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Abstract. Global hydrological models enhance our understanding of the Earth system and support the sustainable 

management of water, food and energy in a globalized world. They integrate process knowledge with a multitude 

of model input data (e.g., precipitation, soil properties and location and extent of surface water bodies) to describe 20 

the state of the Earth. However, they do not fully utilize observations of model output variables (e.g., streamflow 

and water storage) to reduce and quantify model output uncertainty through processes like parameter estimation. 

For the a pilot region, the Mississippi River basin, we assessed the suitability of three ensemble-based multi-

variable calibration approaches to amend this: Pareto-optimal calibration (POC), the Generalized Likelihood 

Uncertainty Estimation (GLUE) and the ensemble Kalman filter, here modified for joint calibration and data 25 

assimilation (EnCDA)., and the Generalized Likelihood Uncertainty Estimation (GLUE). This assessmentThe 

paper shows  how observations of streamflow (Q) and terrestrial water storage anomaly (TWSA) can be utilized 

to reduce and quantify the uncertainty of model output by identifying optimal and behavioral parameter sets for 

individual drainage basins. aimed to identify both optimal and behavioral parameter sets for the global hydrological 

model WaterGAP, utilizing observations of streamflow (Q) and terrestrial water storage anomaly (TWSA). The 30 

common first steps in all approaches are 1) the definition of spatial unitsdrainage basins for which calibration 

parameters are uniformly adjusted (CDA units), combined with the selection of observational data, 2) the 

identification of potential calibration parameters and their a-priori probability distributions and 3) sensitivity 

analyses to select the most influential model parameters per CDA unit that will be adjusted by calibration. Data 

assimilation with the Ensemble Kalman filter was modified, to our knowledge for the first time for a global 35 

hydrological model, to assimilate both TWSA and Q with simultaneous parameter adjustmentwith simultaneous 

parameter adjustment was performed,. In the estimation of model output uncertainty, we considered the 

uncertainties of the Q and TWSA observations.  Applying the global hydrological model WaterGAP, wWe found 
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that the POC approach, which utilizes the Borg multi-objective evolutionary search algorithm to find Pareto-

optimal parameter sets,  is best suited for identifying a single “optimal” parameter set for each CDA unit . This 40 

parameter set leads to an improved fit to the monthly time series of both Q and TWSA as compared to the standard 

WaterGAP variant, which is only calibrated against mean annual Q, and can be used to compute the best estimate 

of WaterGAP output. TWhile the GLUE approach is almost as successful assomewhat less successful than POC  

in enhancing increasing WaterGAP performance and , it also allows, with a comparable computational effort, the 

estimation of model output uncertainties that are due to the equifinality of parameter sets given the observation 45 

uncertainties. Our experiment reveals that the EnCDA approach, in which both parameter sets and water storages 

are updated, appears well-suitedperforms similar to POC and GLUE in most CDA units during the assimilation 

phase but is not yet competitive is presently unsuitable for calibrating global hydrological models; , as its potential 

advantages remain unrealized, likely due to its high computational burden, which that severely limited the 

ensemble size, and the intrinsic nonlinearity in simulating Q. Partitioning the whole Mississippi River basin into 50 

five CDA units (sub-basins) instead of only one improved model performance in terms of NSE. during the 

calibration and validation periods. Diverse parameter sets achieved comparable fits to observations, narrowing the 

range for at least three parameters. Low coverage of observation uncertainty bands by GLUE-derived model output 

bands is attributed to model structure uncertainties, especially regarding man-made reservoir operations, the 

location and extent of small wetlands, and the (lack of) representation of losing river conditions in WaterGAP. 55 

These uncertainties are also likely responsible for significant trade-offs between optimal fits to Q and TWSA. 

Calibration against TWSA only, in regions without Q observations, may worsen the Q simulation as compared to 

the uncalibrated model variant. We recommend that modelers improve the realism of the of their GHM output of 

global hydrological models by calibrating them GHM against observations of multiple output variables, including 

at least Q and TWSA. Further work on improving the numerical efficiency of the EnCDA approach seems 60 

necessary. 

1 Introduction 

By quantifying water flows and storages on the Earth’s continents, global hydrological models (GHMs) contribute 

to our understanding of the functioning of the Earth system. GHMs (including land surface models) are 

indispensable for assessing past and future impacts of human activities on the global freshwater system in the 65 

Anthropocene, including water abstractions, dam construction and greenhouse gas emissions. In our globalized 

world, where local decisions affect freshwater systems worldwide, GHMs support sustainable water use by 

enabling the globally consistent computation of indicators of water availability and water stress.  

