fig. E7)is high. The described 415 

correlations relationships are in line or not contradictory to the global correlations of Table 2. Kommentiert [AN29]: We improved this paragraph because 
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trained on global data at specific locations for clarification. 



19 
 

 

Figure 5 GWL dynamics patterns in the German federal state Schleswig-Holstein. (a) Cluster assignment to well locations and 
hydrogeology map of the German federal state Schleswig-Holstein (LfU-SH, 2003). Overlapping well markers are jittered at a 
minimum spacing of 500 meters and thus no longer represent the original well locations. Lighter cluster colors mark lower aquifer 420 
storeys. The cluster number in parentheses marks the true cluster from k-means clustering. (b) Exemplary time series of each cluster 
from the encircled well sites in (a). (c) Within-cluster variability of the example indices that each represent a component of the 
Heudorfer et al. 2019 typology from Fig. 3 plotted with indices values (dots) of the encircled well sites in (a) where the dots between 
CL2 and CL3, and between CL4 and CL3 mark the wells that have the highest probability for CL2 and CL4 in the RF model but 
belong to CL3 according to the indices clustering (see Fig. C5 for within-cluster variability for all indices that are plotted together 425 
with indices values of the selected well sites). 
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4. Discussion 

4.1 Hydrogeological similarity and scaling effect 

Four predominant types of GWL dynamics were identified for coastal wells distributed across five continents. Our results 

show, that shallow aquifers exhibit more diverse GWL dynamics than deeper aquifers. This suggests that absolute GWL depth 430 

is less determinant in differentiating global GWL dynamics than might be assumed based on the clustering of direct time series 

from a single particular region, as in Rinderer et al. (2019) where in particular mean water level and amplitude of variation 

determine clusters of GWL dynamics.  

Based on the spatial distribution of clusters, wells exhibit distinct regional structures that strongly imply the presence of 

underlying spatial controls, e.g. CL3 type GWL dynamics in northern Germany tend to coincide with Geest land, while CL1 435 

type GWL dynamics are more often found in the marshlands (Fig. 5a). Another example is that the topographical elevated 

Veluwe region in the center of the Netherlands is the only region at the North Sea where many wells are assigned to CL3 (Fig. 

1). However, GWL dynamics of different types are also frequently found in wells within a very short distance from each other 

or even on top of each other (in the case of multiple groundwater storeys). This means that the diversity of GWL dynamics 

can be larger locally than between two wells in different climate zones on different continents, likely due to the significant 440 

influence of heterogeneous hydrological conditions. Therefore, in addition to The first is more surprising than the second 

because it suggests a small-scale separation of groundwater landscapes. In line with the findings by Wunsch et al. (2021), it is 

shown , this result shows that nearby wells do not necessarily have a higher degree of similarity in GWL dynamics compared 

to more distant wells – even when these wells are located on different continents. Regionally similar, but locally diverse GWL 

dynamics highlight the complexity of generalizing GWL dynamics on different spatial scales. Yet, the fact that our results 445 

include spatial patterns at local, regional, and global scales (considering the globally distributed clusters of GWL dynamic 

types), speaks forpoints to the usefulness of our approach in finding generalizations beyond specific geographic contexts. We 

therefore conclude that our approach is robust their robustness with respect to scale dependency. Before, studies on GWL 

dynamics have resulted in system understanding at local and regional scales (Wunsch et al., 2021; Giese et al., 2020; Haaf et 

al., 2020). Although While this may be more straightforward for applied groundwater management and monitoring at these 450 

scales, this study is the first to provide insights into generalizations of GWL dynamics using a global dataset. 

The methodological approach underlying the GWL dynamics analysis offers much potential but also has limitations and 

uncertainties with respect to the validity of the generalizations generated. We found that using indices for analyzing GWL 

dynamics is efficient, and offers comparability and interpretability. In these terms, this approach might be superior compared 

to directly analyzing GWL time series or only focusing on the long-term mean or trends. Heterogeneous time series with 455 

different seasons, time series lengths, and periods can be combined in this methodological approach with robust results as 

previous studies have shown (Heudorfer et al., 2019; Wunsch et al., 2021), thereby reducing the dimension of the time series 

and potentially better establishing cause-and-effect relationships. From the clustering results, we can see that indices 
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successfully separate between climatic forcing (as present in seasonality) and physiographic forcing, while in practice it 

remains challenging to identify what drives GWL dynamics at various scales and settings (Blumstock et al., 2016; Moeck et 460 

al., 2020) and to distinguish between the impacts of climatic and other natural factors versus anthropogenic impacts on GWL 

dynamics and trends (Wriedt, 2017; Lischeid et al., 2021). Furthermore, from a global perspective, GWL time series are rarely 

sufficiently long to recognize the dimension of climate change. Although indices are also affected by the length of the GWL 

time series (Heudorfer et al., 2019), they can help to identify time series with "high-amplitude, low-frequency variability," 

such as in the Normandy (Paris Basin, France; compare Baulon et al., 2022b). Groundwater well sites with dominant 465 

interannual variations from multi-annual to decadal scales identified by Baulon et al. (2022b) in this area match well sites with 

