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Abstract. Global hydrological models enhance our understanding of the Earth system and support the sustainable 

management of water, food and energy in a globalized world. They integrate process knowledge with a multitude 

of model input data (e.g., precipitation, land cover and soil properties and location and extent of surface water 

bodies) that describe the state of the Earth. However, they do not fully utilize observations of model output 

variables (e.g., streamflow and water storage) to decrease model output uncertainty by, e.g., parameter estimation. 20 

For the pilot region Mississippi River basin, we assessed the suitability of three ensemble-based multi-variable 

calibration approaches for identifying both optimal and behavioral parameter sets for the global hydrological 

model WaterGAP, utilizing observations of streamflow (Q) and total water storage anomaly (TWSA). The 

common first steps in all approaches are 1) the definition of spatial units for which calibration parameters are 

uniformly adjusted (CDA units), combined with the selection of observation data, 2) the identification of potential 25 

calibration parameters and their a-priori probability distributions and 3) sensitivity analyses to select the most 

influential model parameters per CDA unit that will be adjusted by calibration. In the estimation of model output 

uncertainty, we considered the uncertainties of the Q and TWSA observations. We found that the Pareto-optimal 

calibration (POC) approach, which utilizes the Borg multi-objective evolutionary search algorithm to find Pareto-

optimal parameter sets, is best suited for identifying a single “optimal” parameter set for each CDA unit. This 30 

parameter set leads to an improved fit to the monthly time series of both Q and TWSA as compared to the standard 

WaterGAP variant, which is only calibrated against mean annual Q, and can be used to compute the best estimate 

of WaterGAP output. The Generalized Likelihood Uncertainty Estimation (GLUE) approach is less suitable than 

POC to identify the optimal parameter set but enables the estimation of model output uncertainties that are due to 

the equifinality of parameter sets and the observation uncertainty. The potential advantages of the ensemble 35 

Kalman filter calibration and data assimilation (EnCDA) approach, in which both parameter sets and water 

storages are updated, could not be realized, likely due to the high computational burden of this approach, This 

limited the EnCDA ensemble size to 32, while 20,000 ensemble members could be evaluated in the case of POC 
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and GLUE. Partitioning the whole Mississippi River basin into five CDA units (sub-basins) instead of only one 

improved model performance during the calibration and validation periods. Very diverse parameter sets were 40 

found to lead to similarly good fits to observations, but the range of values of three parameters could be narrowed 

by calibration. Model structure uncertainties, in particular regarding the operation of man-made reservoirs, the 

location and extent of small wetlands, and the (lacking) representation of losing river conditions in WaterGAP, 

are suspected to be the main reasons for the low coverage of the observation uncertainty bands by the GLUE-

derived model output uncertainty bands. Model structure uncertainties are also the likely reason for major trade-45 

offs between optimal fit to Q and TWSA. Calibration against GRACE TWSA only, in regions without Q 

observations, may worsen the Q simulation as compared to the uncalibrated model variant. We plan to add 

additional remotely-sensed observations in the multi-variable calibration of WaterGAP and suggest considering 

parameter uncertainty in multi-model ensemble studies of the global freshwater system. 

1 Introduction 50 

By quantifying water flows and storages on the Earth’s continents, global hydrological models (GHMs) contribute 

to our understanding of the functioning of the Earth system. GHMs are indispensable for assessing past and future 

impacts of human activities on the global freshwater system in the Anthropocene, including water abstractions, 

dam construction and greenhouse gas emissions. In our globalized world, where local decisions affect freshwater 

systems worldwide, GHMs support sustainable water use by enabling the globally consistent computation of 55 

indicators of water availability and water stress. These indicators can inform the decisions of private or corporate 

water consumers (e.g., by water footprints and life cycle analysis) and water managers (e.g., by drought monitoring 

of climate change risk assessments).  

GHMs integrate a large amount of spatially distributed physiographic data including data on soils and the 

deeper subsurface, land cover, surface water bodies and human water use. Like all hydrological models, GHMs 60 

(including land surface models) suffer from uncertainty due to uncertain model structure, model input (in particular 

climate forcing) and model parameters (Döll et al., 2016). To reduce uncertainty, models are calibrated by 

adjusting the model in a way that simulated values of a model output variable optimally match observations of this 

variable. In basin-scale hydrological modeling, the estimation of model parameters by calibration against 

streamflow time series is standard. This is not the case for GHMs, which is not only due to the limited availability 65 

of suitable observation data with global coverage and the large effort required to exploit them but also to a lack of 

methodological knowledge about how to best use observations for GHM adjustment.  

So how can observations of model output variables be best used for estimating parameters of a GHM, given 

model complexity, the large number of model parameters, the large spatial extent and heterogeneity of the model 

domain, the interdependence of the calibration of sub-basins due to their connection by lateral streamflow as well 70 

as the problem of equifinality? And how can such observations be best used for determining not only the best 

estimate but also the uncertainty of GHM model output? 

Equifinality or its synonym non-uniqueness means that different combinations of model input, structure and 

parameters may lead to a similarly good agreement between simulated and observed values of a model output 

variable so that it is not possible to determine an optimal (unique) combination (Beven, 1993). It is related to 75 

https://doi.org/10.5194/hess-2023-18
Preprint. Discussion started: 11 May 2023
c© Author(s) 2023. CC BY 4.0 License.



 
 
 

3 
 
 

epistemic uncertainty about model structure, input and parameters (Beven and Smith, 2015), which can be 

expected to be larger in global-scale modeling than in basin-scale modeling. Equifinality is exacerbated by 

observation errors, which are difficult to quantify comprehensively, and include non-random errors and biases 

(e.g., see Di Baldassarre and Montanari, 2009, regarding errors of in-situ streamflow observations derived via the 

commonly applied rating curve method). In addition, comparisons between simulated and observed values often 80 

suffer from incommensurability due to different spatial (e.g., groundwater head from groundwater wells, Reinecke 

et al., 2020) or temporal (e.g., instantaneous water table elevation of surface water bodies from radar altimetry, 

Berry et al., 2005) scales. Equifinality implies that multiple model simulations, generated by, e.g., running the 

model with multiple parameter sets, are acceptable and informative for the model user if they 1) cannot be easily 

rejected as infeasible representations of the system given the level of the diverse uncertainties (in particular 85 

regarding climate forcing, model structure and observations) and 2) support the specific modeling purpose, e.g., 

to project either low flows or floods (Beven and Smith, 2015). The ensemble of such model runs or parameter sets 

is referred to as “behavioral” (Beven and Binley, 1992). 

Equifinality increases with the number of parameters to be estimated. The identifiability of parameters can be 

increased by utilizing more than one calibration objective, e.g., minimizing both the root mean square error of 1) 90 

all streamflow observations and 2) the low flow observations. It has been suggested from experience that no more 

than 5-6 parameters can be estimated for each calibration objective (Efstratiadis and Koutsoyiannis, 2010). While 

the equifinality problem can be reduced by utilizing various streamflow signatures (Gupta et al., 1998; Arheimer 

et al., 2020) for parameter estimation, it is preferable to utilize, in addition to streamflow observations, observations 

of one or more additional model output variables (multi-variable calibration, Yassin et al., 2017; Stisen et al., 2018; 95 

Dembélé et al., 2020). The additional observation variable of choice for GHM parameter estimation is total water 

storage anomaly (TWSA) over the continents from GRACE satellites, as they provide spatially uninterrupted 

global coverage and almost uninterrupted monthly time series since 2003 (some missing months before 2016 and 

a gap until the start of GRACE-Follow-on mission in May 2018). TWSA observations integrate over all water 

storage compartments on the continents (glacier, snow, soil, groundwater and surface water bodies) and thus also 100 

depend on all water flows on the continents. This is similar to streamflow (Q), which is the integrative result of 

upstream flow and storage processes. Thus, TWSA observations complement Q observations. The coarse spatial 

resolution of TWSA observations of about 100,000 km2 is less problematic for GHMs than for basin-scale 

hydrological models. 

Currently, most GHMs do not use observed Q (or any other observations) to estimate parameters in the 105 

upstream basin (Bierkens, 2015). One exception is the GHM WaterGAP (Alcamo et al., 2003; Döll et al., 2003), 

which is calibrated in a simple manner by adjusting one to three parameters in each of 1319 large drainage basins 

(Müller Schmied et al., 2014, 2021) such that simulated long-term average annual Q is close to observations. For 

the standard version of WaterGAP, adjustment of a larger set of model parameters is currently not done due to the 

equifinality problem and computational simplicity. While this limited calibration leads to a reduction of the Q bias 110 

and thus more realistic estimates of renewable water resources as compared to the uncalibrated version (and the 

results of other GHMs that are not calibrated in a basin-specific manner), it does not significantly improve 

simulated seasonality and interannual variability of Q (Hunger and Döll, 2008). Discrepancies with time series of 

observed monthly Q (Müller Schmied et al., 2014) or TWSA (Döll et al., 2014; Scanlon et al., 2019) can be high 
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even after the standard WaterGAP calibration. It is therefore desirable to adjust parameters that affect the 115 

seasonality of simulated Q or TWSA as well as their interannual variability and potential trends. Multi-variable 

parameter estimation based on observations of both Q and TWSA may enable the adjustment of such parameters. 

In the following, “calibration” is used synonymously with “parameter estimation”. 

Multi-variable parameter estimation can be achieved by various approaches such as 1) Pareto-optimal 

calibration using an optimization algorithm (POC) (Werth and Güntner, 2010), 2) the Generalized Likelihood 120 

Uncertainty Estimation (GLUE) approach for identifying behavioral parameter sets (Beven and Binley, 1992) and 

3) data assimilation with the ensemble Kalman filter in which model states and parameters are jointly updated 

(Eicker et al., 2014), hereafter called EnCDA. With each of these approaches, an ensemble of optimized parameter 

sets is generated. Werth and Güntner (2010) developed a multi-variable POC scheme for WaterGAP and applied 

it to adjust six to eight parameters homogeneously in each of 28 large river basins (e.g., Amazon, Mississippi and 125 

Lena), using both Q and TWSA observations. A similar approach was applied by Xie et al. (2012) to calibrate the 

SWAT model for 10 large basins in Sub-Sahara Africa, using observed TWSA time series and monthly mean Q 

values. The GLUE approach has not yet been applied with WaterGAP or other GHMs. First EnCDA efforts of 

assimilating GRACE TWSA into WaterGAP for the Mississippi River basin in the US and the Murray-Darling 

basin in Australia were made by Eicker et al. (2014) and Schumacher et al. (2016a, b, 2018). While EnCDA with 130 

more than one observation variable (Q and remote-sensed soil moisture) has already been done in large-scale 

hydrological modeling of the Upper Danube basin (Wanders et al., 2014), joint EnCDA of Q and TWSA has not 

yet been reported.  

The objective of this paper is to assess the suitability of the three multi-variable calibration approaches POC, 

GLUE and EnCDA for identifying ensembles of optimal and behavioral parameter sets of the GHM WaterGAP 135 

by model calibration against observations of Q and TWSA, taking into account observation uncertainties. In 

addition, an approach for taking into account the observations errors for the definition of performance thresholds 

for behavioral parameter sets is presented. In each calibration approach, model parameters of all WaterGAP grid 

cells within so-called calibration-data assimilation (CDA) units were uniformly adjusted. Based on calibration 

exercises either for the whole Mississippi River basin (MRB) as one CDA unit or for its five sub-basins (four 140 

upstream basins and one downstream basin) as alternative CDA units, we will answer the following research 

questions: 

1. What are the strength and weaknesses of each of the three multi-variable calibration approaches? 

2. What is the added value of the multi-variable calibration as compared to the standard WaterGAP calibration 

for identifying one “optimal” parameter set? 145 

3. How and how well can WaterGAP model output uncertainty be quantified? 

4. How large are the trade-offs between the optimal simulation of Q and TWSA? As TWSA observations are 

available with a global coverage while Q observations are not: To what extent is Q simulation improved by 

calibration against TWSA only?  

5. What is the added value of individually calibrating sub-basin CDAs instead of one basin CDA? 150 

6. What are the characteristics of the identified optimal and behavioral parameter sets? How large is the 

equifinality of parameter sets? Can optimal values be identified for some parameters?   

https://doi.org/10.5194/hess-2023-18
Preprint. Discussion started: 11 May 2023
c© Author(s) 2023. CC BY 4.0 License.



 
 
 

5 
 
 

The paper is structured as follows. Section 2 describes and compares the three calibration approaches. Section 

3 provides a short description of the GHM WaterGAP and explains the setup of the calibration study, including 

the calibration parameter selection by an initial sensitivity analysis. In Section 4, we present the results of our 155 

calibration study, and in Section 5, results are discussed and conclusions are drawn. 

2 Approaches for multivariable calibration of global hydrological models 

While model calibration can encompass adjustments of model structure, initial conditions, input variables and 

parameters, model calibration in hydrology focuses on the identification of optimal or suitable parameter sets. The 

focus on parameter adjustment in hydrological modeling is justified by the necessity of using many parameters 160 

that cannot be measured independently or derived from first principles. Water flows in the hydrology domain are 

largely dominated by the local geometry and local boundary resistances of the individual flow pathways, different 

from the water flows in the meteorology and oceanography domain (Beven, 2002). In hydrological models, water 

flows are expressed as a function of water storage or potential gradients as well as parameters that represent the 

highly uncertain average effects of local geometries and boundary resistances. In comprehensive hydrological 165 

models that distinguish various compartments, about 10-50 model parameters result per spatial unit. In the case of 

distributed models in which spatial heterogeneity of land and water is accounted for by distinguishing a large 

number of spatial units such as sub-basins or grid cells, each computational unit is described by its parameters set, 

leading to a very large number of model parameters. GHMs covering the whole land area of the globe typically 

represent spatial heterogeneity on the continents by distinguishing more than 60,000 0.5° grid cells, with more 170 

than 1 million model parameters whose values need to be set to enable computation.  

In the GLUE approach, an ensemble of behavioral parameter sets is derived, each of which leads to an 

acceptable model performance given uncertainties and model purpose; the ensemble is in most studies defined by 

model simulations exceeding certain performance thresholds. In the POC approach, an ensemble of Pareto-optimal 

parameter sets is generated that does not take into account model or observation uncertainties but the trade-off that 175 

occurs between the fit to various performance metrics. A parameter set is called Pareto-optimal or non-dominated 

if it results in a better simulation performance than any other Pareto parameter set for at least one of the objectives; 

none of the objective functions can be further improved without degradation of some of the other objective 

functions (Khu and Madsen, 2005; Werth and Güntner, 2010). In EnCDA, an initial ensemble of parameter sets is 

updated at each intake of observations, and parameters ideally converge with increasing intake of observations; 180 

there is a single objective function, in which multiple objectives are implicitly weighted by considering model and 

observation uncertainties. 

It is computationally challenging to work with an ensemble of parameter sets, e.g., in the context of climate 

impact studies or seasonal forecasting. Therefore, we also identified (pseudo-)optimal parameter sets for each 

CDA unit. In this section, the three multi-variable calibration approaches POC, GLUE and EnCDA are first 185 

described and then compared to each other. 
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2.1 POC 

POC aims at identifying Pareto-optimal parameter sets. While the ensemble of Pareto-optimal parameter sets 

determined by POC is optimal only under the assumption that there are no observation, input and model structure 190 

uncertainties, they take into account that there is rarely a parameter set that leads to a simulation of different output 

variable that is equally optimal with respect to all observational variables. POC as applied in this study implements 

an optimization algorithm such as the Borg multi-objective evolutionary search algorithm (Hadka and Reed, 2013). 

Based on an initial small ensemble of parameter sets derived from a-priori parameter distributions, the parameter 

sets are updated according to the value of the objective functions (performance metrics) to achieve improved 195 

performance. Then, the model is re-run; based on the new values of the objective function, parameter sets are 

updated again in an iterative fashion for a pre-selected number of iterations and thus model runs to identify Pareto-

optimal parameter sets. Due to model, input and observation errors, it is unlikely that any parameter set will lead 

to the highest values of all objective functions. Without additional subjective preference information on what 

objective function is most important, all Pareto-optimal parameter sets are considered to be equally good. From 200 

the often large number of Pareto-optimal parameter sets, a “preferred” set can be selected using a variety of 

approaches (Khu and Madsen, 2005). The so-called “compromise parameter set” leads to values of the applied 

objective functions OF (or performance metrics) such that the overall performance deficit Dp regarding all OF is 

minimized (Yu, 1973). Dp is the distance between the utopia point, where all OF values are at their optimal values 

OF*, and the OF values of the Pareto-optimal parameters sets x. According to Yu (1973), 205 

𝐷𝑝(𝑂𝐹(𝑥)) = [∑ (𝑂𝐹𝑖
∗ −𝑂𝐹𝑖(𝑥))

𝑝𝑛
𝑖=1 ]

1 𝑝⁄
 (1) 

where n is the number of objective functions and p is a parameter that is larger or equal to 1 and needs to be 

selected. By minimizing Dp with p=2, the Euclidean distance is selected to determine the compromise parameter 

set. 

Applying a POC approach, Werth and Güntner (2010) used monthly time series of in-situ observed Q and 210 

GRACE for 28 large river basins to adjust WaterGAP parameters individually for each basin, after first 

determining the most influential basin-specific parameters. Calibration parameters included multipliers of cell-

specific parameters such as rooting depth as well as parameters that were assigned to each cell in the basin such 

as a groundwater outflow coefficient. Werth and Güntner (2010) found that improved simulations of TWSA and 

Q were achieved for most basins after calibration, but calibrated Q was still poor compared to the observed values 215 

in some basins; a better fit to GRACE TWSA did not necessarily lead to a better fit of simulated to observed Q. 

The disadvantage of the POC approach is that it is computationally much more expensive than the simple 

calibration approach for standard WaterGAP such that PCO was only performed for 28 instead of 1319 CDA units. 