To generate informative model output such a streamflow, groundwater recharge and soil water content, GHMs 

integrate a large amount of spatially distributed climatic and physiographic input data (including data on land 70 

cover, soil characteristics, surface water bodies and human water use). However, they draw insufficient benefit 

from in-situ and remote-sensing observations of model output variables to improve the quality of their output or 

determine its uncertainty. 

Like all hydrological models, GHMs  suffer from uncertainty due to uncertain model structure, model input (in 

particular climate forcing) and model parameters (Döll et al., 2016). To reduce the uncertainty of model output, 75 
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models can be calibrated by adjusting the model in a way that simulated values of a model output variable optimally 

match observations of this variable. In basin-scale hydrological modeling, the estimation of model parameters by 

calibration against time series of observed streamflow is standard. This is not the case for GHMs, which is not 

only due to the limited availability of streamflow observations for many regions and the large effort required to 

exploit them. In global-scale hydrological modeling, model structure and input are more uncertain than in typical 80 

basin-scale modeling for large parts of the global model domain, and the density of available streamflow 

observations is lower. In particular due to equifinality (Beven, 1993), uncertainty reduction by parameter 

estimation for GHMs is best done by utilizing not only observations of streamflow but also of other model output 

variables (multi-variable parameter estimation: Yassin et al., 2017; Stisen et al., 2018; Dembélé et al., 2020).  

Equifinality or its synonym non-uniqueness means that different combinations of model parameters (and also 85 

of model structures and inputs) may lead to a similarly good agreement between simulated and observed values of 

a model output variable so that it is not possible to determine an optimal (unique) parameter set (Beven, 1993). 

Equifinality implies that multiple model simulations, generated by, e.g., running the model with multiple parameter 

sets, are acceptable and informative for the model user if they 1) cannot be easily rejected as infeasible 

representations of the system given in particular the uncertainty of the observations and 2) support the specific 90 

modeling purpose, e.g., to project either low flows or floods (Beven and Smith, 2015). The ensemble of such 

model runs or parameter sets is referred to as “behavioral” (Beven and Binley, 1992). The concept of behavioral 

parameters can be applied for quantifying the uncertainty of the model output that stems from the uncertainty of 

the observations of model output variables. However, methodological knowledge on how to best reduce and 

quantify model output uncertainty by multi-variable parameter estimation is lacking, in particular in global-scale 95 

hydrological modeling. 

To do a multi-variable parameter estimation and related uncertainty quantification with GHMs, observations 

of both streamflow (Q) and terrestrial water storage anomaly (TWSA) should be used. TWSA from GRACE (The 

Gravity Recovery and Climate Experiment) offers spatially uninterrupted global coverage and almost continuous 

monthly time series since 2003 (some missing months before 2016 and a gap until the start of GRACE-Follow-on 100 

mission in May 2018). TWSA observations integrate over all water storage compartments on the continents 

(glacier, snow, soil, groundwater and surface water bodies) and thus also depend on all water flows on the 

continents. This is similar to Q, which is the integrative result of upstream flow and storage processes. Thus, 

TWSA observations complement Q observations. The coarse spatial resolution of TWSA observations of about 

100,000 km2 (Vishwakarma et al., 2021) is less problematic for GHMs than for basin-scale hydrological models. 105 

Currently, most GHMs do not use observed Q (or any other observations) to estimate parameters in the 

upstream basin, i.e. GHMs are not calibrated in a basin-specific manner (Bierkens, 2015). One exception is the 

GHM WaterGAP (Alcamo et al., 2003; Döll et al., 2003), which is calibrated in a simple manner by adjusting one 

to three parameters in each of 1319 large drainage basins (Müller Schmied et al., 2014, 2021) such that simulated 

long-term average annual Q is close to observations. For the standard version of WaterGAP, adjustment of a larger 110 

set of model parameters is currently not done due to the equifinality problem and computational simplicity. While 

this limited calibration leads to a reduction of the Q bias and thus more realistic estimates of renewable water 

resources as compared to the uncalibrated version (and the results of other GHMs that are not calibrated in a basin -

specific manner), it does not significantly improve simulated seasonality and interannual variability of Q (Hunger 
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and Döll, 2008). Discrepancies with time series of observed monthly Q (Müller Schmied et al., 2014) or TWSA 115 

(Döll et al., 2014; Scanlon et al., 2019) can be high even after the standard WaterGAP calibration. It is therefore 

desirable to adjust parameters that affect the seasonality of simulated Q or TWSA as well as their interannual 

variability and potential trends.  