CL3 type GWL dynamics found in this study (Fig. C6). At these well sites, the likelihood of approaching short-term 

groundwater drought is greater higher if the prevailing low-frequency variability is associated with a downward phase, while 

the annual groundwater levelGWL status and last winter's groundwater recharge have less influence on short-term drought 

(Baulon et al., 2022b). Overall, we can therefore assume that longer residence times are typical characteristics for CL3-type 470 

aquifers. 

 

The methodological approach underlying the GWL dynamics analysis offers much potential but also has limitations and 

uncertainties with respect to the validity of the generalizations generated.  

Despite that general robustness of indices was found starting at time series with a minimum length of four years (Heudorfer et 475 

al., 2019), uncertainties remain regarding the representativeness of the generalizations for individual wells with this time series 

period length, but less so for the generalizations themselves. Furthermore, Heudorfer et al. (2019) originally defined some of 

the indices for time series with daily resolution, and decadal GWL dynamics are only indirectly represented by indices in our 

study (e.g. seasonality in the annual hydrograph). Therefore, further investigation of the effects of different temporal 

resolutions and time series lengths, as performed in Papacharalampous et al. (2023) for hydroclimatic time series, would be of 480 

interest. With respect to the groundwater systems and processes represented by the GWL dynamics patterns, it should be 

emphasized that there may be a bias in favor of the typical GWL dynamics in northwestern Europe because most of the wells 

in the dataset are located there.   

Classification of specific groundwater processes requires input data specifically related to and known to be influential to these 

processes. However, there are major limitations with available GWL data, particularly in terms of time series length, and data 485 

resolution. Furthermore, from a global perspective, GWL time series are rarely sufficiently long to recognize the dimension of 

climate change, making it difficult to establish an effective monitoring and management strategy.. High-resolution time series 

are, for example, required for analyzing the interaction of groundwater with the sea (Haehnel et al., 2023). Accounting for 

SWI in GWL dynamics pattern analysis is best supported by pattern recognition or correction together with groundwater 

chemistry data (Narvaez-Montoya et al., 2023; Parisi et al., 2023). However, the the expansion of studies on this topic is 490 

currently hampered by the lack of GWL time series with high temporal resolution and long time series length currently hinders 

the expansion of such studies as well as the availability of qualitative groundwater data together with GWL data, among other 
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challenges in groundwater monitoring practice (Rau et al., 2020). Several studies have shown the degradation of groundwater 

in qualitative and quantitative terms due to its overexploitation (Alfarrah and Walraevens, 2018; Peters et al., 2022; Xanke and 

Liesch, 2022), but it was beyond the scope of this study to focus on changes in groundwater systems. Furthermore, more in-495 

depth analyses of the individual indices could help to find out to what extent and in which indices specific processes such as 

SWI or anthropogenic influence are manifested and thus contribute to a classification. 

. Furthermore,The with respect to the groundwater systems and processes represented by the GWL dynamics patterns, it should 

be emphasized that there may be a bias in favor of the typical GWL dynamics in northwestern Europe because most of the 

wells in the dataset are located there. indices-cClustering analysis has beenconducted in this study was instrumental in 500 

capturing the major GWL dynamics patterns observed inof GWL dynamics of coastal regions worldwide this study. The 

utilization of the k-means algorithm has enabled us to represent these patterns at a high level, providing valuable 

generalizations. However, if in other research questions the necessary level of pattern recognition is smaller, clustering 

algorithms that do not require both clearly distributed data and clearly defined clusters have the potential to identify additional 

clusters and uncover more nuanced dynamics within the dataset. 505 

4.2 Cause-and-effect relationships 

We further analyzed whether the identified types of GWL dynamics are meaningful, i.e., consistent with expected patterns 

(Yang and Chui, 2021), although machine learning can also reveal undetected and previously unexplained patterns. We 

generally expect patterns as a result of the multitude of natural and anthropogenic factors influencing GWL dynamics. 

Meaningful GWL dynamics further hold have the potential to derive cause-and-effect relationships between GWL dynamics 510 

and their driving forces, a topic for which observation-based evidence is comparatively scarce. , that are comparatively rare 

yet. Thus, in this study, driving forces were linked to GWL dynamics patterns in an RF classification task. Here, many different 

environmental attributes describing surface and – to a smaller extent – subsurface processes, potentially associated with 

groundwater recharge and discharge, were used to explain (dis)similarities within and between the identified patterns.  