Thus, spatial variability of calibration parameters within the large basins could not be taken into account by Werth 

and Güntner (2010), and differences in model performance after calibration by either POC or the standard 220 

calibration approach were not analyzed. 
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2.2 GLUE 

In the GLUE approach, a large number of different model parameter sets is generated first, based on assumed a-

priori distributions of parameter values. In the next step, a subset of so-called behavioral parameter sets is identified 225 

from this initial set. This is done by running the model alternatively with each parameter set and then computing 

the values of a model performance metric using observations of model output variables, which is called likelihood 

measure in GLUE (Beven and Binley, 2014). In the next step, a threshold for the performance metric is identified 

below which model performance is so low that these parameter sets are considered to have a likelihood of zero. 

Likelihood measures and thresholds for behavioral parameter sets are subjectively selected also based on the 230 

expertise of the modeler and should take into account the uncertainty of model structure, climate forcing and 

observations as well as the specific modeling purpose.  

Multiple observation variables can be combined for determining behavioral parameter sets, by selecting the 

subset of parameter sets for which all performance metrics are better than their different thresholds. The selection 

of the metric-specific thresholds implies a type of weighting between fits to the different variables. As a subset of 235 

all behavioral parameter sets, Pareto-optimal parameter sets can be identified; the pseudo-optimal parameter set 

can be determined using Eq. 1. Furthermore, the likelihood of each behavioral parameter set can be derived from 

the performance metric such that a probability distribution of model output can be quantified.  

2.3 EnCDA 

In the EnCDA approach, parameter sets of each CDA unit are optimized together with water storages in the various 240 

storage compartments and grid cells by data assimilation with the ensemble Kalman filter (EnKF; Evenson, 1994), 

by including both the water storages and the parameters in the state vector. The basic idea of data assimilation with 

the Kalman filter approach, as done in EnCDA, is to optimally combine observations with simulation results at the 

time of the observations according to estimates of model and observation errors (Clark et al., 2008). In EnCDA, 

an ensemble of model runs with different parameter sets and perturbed climate inputs serves to estimate the model 245 

error. The higher the ratio of model error to observation error, the more weight is given to the observations and 

the larger is the adjustment of water storages and model parameters. Water volumes and parameters, all of which 

are state variables, are updated in each ensemble member whenever observations are available (e.g., once per 

month). State update depends on the information contained in the covariance matrices of simulated states (water 

storages and parameters), simulated Q and observations. Covariance matrices of states and simulated Q are derived 250 

from differences between the estimates of each ensemble member and the ensemble mean. The ensemble mean of 

all updated water storages and Q is assumed to be the best estimator (Evensen, 2003). In the case of models with 

many grid cells and various storage compartments (10 in WaterGAP), the number of updated states strongly 

exceeds the number of observations.  

EnCDA has a high potential for improving parameter estimation as the stepwise updates of water storage in 255 

the diverse storage compartments can help to compensate for model structure and input uncertainties, e.g., for 

underestimation of the precipitation input by adding mass/water to the system during the update. EnCDA was 

applied in some studies (e.g., DeChant and Moradkhani, 2012; Wanders et al., 2014), also for assimilating GRACE 

TWSA into WaterGAP (Eicker et al., 2014; Schumacher et al.,2016a,b, 2018) for the Mississippi River basin in 
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the US and the Murray-Darling basin in Australia. However, EnCDA for GHMs using GRACE TWSA is still in 260 

an exploratory phase. Updating parameters in addition to updating water storages might increase the chance of 

spurious Q simulation due to the highly non-linear relations between Q and storages as well as parameters (De 

Chant and Moradkhani, 2012; Xie and Zhang, 2013; Schumacher et al., 2018). To achieve plausible and stable 

EnCDA results regarding parameters and model output variables in complex distributed hydrological models in 

which the number of states exceeds by far the number of observations, the degrees of freedom may have to be 265 

reduced and rapid changes in parameters from one time step to the next need to be avoided (Xie and Zhang, 2013). 

Schumacher et al. (2018) found that EnCDA with only TWSA observations is limited in constraining individual 

model parameters even if the number of calibration parameters is very small as the calibration/data assimilation 

system is highly underdetermined. This is why adding Q observations is promising.  

The output of EnCDA regarding parameters can be viewed as a time series of recursive estimates for the 270 

parameter sets for each ensemble member, even if these parameters are modeled as stationary in time (as in this 

study). The parameter sets of each ensemble member at the end of the calibration/data assimilation (CDA) period 

can then be used to generate ensemble predictions. The studies of Wanders et al. (2014) and Eicker et al. (2014), 

which did not utilize Q observations, showed that with this approach, the ensemble means of model output values 

during the validation period fit better to observations of Q and TWSA than uncalibrated model output.  275 

2.4 Comparison of the three calibration approaches 

POC, GLUE and EnCDA approaches share some characteristics and differ in others (Table 1). All three start with 

a large number of parameter sets that are derived from a-priori assumptions on the probability distribution of 

calibration parameters and generate an ensemble of optimized parameter sets. EnCDA differs from POC and 

GLUE by simultaneously modifying model parameters and model states. EnCDA and GLUE are regarded as 280 

Bayesian approaches as they aim at deriving probability distributions of parameter sets and thus model output. In 

POC, the ensemble of Pareto-optimal parameter sets represents the uncertainty that is caused by the fact that due 

to model structure and input uncertainty, different parameter sets lead to optimal performance for different 

calibration objectives. Information from observations is used in all three approaches to update an a-priori belief 

about the probability distribution of parameters. However, parameter set selection is done in very different ways 285 

and based on different assumptions. Both POC and GLUE compare the model output over the complete calibration 

period with all observations to determine performance metrics. While the evolutionary search algorithm of POC 

starts with a small number of parameters sets, runs the model, and then generates new parameter sets with ever-

improved performance metrics, in GLUE the large initial ensemble generated from a-priori parameter distributions 

is evaluated regarding performance metrics and the behavioral members among the initial ensemble are identified. 290 

In POC and GLUE, parameters are temporally constant. In EnCDA, an ensemble of model runs is performed in a 

stepwise fashion from the time of one observation to the time of the next. EnCDA updates the parameters 

sequentially (in our study each month) such that time series of recursive parameter estimates are computed. It is 

assumed that updates are informed by an ever-increasing amount of information from observations so that the 

parameter sets after the last update, i.e., at the end of the calibration period, are the best estimate. However, this 295 

can be disputed. A study on EnCDA using GRACE TSWA for the Australian Murray-Darling basin showed that 
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parameter values vary in time with changes in climatic conditions within the river basin, probably due to an 

inappropriate model structure that does not allow the correct translation of precipitation variability into model 

output variability (Schumacher et al., 2018). The capability to reveal such dynamics may be advantageous for 

improving our understanding of model deficiencies. It needs to be investigated whether and how EnCDA can be 300 

used to determine optimal parameter sets that are suitable for model runs without adjustment of states.  

In EnCDA, quantified errors of both the model and the observations are required to update water storages and 

parameters in each of the ensemble members (Table 1). The ensemble serves to estimate the model error, which 

includes parameter and climate forcing uncertainty and is calculated as the variance of the differences between 

each ensemble member and the ensemble mean. The EnKF applied in EnCDA represents an optimal and unbiased 305 

estimator only under the assumption that errors are Gaussian, unbiased and well-known, neither of which is the 

case (Wang et al., 2020; Moradkhani et al., 2005; Beven and Binley, 1992). In GLUE, the model error due to 

parameter uncertainty (but not due to climate forcing uncertainty) is indirectly taken into account as the a-priori 

ensemble depends on assumptions of parameter distribution, similar to POC. Observation errors may be considered 

quantitatively but in most applications they are not (Beven and Binley, 2014). In Section 3.4.2, we describe a way 310 

for taking into account the observation uncertainties in GLUE. Werth and Güntner (2010) suggested a way to 

include observation errors in POC. First, they determined an error ellipse around the compromise solution (defined 

in Eq. 1) by first generating an ensemble of observations from perturbing the observation time series with the 

observation errors and then determining the range of performance values of the compromise solution for this 

ensemble of perturbed observations. By considering all the non-dominated and dominated parameter sets inside 315 

the error ellipse, they identified an ensemble of likely parameter sets that was informed by both observations and 

observation uncertainty. In this case, POC can, like EnCDA and GLUE, be used to estimate uncertainties of 

parameter sets and model outputs. Nevertheless, it should be noted that this approach does not incorporate 

observational uncertainty directly into multi-objective parameter calibration in a rigorous way. Therefore, we did 

not take this approach in our study. 320 
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Table 1. Comparison of the main characteristics of the calibration approaches POC, GLUE and EnCDA as applied 

in this study. 

 POC 

Pareto-optimal 

calibration 

GLUE 

Generalized 

likelihood uncertainty 

estimation 

EnCDA 

Ensemble Kalman 

filter calibration and 

data assimilation 

Use of a-priori parameter ensembles Yes Yes Yes 

Direct modification of water storages No No Yes 

Bayesian approach No Yes Yes 

Estimation of model output uncertainty Uncertainty only due 

to multiple objectives 

Yes Yes 

Selection of parameter sets Once, based on all 

observations 

Once, based on all 

observations at once 

Recursive, parameter 

sets updated at each 

observation time step 

Quantitative information on parameter 

uncertainties considered 

Indirectly via an a-

priori range of 

parameter values 

Indirectly via an a-

priori ensemble of 

parameter sets 

Directly as a factor of 

model uncertainty 

Quantitative information on climate 

forcing uncertainties considered  

No No Yes,  as a factor of 

model uncertainty 

Quantitative information on observation 

uncertainties considered 

Possible in post-

processing, by 

limiting Pareto-
optimal parameter sets 

to thresholds selected 

using GLUE 

ensemble 

Possible,  

by selecting 

thresholds for 
behavioral solutions 

according to 

observation 

uncertainties 

Yes 

Rigorous consideration of uncertainty No  No Partly 

Various objective functions including 

signatures can be selected 

Yes Yes No 

Weighting between different objective 

functions 

Subjective weighting 

to identify a parameter 

set that is optimal in a 

specific context 

Subjective weighting 

to identify parameter 

set(s) that is (are) 

optimal in a specific 

context 

Implicit weighting 

based on model and 

observation 

uncertainties 

Determination of Pareto-optimal 

parameter sets under the assumption that 

there is only parameter uncertainty 

Yes, determined by 

search algorithm 

Yes, selected from a-

priori ensemble  

No (due to the small 

ensemble size) 

Complexity  Medium Low-medium  High 

Computational effort for a specific 

objective function 

Medium Medium Very high 

Computational effort for analyzing 

alternative objective functions 

High Medium Not applicable 

Risk of spurious model behavior Low Low High due to 

modifying water 

volume in multiple 
storage compartments 

 

Different from EnCDA with its rigorous handling of uncertainties, GLUE is an informal Bayesian approach 325 

that is much simpler than EnCDA (Table 1). Likelihood is here understood in a very general sense, as a fuzzy 

measure of belief of how well the model conforms to the observed behavior of the system, and not in the sense of 

maximum likelihood theory which is the basis of EnCDA (Beven and Binley, 1992). In EnCDA, the likelihood of 

a parameter set is a product of model errors, observation errors and the differences between observed and simulated 

variables (and other factors) (Section 3.2 in Schumacher, 2016). The informal and subjective treatment of 330 
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uncertainty in the GLUE approach has caused controversy because the different error sources are not distinguished 

(Vrugt et al., 2008). This can mean that non-maximum likelihood solutions might be accepted as parameter 

estimates. However, the GLUE approach can be defended against formal Bayesian methods as these require a-

priori knowledge about errors that is lacking in most hydrological modeling applications (Beven and Binley, 2014). 

In addition, formal Bayesian methods (e.g., DREAM) are difficult to implement and much less computationally 335 

efficient but may lead to similar outcomes (Vrugt et al., 2008). In GLUE, the likelihood measure can be freely 

chosen by the modeler. She could choose a formal likelihood measure like the one applied for EnCDA, a measure 

that relates the deviation of model output from observations to the observation error or just any model performance 

metric for comparing observations to simulations (Beven and Binley, 2014, their Table 3). Given the large 

epistemic uncertainty about hydrological systems, GLUE relies on the subjective expertise of the modeler to define 340 

a suitable likelihood measure given her often only qualitative knowledge about uncertainties of model structure, 

model input, model parameters and observations. There is a multitude of likelihood measures that can be used to 

identify parameter sets that fit better to observations than the a-priori ensemble (or the standard deterministic 

parameter set) and are therefore more likely than others. A likelihood of zero is assigned to all parameter sets that 

are not “behavioral”, i.e., if the likelihood measure is below a threshold that is set subjectively by the modeler. For 345 

the example of the popular likelihood measure Nash-Sutcliffe efficiency (NSE), behavioral parameter sets may be 

defined as those that result in an NSE larger than 0.7 if the behavior of the hydrological system can be easily 

simulated; if not, the threshold will have to be lowered to get any behavioral parameter sets. To obtain the a-

posteriori probability distribution of parameter sets, only the behavioral parameter sets are considered and their 

probability is derived from the NSE obtained with them. 350 

Objective functions (= likelihood measures = performance metrics) can be freely chosen in the case of POC 

and GLUE. This allows the selection of diverse hydrological signatures of the observables, e.g., those that focus 

on high or low flows in the case of streamflow. EnCDA minimizes the root mean squared error, and it is very 

difficult to apply another objective function (Table 1). In addition, the likelihood function in EnCDA considers 

only the deviations between the model output and observations at one point in time as the ensemble Kalman filter 355 

and not the ensemble Kalman smoother was applied in this study. In contrast, performance measures used in POC 

and GLUE evaluate model performance (and calibrate model parameters) over the whole calibration period. 

EnCDA differs from POC and GLUE in that weighting between the performance metrics for the multiple 

objectives/variables is implicitly done given the model and observation errors (Table 1). In POC and GLUE, 

subjective weighting needs to be done for selecting one “optimal” parameter set. POC and GLUE also have in 360 

common that they can serve to identify Pareto-optimal parameter sets or one compromise parameter set that can 

then be used to quantify in a computationally efficient way in, e.g., climate change studies or seasonal forecasting, 

where hydrological models are driven by an ensemble of climate data sets.  

The complexity of the three calibration approaches differs (Table 1). The computational burden is much higher 

for EnCDA than for POC and GLUE. Therefore, only a very small number of ensemble members can be used in 365 

the analysis; ensemble sizes typically are between 30 and 100. These low-rank ensembles may fail to correctly 

convey the covariance information between model states and parameters or between different parameters. 

Localization techniques can be applied to mitigate this effect but with the trade-off that long-distance covariance 

information is neglected or down-weighted. For the same number of evaluated parameter sets, the computational 
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effort of POC and GLUE is approximately the same, for evaluating a specific objective function. However, as the 370 

parameter ensemble generated by the search algorithm in POC depends on the objective function (unlike in the 

case of GLUE), the computational burden of POC becomes, for example, twice as high as that of GLUE if one 

alternative objective function is taken into account. Finally, EnCDA is prone to spurious results as the modification 

of water storages to improve the fit to TWSA observations might lead to little-constrained changes in individual 

storages, with impacts on simulated water flows. In the EnCDA study of Schumacher et al. (2018), river storage 375 

was adjusted in WaterGAP based on TWSA observations, leading to spurious increases in Q not seen in WaterGAP 

runs without water storage updates or in the observations.  

3 Methods and data 

3.1 The global water resources and use model WaterGAP 

In this study, we applied WaterGAP 2.2d, which is comprehensively described in Müller Schmied et al. (2021). 380 

With a spatial resolution of 0.5° latitude by 0.5° longitude (55 km by 55 km at the equator), WaterGAP computes 

both water resources, i.e., water flows and storages, and human water use on all land areas of the globe except 

Antarctica. Water withdrawals and consumptive water use in the sectors households, manufacturing, cooling of 

thermal power plants, livestock, and irrigation are computed by five water use models. From the output of the 

water use models, the linking model GWSWUSE computes potential net water abstractions from groundwater 385 

(NAg) and surface water (NAs) as the difference between all withdrawals from and all return flows to groundwater 

and surface water, respectively. Time series of monthly NAg and NAs are inputs of the WaterGAP Global 

Hydrology Model (WGHM), together with time series of daily climate variables (Müller Schmied et al., 2021). 

WGHM computes various water flows (e.g., evapotranspiration, groundwater recharge and Q) as well as water 

storage variations in ten compartments: canopy, snow, soil, groundwater and the surface water bodies local and 390 

global wetlands, local and global lakes, global man-made reservoirs and rivers (boxes in Fig. 1). The term “local” 

means that the surface water bodies are fed only by the runoff produced in the same 0.5° cell, while “global” 

wetlands, lakes and reservoirs are also fed by inflows from the upstream cells. The runoff generated in a cell from 

the “vertical” water balance (Fig. 1) is transported through the groundwater and, if existing, through the various 

types of surface water bodies before reaching the river. Outflow from the river compartment is Q. Glaciers are not 395 

simulated in this WaterGAP version; while there are some glaciers in the most upstream parts of the Arkansas and 

Missouri river basins, these are not expected to strongly impact mean TWSA of the large CDA units or streamflow 

at the outlet of the CDA units (Fig. 2). To calculate TWSA time series, the sum of all ten compartmental water 

storages is computed and normalized by its mean value over a reference period. 
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 400 

 

Figure 1. Schematic of WGHM in WaterGAP2.2d. For each 0.5° grid cell, daily water balances of a maximum of 

ten water storage compartments (boxes) are computed from their respective inflows and outflows (arrows) (Fig. 2 

of Müller Schmied et al. (2021)). Green and red colors indicate processes that occur only in grid cells with humid 

and (semi)arid climate, respectively. Es: soil evapotranspiration, Ep: potential evapotranspiration, Rg: groundwater 405 

recharge from soil, Rs: fast surface runoff and subsurface runoff, RgL,Res,W: groundwater recharge from surface 

water bodies, Qg: groundwater discharge to surface water bodies and the river, Fswb: area fraction of surface water 

bodies. Net groundwater abstracts are taken from the groundwater storage compartment, while net surface water 

abstractions are taken from global lakes or reservoirs in the cell (priority 1), the river (priority 2) or local lakes 

(priority 3).  410 

 

In the ordinary differential equations describing the dynamics of the individual water storage compartment, 

outflows are parameterized as a function of compartmental water storage (Müller Schmied et al., 2021). Other 

important model parameters determine the maximum values of compartmental water storage, such as the 

maximum soil water storage in the effective rooting zone (soil compartment) or active lake depth, which defines 415 

the maximum height of the water table of local and global lakes above the outflow level. Parameters affecting 

potential evapotranspiration govern the simulated atmospheric demand for water. Temperature–related parameters 

are important for snow processes.  