Multi-variable parameter estimation can be done by various ensemble-based approaches such as 1) Pareto-

optimal calibration using an optimization algorithm (POC) (Werth and Güntner, 2010), 2) the Generalized 120 

Likelihood Uncertainty Estimation (GLUE) approach for identifying behavioral parameter sets (Beven and Binley, 

1992) and 3) data assimilation with the ensemble Kalman filter in which model states and parameters are jointly 

updated  as suggested in (Eicker et al., (2014)), hereafter called EnCDA. With each of these approaches, an 

ensemble of parameter sets is generated. While parameter estimation using an optimization algorithm (POC) is 

expected to be more efficient in finding (Pareto) optimal parameter sets than a GLUE approach using a random 125 

sampling of the parameter space (Blasone et al., 2008), the GLUE approach is required to determine behavioral 

parameter sets that enable a quantification of the model output uncertainty given the observation uncertainty. With 

EnCDA, we explore here for the first time whether the ensemble Kalman Filter approach, which is well established 

for data assimilation (adjustment of model states), can also estimate at the same time model parameters if when Q 

and TWSA observations are assimilated.  130 

Werth and Güntner (2010) developed a multi-variable POC scheme for WaterGAP and applied it to adjust six 

to eight parameters homogeneously in each of 28 large river basins (e.g., Amazon, Mississippi and Lena), using 

both Q and TWSA observations. A similar approach was applied by Xie et al. (2012) to calibrate the SWAT model 

for 10 large basins in Sub-Sahara Africa, using observed TWSA time series and monthly mean Q values. The 

GLUE approach has not yet been applied with WaterGAP or other GHMs. First successful EnCDA efforts of 135 

assimilating GRACE TWSA into WaterGAP while simultaneously estimating model parameters were made for 

the Mississippi River basin in the US and the Murray-Darling basin in Australia were made by Eicker et al. (2014) 

and Schumacher et al. (2016a, b, 2018). While EnCDA with more than one observation variable (Q and remote-

sensed soil moisture) has already been applieddone in large-scale hydrological modeling of the Upper Danube 

basin (Wanders et al., 2014), joint EnCDA of Q and TWSA has not yet been reported.  Moreover,In summary, 140 

while the EnKF has been modified for parameter estimation in hydrology models in the past, no such efforts hav e 

been undertaken with assimilating both Q and TWSA observations.  

The objective of this paper is to analyze how the uncertainty of the output of GHMs can be reduced and 

quantified by parameter estimation that utilizes observations of multiple output variables and their uncertainties. 

For the example of the Mississippi River basin (MRB), the paper shows how Q and TWSA observations can be 145 

utilized to obtain one optimal parameters set (the “compromise solution”) as well as ensembles of Pareto-optimal 

and behavioral parameter sets for the GHM WaterGAP, by evaluating the applicability of the three multi-variable 

calibration approaches POC and, GLUE, and of the newly modified ensemble Kalman filter (EnCDA). It presents 

a method for defining performance thresholds for behavioral parameter sets based on observations and their 

uncertainties as well as the initial GLUE ensemble. It should be cautioned that “performance” in this paper is 150 

mainly defined in terms of the NSE metrics, following the custom in the hydrological modelling community, which 

is clearly different from the RMSE metric which is routinely optimized in the data assimilation community. In 

each approach, model parameters of all grid cells within so-called calibration-data assimilation (CDA) units, either 
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the whole MRB or five sub-basin CDAs, were uniformly adjusted. We derive conclusions for multi-variable 

parameter estimation and quantification of model output uncertainty in global-scale hydrological modeling, 155 

answering the following research questions: 

 What are the advantages and disadvantages of the three approaches? 

1.  Is the ensemble Kalman filter, which aims at state estimation in the first place, competitive with the dedicated 

model calibration approaches despite its very different ensemble generation and objective functions? 

2. What is the added value of the multi-variable parameter estimation as compared to the standard WaterGAP 160 

calibration for identifying one optimal parameter set? 

3. How and how wellto which extent can WaterGAP model output uncertainty be quantified? 

4. How large are the trade-offs between the optimal simulation of Q and TWSA? To what extent is Q simulation 

improved by calibration against TWSA only?  