While comparing individual aspects of the hydrograph with potential controlling factors can only explain specific aspects of 515 

GWL dynamics (e.g. Haaf et al. (2020) related flashiness (BFI) to focused recharge as a consequence of depressions or 

connectivity to streams), the holistic analysis of various GWL dynamics aspects against controls enables the estimation of the 

influence of multiple controls on processes defining groundwater quantity over time.  

Since GWL dynamics in coastal regions can be similar in different regions globally, similar GWL dynamics are not necessarily 

the result of the same cause-and-effect relationships. Rather, it can be expected that there are complex interlinkages of multiple 520 

controls that favour hydrogeological similarity at different manifestations of the individual attributes. We, therefore, confirm 

our initial expectation that similar GWL dynamics derived from indices are associated with multiple processes and, vice versa, 

that the important controls and processes can be identified and distinguished by a combination of indices. This is in line with 

previous findings with hydro-climatic time series (McMillan, 2020; Beck et al., 2016).  
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The results have shown, that relationships between GWL dynamics patterns and controls can be generalized for the global 525 

scale to some extent. Notably, the importance of different attribute categories (Table 1; Fig. E2) for shaping GWL dynamics 

is related to hierarchical relationships where climate, topography, and soil conditions have a greater influence on the location 

occurence and characteristics of surface waters and as well as landuse and landcover than the other way around (Fig. E2). This 

implies that the direct influencing factors offer more explanatory power. Then again, direct influencing factors in the attribute 

dataset are more often based on actual observations and often have a higher resolution. (e.g. the minor explanatory power of 530 

attributes from surface waters might also be related to a coarse spatial resolution of about 55 km). From the importance of 

elevation and water table depth, especially for the determination of CL3 type dynamics and differentiation from other dynamics 

that are more often found in near-surface aquifers, it can be concluded that these attributes mainly describe the increasing 

damping effect of groundwater recharge with increasingly long soil passages. The generally high importance of climatic 

attributes for GWL dynamics in this study –- either only in the long term or also in short periods –- is scientific consensus 535 

making climate change usually part of assessments of changes in groundwater systems (Riedel and Weber, 2020). Also, within 

the group of climatic attributes, the importance of direct attributes such as temperature outweighs derived attributes such as 

the aridity index. According to Table 2, certain types of unconsolidated sediments and a terrestrial ecosystem can distinctly 

indicate or exclude specific GWL dynamics types. These manifestations of categorical attributes are likely to serve as proxies 

for the general importance of their class. Due to the multitude of manifestations, only the most common ones likely appear in 540 

the importance ranking in Fig. E3 (e.g. aeolian deposits mainly exist in the Netherlands which also provides the most wells in 

the dataset).  

Anthropogenic activities such as irrigation and groundwater pumping typically have a localized effect. They have the potential 

to overprint different types of GWL dynamics even when the hydrogeological setting is the same (Sorensen et al., 2021). 

Together with small-scale lithological and hydrogeological peculiarities, they likely contribute the most to the variability of 545 

GWL dynamics patterns on a small scalelocally and regionally. Sect. 4.1 emphasizes the importance of the data basis, including 

its current limitations, for assessing certain processes. FFrom the comparably minor importance of anthropogenic attributes 

for GWL dynamics, it can could be assumed that global groundwater quantity is less influenced by anthropogenic than by 

natural controls. On the one hand, ; but this was also the expectation with using data derived from monitoring networks and 

after quality control. However, anthropogenic influence is difficult to disentangle from natural controls also in this study. On 550 

the other hand, iIt is unclear how much of the explanatory content of the anthropogenic attributes is based on anthropogenic 

activities and how much is due to correlations with natural controls (Fig. E1). Such interactions could be that irrigation is 

higher in dry climates and that there are more sealed surfaces where population density is high. HoweverTherefore, 

anthropogenic influenceimpact is difficult to disentangle from natural controls also in this study. Anthropogenic activities such 

as irrigation and groundwater pumping typically have a localized effect. They have the potential to overprint different types 555 

of GWL dynamics even when the hydrogeological setting is the same (Sorensen et al., 2021). Together with small-scale 

lithological and hydrogeological peculiarities, they likely contribute the most to the GWL dynamic patterns on a small scale.  
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Moderate accuracy of the RF model means that parts of the GWL dynamics derived from indices are not well predicted based 

on the used attributes. Hence, machine learning tools that are trained to find cause-and-effect relationships face the same 

challenge of process-based groundwater models: limited availability and quality of explanatory data, especially subsurface 560 