As a standard, WGHM is calibrated against observed mean annual Q by adjusting one model parameter, the 

runoff coefficient, and if necessary, two correction factors (Müller Schmied et al., 2021). In the equation that 420 

describes the soil water dynamics, the runoff coefficient determines, together with soil water saturation, the amount 

of runoff from the land RL; it varies between 0.1 and 5. The larger the runoff coefficient, the smaller the runoff 
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becomes. If the adjustment of the runoff coefficient is not sufficient for not exceeding a maximum discrepancy 

between simulated and observed mean annual Q of 10%, a multiplicative areal correction factor for runoff from 

land is introduced that also corrects evapotranspiration (range of 0.5 to 1.5). If this is still not sufficient to match 425 

observed Q within 10%, the Q in the grid cell where the gauging station is located is multiplied by a station 

correction factor. This violates the mass balance but is done to avoid error propagation to the downstream basins. 

In the standard WaterGAP, the calibration period was 1980-2009 if stream data are available for the station 

otherwise the most recent earlier period. The runoff coefficient in basins without Q observations is determined by 

a regression approach, where calibrated runoff coefficients are related to various characteristics of the drainage 430 

basins (Müller Schmied et al., 2021). With this calibration and regionalization approach, a median Nash-Sutcliffe 

efficiency of 0.52 and a median Kling-Gupta efficiency of 0.61 is achieved for the fit of the time series of monthly 

Q at the 1319 calibration stations. The median correlation coefficient of 0.79 indicates an often poor simulation of 

the timing of monthly Q both seasonally and inter-annually. WaterGAP 2.2d tends to underestimate the variability 

of monthly Q in northern snow-dominated river basins (Müller Schmied et al., 2021). It underestimates the mean 435 

annual TWSA amplitude in 66% of the 143 investigated river basins by more than 10%. TWSA trends, in particular 

positive trends, are often underestimated (Müller Schmied et al., 2021; Scanlon et al., 2018). 

3.2 Calibration setup for the Mississippi River basin 

3.2.1 Study period and CDA units  

Due to TWSA and climate input data availability, the study period was limited to January 2003 to December 2016. 440 

The study area excludes the most downstream part of the Mississippi River basin (MRB) due to a lack of Q 

observations. The Q gauging station at Vicksburg in the lower MRB is the most downstream station with a long-

term record (Fig. 2). Hereafter, we refer to the upstream area of Vicksburg as the whole MRB. We study two 

variants of the spatial configuration of CDA units, in which calibrated parameters were uniformly adjusted. Either 

the whole MRB is treated as one CDA unit, or the MRB is subdivided into five CDA units. In the latter variant, 445 

four of the five CDA units (Arkansas River basin, Missouri River basin, Upper MRB and Ohio River basin) are 

upstream river basins that are defined as the drainage basin of four gauging stations for which data for the study 

period 2003-2016 are available (Fig. 2). The fifth CDA unit is the Lower MRB, which receives inflow from the 

four upstream CDA units. We divided our study period into a calibration period for parameter estimation from 

2003 to 2012 and a validation period, in which the model is run with the estimated parameters, from 2013 to 2016. 450 

Q is additionally validated at six gauging stations that were not used for calibration (Fig. 2).  
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Figure 2. The Mississippi River basin as represented by the 0.5°x0.5° grid cells in WaterGAP, with delineation of 

the five CDA units. The CDA units were defined as the upstream cells of the five indicated calibration stations 455 

(streamflow gauging stations, shown in red). The stream network implemented in WaterGAP is shown, indicating 

the upstream areas of each grid cell by the line width. In addition, the locations of the six streamflow validation 

stations are plotted, shown in orange. 

3.2.2 Observation data 

Q data were obtained from the Global Runoff Data Centre (https://www.bafg.de/GRDC/) and the US Geological 460 

Survey (https://maps.waterdata.usgs.gov/mapper/). For monthly Q observations, a random error of 10% is 

assumed, based on the review of McMillan et al. (2012) and the study of Westerberg et al. (2016) for the UK, who 

determined a median error for the mean flow of 12%. Actual percent errors are extremely variable, depending on 

temporal aggregation, the Q value itself and various local conditions (Di Baldassarre and Montanari, 2009). In the 

EnCDA approach, an additional error of 10% of the temporal average of the Q observation time series was applied 465 

as this led to more stable EnCDA results. 

To obtain TWSA observations for this study, level-2 GRACE data (spherical harmonic coefficients, SHC) 

from TU Graz (ITSG Grace2018; Mayer-Gürr et al., 2018) were evaluated over the CDA units. These data 

represent the Earth's time-variable gravity field as observed by the GRACE satellites via K-band ranging (KBR) 

and GNSS tracking. We derived TWSA from SHCs up to degree and order 96, applying the DDK3 filter (Kusche 470 

et al., 2009) and corrections for low-degree terms and effects such as glacial isostatic adjustment following 
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Gerdener et al. (2020). As the temporal mean value of GRACE-derived terrestrial water storage is unknown, it is 

a widely followed approach to normalize the monthly TWSA values relative to a constant mean over a certain 

reference period, here taken from 2003 to 2012. Uncertainties (1-sigma errors) were propagated to TWSA maps 

based on the full variance-covariance matrix of the TU Graz data; this accounts for orbital effects and the generally 475 

meridional behavior of errors. To investigate the influence of different level-2 GRACE products, we compared the 

unit-averaged TWSA time series from ITSG-Grace2018 with TWSA derived from the Release-06 version of the 

Center for Space Research (CSR) and the Geoforschungszentrum (GFZ). For the whole MRB, 42% of the CSR 

and 35% of the GFZ monthly values were found within 1 standard deviation, and 76% of the CSR and 61% of the 

GFZ monthly values were within 2 standard deviations of the TU Graz solution. Unexpectedly, the values are even 480 

higher for all sub-basin CDA units. Therefore, we decided to use ±2 standard deviations of the propagated GRACE 

uncertainties for quantifying the TWSA observation error in this study.  

GRACE TWSA estimates for spatial units are affected by leakage errors that are caused by the need for spectral 

truncation and the need to filter the solutions, which, for averages of different spatial units, may lead to an under- 

or overestimation of TWSA, thus affecting model calibration using GRACE TWSA. Therefore, when consistently 485 

comparing simulated to GRACE TWSA, it is advised to filter the simulated grid cell data with the same filter that 

was used to process the GRACE data (Döll et al., 2014). However, given the large number of simulations required 

in ensemble-based calibration, this approach is computationally impractical. To roughly estimate the leakage 

effect, a re-scaling factor for GRACE TWSA was estimated for each CDA unit using Eq.1 of Swenson and 

Landerer (2012). The GRACE TWSA time series for CDA units can be multiplied with such a re-scaling factor to 490 

(ideally) reduce the leakage error and in this way make it better comparable to the simulated TWSA time series. 

First, the monthly time series of gridded TWSA as simulated by standard WaterGAP was filtered with the DDK3 

filter, and then both the filtered and the unfiltered TWSA values were aggregated over all grid cells with a CDA 

unit. The re-scaling factor was then derived by minimizing the misfit between filtered and unfiltered TWSA time 

series through a simple least square regression. The re-scaling factors are between 1.00 and 1.03 for the CDA units 495 

MRB, Missouri and Upper MRB. They are 0.90 and 0.93 for the Ohio and Arkansas River basins, respectively, 

and 1.41 for the Lower MRB. As the re-scaling factors are close to 1 in all CDA units except the Lower MRB and 

we suspect that the large re-scaling for the MRB is due to an overestimation of the TWSA trend in the Lower MRB 

by WaterGAP, we did not apply re-scaling factors to GRACE TWSA. 

The GRACE mission relies on accelerometers to measure non-gravitational forces. However, since August 500 

2007, battery cell failures onboard the GRACE satellites led to increasing power supply problems, especially 

during orbital eclipses. As a result, the thermal control of the accelerometers was deactivated in April 2011 such 

that thermal variations would directly increase the measurement noise. To mitigate this problem, thermal variations 

and their impact on the GRACE instruments are modeled during the processing at TU Graz and the accelerometer 

data are calibrated (Klinger and Mayer-Gürr, 2016). This reduces the noise of the monthly gravity field solutions 505 

by an estimated 20-40% compared to solutions without accelerometer calibration (Klinger et al., 2016), but on 

balance, all GRACE solutions are deemed noisier from April 2011 onwards,  the estimation of the noise floor is 

more uncertain, and the number of months without observations increases towards the end of the study period. 
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3.2.3 Climate forcing 

Climate forcing required for both the irrigation water use model and WGHM encompasses time series of daily 510 

near-surface air temperature, total precipitation, downward shortwave radiation and downward longwave 

radiation. In this study, we applied the 0.5° GPCC-WFDEI data set where ERA-Interim reanalysis data of ECMWF 

have been bias-corrected by monthly precipitation time series of the Global Precipitation Climatology Centre and 

by other observations (Weedon et al., 2014). Monthly precipitation was corrected for wind-induced undercatch 

(Weedon et al., 2014).  515 

3.2.4 Calibration parameters 

Many parameters in WaterGAP are spatially distributed, such as the parameter maximum soil water storage in the 

effective root zone Smax, which is computed as the product of soil water storage between field capacity and wilting 

point from a data set that provides a different value for each 0.5° cell and a rooting depth that is a fixed assigned 

value for each class of land cover, with one dominant land cover per cell. Other parameters are set globally to the 520 

same value, e.g., the groundwater discharge coefficient. To enable an adjustment of the cell-specific value of a 

distributed parameter like Smax, one may choose to either adjust the land cover-specific rooting depth in each CDA 

unit or to introduce a multiplier of cell-specific Smax as a calibration parameter. As the number of free (calibration) 

parameters should be limited given limited observations and equifinality, the second approach was chosen. For all 

spatially distributed parameters, multipliers were introduced that serve as calibration parameters, while globally 525 

uniform parameters are directly calibrated. 

In Table 2, information about the 24 potential calibration parameters that were investigated in this study is 

provided, including their estimated a-priori uncertainty range. They are ordered mainly according to the water 

storage compartment (Fig. 1) that they immediately impact due to inclusion in the respective water balance 

equation. In addition, multipliers for precipitation and net radiation are included as calibration parameters, which 530 

were found to be the parameters that TWSA of the 33 largest river basins worldwide are most sensitive to 

(Schumacher et al., 2016b). The two multipliers for the net abstraction of groundwater and surface water are 

allowed to become negative as, e.g., an initially simulated positive net abstraction from groundwater (where water 

is removed from the ground due to pumping) may in reality be negative. The latter is the case if infiltration of 

irrigation water that was taken from surface water sources dominates groundwater abstractions in the grid cell. For 535 

some parameters, the selected range was influenced by previous analyses of the WaterGAP model performance. 

Uniform distributions were assumed for all parameters.  

The Q of larger rivers in the MRB is strongly impacted by the management of the many man-made reservoirs. 

The water balance of large (i.e. “global”) reservoirs is simulated in WGHM with an algorithm that distinguishes 

reservoirs with the main purpose of irrigation from others; different equations are used for reservoirs with a large 540 

storage capacity to mean annual Q ratio and those with a small ratio. With any globally applied algorithm, human 

decisions on reservoir management are very difficult to simulate, and adaptation of some parameters is not likely 

to lead to better simulation results unless each reservoir would be dealt with individually. Therefore, no parameter 

of the reservoir algorithm was adjusted in this study. This limits the ability of the calibrated model to achieve a 
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good fit to observations in river basins with many reservoirs such as the Missouri river basin (Fig. A1a in the 545 

appendix). 

From the potential calibration parameters, a small number of calibration parameters were selected for each 

CDA unit by a sensitivity analysis, to limit equifinality. The sensitivities of four output variables (simulated Q, 

TWSA, snow storage and water storage in local lakes) to all 24 parameters were analyzed separately for each of 

the six CDA units, using the standard version of WGHM. For the sensitivity analysis, the Elementary Effect Test 550 

(EET) method of Morris (1991) was applied where the average of the elementary effects, i.e., the amount of change 

in the simulated variable due to a change in a parameter value, is used as the sensitivity measure or sensitivity 

index. The change in the variable is computed as the root mean square difference between a reference simulation 

and the simulation of the variable after deviating the parameter from its reference value. The EET method is 

computationally inexpensive and recommended for parameter ranking and screening (Pianosi et al., 2016). 1000 555 

random parameter sets were generated by Latin Hypercube Sampling and used as the reference parameter values. 

Then, each reference parameter set was perturbed One-at-A-Time (OAT) for each of the 24 parameters following 

a radial design proposed by Campolongo et al. (2011), which resulted in a total number of 25,000 (i.e., 1,000 x 

(1+24)) parameter sets. Parameters were ranked separately for each of the four output variables and the most 

influential parameters for each variable were chosen. For each CDA unit, 8-10 calibration parameters were selected 560 

(Table 2). As a result, altogether 47 parameters were adjusted if the five sub-basin CDA units were used for model 

calibration.  
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Table 2. WGHM parameters, the range of assumed uniform a-priori distribution used for sensitivity analysis and 

calibration as well as the CDA units in which parameter was adjusted in this study. The parameters are categorized 

according to the processes or water storage compartments that they directly affect. P: precipitation, EP: potential 565 

evapotranspiration, CA: canopy, SN: snow, SL: soil, GW: groundwater, SW: surface water, NA: net abstraction 

of water by humans. 

Compart-

ment 

Parameter 

[units if not unitless] 

Abbre- 

viation 

Standard 

WGHM 

value 

Range Selected for 

adjustment in 

CDA units 

P Precipitation multiplier P-PM 1 0.5-2 - 
EP Net radiation multiplier EP-NM 1 0.5-2 - 

EP PT coeff. humid1 EP-PTh 1.26 0.885-1.65 All 

EP PT coeff. (semi)arid2 EP-PTa 1.74 1.365-2.115 - 

CA MCWH3 [mm] CA-MC 0.3 0.1-1.4 - 

CA LAI multiplier CA-LAIM 1 0.2-2.5 - 

SN Snow freeze temp. [°C] SN-FT 0 -1-3 - 

SN Snow melt temp. [°C] SN-MT 0 -3.75-3.75 All 

SN Degree-day factor multiplier SN-DM 1 0.5-2 - 

SN Temp. gradient [°C/m] SN-TG 0.006 0.001-0.01 - 

SL Smax multiplier4 SL-MSM 1 0.5-3 All 

SL Runoff coefficient SL-RC Variable 0.3-3 All 

SL Maximum EP (mm/d) SL-MEP 15 6-22 I 
GW GW recharge factor mult.5 GW-RFM 1 0.3-3 V 

GW Max. GW recharge mult.5 GW-MM 1 0.3-3 I, III, IV 

GW Critical precip.6 [mm/d] GW-CP 12.5 2.5-20 - 

GW GW discharge coeff.[1/d] GW-DC 0.01 0.001-0.02 IV 

SW River roughness coeff. mult. SW-RRM 37 1-5 IV, V, MRB 

SW Active lake depth [m] SW-LD 5 1-20 All 

SW Active wetland depth [m] SW-WD 2 1-20 All 

SW SW discharge coeff. 8 [1/d] SW-DC 0.01 0.001-0.1 All 

SW Evapo. red. factor mult.9 SW-ERM 1 0.33-1.5 - 

NA NA from GW multiplier10 NA-GM 1 -2-2 I,II, V, MRB 

NA NA from SW multiplier11 NA-SM 1 -2-2 II 
1 Priestley-Taylor coefficient in humid grid cells 
2 Priestley-Taylor coefficient in (semi)arid grid cells 
3 Maximum water storage on canopy per Leaf Area Index (LAI) 570 
4 Multiplier for maximum soil water storage in the effective root zone 
5 Groundwater recharge is capped at 95% of total runoff from land Rl 
6 In (semi)arid grid cells, there is only GW recharge if daily precipitation exceeds the value of the parameter critical 

precipitation. Otherwise, the potential GW recharge remains in the soil 
7 For most river basins, including MRB 575 
8 For lakes and wetlands 
9 To take into account the impact of temporally varying areas of lakes, reservoirs, and wetlands on evaporation 
10 Multiplier for net abstraction from groundwater 
11 Multiplier for net abstraction from surface water (reservoirs, lakes, and rivers) 

 580 

Seven parameters were selected as calibration parameters in all CDA units (Table 2). The precipitation 

multiplier P-PM and the net radiation multiplier EP-NM can correct biases of the climate forcing. P-PM was 

excluded from calibration even though it ranked 1st in the sensitivity analyses in all six basins for almost all four 

test variables because the precipitation input is perturbed in EnCDA, and an additional multiplier would lead to a 

double-counting of precipitation uncertainty. Potential evapotranspiration is a function of both net radiation and 585 

the Priestley-Taylor coefficient. Even though EP-NM ranked somewhat higher in all CDA than the Priestley-

Taylor coefficient for humid areas EP-PTh units, we decided to adjust only EP-PTh (Table 2), as it is an actual 
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model parameter and not a climate forcing correction factor. The majority of the MRB is humid. Relatively small 

local lakes are distributed widely across the MRB (Fig. A1b), and active lake depth SW-LD and surface water 

discharge coefficient SW-DC ranked highest regarding the storage dynamics of local lakes. Wetlands are abundant 590 

in the north of the MRB, forming wetland complexes where 25-50% of the land area may be covered by wetlands 

during wet periods (Fig. A1c); active wetland depth SW-WD was selected as TWSA was highly sensitive to it in 

half of the CDA units. Snow melt temperature SN-MT was selected because it was the snow-related parameter 

that was much more important than the other three snow parameters not only for snow storage but also for Q and 

TWSA. The final two calibration parameters selected for all CDA units are the runoff coefficient SL-RC and the 595 

multiplier for maximum soil water storage SL-MSM. They are, after the three parameters P-PM, EP-NM and EP-

PTh, the most influential parameters as they strongly affect Q, TWSA, and lake storage. For each CDA unit, an 

additional one to three calibration parameters were selected as they had a particularly high sensitivity rank due to 

the specific characteristics of the CDA unit. For example, the multiplier for net abstractions from groundwater 

(Fig. A1d), NA-GM, was selected in four CDA units where groundwater withdrawals lead to groundwater 600 

depletion, which strongly affects TWSA while the multiplier for net abstractions from surface water (Fig. A1e), 

NA-SM, was only selected for the Missouri River basin. The maximum groundwater recharge multiplier GW-

MM, which affects the soil texture-specific maximum amount of daily groundwater recharge, was selected in three 

CDA units, while the multiplier for the fraction of groundwater recharge GW-RFM was selected for one other 

CDA unit. The calibration parameter maximum potential evapotranspiration SL-MEP, which limits actual 605 

evapotranspiration, was found to be influential in the driest CDA unit Arkansas River basin. Altogether, 14 out of 

the 24 parameters in Table 2 were selected as calibration parameters in the study on MRB.  