5. What is the added value of individually calibrating sub-basin CDAs instead of one basin CDA? 165 

6. What are the characteristics of the optimal and behavioral parameter sets?    

The paper is structured as follows. Section 2 describes the three approaches. Section 3 provides a short 

description of the GHM WaterGAP and explains the setup of the study, including the selection of the parameters 

by an initial sensitivity analysis. In Section 4, we present the results of our study. In Section 5, we discuss the 

research questions, and we draw conclusions in Section 6. 170 

2 Approaches for parameter and uncertainty estimation in global hydrological modeling based on 

observation of multiple model output variables 

While model calibration can encompass adjustments of model structure, initial conditions, input variables and 

parameters, model calibration in hydrology focuses on the identification of optimal or suitable parameter sets. The 

focus on parameter adjustment in hydrological modeling is justified by the necessity of using many parameters 175 

that cannot be measured independently or derived from first principles. Water flows in the hydrology domain are 

largely dominated by the local geometry and local boundary resistances of the individual flow pathways, different 

from the water flows in the meteorology and oceanography domain (Beven, 2002). In hydrological models, water 

flows are expressed as a function of water storage or potential gradients as well as parameters that represent the 

highly uncertain average effects of local geometries and boundary resistances. In comprehensive hydrological 180 

models that distinguish various compartments, about 10-50 model parameters result per spatial unit. In the case of 

distributed models in which spatial heterogeneity of land and water is accounted for by distinguishing a large 

number of spatial units such as sub-basins or grid cells, each computational unit is described by its parameters set, 

leading to a very large number of model parameters. GHMs covering the whole land area of the globe typically 

represent spatial heterogeneity on the continents by distinguishing more than 60,000 0.5° grid cells, with more 185 

than 1 million model parameters whose values need to be set to enable computation.   

In the GLUE approach, an ensemble of behavioral parameter sets is derived, each of which leads to an 

acceptable model performance given uncertainties and model purpose; the ensemble is in most studies  defined by 

model simulations exceeding certain performance thresholds. In the POC approach, an ensemble of Pareto-optimal 

parameter sets is generated that does not take into account model or observation uncertainties but the trade-off that 190 
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occurs between the fit to various performance metrics. A parameter set is called Pareto-optimal or non-dominated 

if it results in a better simulation performance than any other Pareto parameter set for at least one of the objectives; 

none of the objective functions can be further improved without degradation of some of the other objective 

functions (Khu and Madsen, 2005; Werth and Güntner, 2010). In EnCDA, model parameters must be integrated 

in the state vector, an initial ensemble of parameter sets is then updated at each intake of observations next to the 195 

model states, and parameters ideally converge with increasing intake of observations; there is a single objective 

function, in which multiple objectives are implicitly weighted by considering model and observation uncertainties 

as given. 

It is computationally challenging to work with an ensemble of parameter sets, e.g., in the context of climate 

impact studies or seasonal forecasting. Therefore, we also identified (pseudo-)optimal parameter sets for each 200 

CDA unit. In this section, the three multi-variable calibration approaches POC, GLUE and EnCDA are described, 

while a comparison between them can be found in Appendix A. 

2.1 POC 

POC aims at identifying Pareto-optimal parameter sets. While the ensemble of Pareto-optimal parameter sets 

determined by POC is optimal only under the assumption that there are no observation, input and model structure 205 

uncertainties, they take into account that there is rarely a parameter set that leads to a simulation of different output 

variable that is equally optimal with respect to all observational variables. POC as applied in this study implements 

an optimization algorithm such as the Borg mmulti-objective evolutionary search algorithm (Hadka and Reed, 

2013). Based on an initial small ensemble of parameter sets derived from a-priori parameter distributions, the 

parameter sets are updated according to the value of the objective functions (performance metrics) to achieve 210 

improved performance. Then, the model is re-run; based on the new values of the objective function, parameter 

sets are updated again in an iterative fashion for a pre-selected number of iterations and thus model runs to identify 

Pareto-optimal parameter sets. Due to model, input and observation errors, it is unlikely that any parameter set 

will lead to the highest values of all objective functions. Without additional subjective preference information on 

what objective function is most important, all Pareto-optimal parameter sets are considered to be equally good. 215 