information. Even if there is great progress in the availability and quality of geoscientific data, surface attributes derived for 

the global scale are still biased by uncertainty in the data itself (Peng et al., 2017), coarse spatial resolution, (e.g. here the minor 

explanatory power of attributes from surface waters might also be related to a coarse spatial resolution of about 55 km) and by 

the period they cover. In the presented approach no dynamic attributes were used because they are not available for all attribute 

categories at the global scale. For instance, land use has a large influence on the water balance with land use conversion (Mishra 565 

et al., 2014). That explanatory information is missing in the RF model for differentiating GWL dynamics at the local to regional 

scale can be observed, for example, in the case study region in Northern Germany (Fig. 5)., where Furthermore, as explained 

in Section 2.4, studies of global scope such as this one face limitations in accurately defining subsurface catchments. the 

temperature should not vary significantly between well locations. However, according to SHAP values, temperature is the 

most important following elevation and water table depth (WTD) for the prediction of GWL dynamics types at specific wells 570 

(Fig. E4-E7).  

4.3 Case study 

Finally, the question also arises to what extent it is possible to explain the generalized GWL dynamics derived with the indices-

clustering approach of this study also regionally if attributes were only good enough. The inclusion of regional context using 

the case study from northern Germany (Fig. 5) serves a dual purpose in our study. First, in Sect. 4.1 we assessed the robustness 575 

and validity of our proposed approach for identifying GWL dynamics on different scales. In this section, the case study serves 

as a critical testbed for understanding the chances and limitations of extrapolating explanations for patterns of GWL dynamics 

from the global to the regional scale. A ground-truthing of the GWL dynamics patterns using expert knowledge from the case 

study region in northern Germany will shed light on this in the following. This case study was selected because a 

hydrogeological map and related hydrogeological information exist (LfU-SH, 2003), and information on the aquifer storey of 580 

the wells included in the GWL time series source dataset includes information on the aquifer storey of the wellsare available, 

and at the same time, the well density is high, and the accuracy of the RF model is about the same in this region as globally. 

These conditions , which allows the study of spatial patterns and the ground-truthing of the GWL dynamics patterns using 

expert knowledge.  

 585 

To a large extent, the near-surface aquifer in this area is a pore aquifer of silicate type formed during the Ice Age (LfU-SH, 

2003; Otto, 2001). The hydrogeological situation of the shallow groundwater can broadly be divided from west to east into 

three major landscapes: (a) low-lying marshlands (Marschen), (b) slightly raised Geest landscapes (Altmoraenengeest), the 
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lower outwash plain (Sander der Vorgeest) and intervening depression zones comprising the river valleys (Niederungen) and 

(c) morainic uplands with stronger relief (Jungmoraenen Oestliches Huegelland).  590 

Fig. 5a shows that the GWL dynamics in the marshlands predominantly belong to CL1 (59 %), especially in the upper two 

aquifer storeys (68 %) and close to the sea, followed by CL3 (20 %) which combines more GWL dynamics of the lower aquifer 

storeys (60 %) and well sites at the border to the Geest. The Geest and uplands are characterized by GWL dynamics that mainly 

belong to CL3, with some exceptions including the Geest landscape in the north close to the Danish border (GWL dynamics 

are of mixed type), the area around the major depression in the north (GWL dynamics mainly belong to CL1) and the eastern 595 

uplands at the southernmost bay (GWL dynamics mainly belong to CL1). In the lower Geest, GWL dynamics belong more 

often to CL2 (23 %) than in other landscapes. As in the marshlands, type CL3 GWL dynamics are more often associated with 

lower aquifer storeys compared to the other clusters in these areas (63-78 %), with the difference that CL3 is also present to a 

similar degree in the upper aquifer storeys in the Geest and uplands (45-67 %). Fig. 5b displays example time series of wells 

that the RF model identifies as having the highest probability for each cluster. The cluster in parentheses indicates the actual 600 

cluster that is based , among others, on  the indices values shown in Fig. 5c. In cases where CL3 was mistaken for CL2 and 

CL4, the example wells mostly exhibited have indices within the CL3 distribution (Fig. 5c). While there are minimal visual 

differences in the time series between CL2 and CL3 at the well location where CL2 is predicted, some distinctions can be 

observed in Fig. 5b when CL3 is misidentified as CL4.  