3.3 Performance and uncertainty metrics 

In this study, we only consider performance metrics for the simulated monthly time series of Q and TWSA as they 

form the basis for calculating hydrological signatures such as drought or flow indicators that are used in global-610 

scale water resources assessments. While the mean is an important characteristic in the case of Q, this is not true 

for TWSA, which is an anomaly with a zero temporal mean during the reference period. The Nash-Sutcliffe 

efficiency is a traditional performance metric in hydrological modeling. It provides an integrated measure of model 

performance concerning mean values and variability and is computed as 

𝑁𝑆𝐸 = 1 −  
∑ (𝑠𝑖𝑚(𝑡)−𝑜𝑏𝑠(𝑡))

2𝑛
1

∑ (𝑜𝑏𝑠(𝑡)−𝜇𝑜𝑏𝑠)
2𝑛

1
 (2) 615 

where µobs is the mean of observations; sim(t) and obs(t) refer to the simulated and observed values respectively at 

time-step t of a total number of time steps n. The Kling-Gupta efficiency together with its three components enables 

distinguishing model performance regarding correlation, bias and variability (Kling et al. 2012), with 

𝐾𝐺𝐸 = 1 −√(𝐶𝐶 − 1)2 + (𝑅𝐵𝑖𝑎𝑠 − 1)2 + (𝑅𝑉𝑎𝑟 − 1)2 (3) 

where CC is the correlation coefficient and  620 

𝑅𝐵𝑖𝑎𝑠 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
 (4) 

𝑅𝑉𝑎𝑟 =
𝜎𝑠𝑖𝑚 𝜇𝑠𝑖𝑚⁄

𝜎𝑜𝑏𝑠 𝜇𝑜𝑏𝑠⁄
 (5a) 
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where σ is the standard deviation and µ is the mean; the subscript sim and obs refer to simulated variate and 

observations of that variate respectively. Expressing variability as the ratio of the coefficients of variation (Eq.5a) 

ensures that bias and variability are not cross-correlated (Kling et al. 2012). In the case of TWSA, the bias is set 625 

to 1 in the computation of KGE, and 

𝑅𝑉𝑎𝑟 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
. (5b) 

The optimal value of all the above performance metrics is one. 

The uncertainty of model output as derived from the model output ensemble can be quantified by two 

uncertainty metrics. In the case of Q, the average uncertainty bandwidth (AUBW) is expressed as a fraction of the 630 

ensemble mean (modified from Jin et al. 2010), with 

𝐴𝑈𝐵𝑊𝑄 =
1

𝑛
∑

𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡)−𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡)

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑀𝑒𝑎𝑛(𝑡)
𝑛
1  (6) 

where t refers to the month and n is the total number of months. In the case of TWSA,  

𝐴𝑈𝐵𝑊𝑇𝑊𝑆𝐴 =
1

𝑛
∑ 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡) − 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡)𝑛
1 . (7) 

AUBWQ can be expressed in %, while the unit of AUBWTWSA is mm. Here, the highest and lowest values among 635 

all ensemble members (32 in the case of EnCDA, values for POC and GLUE listed in Table 6) are used as upper 

and lower limits in each month and make up the uncertainty bounds of the simulation. The metric “coverage of 

observations by model output” (CO) is calculated as the percentage of monthly observations including their 

uncertainty bounds (derived from observation errors described in Section 3.2.2) that are contained within the 

uncertainty bounds of the model output. A large CO value and a small AUBW value indicate a low model output 640 

uncertainty.  

3.4 Implementation of calibration approaches in this study 

3.4.1 POC 

The state-of-the-art optimization algorithm Borg-MOEA (Borg Multiobjective Evolutionary Algorithm; Hadka 

and Reed, 2013) was applied to search the parameter space to find Pareto-optimal parameter sets. Borg MOEA 645 

not only amalgamates search operators (i.e., algorithms to generate a new generation of solutions from their 

parents) and strategies from benchmark optimization algorithms like NSGA-II, ε-NSGA-II, ε-MOEA and GDE3 

but also has the capability of exploiting these operators based on their performance of producing better off-springs 

for the optimization problem at hand. Apart from the auto-adaptive operator recombination strategy, Borg MOEA 

includes a restart mechanism upon the occurrence of a search stagnation and strategies like population resizing 650 

and adaptive archive sizing. The NSE of monthly time series of Q and TWSA in the calibration period, NSEQ and 

NSETWSA, were chosen as the two objective functions. For all CDA units, the initial population size was 400 and 

the improvement threshold ε (i.e., the side length of the ɛ-box) was set to 0.005 for all objectives. All other 

parameters of the algorithm were set to their recommended values (Hadka and Reed, 2013). Due to the high 

computational demand of WHGM, we restricted each calibration to a maximum of 20,000 model runs. The POC 655 

application was run in parallel using openmpi-4.0.1 on 401 nodes of a Linux cluster machine with a Scientific 

Linux 7 environment.  
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All WHGM model runs for the six CDA units started in 1991. Calibration of the five sub-basin CDA units was 

done sequentially as follows. First, the four upstream CDA units (Fig. 2) were calibrated independently from each 

other. Q and total water storage in the downstream CDA unit V Lower MRB depends on inflow from the four 660 

upstream CDA units. For each upstream CDA unit, the parameter set resulting in the highest NSEQ at the respective 

calibration station was selected to transfer the best estimate of monthly Q to the downstream CDA unit. These 

parameter sets were then used in the calibration of the downstream CDA unit, which required running the model 

for the whole MRB. 

3.4.2 GLUE 665 

For each of the six CDA units, a random ensemble of 20,000 parameter sets was generated by Latin Hypercube 

Sampling (Campolongo et al., 2011), only varying the 8-10 influential parameters indicated in Table 2. Then, 

individual WGHM model runs were performed for the MRB and the four upstream CDA units (Fig. 2). Similar to 

the POC approach, all ensemble runs for the downstream CDA unit V Lower MRB were performed using, for 

each of the four upstream CDA units, the GLUE parameter sets that resulted in the highest NSEQ at the upstream 670 

calibration station. Like in the POC approach, all GLUE runs started in 1991 and were done in parallel on 401 

nodes of a Linux cluster machine. Monthly time series of spatially averaged TWSA as well as Q at the calibration 

and validation stations during both the calibration and validation period were written as output, and the 

performance metrics (Section 3.3.) were computed. To identify behavioral and Pareto-optimal parameter sets as 

well as the compromise parameter sets (Eq. 1), NSEQ and NSETWSA were used as likelihood measures. 675 

To assess the impact of observation errors of Q and TWSA on model performance, the monthly time series of 

observed Q and TWSA were perturbed based on the observation errors described in Section 3.2.2. A uniform 

distribution of errors with the ranges of ±10% was assumed for Q and ±2 standard deviations of the computed 

GRACE error distribution for TWSA (see Section 3.2.2). 1,000 realizations of observations of Q and TWSA were 

generated. Then, NSEQ and NSETWSA values for each of the 1,000 perturbed observation time series compared to 680 

each of the 20,000 WaterGAP time series were computed. Finally, the Pareto-optimal parameter sets for each of 

the 1000 realizations of observations were identified. This approach for taking into account observation uncertainty 

for selecting behavioral parameter sets is similar to the approach taken by Blazkova and Beven (2009). 

3.4.3 EnCDA 

EnCDA was performed by coupling the Parallel Data Assimilation Framework (PDAF; Nerger and Hiller, 2013), 685 

which implements an EnKF approach, to WGHM. 32 ensemble members were generated by perturbing forcing 

data and calibration parameters. Regarding the forcing data, an additive error of plus/minus 2°C for the temperature 

(with a triangular distribution around 0) and a multiplicative error of plus/minus 10% regarding the precipitation 

perturbation (with a triangular distribution around 1) (Eicker et al., 2014) was used. For each ensemble member, 

this error was set individually for each month and grid cell and applied to the daily forcing values. A spin-up phase 690 

run over 1991-2002 was performed to generate initial conditions for the calibration period. The EnKF is used to 

simultaneously update model parameters and storages during the calibration period 2003-2012 following Eicker 
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et al. (2014) and Schumacher et al. (2016a,b) but considering Q observations in addition to GRACE TWSA. For 

this, the state vector is augmented by CDA unit-specific calibration parameters. To avoid the system being 

underdetermined, TWSA in 4° grid cells instead of TWSA averages over the CDA units were assimilated. 695 

Calibration parameters and water storages were adjusted with monthly time steps,  

Simulations for the validation period 2013-2016 were done by continuing the 32 model runs of the calibration 

period with the 32 parameter sets estimated for December 2012, without any data assimilation. The ensemble mean 

of the simulated output variables of the 32 ensemble runs during the validation period is assumed to be the best 

estimate of the time series of output variables. The EnCDA application was run in parallel using openmpi-3.1.4 700 

on a Linux cluster machine with a Linux CentOS 7.9 environment and 70 nodes 

In the case of the CDA unit covering the whole MRB, the EnCDA was performed by the parameters indicated 

in Table 2 while assimilating GRACE TWSA 4° grids over the whole basin as well as Q at the Vicksburg gauge 

station. For the sub-basin calibration, the EnCDA was applied separately to the four upstream CDA units first. 

Then, the parameter sets of each ensemble member of the four upstream CDA units were set to the values obtained 705 

for December 2012. For calibrating the downstream CDA unit V by EnCDA, the 32 parameter sets in each of the 

four upstream CDA units were held constant, and states in these CDA units were not updated by DA. Parameters 

were perturbed independently per CDA unit without generating spatial correlations as different parameters are 

considered for the different CDA units (Table 2). An attempt to simultaneously calibrate all five CDA units was 

not successful. Different from POC and GLUE, the performance metric NSE was not used to generate the 710 

calibrated parameter ensemble but only to determine behavioral parameter sets and the compromise parameter sets 

as well as for model output validation. 

4 Results 

Multi-objective parameter estimation may be aimed at determining 1) an optimal model parameter set that is 

identified by weighting the multiple calibration objectives, e.g., the compromise solution (Eq. 1), 2) Pareto-optimal 715 

parameter sets or 3) an ensemble of behavioral parameter sets that leads to model output that fits reasonably well 

to observations given observation and other uncertainties. In any case, the calibrated parameter sets are specific to 

the applied model structure and input, including climate forcing, net abstractions of surface water and groundwater 

as well as physiographic characteristics such as the existence of surface water bodies or soil properties per grid 

cell.  720 

4. 1 Model performance during the calibration period 2003-2012 

4.1.1 Optimal parameter sets  

Differences between calibration approaches. Table 3 and Fig. 3 show the performance of the (Pareto-)optimal 

parameter sets as measured by NSEQ and NSETWSA. Due to the applied search algorithm, the POC approach is 

superior to the GLUE approach in identifying Pareto-optimal parameter sets. In all six CDA units, the POC 725 

parameter sets lead to higher NSE values than the GLUE parameter sets, for the compromise parameter set as well 

https://doi.org/10.5194/hess-2023-18
Preprint. Discussion started: 11 May 2023
c© Author(s) 2023. CC BY 4.0 License.



 
 
 

24 
 
 

as for the parameter sets that lead to either the highest NSEQ or the highest NSETWSA. In the case of GLUE, the 

20,000 ensemble members are randomly distributed in the parameter space, while the evolutionary Borg-MOEA 

optimization algorithm applied in POC creates many more parameter sets that are close to the Pareto front while 

also requiring 20,000 model runs (Fig. S1 in the supplement). For the example of the CDA unit Arkansas River 730 

basin, the POC compromise parameter set leads NSE values of 0.74 and 0.85 for Q and TWSA, respectively, while 

the corresponding values in the case of GLUE are, with 0.69 and 0.83, slightly lower. Except in the Upper MRB, 

the performance of EnCDA-derived parameter sets is lower than of those derived by POC and GLUE. This is 

surprising as not only parameters but also water storages are modified each month during the calibration period to 

obtain a better fit to observed TWSA and Q. However, a weighted RMSE and not NSE is optimized in EnCDA, 735 

which may cause the lower NSE values. The weaker calibration success of EnCDA may also be due to the small 

ensemble size of only 32. The EnCDA compromise solution as well as the EnCDA ensemble mean perform better 

than POC and GLUE in the CDA unit that is characterized by many small wetlands, the Upper MRB, where 

WaterGAP shows the worst performance regarding TWSA. EnCDA for the MRB as one CDA unit leads to very 

poor results in particular regarding TWSA, with NSE values below 0.25 for both the compromise solution and the 740 

ensemble mean and even for the ensemble member leading to the largest NSETWSA.  

 

Table 3. Performance of optimal parameter sets quantified by NSEQ and NSETWSA in the different CDA units. 

NSE of parameter sets achieving the highest NSEQ or the highest NSETWSA, and of the compromise solution are 

listed as well as the NSE values of the EnCDA ensemble mean, the standard WaterGAP 2.2d model and an 745 

uncalibrated version of the WaterGAP 2.2d model. Results are provided for the calibration period 2003-2012. The 

compromise solutions were identified from Eq. 1 using p = 2. The best-performing calibration approach per CDA 

unit, with the highest average NSE, is indicated in bold. The 77 CDA units of the standard calibration are shown 

in Figs. S2 and S3.  

 NSEQ/NSETWSA 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower 

MRB 

MRB 

POC: highest NSEQ 0.74/0.85 0.83/0.50 0.82/0.27 0.89/0.82 0.90/0.69 0.90/0.51 

POC: highest NSETWSA 0.63/0.89 -0.82/0.81 0.14/0.65 0.73/0.90 0.85/0.93 0.28/0.84 

POC: compromise  0.74/0.85 0.73/0.71 0.67/0.48 0.87/0.86 0.87/0.91 0.83/0.73 

GLUE: highest NSEQ 0.70/0.79 0.77/0.21 0.78/0.18 0.88/0.81 0.87/0.26 0.88/0.19 

GLUE: highest NSETWSA 0.24/0.88 -0.68/ 0.76 0.01/0.61 0.68/0.90 0.80/0.90 0.33/0.81 

GLUE: compromise 0.69/0.83 0.65/0.71 0.61/0.46 0.86/0.84 0.84/0.89 0.85/0.65 

EnCDA: highest NSEQ 0.61/0.51 0.69/0.59 0.70/0.49 0.79/0.91 0.83/0.88 0.54/0.13 

EnCDA: highest 

NSETWSA 

0.59/0.84 0.40/0.66 0.07/0.67 0.63/0.94 0.74/0.91 0.44/0.23 

EnCDA: compromise  0.59/0.84 0.62/0.65 0.68/0.60 0.79/0.91 0.83/0.88 0.51/0.19 
EnCDA: ensemble mean 0.61/0.78 0.55/0.57 0.70/0.61 0.73/0.88 0.76/0.90 0.49/0.14 

Standard calibration1 0.59/0.55 0.53/0.38 0.54/0.18 0.86/0.77 0.79/ 

-0.04 

0.79/0.35 

Uncalibrated2 0.18/0.67 -1.02/0.38 0.56/0.17 0.85/0.72 0.71/0.06 0.71/0.38 
1 SL-RC and two correction factors are adjusted in 77 CDA units within the MRB, using observations of mean 750 
annual Q; calibration period 1980-2009 
2SL-RC = 2, correction factors equal to 1 
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Figure 3. Performance of 1) Pareto-optimal solutions derived by an evolutionary optimization algorithm (POC) 755 

(orange dots), 2) the GLUE ensemble (light grey pluses), and 3) the Pareto-optimal subset of the GLUE ensemble 

(black dots), in all cases neglecting observation error when computing NSE. In addition, the performance of 4) the 

Pareto-optimal GLUE parameter subset for 1,000 realizations of perturbed observations are shown (dark grey 

dots), which shows the impact of observation errors on KGE. Compromise solutions of both POC and GLUE 

approaches are shown, too, together with the model performance after standard calibration and without calibration, 760 

consistent with Table 3. The thresholds for behavioral parameter sets (Table 6) are indicated by the grey dashed 

lines. 