The inability of the RF model to correctly predict these instances can therefore mainly be attributed to two factors. Firstly, the 605 

GWL dynamics at the predicted wells for CL2 and CL4 reside closer to the border between different dynamic types, making 

them more challenging to differentiate. This is confirmed by some very similar indices values to CL3. Secondly, the lack 

limited of explanatory potential provided by the attributes can be assumed to also contribute to the model's failure: Expert 

information suggests that small-scale differences in GWL dynamics in the case study region can be explained by lower aquifer 

storeys with good hydraulic connections to upper storeys and surface waters. The presence of both CL1 and CL3 dynamics in 610 

the higher Geest and upland regions, regardless of groundwater storey, can be attributed to differences in the soil covering, 

water table depth, and the existence of both unconfined and confined upper aquifers in these landscapes (LfU-SH, 2003). 

Comparing the ground-truthing withHowever, the RF model, offers some global explanations that apply to this regional context 

as well. For instance, in the marshlands and the northern depression zone, where impermeable sediments of small to medium 

thickness overlay the aquifer (LfU-SH, 2003), the prevalence of CL1 and CL4 type wells is higher (Table 2). 615 

5. Conclusions 

In summary, this study provides new insights into the hydrogeological behavior and the hydrogeological similarity of 

groundwater in coastal regions. It utilizes an unprecedented dataset of GWL time series and demonstrates the development of 

a global information archive on GWL dynamics With the presented methodology, the integration of both local variations and 

global patterns shed light on how similarities in GWL dynamics can be linked to the impacts and effects of various controlling 620 
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factors of groundwater recharge and discharge processes. We demonstrated that the proposed methodology allows capturing 

the GWL dynamics patterns at different granularity for high-level generalizations while retaining the potential to uncover more 

nuanced dynamics-controls relationships at smaller scales within the dataset. These findings can aid in developing broader 

frameworks for effective groundwater management. For example, by identifying regions with common characteristics and 

highlighting essential hydrograph features for global modeling.  625 

Our results indicate show that hydrogeological similarity manifests is a globally phenomenon that, with respect to the aquifers 

near the coastline, can be divided intothrough the identification of four clusters representing distinct patterns of GWL 

dynamics. Similar patterns clusters are observed globally across different environments continents and climate zoness globally, 

while GWL dynamics can be highly variable regionally and locallyspecific cluster compositions vary among regions, 

suggesting a complex interlinkages interplay of controlling factors. Therefore, it is important to consider GWL dynamics 630 

patterns at multiple scales as extrapolating GWL dynamics from a single well to the surrounding area may sometimes be less 

appropriate than inferring GWL dynamics from global relationships. However, establishing global may not be valid. General 

patterns and similarities in GWL dynamics identified for coastal aquifers at the global scale can assist in developing broader 

frameworks for groundwater management. Overall, dynamics-control relationships remains a challenge. We found that these 

are mainly dominated by (a) topography and groundwater depth mainly determining the responsiveness of groundwater 635 

systems to impacts on the water cycle that well separates a single cluster from three others, and (b) climate and soil 

characteristics, which  that differentiate these three clusters with high short-term and interannual variability. However, 

groundwater management typically requires a more accurateprecisely explainationed of GWL dynamics by controlling factors, 

beyond what than is currently achievablepossible with the available attribute data available from at the global scale. At 

presentIn particular, disentangling the influence of anthropogenic activitiesimpacts from the natural controls ofin GWL 640 

dynamics, e.g. to  and accurately predicting the impacteffects of climate change on GWLs without incorrectly accounting for 

water withdrawals,  remains a challenge in the field of machine learning, which is of great importance for sustainable 

groundwater management. While the overall importance of anthropogenic activities on GWL dynamics was found to be 

smaller compared to natural characteristics in this study, more in-depth analyses were beyond the scope of this study. When 

analyzing certain processes, including SWI, it is important to pay attention to the data basis (selection of groundwater data and 645 

indices). To address the explanatory limitations of data-driven analysis and the prediction of GWL dynamics, we suggest using 

attributes closely related to actual observations and the direct influencing factors in combination with explainable machine 

learning techniques and  

We suggest relying more on groundwater hydrographs and derived indices for understanding GWL processes when attribute 

data areis scarce or associated with large uncertainties. Overall, . Additionally, machine learning techniques combined with 650 

hydrograph information show promise for improving our understanding and predictive capabilities in addressing GWL 

complexities, especially at large spatial scales. .We have demonstrated some physical explainability and plausibility of index-

derived GWL dynamics across different scales. However, the main limitation of this study's approach is the limited explanatory 

power of the available attributes describing potential controls of GWL dynamics. Attributes derived solely from natural and 
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anthropogenic characteristics at the surface alone may not fully capture the salient controls, particularly considering the low 655 

resolutions currently available for large spatial scales and that there is still no best way of identifying groundwater catchment 

areas at the surface without detailed information provided by bore profiles. One way to deal with this limitation is by utilizing 

attributes that directly represent influencing factors or attributes closer to actual observations in combination with machine 

learning techniques. At present, disentangling the influence of anthropogenic activities from the natural controls of GWL 

dynamics and accurately predicting the impact of climate change on GWLs without incorrectly accounting for water 660 

withdrawals remains a challenge in the field of machine learning, which is of great importance for sustainable groundwater 

management. 

Furthermore, this study emphasizes the challenges posed by limited, especially subsurface, data in capturing the complexity 

of GWL dynamics. While hydrogeological similarity offers potential for transferring GWL dynamics from monitored to 

unmonitored sites, planning 665 

Appendix A: Groundwater data 

Table A1 List (country-wise alphabetical) of governmental agencies or portals from which groundwater data were obtained. 

number governmental agency/portal country access 

year 

1 Australian Groundwater Explorer, Bureau of Meteorology 
(http://www.bom.gov.au/water/groundwater/explorer) 

Australia 2021 

2 DOV, Datenbank Ondergrond Vlaanderen (https://www.dov.vlaanderen.be) Belgium 2020 
3 RIMAS, Integrated Groundwater Monitoring Database, Servicio Geologico de Brazil 

(http://rimasweb.cprm.gov.br/layout/pesquisa_complexa.php?rimas=true) 
Brazil 2022 

4 Department of Environment and Climate Change, Nova Scotia (https://beta.novascotia.ca) Canada 2021 
5 GIN, Groundwater Information Network, Canada (http://gw-info.net) Canada 2021 
6 Ministry of Environment and Climate Change Strategy, British Columbia 

(https://www2.gov.bc.ca/gov) 
Canada 2021 

7 GEUS, Geological Survey of Denmark and Greenland (https://eng.geus.dk) Denmark 2019 
8 ADES, Portail national d’accès aux données sur les eaux souterraines, France  

(https://ades.eaufrance.fr) 
France 2020 

9 LLUR, Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-
Holstein (https://www.schleswig-holstein.de/DE/landesregierung/ministerien-
behoerden/LLUR/llur_node.html) 

Germany 2020 

10 NLWKN, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz 
(https://www.nlwkn.niedersachsen.de) 

Germany 2021 

11 Staatliches Amt für Landwirtschaft und Umwelt Mittleres Mecklenburg (https://www.stalu-
mv.de/mm) 

Germany 2020 

12 Staatliches Amt für Landwirtschaft und Umwelt Vorpommern (https://www.stalu-mv.de/vp) Germany 2021 
13 Environmental Protection Agency, Ireland (https://www.epa.ie) Ireland 2020 
14 Hydstra, Department of Water and Sanitation, South Africa South Africa 2021 
15 Geological Survey of Sweden (https://www.sgu.se) Sweden 2021 
16 DINOloket, Geological Survey of the Netherlands (https://www.dinoloket.nl) The 

Netherlands 
2020 

17 California Department of Water Resources (https://wdl.water.ca.gov) United States 
of America 

2022 
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Figure A1 Examples of time series outlier removal with DBSCAN (scikit-learn library in Python): Raw (scaled) time series are shown 670 
in blue, and the anomalies identified by DBSCAN (Ester et al., 1996) are shown in red. The use of DBSCAN is less successful or 
difficult to verify in the bottom two examples (left: The first abrupt change in direction of the GWL between 1996 and 2000 is not 
identified as an outlier, although one would expect one based on the magnitude and position of the change; right: From visual 
inspection, it is unclear whether the identified outliers in both directions are due to measurement error, human activity or reflect 
natural behavior of the groundwater system e.g. to extreme events). In summary, like other tested outlier detection methods, 675 
DBSCAN does not allow us to detect all types of outliers and anomalies that we would expect should be removed to represent 
undisturbed GWL dynamics. With the parameters set, we can successfully detect most density-dependent outliers, but many values 
were incorrectly identified as outliers. Therefore, we performed a visual inspection of all time series where DBSCAN identified 
potential outliers. 

Appendix B: Indices 680 

Table B1 List of GWL dynamics typology and indices used in this study. Differing names in brackets refer to deviating abbreviations 
in Heudorfer et al. (2019). 

aspect component indices names 

distribution boundness fdc.slope_0.8_1 (dc.slp.u); fdc.slope_0_0.1 (dc.slp.l); l1; l3; median (med); 

peakts.avg 

distribution density colwells.C (colwell.C); fdc.range_0.1_0.9 (dc.rng.01.09); fdc.range_0.2_0.8 

(dc.rng.02.08); fdc.range_0.25_0.75 (dc.rng.025.075); fdc.slope_0.3_0.7 

(dc.slp.m); l2; l4; meanann.max (avg.ann.max) 