 

Differences between CDA units. Optimal performance strongly varies between the CDA units. The best 

performance with optimized parameter sets is achieved for the humid and hilly Ohio River basin and the 765 

downstream Lower MRB, with NSE values exceeding 0.85 for both Q and TWSA in the POC compromise solution 

(Table 3). Q in the Lower MRB is heavily determined by inflow from the four upstream CDA units. In the 

relatively dry Arkansas River basin, model performance regarding TWSA is similar to the two best-performing 

CDA units but, with 0.74, somewhat worse regarding Q. In the Missouri River basin and, in particular, in the 

Upper MRB, TSWA fit to GRACE observations is worse than in the other three sub-basins. Inadequate modeling 770 

of both man-made reservoirs and wetlands is suspected to cause the low performance regarding TWSA in both 

basins. The Missouri River basin is the basin that is most strongly impacted by man-made reservoirs (Fig. A1a). 

No parameters of the reservoir algorithm were calibrated (see Section 3.2.4). The northern parts of both basins 

(dark blue areas of Fig. A1c) are characterized by the existence of a high number of small wetlands whose location 

and extent are poorly quantified in WaterGAP. This stems from the classification of this whole area, in the Global 775 

Lakes and Wetland Database GLWD (Lehner and Döll, 2004), as a “wetland complex with a 25-50% coverage” 

with wetlands at maximum extent. This coarse information is included in WaterGAP by assigning a maximum 
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extent of local wetlands of 35% of the cell area (Döll et al., 2020). Thus, it is not only the WaterGAP algorithms 

for simulating the water balance of wetlands but very likely also the poor localization of wetlands that prevent 

parameter adjustment to result in good fits to observations. We speculate that for these conditions, modification of 780 

water storages in EnCDA leads to an improved simulation of TWSA, and, to a smaller degree, of Q (Table 3). In 

the case of CDA unit MRB, where all grid cells of the whole MRB are assigned the same value of the calibration 

parameters (Table 3), NSEQ is, with a value of 0.83 for POC and GLUE, very similar to the two best-performing 

sub-basins Ohio and Lower MRB. With a value of  0.73, NSETWSA is within the range of the respective values of 

all sub-basin CDA units. 785 

Benefits of multi-variable calibration. The performance of the compromise solutions is compared to the 

performance of the WaterGAP variant that is calibrated in the standard way (Sect. 3.1) and of an uncalibrated 

WaterGAP variant. In the standard calibration, the runoff coefficient SL-RC and potentially two correction factors 

are adjusted individually for each of 77 sub-basins (CDA units) using only observations of mean annual Q at the 

sub-basin outlet (Figs. S2 and S3). In the uncalibrated variant, SL-RC is set to 2 and the correction factors to 1 790 

throughout the MRB. For all CDA units, POC and GLUE compromise parameter sets result in higher NSE values 

for both Q and TWSA as compared to both the uncalibrated and the standard model variant (Table 3 and Fig. 3). 

This is also true for EnCDA except for the CDA unit MRB, where both NSEQ and NSETWSA  are worse than in 

both the uncalibrated and standard WaterGAP variant, and the Ohio River basin where NSETWSA is increased but 

NSEQ decreased by EnCDA. In the case of the Ohio River basin, neither the standard calibration nor the 795 

POC/GLUE compromise solutions achieve a significant improvement of the already high NSEQ of the uncalibrated 

model, and even the improvement of TWSA simulation is rather small. As can be expected, the fit to observed 

TWSA is improved more strongly in comparison to the standard calibration than the fit to observed Q, with the 

strongest improvement in the small downstream Lower MRB.  

Analysis of the KGE components CC, RBias and RVar (Eqs. 3-5) (Tables B1 and B2) shows that the improved 800 

NSEQ and NSETWSA of the compromise solutions of POC, GLUE and EnCDA as compared to the standard 

WaterGAP results are, in all CDA units, mainly due to an improvement of the correlation (CC), the exception 

being NSEQ in case of EnCDA. Standard calibration only improves the bias of Q compared to the uncalibrated 

variant, mostly leading to an RBias value close to 1 (Table B1). The multi-variable approaches decrease the 

overestimation of mean annual Q by the uncalibrated model except in the Upper MRB and the Ohio River basin, 805 

where the overestimation by the uncalibrated model is already very small. However, as compared to the standard 

and uncalibrated model variants, none of the three calibration approaches improves the strong underestimation of 

Q variability by WaterGAP. Q variability in the compromise solutions becomes even more strongly 

underestimated, in the Upper and Lower MRB and for the whole MRB. TWSA variability in the Arkansas and 

Missouri River basins and the Lower MRB is improved as compared to the standard and uncalibrated WaterGAP 810 

but worsened in the case of the wetland-rich Upper MRB (Table B2).  

Overestimation of observed seasonal low flows prevails in all CDA units, not only in the compromise solutions 

(Figs. 4 and S4) but also in the solutions showing the highest NSEQ. The improved correlation but stronger 

underestimation of Q variability as compared to the standard calibration can be seen in the hydrograph of observed 

and simulated Q for the CDA Unit MRB, for POC and GLUE compromise solutions (Fig. 4a); the seasonal low 815 

flows are better captured with the standard calibration than with the compromise solutions. Correlation of 
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simulated and observed TWSA is improved by achieving a small phase of seasonal dynamics shift (towards later 

in the year) by POC/GLUE, but in some years (e.g., 2008 and 2009), TWSA rise still occurs too early (Fig. 4b). 

In addition, the relatively high water storage at the end of the years 2010 and 2011 cannot be captured by any 

simulation. These discrepancies in average TWSA over the MRB can be traced back to the Missouri and Upper 820 

MRB sub-basins where in many years, simulated TWSA increases too quickly and too much in the first half of the 

year (Figs. S4b, d).  

Figure 4. Monthly time series of simulated and observed Q (a, c, e) and TWSA (b, d, f) during calibration period 

2003-2012 and validation period 2013-2016 for MRB (a, b), Arkansas River basin (c, d) and Ohio River basin (e, 825 

f). Observations and their assumed errors are shown together with simulated GLUE, POC, and EnCDA 

compromise solution, with the range of GLUE and POC behavioral solutions (maximum and minimum monthly 

values of the behavioral solutions, Table 6) and the range of all 32 EnCDA ensemble members, as well as with the 

WaterGAP variant with standard calibration. 

 830 
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Q is temporally more variable in the Arkansas River basin than in the MRB (Fig. 4c). The seasonal low flows 

in the Arkansas River basin are extremely overestimated by all WaterGAP model variants, with EnCDA sometimes 

reaching observed low values but not simulating the temporal dynamics and POC achieving a slightly lower 

overestimation than GLUE. Simulation of high flows was improved by multi-variable calibration (Fig. 4c). TWSA 

performance of the compromise solutions is much better than that of the standard WaterGAP (Fig. 4d). The Ohio 835 

River basin is the CDA unit with the best model performance and little change due to any calibration, except a 

slight improvement of TWSA correlation (Fig. 4e, f). However, also here an overestimation of seasonal low flows 

in about half of the calibration years cannot be improved by parameter adjustment (Fig. 4e). Altogether, the visual 

inspection of the hydrographs of all six CDA units reveals that even if multi-variable calibration leads to improved 

performance metrics, fit to observations can only be slightly improved as compared to the standard calibration 840 

(Figs. 4 and S4), except for the much-improved fit to TWSA in the Lower MRB (Fig. S4f). 

Trade-offs between optimal fit to Q and TWSA. Trade-offs are large for all three calibration approaches, as 

quantified by the NSE values for the model runs achieving the highest NSEQ and NSETWSA, except in the two CDA 

units with an already satisfactory NSETWSA in the uncalibrated model variant (Arkansas and Ohio River basins). 

The optimal fit to observed TWSA then results in very poor fits to observed Q, in particular for the Missouri River 845 

basin and the Upper MRB (Table 3). Considering POC, optimal TWSA performance leads to a stronger 

overestimation of mean Q of 27-73% as compared to 1-18% in the case of optimal Q performance (excluding the 

downstream Lower MRB) (Table B1). While the ratio of simulated to observed variability of TWSA decreases 

and thus improves, the corresponding ratio for Q decreases, too, but thus becomes worse. RVarQ ranges from 0.80 

to 0.88 in the case of maximum NSEQ and decreases to the range of 0.53-0.84 in the case of maximum NSEQ 850 

(except for the Arkansas River basin). Considering POC in the Missouri River basin as an example, the parameter 

set with the best fit to observed TWSA results in NSETWSA of 0.81 but a negative NSEQ; the parameter set with 

the best fit to Q achieves an NSEQ of 0.83 but NSETWSA deteriorates to 0.50 (Table 3). The parameter set with 

optimal fit to TWSA leads to an even higher overestimation of mean Q (RBias = 1.73) and an even higher 

underestimation of Q variability (RVar = 0.61) as compared to the ensemble member with the best fit to observed 855 

Q (RBias = 1.08, RVar = 0.80), while correlation slightly decreases (Table B1). KGE components regarding 

TWSA for the same CDA unit reveal that the correlation of observed and simulated TWSA strongly decreases 

from 0.91 to 0.77 if optimization is done for Q instead of TWSA, while variability is overestimated somewhat 

more (RVar = 1.09 instead of 1.03) (Table B2). Similar patterns are observed for the CDA units MRB and Upper 

MRB. In the case of the Arkansas River basin and the Lower MRB, trade-offs between optimal fits to Q and 860 

TWSA observations identified by POC are lower than those identified by GLUE, which shows the advantage of 

the search algorithm applied in POC. 

4.1.2 Behavioral parameter sets 

We identified behavioral parameter sets using thresholds for minimum acceptable performance in terms of NSEQ 

and NSETWSA, taking into account the observation uncertainties of Q and TWSA. To do this, we evaluated the 865 

performance of the 20,000 simulated GLUE ensemble members with respect to uncertainty-perturbed observations 

(Fig. 3 and S1), as described in Sect. 3.4.2. For GLUE and EnCDA, all parameter sets within the thresholds were 
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selected as behavioral, while for POC, the behavioral parameter sets are the subset of Pareto-optimal parameter 

sets above the thresholds. The Pareto-optimal GLUE model runs for 1,000 perturbed observation time series (dark 

grey dots in Fig. 3) served to assess the impact of observation uncertainty on performance. Not each dark grey dot 870 

represents a different parameter set because the NSE for the same parameter set varies with the perturbed 

observation time series.  The width of the band of the Pareto-optimal model runs in case of perturbed observations 

close to the compromise solution helped to identify the thresholds for NSEQ and NSETWSA. In the case of the poorly 

simulated Upper MRB, we decided to keep the thresholds above those indicated by the observation error analysis 

to avoid calling very poorly performing parameter ensembles behavioral (Fig. 3). We chose the compromise 875 

solution as the point of departure as we wish to give equal weight to performance for Q and TWSA. Thresholds 

for behavioral parameter sets vary between the CDA units due to the different optimal performances that can be 

achieved, in the different CDA units, by varying parameters, given a fixed model structure and the model input. 

The selected thresholds for behavioral solutions are indicated in Fig. 3 and Table 4, while Table 4 also provides 

the number of behavioral POC and GLUE parameter sets as well as of the behavioral EnCDA ensemble members. 880 

 

Table 4: Number of identified behavioral parameter sets (or ensemble members) for each CDA unit that result in 

simulation results that exceed both the NSEQ and NSETWSA thresholds. Listed are the number of behavioral 

parameter sets in the GLUE approach (out of 20,000 per CDA unit), the number of behavior Pareto-optimal 

parameter sets in the POC approach (out of 20,000) and the number of behavioral EnCDA ensemble members (out 885 

of 32). 

 Thresholds for 

behavioral 

ensemble members 

NSE 

 [Q, TWSA] 

Number of 

behavioral GLUE 

parameter sets 

Number of 

behavioral Pareto-

optimal POC 

parameter sets  

Number of 

behavioral EnCDA 

ensemble members 

I Arkansas [0.60, 0.70] 668 8 5 
II Missouri [0.60, 0.55] 72 24 3 

III Upper MRB [0.60, 0.35] 156 30 19 

IV Ohio [0.80, 0.80] 196 11 0 

V Lower MRB [0.80, 0.80] 1517 7 6 

IV MRB [0.65, 0.65] 138 26 0 

 

In the case of POC and GLUE, an uncertainty band is delineated by the minima and maxima of monthly Q or 

TWSA values when considering all behavioral parameter sets (Figs. 4 and S4). For EnCDA, these figures show 

the range of all 32 ensemble members, also because there are no behavioral EnCDA members in the case of CDA 890 

units Ohio and MRB. AUBW and coverage of observations (including their uncertainty) by the uncertainty band 

of the model output can be expected to correlate (Section 3.3). Both AUBW and the coverage are smaller for POC 

and EnCDA than for GLUE (Table 5) due to their smaller number of behavioral ensemble members. When 

extending the considered EnCDA ensemble members to the whole ensemble of 32 members, the coverage 

increases slightly, but at the same time, the width of the uncertainty bands increases strongly (Table 5). Comparing 895 

the six CDA units, neither AUBW nor coverage correlates with the number of behavioral ensemble members.  
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Table 5. Coverage of monthly observations by model output (CO), in % of monthly observations contained in 

uncertainty bound of observations, and average uncertainty bandwidth AUBW during the calibration period 2003-

2012 for both Q and TWSA, considering only the behavioral parameter sets (Table 4). In the case of EnCDA, also 900 

the values for the whole ensemble of 32 members are shown in parentheses. AUBW for Q is listed in %, AUBW 

for TWSA in mm. 

 Q/TWSA 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower 

MRB 

MRB 

POC: Coverage  24/70 55/40 29/42 49/67 48/90 52/37 

GLUE: Coverage 46/94 72/57 45/61 72/87 58/95 58/59 
EnCDA: Coverage 15/63 

(25/67) 

36/45 

(37/48) 

44/75 

(53/74) 

-/-1 

(55/91) 

57/67 

(60/65) 

-/-1 

(36/35) 

POC: AUBW  22/6 26/12 16/8 17/10 7/23 19/8 

GLUE: AUBW 60/49 41/28 35/29 43/43 21/82 32/26 

EnCDA: AUBW 20/19 

(63/49) 

17/10 

(60/38) 

51/50 

(78/56) 

-/-1 

(96/63) 

16/27 

(48/37) 

-/-1 

(24/18) 
1No behavioral parameter sets identified 

 

For POC and GLUE, the average width of the uncertainty bands for Q in the six CDA units is 7-26% and 21-905 

60% of the ensemble mean of monthly Q, respectively. For GLUE, the lowest AUBW occurs in the downstream 

Lower MRB and the highest in the Arkansas River basin (Table 7). However, even the wider GLUE bands do not 

cover most of the observed seasonal low flows (including the rather small observation error bands) in all CDA 

units, while high flow months are covered more often (Figs. 4 and S4). Coverage in the GLUE approach ranges 

from 46% to 72% of the observed Q values among the six CDA units, with the lowest values for the two CDA 910 

units with the highest underestimation of Q variability, Arkansas and Upper MRB, even though the Arkansas River 

basin has the widest uncertainty band.  

Coverage of observations including their error range by the uncertainty band is, in the case of GLUE and POC, 

higher for TWSA than for Q except for Missouri and MRB (Table 7). In the case of GLUE, TWSA coverage 

ranges from 59% to 95%. The Arkansas River basin has a low Q coverage but a very high TWSA coverage, while 915 

the Missouri River basin has the highest Q coverage and the lowest TWSA coverage even though for the Missouri 

River basin, the Q performance of the compromise solution is relatively poor (Tables 3 and 4). The TWSA time 

series for the Arkansas River basin differs from those of the other CDA units by its high ratio of interannual to 

seasonal variability (Fig. 4). 

4.2 Model performance during the validation period 2013-2016 920 

Model performance of both the POC and GLUE compromise solutions in the validation periods is similar to the 

calibration periods regarding Q but much worse regarding TWSA (compare Table 6 to Table 3 for NSE values). 

For most CDA units and calibration approaches, the performance loss regarding TWSA between the calibration 

and the validation period is similarly high for the ensemble members that were identified as having the best fit to 

TWSA. We suspect that the poor fit of simulated TWSA to observed TWSA in the last years of the GRACE 925 

mission, where there is also a large fraction of missing monthly GRACE data (Figs. 4 and S4), is related to 

increased observational errors (compare Sect. 3.2.2). This suspicion is supported by the fact that NSETWSA of the 
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uncalibrated model is lower for the validation period than for the calibration period, which is not the case for NSEQ 

in all CDA units except the Arkansas River basin.  

 930 

Table 6. Model performance during the validation period 2013-2016 indicated by NSEQ and NSETWSA, as achieved 

by the three calibration approaches POC, GLUE, and EnCDA as well as by the standard WaterGAP 2.2d and the 

uncalibrated WaterGAP 2.2d models. The best-performing calibration approach per CDA unit, with the highest 

average NSE, is indicated in bold. The indication “highest NSETWSA” refers to the parameter with the best 

performance during the calibration period. The values in parenthesis in the line “EnCDA compromise” are 935 

NSETWSA values that are computed after normalizing TWSA during the validation period by the mean TWSA of 

the validation period. 