18 NWIS, National Water Information System, United States Geological Survey 
(https://waterdata.usgs.gov/nwis/gw) 

United States 
of America 

2020 
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distribution modality bimodality (bimod); dip; silverman (bandwd) 

shape scale peakbasetime.avg (peakbase.avg); pulse.dur.high (pulse.dur.h); pulse.dur.low 

(pulse.dur.l); sqr.avg 

shape slope fall.avg; fall.cv; reces.const; recov.const; rise.avg; rise.cv 

structure amplitude amp.max 

structure flashiness baker2 (baker); BFI; Lyapunov; pathlength2; reversals.avg (rev.avg); 

reversals.cv (rev.cv) 

structure interannual variation autocorrelation (autocor); BFS; Hurst; intannfluc.y (iaf.y); pulse.count.high 

(pulse.count.h); pulse.count.low (pulse.count.l) 

structure seasonality-magnitude cvmon.min; intannfluc.s (iaf.s); parde.seasonality (parde) 

structure seasonality-timing colwells.M; varjulday.max (newly introduced instead of varjuld.min: CV of 

date of annual maximum head) 
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Figure B1 Comparison of the value distributions of the indices calculated in this study (Table B1) with the values published by 685 
Heudorfer et al. (2019) (data set: Haaf and Heudorfer, 2018). The magnitude and variability of values for many indices are similar. 
Shifted or significantly different ranges of values are observed for some indices. Such differences exist for indices of different aspects 
of the hydrograph (structure, distribution, and shape). 

 

Figure B2 Correlation matrix of the index values calculated in this study. 690 
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Appendix C: Clustering 

  

Figure C1 Principal Component component Analysis analysis (PCA) with the indices dataset. (a) Cumulative explained variance 
with an increasing number of Principal Components (PCs). (b) Dataset value space of the first three PCs (which together explain 
more than 50 % of the variance of the dataset).  695 

 

Figure C2 Evaluation metrics – Silhouette (Rousseeuw, 1987), Calinski-Harabasz (Caliński and Harabasz, 1974) and Davies-Bouldin 
(Davies and Bouldin, 1979) – used to find the best cluster separation. The Silhouette score ranges from -1 to 1, where a higher value 
indicates better-defined clusters. Better clustering results are also indicated by higher values for the Calinski-Harabasz score and 
lower values for the Davies-Bouldin score. (a) Metrics are shown for different proportions of explained variance represented by 700 
Principal Components (PCs) (top to bottom linerow: 60 %, 70 %, and 80 %) and for different clustering algorithms (k-means (red), 
Gaussian mixture (blue) and hierarchical clustering (black)). (b) Silhouette scores for various clusters using the k-means algorithm 
and PCs representing 70 % of explained variance. 
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Figure C3 Assignment of the time series to four different clusters by three algorithms (Gaussian mixture, k-means, and hierarchical 705 
clustering). (a) Illustrative cluster assignment within the range of values of the first three principal components (PCs) of the dataset. 
(b) Sankey plot allows comparison of the quantitative distribution of the samples among the clusters (left between Gaussian mixture 
and k-means and right between k-means and hierarchical clustering). The majority of samples are assigned to the same cluster for 
k-means and hierarchical clustering (shown in different order). 

Kommentiert [AN53]: Color scheme improved. 
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 710 

Figure C4 Within-cluster variability of all indices used for clustering. Kommentiert [AN54]: Color scheme improved. 
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Figure C5 Within-cluster variability of all indices used for clustering (Fig. C4) plotted with indices values (dots) of the four example 
wells from the case study region in northern Germany (Fig. 5a). The points drawn between CL2 and CL3 and between CL4 and 
CL3 are wells with the highest probability for CL2 and CL4 in the Random Forest model but belong to CL3 according to the 715 
indicesclustering. 

Kommentiert [AN55]: Color scheme improved. 
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Figure C6 Assignment of clusters to well locations in the Normandy, Paris Basin displayed with the Seine riverRiver. Overlapping 
well markers were jittered at a minimum spacing of 500 1000 meters and thus no longer represent the original well locations. The 
window in the upper left corner shows the Normandy region in the north of France. 720 

Kommentiert [AN56]: Figure improved for color vision 
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Appendix D: Random Forest classification 

 

Figure D1 Random Forest hyperparameter tuning within a 5five-fold cross-validation framework using the training data. Kommentiert [AN58]: Color scheme improved. 
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Appendix E: SHAP 

 725 

Figure E1 Absolute spearman Spearman correlation of SHAP values for aggregated features (SHAP values added up for features 
from the same attribute categories from Table 1).  
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Figure E2 Overall SHAP feature importance stacked for individual clusters for aggregated features (SHAP values added up for 
features from the same attribute categories from Table 1). 730 