 NSEQ/NSETWSA 

 Arkansas 

 

Missouri Upper MRB Ohio Lower 

MRB 

MRB 

POC: 

compromise 

solution 

0.59/-0.04 0.72/-2.76 0.79/-0.05 0.85/0.75 0.87/0.80 0.85/0.31 

POC: ensemble 

mean1 

0.62/0.17 0.73/-3.18 0.81/-0.09 0.84/0.76 0.86/0.81 0.83/0.32 

GLUE: 
compromise 

solution 

0.61/0.66 0.68/-3.44 0.74/0.02 0.86/0.72 0.84/0.77 0.84/0.11 

GLUE: 

ensemble mean2 

0.49/0.36 0.65/-2.00 0.71/0.02 0.81/0.70 0.83/0.75 0.73/0.28 

EnCDA: 

compromise  

0.07/-3.99 

(0.11)  

0.02/-0.30  

(-0.30) 

0.68/-0.07  

(-0.07) 

0.74/-2.60 

(0.20) 

0.76/-0.66 

(0.43) 

0.61/-1.72 

(-1.00) 

EnCDA: 

ensemble mean3 

0.07/-2.90 -2.71/-0.94 0.62/-0.04 0.75/0.18 0.67/-0.44 0.61/-2.14 

POC: highest 

NSETWSA 

0.64/0.36 -0.45/-1.99 0.53/0.13 0.58/0.80 0.85/0.82 0.31/0.45 

GLUE: highest 

NSETWSA 

0.45/-0.02 -0.35/-0.77 0.46/0.15 0.50/0.80 0.81/0.82 0.38/0.36 

EnCDA: highest 

NSETWSA 

0.07/-3.99 -14.08/-10.60 0.63/0.20 0.75/-0.08 0.66/-1.08 0.56/-2.87 

Standard 

calibration 

0.44/-0.85 0.60/-3.70 0.47/-0.40 0.85/0.62 0.76/-6.24 0.76/-2.38 

Uncalibrated 0.56/0.22 -0.80/-2.2 0.59/-0.39 0.82/0.52 0.75/-5.60 0.75/-1.58 

1Computed by running WGHM with the ensemble of behavioral Pareto-optimal parameter sets identified using 

POC (Table 6) 
2Computed by running WGHM with the ensemble of behavioral parameter sets identified using GLUE (Table 6) 940 
3Computed by running WGHM with the ensemble of 32 parameter sets identified using EnCDA (Section 4.1.3) 

 

All compromise solutions perform somewhat better than the WaterGAP standard variant, except for EnCDA 

in the CDA units Missouri, Ohio and MRB (Table 6). Performances of the ensemble mean of the behavioral GLUE 

parameter sets, of the ensemble mean of the behavioral Pareto-optimal POC parameter sets and of the EnCDA 945 

ensemble mean are similar to their respective compromise solutions (Table 6). In all CDA units, POC and GLUE 

perform better than EnCDA regarding both Q and TWSA. POC results are slightly better than GLUE results, the 

exception being the Arkansas River basin where POC performance regarding TWSA degrades from its high level 

during the calibration period due to overestimating mean TWSA (Fig. 4). 
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The temporal mean value of GRACE-derived TWSA is generally unknown. The standard approach taken in 950 

this study of normalizing TWSA values to a constant mean over the reference period, here 2003-2012, may be 

problematic as it assumes that the mean derived over longer periods than the reference period (here 11 years) 

remains at the reference period value, which need not be true. Therefore, we additionally calculated, for the 

example of the EnCDA compromise solution, the NSETWSA after reducing the TWSA time series by its temporal 

mean of the validation period instead of the mean of the calibration period. The resulting NSETWSA values are, for 955 

most CDA units, somewhat improved (Table 6).  

4.3 Characterization of estimated parameter sets 

POC and GLUE identify parameter sets that are assumed to be temporally constant. Here, we compare these two 

ensembles of estimated parameter sets. Starting with the CDA unit MRB, we first characterize the parameter sets 

of the POC compromise solution and the parameter sets leading to the best fit to either Q or TWSA. We compare 960 

the parameter set of the GLUE compromise solution to the parameter set of the POC compromise solution. Then, 

we describe the POC behavioral Pareto-optimal parameter sets as well as the GLUE behavioral parameter sets, 

including parameter correlations. Finally, we highlight the most interesting results for the five sub-basin CDA 

units. The EnCDA parameter sets are not considered as the EnCDA approach leads to a lower model performance 

than POC and GLUE. 965 

4.3.1 CDA unit MRB 

Parameter set of the POC compromise solution. In the compromise solution, the runoff coefficient SL-RC is close 

to the maximum value of 3, minimizing runoff at a given soil water saturation (Fig. 5f). This SL-RC is in line with 

the values obtained by the standard calibration where calibrated SL-RC are also very high (Fig. S3b). While in the 

standard calibration, one or two correction factors are needed in most standard calibration CDA units to decrease 970 

mean annual runoff to the observed values, this is achieved in this study by a high value of SL-MSM, the multiplier 

for the standard maximum soil water storage, which is adjusted in the POC compromise solution to a high value 

of 2.5. A “deeper soil” with higher water storage capacity leads to decreased soil saturation and lower runoff, and 

at the same time to higher variability of soil water storage and thus TWSA. EP-PTh, affecting potential 

evapotranspiration, is reduced from its standard value of 1.26 to 1.02, which seems to contradict the adjustment of 975 

both SL-RC and SL-MSM as this should lead to a reduction of actual evapotranspiration and thus an increase in 

runoff, in particular at high soil saturation values (Eq. 17 in Müller Schmied et al., 2021).  

In addition to SL-MSM, three other parameters are adjusted by the calibration in a way that water retention is 

increased (improving correlation with both observed Q and TWSA), while at the same time a higher TWSA 

variability results (decreasing or at least not improving fit to observed Q and TWSA). Both maximum wetland 980 

(SW-WD) and lake depths (SW-LD) are increased by calibration, from 2 to 5.7 m in the case of wetlands and from 

5 m to 8 m in the case of lakes, and the lake and wetland discharge coefficient SW-DC is adjusted to its minimum 

value of 0.001/d. In contrast, the adjustment of the river roughness coefficient multiplier (SW-RRM) to 1.5, i.e., 

to half of the value in the uncalibrated model, leads to a doubling of flow velocity in the river as compared to the 

https://doi.org/10.5194/hess-2023-18
Preprint. Discussion started: 11 May 2023
c© Author(s) 2023. CC BY 4.0 License.



 
 
 

33 
 
 

standard value and thus lower water retention (reducing correlation with observed Q and TWSA), a higher 985 

variability of Q (improving the fit to observations) and a higher variability of TWSA (worsening the fit to 

observations). In addition, the net abstraction from groundwater is decreased by 80% (NA-GM = 0.2). Snow melt 

temperature SN-MT is lowered from the standard value of 0 °C to -2.6 °C with POC. Overall, most parameters are 

adjusted to increase the correlation between observed and simulated TWSA (except SW-RRM) and reduce mean 

runoff (except EP-PTh). Unfortunately, the adjusted parameters increase TWSA variability (except SW-RRM), 990 

leading to an even stronger overestimation than the uncalibrated and standard calibrated variants (Table B2) and 

a worse underestimation of Q variability (Table B1). 

 

Figure 5. Parameter sets determined by POC and GLUE calibration approaches as depicted by parallel coordinate 995 

plots for CDA units (a) Arkansas, (b) Missouri, (c) Upper MRB, (d) Ohio, (e) Lower MRB, and (f) MRB. The 

parameter abbreviations are given at the bottom of each plot, where the order was selected to show interesting 

relations between parameter values. The numbers at the top and bottom of the plots indicate the a-priori range of 

the calibration parameters listed in Table 2. The number of behavioral solutions is given in Table 6. GLUE 

behavioral solutions are shown in greys, GLUE compromise solution in black, POC Pareto behavioral solutions 1000 

in oranges and POC compromise solution in red.  

 

Parameter sets with optimal fit to Q or TWSA for POC. Regarding trade-offs, the POC parameter set that leads 

to the best fit to observed Q is characterized by a higher SW-RRM (2.2 instead of 1.5 in the compromise parameter 

set), a two-third reduction of SW-LD, a higher SN-MT, and a value of NA-GM of approximately 1. The latter 1005 

shows that the net groundwater abstractions estimated by the water use models of WaterGAP lead to a good fit to 
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the monthly Q time series. In the POC parameter set leading to the best fit to observed TWSA, SL-MSM reaches 

3 (the maximum value), while SW-WD attains a value of more than 12 m. This parameter set includes an SW-

RRM value of only 1 (the lower bound, leading to a minimum flow velocity) and a slightly negative NA-GM. The 

latter parameter value means that the net water abstractions from groundwater, which are dominantly positive in 1010 

the MRB (Fig. A1e), i.e. more water is withdrawn from the groundwater than recharged by return flows, are not 

only decreased but become mostly net groundwater recharge by the parameter adjustment. This could be caused, 

for example, by an original overestimation of the fraction of the total water abstraction that stems from 

groundwater and not surface water. Return flow from irrigation with surface water can lead to a net abstraction 

from groundwater that is negative, i.e., is an artificial groundwater recharge. However, it might also be caused by 1015 

an underestimation of groundwater recharge, such that groundwater storage loss and the decrease of groundwater 

outflow to rivers by net groundwater abstractions would be overestimated if NA-GM was not adjusted from its 

standard value of 1.  

Parameter set of the GLUE compromise solution. 6 out of the 9 parameters in the GLUE compromise solution 

are very similar to those of the POC compromise solution (Fig. 5f). The GLUE compromise solution has a slightly 1020 

higher NSEQ but a considerably lower NSETWSA (due to a lower correlation but a similar performance of 

variability) due to a lower soil moisture capacity and a very minimum lake water storage. In addition, the snow 

melt temperature is much higher. 

Behavioral Pareto-optimal POC parameter sets. The 26 behavioral Pareto-optimal parameter sets derived by 

POC coincide in the four parameters SL-RC, SL-MSM, SW-DC, and NA-GM (Figs. 5f and 6, and Excel file in 1025 

the supplement). The parameter values of the other five parameters diverge somewhat, indicating conflicts between 

a good fit to observed Q and TWSA. The fit to Q decreases and the fit to TWSA increases with decreasing EP-

PTh, SN-MT, and SW-RRM and with increasing SW-WD. A negative correlation is visible between the values 

for SW-WD (wetland depth) and the values for SW-LD (lake depth) (see also Fig. S5f); this indicates that the 

same impact on Q and TWSA is achieved by either a large wetland depth or a large lake depth. The negative 1030 

correlation between SW-WD and the three parameters EP-PTh, SW-RRM, and SN-MT is not easily interpretable 

(Fig. S5f).  

Behavioral GLUE parameter sets. Behavioral GLUE parameter sets are much more diverse than behavioral 

Pareto-optimal parameter sets (Figs. 5f and 6). The GLUE parameter sets take into account, in an approximate 

manner, the uncertainty of performance indicators that stems from observation errors (Sections 3.2.2 and 3.4.2), 1035 

in addition to the conflicting goals of achieving a good fit to observed Q and observed TWSA that is also reflected 

by the Pareto-optimal parameter sets. The 138 behavioral GLUE parameter sets, which all result in NSE values > 

0.65, vary widely and for some parameters cover the whole parameter range (Figs. 5f and 6). In most behavioral 

sets, the SL-RC values are larger than 2, but there is even a set with a value below 1. SL-MSM ranges between 1 

and 2.7, while the parameter value of the POC compromise solution is at the upper end of this range. Different 1040 

from the Pareto-optimal POC solutions, SW-RRM values do not encompass very small values close to 1 but tend 

to be higher, mostly between 2 and 3 (Fig. 6). SN-MT as well as the three parameters related to lakes and wetlands, 

SW-DC, SW-LD, and SW-WD, are not constrained at all by the calibration (Fig. 5f and Fig. 6). Parameter 

correlations are very low, except negative correlations of EP-PTh with SL-RC, NA-GM and SW-DC (Fig. S5f). 

 1045 
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Figure 6. Histogram of parameter values in calibrated parameter sets according to POC and GLUE for the MRB 

(CDA unit VI). All behavioral parameter sets are considered for GLUE, while the smaller ensemble of behavioral 

Pareto-optimal parameter sets is shown for POC. The total number of parameters set for POC and GLUE is listed 1050 

in Table 6. The y-axis shows the ratio of the number of parameter values in class to the total number of parameter 

sets, while the x-axis shows the a-priori parameter range listed in Table 2. The green dashed line indicates the 

parameter values of the uncalibrated WaterGAP model. 

4.3.2 The five sub-basin CDA units 

For all five sub-basins except the downstream Lower MRB (with SL-RC = 0.33), calibrated SL-RC is close to the 1055 

maximum value of 3 in the POC compromise solution (Fig. 5). SL-MSM is at its lower bound in the Lower MRB, 

but increases maximum soil water storage in all other CDA units; the multiplier is almost at its maximum value of 

3 for the Missouri River basin and the Upper MRB, about 2 for the Arkansas River basin and 1.3 for the Ohio 

River basin, which is the basin with the best performance of the uncalibrated model. In all CDA units but the 

Arkansas River basin, SW-LD reaches very high values between 10 and 20 m, and SW-WD is also higher than the 1060 

uncalibrated values in all CDA units except Arkansas and Upper MRB. The SW-DC is at its minimum value in 

the Missouri River basin and the Upper MRB, close to its uncalibrated value in the Arkansas and Ohio River basins 

and in between in the Lower MRB. Calibrated SN-MT varies strongly among the CDA units. NA-GM is always 

below 1 to increase groundwater retention. The Lower MRB is the only CDA unit where optimal EP-PTh was 

high (1.65) while in all other CDA units, the calibrated value was close to 1.  1065 

Overall, there is a particularly high equifinality of parameter sets in the Lower MRB, with strong negative 

correlations between parameters of the Pareto-optimal POC solutions (Fig. S5e). Among the POC solutions in the 

Arkansas River basin, the parameters wetland depth (SW-WD) and surface water discharge coefficient SW-DC 

(Fig. 5a, compare POC compromise solution with POC behavioral solutions, and Fig. S5a) are so negatively 

correlated that the parameters alternatively take values at the opposite limits of the parameter ranges. A high value 1070 

of maximum storage in surface water bodies has a similar effect on Q and TWSA dynamics as a low surface water 

discharge coefficient that keeps water in storage. Parameters may also show very strong correlations within a very 

small parameter space as in the case of EP-PTh and SW-WD in Upper MRB (Figs. 5c and S5c). 
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The GLUE behavioral parameter sets cover an even larger range in the Lower MRB and the Arkansas River 

basin as compared to the MRB (Figs. 5 and S7). Correlations between parameters are generally low (Fig. S6), 1075 

except for high negative correlations between EP-PTh and SL-RC in the Missouri River basin and between EP-

PTh and SL-MSM in the Ohio River basin. However, low correlations between the calibrated parameters do not 

indicate a low equifinality.  

4.4 Added value of spatially more resolved CDA units  

An important decision in model parameter estimation is the choice of CDA units, i.e., the selection of the group 1080 

of grid cells for which calibration parameters are assumed to be the same. A higher number of CDA units within 

the same geographic domain leads to the adjustment of more parameters, causes a higher computational effort and 

is expected to lead to an improved representation of reality. We performed two analyses to evaluate the added 

value of dividing the MRB into five sub-basin CDA units.  

In the first analysis, we used the compromise solutions obtained for the CDA unit VI (MRB), where the same 1085 

calibration parameter values are assigned to all grid cells in the whole MRB, to compute Q and TWSA for each of 

the five sub-basin CDA units. Model performance of this calibration variant (“whole basin calibration”) is 

compared to the performance that is achieved in the sub-basins if each sub-basin is calibrated individually, i.e., if 

five CDA units are used to cover the whole MRB. Analysis for both the calibration period (Table 7) and the 

validation period (Table S1) clearly shows the added value of distinguishing five sub-basin CDA units (calibration 1090 

variant “sub-basin calibration”) as overall model performance improves in each of the five sub-basins as compared 

to the calibration variant “whole basin calibration. Due to the specific search algorithm, performance gains are 

more pronounced with POC than with GLUE. Performance gains are very high in the case of EnCDA due to the 

poor performance of the whole-basin calibration. Considering POC and regarding Q, the added value of more 

CDA units is highest for the Missouri River basin, followed by the Arkansas River basin and the Upper MRB. 1095 

However, for these three sub-basins, there is no added value regarding TWSA. In the always best performing Ohio 

River basin, there is a small added value for both Q and TWSA, while in the downstream Lower MRB, where Q 

is dominated by inflow from the four upstream sub-basins, Q performance remains essentially unchanged while 

TWSA performance improves with more CDA units.  

 1100 
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Table 7. Comparison of model performance in the five sub-basins of the MRB between the calibration of MRB 

as a whole (one CDA unit VI) and calibration of the individual sub-basins (five CDA units I–V). In addition, the 

performance of the model with standard calibration of 77 CDA units but adjusting only up to three parameters 

based on observed mean annual Q is shown. Model performance is indicated by NSEQ and NSETWSA during the 1105 

calibration period 2003-2012 as achieved by the compromise solutions of the three calibration approaches POC, 

GLUE, and EnCDA. The sub-basin calibration NSE values are identical to those in Table 3, except for MRB (see 

footnote 1). 

 NSEQ/NSETWSA  

 Arkansas 

 

Missouri Upper MRB Ohio Lower 

MRB 

MRB 

POC: whole basin 

calibration 

0.65/0.83 0.38/0.71 0.57/0.48 0.82/0.77 0.83/0.69 0.83/0.73 

POC: sub-basin calibration 0.74/0.85 0.73/0.71 0.67/0.48 0.87/0.86 0.81/0.90 0.81/0.791 

GLUE: whole basin 

calibration 

0.67/0.84 0.49/0.64 0.64/0.33 0.85/0.75 0.85/0.74 0.85/0.65 

GLUE: sub-basin 

calibration 

0.69/0.83 0.65/0.71 0.61/0.46 0.86/0.84 0.77/0.89 0.77/0.771 

EnCDA: whole basin 

calibration 

-0.41/0.60 -1.69/0.51 0.36/0.26 0.57/0.55 0.51/0.60 0.51/0.19 

EnCDA: sub-basin basin 

calibration 

0.59/0.84 0.62/0.65 0.68/0.60 0.79/0.91 0.83/0.88 0.83/-0.311 

1based on Q at Vicksburg and TSWA averaged over the whole MRB computed by a WaterGAP run, in which the 
calibration parameters in the five sub-basins (CDA units I-V) were set to their respective compromise solution 1110 
values. 

 

 

An evaluation of the performance regarding the mean of TWSA over the entire MRB using the individual 

parameter sets of the five sub-basin CDA units shows a small added value of using sub-basin CDA units in the 1115 

case of POC and GLUE while in the case of EnCDA the already poor fit to TWSA in the whole basin variant is 

further degraded (column MRB in Table 7). However, EnCDA estimation of Q at Vicksburg is much improved 

with five CDA units and reaches the high values of GLUE and POC, both of which show a slight degradation of 

the Q simulation at Vicksburg as compared to the whole-basin calibration.  

In the second analysis, we evaluated the ability of the different calibration variants to simulate Q at six Q 1120 

gauging stations that were not used for model calibration in this study; three are located in the Missouri River 

basin and three in the Ohio River basin (Fig. 2). Differences between the stations are larger than between the 

calibration approaches. Good NSEQ values are only achieved at two stations, Mt. Carmel and Louisville in the 

Ohio River basin. The best performance at Mt. Carmel is achieved with the whole-basin GLUE approach (NSE = 

0.77), while the POC sub-basin approach achieves the optimal performance at Louisville, with NSE = 0.91. (Table 1125 

8). Sub-basin calibration strongly improves NSE as compared to whole basin calibration in the case of the Platte 

River station at Louisville for both POC and GLUE, by reducing the bias (RBias) but decreasing correlation (CC) 

and the fit to observed Q variability (RVar) (Table 9) but not during the validation period (Table S2). There is 

some added value of sub-basin calibration regarding Q simulation at the Louisville station on the Ohio River for 

both the calibration and the validation period. At this station, sub-basin calibration also leads to higher NSE values 1130 

as compared to the standard calibration and uncalibrated WaterGAP variants. For the other four stations, however, 

sub-basin calibration leads to worse performance than whole-basin calibration during the calibration period. For 
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the station on the Cumberland, which is not a calibration station in the standard calibration, the standard calibration 

even leads to a better performance than all the ensemble-based calibrations for both the calibration and validation 

period. At the Bismarck station on the Missouri River, where model performance is similarly poor as on the 1135 

Cumberland, even the uncalibrated WaterGAP variant performs better or similar to the calibrated variants due to 

the highest correlation. During the validation period, the performance of all three calibration approaches becomes 

very low at the three stations in the Missouri River basin (Table S2), while it remains constant or even improves 

for the three stations in the Ohio River basin. No calibration approach performs consistently better than any other 

approach; performance rather depends on the period and the station. Overall, calibration using Q observations on 1140 

downstream stations only leads to apparently random changes in Q simulation at upstream stations that have not 

been used in the calibration. 

 

Table 8. Comparison of model performance at the six Q validation stations in the Missouri and Ohio sub-basins 

of the MRB (Fig. 2) between the calibration of MRB as a whole (CDA unit VI) or calibration of the individual 1145 

sub-basins (CDA units I–V). Model performance is indicated by NSEQ and the three KGE components during the 

calibration period 2003-2012 as achieved by compromise solutions of the three calibration approaches POC, 

GLUE, and EnCDA. In the case of CDA, the performance metrics for the 2003-2012 CDA run are shown and not 

of a run with the parameter set of December 2012. The best-performing calibration variant for each station is 

shown in bold. In addition, performances of the standard and uncalibrated WaterGAP model variants are shown.  1150 

 NSEQ/CC/RBias/RVar 

 Missouri 

near 

Landusky 

Missouri at 

Bismarck1 

Platte at 

Louisville1 

Wabash at 

Mt Carmel1 

Ohio at 

Louisville 

Cumberland 

at Nashville 

POC: whole 

basin 

calibration 

0.30/0.73/ 

0.67/1.10 

-0.04/0.38/ 

0.68/0.29 

-0.56/0.79/ 

1.61/0.95 

0.74/0.91/ 

1.24/0.74 

0.78/0.91/ 

1.11/0.68 

0.37/0.86/ 

1.59/0.46 

POC: sub-
basin 

calibration 

0.23/0.78/ 
0.58/1.45 

-0.38/0.41/ 
0.41/0.51 

0.54/0.83/ 
0.96/1.26 

0.65/0.87/ 
1.24/0.81 

0.91/0.96/ 
1.08/0.84 

0.32/0.84/ 
1.62/0.54 

GLUE: 

whole basin 

calibration 

0.50/0.80/ 

0.80/1.30 

-0.03/0.32/ 

0.69/0.40 

-0.55/0.76/ 

1.57/0.98 

0.77/0.91/ 

1.20/0.80 

0.83/0.92/ 

1.05/0.80 

0.42/0.85/ 

1.53/0.49 

GLUE: sub-

basin 

calibration 

0.41/0.77/ 

0.72/1.25 

-0.15/0.39/ 

0.56/0.41 

0.58/0.80/ 

1.00/1.05 

0.67/0.87/ 

1.25/0.76 

0.87/0.94/ 

1.07/0.81 

0.31/0.84/ 

1.62/0.48 

EnCDA: 

whole basin 

calibration  

0.20/0.56/ 

1.00/0.89 

-1.09/-0.32/ 

1.42/0.45 

-8.98/0.57/ 

3.15/0.60 

0.66/0.85/ 

1.09/0.58 

0.41/0.71/ 

0.86/0.55 

0.24/0.59/ 

1.30/0.36 

EnCDA: 
sub-basin 

calibration  

0.48/0.74/ 
1.12/0.83 

0.46/0.89/ 
1.47/0.53 

-1.8/0.42/ 
1.79/0.77 

0.59/0.89/ 
1.38/0.67 

0.65/0.82/ 
1.00/0.64 

0.13/0.69/ 
1.58/0.51 

Standard 

calibration 

0.37/0.81/ 

1.19/1.06 

0.36/0.64/ 

1.03/0.40 

0.04/0.71/ 

0.99/1.40 

0.70/0.87/ 

1.09/0.97 

0.78/0.89/ 

1.03/0.79 

0.52/0.84/ 

1.42/0.56 

Uncalibrated 0.40/0.77/ 

1.11/1.08 

0.47/0.82/ 

1.38/0.62 

-6.30/0.69/ 

2.26/1.21 

0.69/0.89/ 

1.20/0.88 

0.78/0.88/ 

0.98/0.86 

0.40/0.84/ 

1.54/0.48 
1Calibration station of standard calibration 
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5 Discussion and conclusions 

In this study, three ensemble-based methods for estimating optimal and behavioral parameter sets for the global 

hydrological model WaterGAP using observations of streamflow (Q) and total water storage anomaly (TWSA) 1155 

are presented and evaluated for the Mississippi River basin. Two spatial calibration set-ups were tested. The whole 

basin down to the Q observation station Vicksburg was either treated as one CDA unit with spatially uniform 

calibration parameters, or the basin was divided into five sub-basins that were treated as individual CDA units. In 

each case, observations are monthly time series of Q at the most downstream grid cell of each CDA unit and of 

monthly time series of TWSA spatially averaged over the CDA unit (POC and GLUE) or 4° boxes (EnCDA) 1160 

during the period 2003-2012. Based on a sensitivity analysis for each CDA unit individually, 8-10 calibration 

parameters were adjusted in each CDA unit. For each CDA unit and calibration approach, an “optimal” 

compromise parameter set could be determined. A method for taking into account the uncertainty of Q and TWSA 

observations in the selection of behavioral ensemble members was developed. This method is based on the GLUE 

ensemble, and the derived performance thresholds, which define which parameter sets can be regarded as 1165 

acceptable and informative given the observation uncertainties, can be applied to all three calibration approaches. 

5.1 Advantages and disadvantages of the three multi-variable calibration approaches 

The applicability of the EnCDA approach is strongly limited by its high computational burden which restricted 

the number of ensemble members in our study to 32, as compared to 20,000 in the case of POC and GLUE. This 

very small ensemble is likely the reason for the generally lower performance of the EnCDA results as compared 1170 

to POC and GLUE both during the calibration and validation periods. In the case of EnCDA, calibration and data 

assimilation using only one CDA unit for the whole MRB resulted in a worse performance regarding both Q and 

TWSA than that of the uncalibrated WaterGAP during the calibration period 2003-2012. Regarding the five sub-

basin CDA units, performance for all but one CDA unit was worse than that of POC and GLUE even though not 

only parameters but also water storages are adjusted in EnCDA. Performance was, however, improved over the 1175 

standard and uncalibrated model variants for 4 out of 6 CDA units, in particular regarding TWSA. Q simulation 

by EnCDA during the calibration period might be improved by using log Q instead of Q (Clark et al., 2008; Paiva 

et al., 2013), and in the case of dry world regions, by censoring no flow observations (Wang et al., 2020). Note 

that we define performance generally in terms of NSE, while EnCDA unlike POC and GLUE does not optimize 

NSE but rather the RMS of model-observation differences. 1180 

During the validation period 2013-2016, where EnCDA uses the 32 parameter sets obtained at the end of the 

calibration period (December 2012) to compute Q and TWSA without any update of water storages, TWSA and 

to a lesser extent Q “drifted off” from the observations, resulting in very poor fits. This may be explained by the 

fact that the monthly parameter updates in EnCDA absorb model misrepresentations that generate seasonally 

varying errors such that the December 2012 parameter sets were not able to lead to a reasonable simulation during 1185 

the whole four years of the validation period. Unlike EnCDA, POC and GLUE decide on optimal parameter sets 

based on the overall behavior during the calibration period, based on all simulated and observed calibration 

variables. 
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POC and GLUE show similar performances. However, the search algorithm in POC leads to better 

identification of (Pareto-)optimal parameter sets than GLUE, for the same computational burden, even though the 1190 

difference between the time series of Q and TWSA computed by POC and GLUE is small compared to the 

discrepancies to the observations (Figs. 4 and S4). Therefore, POC is preferable to GLUE if only one optimal 

parameter set, e.g., the compromise parameters set, or Pareto-optimal parameter sets are to be identified. 

Application of GLUE is required for the identification of behavioral parameter sets and thus an estimation of the 

uncertainty of simulated WaterGAP output. 1195 

5.2 Added value of multi-variable calibration as compared to the standard WaterGAP calibration for 

identifying one “optimal” parameter set 

The compromise parameter sets identified by multi-variable calibration result in better simulations of both Q and 

TWSA during the calibration period as compared to the standard WaterGAP for all six CDA units, except for 

EnCDA in the case of the whole MRB (Table 3). However, the added value of any calibration is very low in the 1200 

humid and hilly Ohio basin where the performance of the uncalibrated model is already good. As can be expected, 

the improvement of TWSA simulations is more pronounced than the improvement of Q. Higher NSEQ values are 

mostly caused by improved correlation, while Q variability is still underestimated in all CDA units, and in three 

CDA units even more strongly than by the standard and uncalibrated WaterGAP variants. In two CDA units, the 

mean Q is overestimated by more than 10% (Table B1). The much higher NSETWSA values of the compromise 1205 

solutions as compared to standard WaterGAP are also mainly caused by much-improved correlations, with 

improved or worsened TWSA variabilities depending on the CDA unit (Table B2). The analysis of model 

performance at the same observation locations for the validation period 2013-2016 confirms the added value of 

POC and GLUE.  

However, visual inspection of the hydrographs for both the calibration and validation periods reveals that the 1210 

fit to observations can only be improved slightly by the multi-variable calibration. An exception is the simulation 

of TWSA in the Lower MRB, which is affected by intensive irrigation in the Mississippi Embayment. There, 

standard WaterGAP simulates a declining TWSA trend due to groundwater depletion, which does not occur 

anymore with the three multi-variable approaches that make use of observed TWSA (Fig. S4f). The 

underestimation of seasonal low flows in all six CDA units remains after calibration, not only in the compromise 1215 

solutions (Figs. 4 and S4) but also in the POC and GLUE runs with the highest NSEQ.  

An advantage of POC and GLUE over the standard WaterGAP calibration is that by adjusting 8-10 parameters 

per CDA unit, it is possible to achieve higher NSE values for Q without having to use any correction factors. In 

the standard calibration, both areal and station correction factors are necessary for many CDA units in the western 

part of the MRB to reduce simulated mean annual Q to observed values (Calibration status CS3 and CS4 in Fig. 1220 

S3a). It is particularly beneficial that station correction factors (Fig. S3d) are avoided by the new calibration 

approach as they lead to abrupt changes in Q and destroy mass conservation (Müller Schmied et al., 2021). Even 

by adjusting only 9 parameters homogeneously in the whole MRB using monthly time series of observed Q and 

TWSA, improved model performance is achieved, compared to adjusting more than 100 parameters in 77 CDA 

units in the standard WaterGAP calibration, except for the Ohio River basin and Q in the Missouri basin. This 1225 
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statement only relates to the Q observations considered in this study, not to the Q at all 77 standard calibration 

stations. 

There appears to be almost no added value of the multi-variable calibration approaches for the simulation of Q 

at upstream locations within the calibrated CDA unit where Q observations were not used for calibration (Table 

8). This may be due to the very large and heterogeneous CDA units; the CDA unit MRB covers almost 3 million 1230 

km2, while the largest sub-basin CDA, the Missouri River basin covers 1.35 million km2 and the smallest, the 

lower MRB, still 0.25 million km2. 

5.3 Estimation of WaterGAP output uncertainty 

Both GLUE and EnCDA aim at estimating model output uncertainty, but the small ensemble size of EnCDA 

prevents a meaningful estimation. The presented application of the GLUE approach aims at quantifying the 1235 

uncertainty of WaterGAP output due to parameter uncertainty, taking into account the uncertainty of model output 

observations. The estimated uncertainty bands underestimate the model uncertainty. The identified 72 to 1517 

behavioral parameter sets (Table 4), out of a total of 20,000, result in uncertainty bands that are small compared 

to the variability of Q and TWSA, in particular seasonal variability (Figs. 4 and S4). Unfortunately, only 46-72% 

of the monthly Q estimates of the GLUE behavioral model runs fall into the uncertainty band of observed Q, 1240 

depending on the CDA unit (Table 5). With 59-95%, TWSA coverage is higher, except in the Missouri River 

basin.  

Low coverage values indicate that the model suffers from errors in either model input or model structure. An 

explanation for the overestimated low flows might be that WaterGAP, like most hydrological models, is not able 

to simulate water loss from the river into the groundwater, while a recent study has found strong indications for 1245 

extensive losing river conditions in the MRB (Jasechko et al., 2021). Further model uncertainties that appear 

particularly relevant for the limited performance of WaterGAP in the different CDA units are related to the 

modeling of man-made reservoirs, which may be particularly relevant for the Missouri River basin, and the poor 

specification of location and extent of small wetlands (Prairie potholes) in the Missouri River basin and the Upper 

MRB.  1250 

The relatively thin uncertainty bands indicate equifinality of the very diverse behavioral parameter sets (Fig. 

5) for the study period. The widths of the uncertainty bands of POC and GLUE do not change appreciably between 

the calibration and the validation period (Figs. 4 and S4), which indicates that calibrated parameter sets are 

transferable between the two periods. The exceptions are the TWSA uncertainty bands in the Arkansas river basin 

(Fig. 4) and Lower MRB (Fig. S4) which, for unknown reasons, are wider in the validation period, indicating that 1255 

parameter sets that lead to similar model output in the calibration period might result in more discrepant model 

output. under changed climatic conditions. 

5.4 Trade-offs between optimal simulation of Q and TWSA 

Trade-offs between the optimal simulation of Q and TWSA are relevant in all CDA units. POC trade-offs are only 

slightly smaller than GLUE trade-offs when considering the NSE values achieved by parameter sets that lead to 1260 
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either maximum NSEQ or maximum NSETWSA (Table 3). There are particularly large trade-offs between a good fit 

to Q and TWSA in two sub-basin CDA units with many surface water bodies, i.e., in the Missouri River basin 

(reservoirs, wetlands and lakes) and the Upper MRB (wetlands and lakes) (Fig. A1) and, accordingly, also in the 

CDA unit MRB. In the Missouri River basin, for example, the POC parameter set resulting in an optimal fit to 

observed Q has an NSEQ of 0.83 but an NSETWSA of only 0.5, while the POC parameter set resulting in an optimal 1265 

fit to observed TWSA improves NSETWSA to 0.81 but degrades NSEQ to the very poor value of -0.82 (Table 3). 

We suspect that the poor knowledge of the location and extent of small wetlands and the difficulty of simulating 

the operation of man-made reservoirs (without adjustment of parameters) are the main reasons for the strong trade-

offs. In most CDA units, an optimal TWSA fit leads to a strong overestimation of mean Q and an even stronger 

underestimation of Q variability (Table B1), while a good fit to Q leads to an overestimation of TWSA variability, 1270 

in different degrees depending on the CDA unit (Table B2). We speculate that this trade-off cannot be explained 

by potential errors of the used GRACE TWSA time series due to leakage effects, the impacts of which are not 

included in the values of GRACE TWSA used in this analysis (see Section 3.2.2). For the Lower MRB, the 

multiplicative leakage re-scaling factor of 1.41 (see Section 3.2.2) matches the overestimation of TWSA variability 

(RVar = 1.42 for the POC parameter set with the best fit to Q, Table B2), but this may be by chance. Besides, the 1275 

estimated re-scaling factor may be biased by an overestimated negative TWSA trend in the standard WaterGAP 

run that was used to compute it. 

Much smaller trade-offs between the optimal fits to observed Q and TWSA were found with another 

hydrological model in a calibration study for 83 European river basins, where both Q and TWSA observations 

were used for adjusting up to 53 parameters in a basin-specific manner (Rakovec et al., 2016).  When TWSA was 1280 

considered in addition to Q in the calibration objective, the correlation of observed and simulated Q decreased 

slightly while bias and variability remained almost unchanged. However, TWSA correlations that were achieved 

by calibration were extremely low, with a median r of 0.56 if only Q observations were used in the calibration, 

increasing to only 0.67 if in addition TWSA observations were included. In our study, TWSA correlations are 

much higher; for the calibration period, they vary between the six CDA units from 0.80-0.95 in the case of the 1285 

POC compromise solution. Even the uncalibrated WaterGAP variant leads to CC values in the range of 0.76-0.93. 