Kommentiert [AN59]: Color scheme improved. 
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Figure E3 Violin plots show the distribution of SHAP feature importance and feature effect for the twenty highest-ranked features 
of each cluster. SHAP values describe the impact of a given feature on the prediction of the model for a given cluster (the prediction 
of "True" for the selected cluster). A red color corresponds to high feature values and a blue color corresponds to low feature values 
(i.e., for one-hot-encoded features, a value of 0 (blue) corresponds to the presence of the feature class and a value of 1 (red) 735 
corresponds to the absence of the feature class). Overlapping instances widen the violin shape in the direction of the y-axis and the 
violin at that position is colored according to the average feature value. SHAP values were not aggregated for this figure. 
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Figure E4 SHAP force plots explaining the correct prediction of the CL1 exemplary well site from the case study region in northern 
Germany (Fig. 5a) (from top to bottom: CL1, CL2, CL3, and CL4). At this well site, the probability that CL1 is predicted is the 740 
largest in the case study (test dataset). The average scores of all classifications made by the Random Forest model for the training 
dataset are 0.28, 0.29, 0.26, and 0.17 respectively (base values). The model’s probability scores for predicting the clusters at the 
exemplary well site (bold printed numbers) sum up to 100 %. Features that are important for the respective predictions are displayed 
with their values. Their importance and effect can be assessed by the SHAP values visualized by bar length and color (i.e. the larger 
the feature's share of the bar the more important; red represents rejecting effect and blue represents supporting effect). 745 
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Figure E5 SHAP force plots explaining the prediction of the CL3 exemplary well site from the case study region in northern Germany 
(Fig. 5a) (from top to bottom: CL1, CL2, CL3, and CL4) that is confused with CL2. At this well site, the probability that CL2 is 
predicted is the largest in the case study (test dataset). The average scores of all classifications made by the Random Forest model 
for the training dataset are 0.28, 0.29, 0.26, and 0.17 respectively (base values). The model’s probability scores for predicting the 750 
clusters at the exemplary well site (bold printed numbers) sum up to 100 %. Features that are important for the respective 
predictions are displayed with their values. Their importance and effect can be assessed by the SHAP values visualized by bar length 
and color (i.e. the larger the feature's share of the bar the more important; red represents rejecting effect and blue represents 
supporting effect). 
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 755 

Figure E6 SHAP force plots explaining the correct prediction of the CL3 exemplary well site from the case study region in northern 
Germany (Fig. 5a) (from top to bottom: CL1, CL2, CL3, and CL4). At this well site, the probability that CL3 is predicted is the 
largest in the case study (test dataset). The average scores of all classifications made by the Random Forest model for the training 
dataset are 0.28, 0.29, 0.26, and 0.17 respectively (base values). The model’s probability scores for predicting the clusters at the 
exemplary well site (bold printed numbers) sum up to 100 %. Features that are important for the respective predictions are displayed 760 
with their values. Their importance and effects can be assessed by the SHAP values visualized by bar length and color (i.e. the larger 
the feature's share of the bar the more important; red represents rejecting effect and blue represents supporting effect). 
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Figure E7 SHAP force plots explaining the prediction of the CL3 exemplary well site from the case study region in northern Germany 
(Fig. 5a) (from top to bottom: CL1, CL2, CL3, and CL4) that is confused with CL4. At this well site, the probability that CL4 is 765 
predicted is the largest in the case study (test dataset). The average scores of all classifications made by the Random Forest model 
for the training dataset are 0.28, 0.29, 0.26, and 0.17 respectively (base values). The model’s probability scores for predicting the 
clusters at the exemplary well site (bold printed numbers) sum up to 100 %. Features that are important for the respective 
predictions are displayed with their values. Their importance and effects can be assessed by the SHAP values visualized by bar 
length and color (i.e. the larger the feature's share of the bar the more important; red represents rejecting effect and blue represents 770 
supporting effect). 

Code and data availability 

We provide data to reproduce the results of this study (indices, attributes, clusters from k-means) at Zenodo 

(https://doi.org/10.5281/zenodo.8173404). Some of the data use agreements do not allow us to publish the original GWL time 

series and well locations. However, the groundwater data are available for free either via the web services or via request from 775 

governmental agencies listed in Table A1 (further information provided in the Supplement). Map data with information on 
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attributes are available through the references listed in Table 1. The R code to for calculatinge index values is available upon 

request from EH and BH. The Python code used for modelling and plotting is available upon can be requested from AN. All 

tThe Python packages used in this research study (pandas, numpy, geopandas, sklearn, matplotlib, plotly, seaborn, scipy, shap) 

are freely available online.  780 
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