Accessible Q observation data are rare in many parts of the globe, while GRACE TWSA observations cover 

the whole globe and are freely available. The use of GRACE TWSA observations strongly increased the fit of 

simulated to observed TWSA during the calibration and validation periods. But is the calibration of WaterGAP 

against TWSA observations only beneficial for the estimating Q? This question can be answered by analyzing the 1290 

performance metrics of the GLUE a-priori ensemble of 20,000 parameter sets. For both the calibration and the 

validation period, Q simulation degrades in three of the six CDA units in the variants “highest NSETWSA” as 

compared to the uncalibrated WaterGAP. This is the case in the Upper MRB where WaterGAP struggles with 

uncertain information regarding the location and extent of small wetlands, in the Ohio River basin in which already 

the uncalibrated WaterGAP variant simulates Q well and in the MRB (Tables 3 and 6). In the Missouri River basin, 1295 

Q simulation by the uncalibrated model is very poor and remains so after calibration against GRACE TWSA only. 

In the Murray-Darling basin, EnCDA using GRACE TWSA only resulted in Q overestimation (Schumacher et al., 

2018). Thus, a calibration against GRACE TWSA only may degrade or not the Q simulation as compared to an 

uncalibrated model run, and it is difficult to estimate where such degradation could occur. Further studies are 
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needed to understand under which circumstances calibration against GRACE TWSA does not degrade the 1300 

simulation of Q. 

5.5 Added value of sub-basin CDAs instead of one basin CDA 

Considering Q performance at the outlet of the five sub-basin CDA unit and the aggregated TWSA, overall model 

performance is somewhat improved if calibration is done individually for the five CDA units instead of adjusting 

parameters homogeneously over the whole MRB, for both the calibration (Table 7) and the validation periods 1305 

(Table S1). The added value is smaller for the validation period. However, in three CDA units, TWSA performance 

during the calibration period is not affected by the higher number of CDA units, while Q at the calibration stations 

was improved if the station was used in the calibration. In addition, Q performance at gauging stations inside the 

two sub-basin CDA units was not improved by sub-basin calibration (Table 8 and Table S2). Q performance at 

these gauging stations appears to be unrelated to the type of calibration done (including no calibration) as the best-1310 

performing calibration approach varies randomly among CDA units and periods. Therefore, to increase the quality 

of Q simulations with WaterGAP, we suggest using CDA units that are smaller than the Mississippi River sub-

basins selected for this study, i.e., smaller than about 400,000 km2. This is also supported by the study of Mizukami 

et al. (2017) who selected 531 CDA units for the continental US. Alternatively, the joint calibration against 

multiple Q observations within a CDA unit should be tested (Xie et al., 2012; Wanders et al., 2014). 1315 

5.6 Characteristics of identified (Pareto-)optimal and behavioral parameter sets 

In (Pareto)-optimal parameter sets, the optimized runoff coefficient SL-RC obtains values very close to its upper 

bound in all CDA units except the downstream Lower MRB where Q is dominated not by runoff generation within 

the CDA unit but by inflows from upstream CDA units. High SL-RC values, which tend to decrease runoff, are 

also obtained by the standard WaterGAP calibration (Fig. S3). Further reduction of runoff is achieved in this study, 1320 

except for the downstream Lower MRB, by increasing maximum cell-specific soil water storage by multiplication 

with optimized SL-MSM values that are larger than 1, ranging between 1.3 for the best-simulated Ohio River basin 

to almost 3 for the Missouri River basin and the Upper MRB. A larger maximum soil water storage leads to 

decreased soil saturation and lower runoff, and at the same time to higher variability of soil water storage and thus 

TWSA. It is surprising that EP-PTh, a factor in the equation of potential evapotranspiration, is reduced in all CDA 1325 

units (except in the Lower MRB) from its standard value of 1.26 to values around 1, which leads to reduced actual 

evapotranspiration and thus increased runoff. The multipliers adjusting grid cell values of human net water 

abstraction from groundwater (adjusted in four CDA units) tend to be less than zero, indicating an overestimation 

of net groundwater abstractions by the standard model variant. Water abstraction from surface water bodies 

(adjusted only in the Missouri River basin) might be underestimated. The optimal values of the other calibration 1330 

parameters can differ strongly between POC and GLUE compromise solutions or between the Pareto-optimal POC 

solutions (Fig. 5). The correlations between calibration parameters can be high and differ strongly between the 

CDA units; general patterns cannot be seen (Fig. S5). For example, SL-RC can correlate positively or negatively 

with SL-MSM and EP-PTh. 
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Regarding the behavioral POC parameter sets, the better the fit to TWSA is, the higher the maximum wetland 1335 

depth SW-WD, ranging between 1.5 m and 11 m. The same is true for other parameter values that increase water 

storage capacities, such as SL-MSM, SW-WD, or SW-LD. 

The ranges of most parameters in the behavioral GLUE parameter sets, which take into account the impact of 

observation uncertainty on optimized parameter sets, are only slightly narrower than the a-priori parameter ranges 

(Figs. 5, 6 and S7). This is the case even though behavioral parameter sets are only a very small fraction of 0.04%-1340 

0.76% of the 20,000 a-priori parameter sets of GLUE. We found larger equifinality in TWSA simulation than in 

Q simulations except for the downstream Lower MRB where simulated Q is dominated by the inflow from 

upstream as quantified by the compromise parameters sets of the four upstream CDA units (Excel file in 

supplement). That TWSA observations constrain parameter sets less than Q observations was also discovered in 

the multi-variable calibration study for ten large basins in Sub-Sahara Africa by Xie et al. (2012). 1345 

Likely due to the fixed and dominant inflow from upstream, there was hardly any narrowing of the a-priori 

parameter range for the downstream Lower MRB (Figs. 5 and S7). EP-PTh is the only parameter whose 

distribution shows a peak (except for the Lower MRB, Figs. 6 and S7). Small peaks are often seen for SL-MSM 

and the net abstraction multipliers. SL-RC mostly shows a low frequency of values below 1 and increasing 

frequencies towards the upper parameter bound. Uniform distributions without any significant narrowing are seen 1350 

for SN-MT, SW-DC, SW-WD, and SW-LD. Parameter correlations among the behavioral parameter sets are 

mostly low, except for negative correlations that exist, depending on the CDA unit, between EP-PTh and 

parameters such as SL-RC, SL-MSM, and SN-MT (Fig. S6).  

Multi-variable calibration did not lead to improved identifiability of parameters, i.e., the determination of a 

small range of suitable parameter values, except for the three parameters SL-RC, SL-MSM and EP-PTh. This 1355 

makes the application of the “optimal” compromise parameters set derived by POC problematic for estimating, 

e.g., groundwater recharge, groundwater abstractions and surface water abstractions. Examples are the multipliers 

for net groundwater and surface water abstractions in the Missouri basin, where the POC compromise solution 

suggests that net groundwater abstractions are 25% lower and net surface water abstractions are 50% higher than 

estimated without parameter adjustment (Fig. 5b and Excel file in supplement). Even the behavioral Pareto-optimal 1360 

parameter sets, which are obtained by optimizing the fit to observations that are assumed to be error-free, include 

severe decreases but also slight increases of net groundwater abstraction as compared to the standard value as well 

as strong increases of net surface water abstractions but also a reversal from net abstractions to net additions of 

water to surface water bodies by large return flows from groundwater-sourced water to surface water bodies (Fig. 

5b and Excel file in supplement). In the Arkansas basin, the POC compromise solution suggests a strong decrease 1365 

of both groundwater recharge and net abstractions from groundwater, to 30% and 24% of the standard values, 

respectively, but very similar performances regarding the assumedly error-free observations can be obtained if 

both values are decreased much less or even if groundwater recharge is increased (Fig. 5a and Excel file in 

supplement). The remaining equifinality of the parameter sets of our study even with using two different 

observation variables is in accordance with the results of a calibration study for flood design in Sweden (Harlin 1370 

and Kung, 1992). In that study, a large number of sets of twelve parameters were identified by model calibration 

using a Monte-Carlo approach, and, like in our study, it was for most parameters not the value of the individual 
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parameter that determined if the simulation of Q was behavioral but the combination of the parameter values within 

each parameter set.   

5.7 Outlook 1375 

Based on this pilot study, we suggest that the multi-variable POC approach, combined with the described 

sensitivity analysis, is best suited for estimating a CDA unit-specific optimal parameter set for the global 

hydrological model WaterGAP that leads to a better fit to observations of both Q and TWSA than the simple 

standard WaterGAP calibration approach. Such basin-specific POC compromise parameter sets can then be used 

to simulate the best estimate of past and future water flows and storages, in particular, if various future scenarios, 1380 

e.g., driven by the output of multiple climate models, or hydrological seasonal ensemble forecasts are computed 

by WaterGAP. Multi-variable model calibration against both Q and TWSA allowed constraining three model 

parameters while a large range of values of all other calibration parameters can lead to equally good fits to the 

observations, even if the uncertainty of observations is neglected, as in the case of Pareto-optimal POC parameter 

sets. We suggest that the parameter interdependence of Pareto-optimal parameter sets should be analyzed, The 1385 

identified POC compromise parameter set should be applied with caution. 

As we found that Q can be simulated reasonably well only at locations where Q observations have been used 

in the calibration, the selection of rather small CDA units that are similar in size to the calibration units in the 

standard WaterGAP calibration will be pursued for global-scale multi-variable calibration. Optimal ways of 

addressing GRACE TWSA leakage errors need to be identified to increase the commensurability of simulated and 1390 

observed TWSA. Additional observation variables such as snow cover and water storage variations in lakes and 

man-made reservoirs will be taken into account to further reduce equifinality. Unfortunately, no information on 

groundwater levels is available at the global scale, which is likely required to constrain the parameters related to 

surface water and groundwater abstraction (Hosseini-Moghari et al., 2020).  

The study results show that, currently, only the GLUE approach enables us to compute, with WaterGAP, values 1395 

of water flows and storages that are informed by Q and TWSA observations and their uncertainties. The derived 

model output uncertainty bands approximately represent the impact of equifinality of parameter sets on model 

output and take into account the uncertainty of the observations. Such model output uncertainty bands can be 

readily computed by the presented methods but will underestimate the total model output uncertainty significantly, 

as they do not include the impact of model input and structure uncertainties. Likely because of the very small 1400 

ensemble size that was feasible in EnCDA due to its severe computational burden, parameter sets and model output 

uncertainties could not be estimated by EnCDA in this study, neither for the calibration period nor for projections 

for periods without observation data. However, the EnCDA approach has the potential to lead to improved 

parameter estimates or model structure by, e.g., detecting a seasonal variation of model parameters. Further studies 

should investigate the feasibility of including NSE as an optimization metric in the EnCDA approach. 1405 

 We recommend including, in future freshwater-related climate change impact studies, a behavioral 

ensemble of parameter sets as determined by the GLUE approach even though this will require a significant 

computational effort. This should reduce the underestimation of modeling uncertainty by traditional multi-model 

studies. As shown in the multi-model/multi-parameter study for the Colorado River basin by Mendoza et al. 
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(2016), parameter sets with a similar performance during the calibration period may provide very different 1410 

projections of climate change hazards, and the impact of parameter uncertainty is similar to the impact of 

hydrological model selection.  

Appendix A: Surface water bodies and human water abstractions in the CDA units of the Mississippi River 

basin 

To understand the sensitivity of model output to parameters, the spatial distribution of storages and flows that they 1415 

affect is required. Water balances of reservoirs (Fig. A1a) are not directly impacted by the calibration parameters 

in Table 2, while lake dynamics (Fig. A1b) are directly impacted by active lake depth (SW-LD) and wetlands (Fig. 

A1c, d) by active wetland depth (SW-WD). Please note that knowledge about the wetlands in the northern parts 

of the CDA units Missouri River basin and the Upper MRB as well as in the southern part of the Lower MRB is 

restricted to the information in these areas that generally 25-50% of the land area are covered by wetlands in the 1420 

wet season. In WaterGAP, this information was translated into a maximum extent of local wetlands of 35%. The 

surface water discharge coefficient (SW-DC) affects both lakes and wetlands. Potential net abstractions from 

groundwater (Fig. A1e) and surface water (Fig. A1f) are simulated with a monthly time step for each grid cell, and 

multipliers for each of them (NA-GM and NA-SM) affect model output differently in the various CDA units due 

to different net abstraction patterns. 1425 
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Figure A1. Man-made reservoirs (a), lakes (b), local wetlands (c), global wetlands (d) as well as potential net 

abstractions from groundwater (e) and from surface water (f) in the CDA units of MRB, as taken into account in 

WaterGAP. Maximum areal extents of the surface bodies in percent of the 0.5° cell area are shown, while potential 1430 

net abstractions in mm/yr are provided for the period 2003-2012.  
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Appendix B Performance of different calibration methods during the calibration period 2003-2012: 

Components of the KGE performance metric for both Q and TWSA 

Table B1. KGE components of model runs of Table 3 regarding Q for the calibration period 2003-2012. 1435 

 CC/RBias/RVar 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower 

MRB 

MRB 

POC: highest 

NSEQ 

0.90/1.18/0

.59 

0.92/1.08/0

.80 

0.91/1.03/0

.82 

0.95/1.07/0.

89 

0.95/1.04/0

.88 

0.95/1.01/0.

88 

POC: highest 

NSETWSA 

0.91/1.42/0

.52 

0.87/1.73/0

.61 

0.84/1.47/0

.53 

0.95/1.27/0.

71 

0.94/1.07/0

.84 

0.92/1.34/0.

62 

POC: 

compromise  

0.90/1.18/0

.59 

0.86/1.06/0

.80 

0.89/1.20/0

.66 

0.95/1.11/0.

83 

0.95/1.06/0

.82 

0.94/1.09/0.

78 
GLUE: highest 

NSEQ 

0.90/1.21/0

.52 

0.91/1.14/0

.71 

0.89/1.01/0

.82 

0.94/1.07/0.

88 

0.93/1.02/0

.86 

0.94/1.02/0.

82 

GLUE: highest 

NSETWSA 

0.91/1.74/0

.38 

0.88/1.70/0

.60 

0.84/1.51/0

.43 

0.95/1.30/0.

63 

0.94/1.12/0

.75 

0.94/1.33/0.

64 

GLUE: 

compromise 

0.90/1.31/0

.55 

0.86/1.18/0

.68 

0.88/1.23/0

.57 

0.94/1.11/0.

79 

0.93/1.07/0

.79 

0.93/1.05/0.

84 

EnCDA: highest 

NSEQ 

0.81/1.18/0

.76 

0.86/1.14/0

.76 

0.86/1.11/0

.77 

0.92/1.13/0.

69 

0.92/1.04/0

.78 

0.75/1.06/0.

60 

EnCDA: highest 

NSETWSA 

0.77/1.04/0

.66 

0.82/1.29/0

.77 

0.73/1.34/0

.86 

0.89/1.23/0.

55 

0.92/1.13/0

.66 

0.71/1.10/0.

58 

EnCDA: 

compromise  

0.77/1.04/0

.66 

0.84/1.15/0

.65 

0.83/1.07/0

.76 

0.92/1.13/0.

69 

0.92/1.04/0

.78 

0.73/1.05/0.

60 
EnCDA: 

ensemble mean 

0.79/0.97/0

.67 

0.82/1.21/0

.68/ 

0.86/1.12/0

.76 

0.91/1.17/0.

61 

0.94/1.13/0

.68 

0.75/1.11/0.

58 

Standard 

calibration 

0.83/0.98/0

.53 

0.74/1.05/0

.73 

0.73/0.64/0

.76 

0.93/1.05/0.

82 

0.89/0.97/0

.95 

0.89/0.97/0.

95 

Uncalibrated 0.87/1.76/0

.55 

0.84/1.72/0

.77 

0.76/1.07/0

.73 

0.93/1.07/0.

87 

0.91/1.15/0

.92 

0.91/1.15/0.

92 

 

Table B2. KGE components of model runs of Table 3 regarding TWSA for the calibration period 2003-2012. 

 CC/RVar 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower MRB MRB 

POC: highest 

NSEQ 

0.93/1.06 0.77/1.09 0.80/1.42 0.95/1.22 0.95/1.42 0.85/1.30 

POC: highest 
NSETWSA 

0.95/1.04 0.91/1.03 0.84/1.07 0.95/1.05 0.97/1.05 0.93/1.10 

POC: 

compromise  

0.93/1.06 0.87/1.10 0.82/1.26 0.94/1.14 0.96/1.01 0.91/1.22 

GLUE: highest 

NSEQ 

0.89/1.01 0.57/0.91 0.80/1.47 0.92/1.14 0.92/1.67 0.75/1.37 

GLUE: highest 

NSETWSA 

0.94/0.97 0.89/1.05 0.82/1.05 0.96/1.08 0.95/1.07 0.91/1.07 

GLUE: 

compromise 

0.94/1.16 0.87/1.07 0.81/1.26 0.94/1.13 0.94/0.93 0.87/1.20 

EnCDA: highest 

NSEQ 

0.83/1.27 0.78/0.65 0.77/1.11 0.95/0.98 0.94/1.04 0.44/0.71 

EnCDA: highest 

NSETWSA 

0.94/1.14 0.83/0.65 0.83/0.98 0.97/0.90 0.96/1.00 0.52/0.72 

EnCDA: 

compromise  

0.94/1.14 0.82/0.67 0.80/1.03 0.95/0.98 0.94/1.04 0.49/0.72 

EnCDA: 

ensemble mean 

0.92/1.16 0.76/0.62 0.80/1.00 0.94/1.02 0.95/0.98 0.45/0.69 
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Standard 

calibration 

0.83/1.19 0.63/0.76 0.63/1.09 0.91/1.13 0.80/1.63 0.71/1.11 

Uncalibrated 0.85/1.09 0.63/0.76 0.62/1.10 0.90/1.21 0.82/1.60 0.73/1.11 

 

 

Code availability: The WaterGAP 2.2d code is accessible at https://doi.org/10.5281/zenodo.6902110. 1440 

 

Data availability. All optimal and behavioral parameter sets obtained by the three calibration approaches for the 

six CDA units together with the resulting performance metrics are listed in an Excel file that is part of the 

supplement. 

 1445 

Supplement. The supplement related to this article (Excel file) is available online at URL??? 
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