From the often large number of Pareto-optimal parameter sets, a “preferred” set can be selected using a variety of 

approaches (Khu and Madsen, 2005). The so-called “compromise parameter set” leads to values of the applied 

objective functions OF (or performance metrics) such that the overall performance deficit Dp regarding all OF is 

minimized (Yu, 1973). Dp is the distance between the utopia point, where all OF values are at their optimal values 

OF*, and the OF values of the Pareto-optimal parameters sets x. According to Yu (1973), 220 

𝐷𝑝(𝑂𝐹(𝑥)) = [∑ (𝑂𝐹𝑖
∗ − 𝑂𝐹𝑖(𝑥))

𝑝𝑛
𝑖=1 ]

1 𝑝⁄
 (1) 

where n is the number of objective functions and p is a parameter that is larger or equal to 1 and needs to be 

selected. By minimizing Dp with p=2, the Euclidean distance is selected to determine the compromise parameter 

set. 

Applying a POC approach, Werth and Güntner (2010) used monthly time series of in-situ observed Q and GRACE 225 

for 28 large river basins to adjust WaterGAP parameters individually for each basin, after first determining the 

most influential basin-specific parameters. Calibration parameters included multipliers of cell-specific parameters 
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such as rooting depth as well as parameters that were assigned to each cell in the basin such as a groundwater 

outflow coefficient. Werth and Güntner (2010) found that improved simulations of TWSA and Q were achieved 

for most basins after calibration, but calibrated Q was still poor compared to the observed values in some basins; 230 

a better fit to GRACE TWSA did not necessarily lead to a better fit of simulated to observed Q. The disadvantage 

of the POC approach is that it is computationally much more expensive than the simple calibration approach for 

standard WaterGAP such that PCO was only performed for 28 instead of 1319 CDA units. Thus, spatial variability 

of calibration parameters within the large basins could not be taken into account by Werth and Güntner (2010), 

and differences in model performance after calibration by either POC or the standard calibration approach were 235 

not analyzed. 
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2.2 GLUE 

In the GLUE approach, a large number of different model parameter sets is generated first, based on assumed a-

priori distributions of parameter values. In the next step, a subset of so-called behavioral parameter sets is identified 240 

from this initial set. This is done by running the model alternatively with each parameter set and then computing 

the values of a model performance metric using observations of model output variables, which is called likelihood 

measure in GLUE (Beven and Binley, 2014). In the next step, a threshold for the performance metric is identified 

below which model performance is so low that these parameter sets are considered to have a likelihood of zero. 

Likelihood measures and thresholds for behavioral parameter sets are subjectively selected also based on the 245 

expertise of the modeler and should take into account the uncertainty of model structure, climate forcing and 

observations as well as the specific modeling purpose.  

Multiple observation variables can be combined for determining behavioral parameter sets, by selecting the 

subset of parameter sets for which all performance metrics are better than their different thresholds. The selection 

of the metric-specific thresholds implies a type of weighting between fits to the different variables. As a subset of 250 

all behavioral parameter sets, Pareto-optimal parameter sets can be identified; the pseudo-optimal parameter set 

can be determined using Eq. 1. Furthermore, the likelihood of each behavioral parameter set can be derived from 

the performance metric such that a probability distribution of model output can be quantified.  

2.3 EnCDA 

In the EnCDA approach that we propose here, parameter sets of each CDA unit are optimized together with 255 

water storages in the various storage compartments and grid cells (i.e. the model states) by data assimilation with 

the ensemble Kalman filter (EnKF; Evenson, 1994). To this end we add, next to , by including both the water 

storages as in all earlier EnKF implementations, and the model parameters toin the state vector. The basic idea of 

data assimilation with the Kalman filter approach, as done in EnCDA, is to optimally combine observations with 

simulation results at the time of the observations according to estimates of model and observation errors (Clark et 260 

al., 2008). In EnCDA, an ensemble of model runs with different parameter sets and perturbed climate inputs serves 

to estimate the model error which is different from POC and GLUE. EnCDA aims at minimizing a weighted 

RMSE; the higher the ratio of model error to observation error, the more weight is given to the observations and  

the larger is the adjustment of water storages and model parameters. Water volumes and parameters, all of which 

are state variables, are updated in each ensemble member whenever observations are available (e.g. , once per 265 

month). State update depends on the information contained in the covariance matrices of simulated states (water 

storages and parameters), simulated Q and observations. Covariance matrices of states and simulated Q are derived 

from differences between the estimates of each ensemble member and the ensemble mean. The ensemble mean of 

all updated water storages and Q is assumed to be the best estimator (Evensen, 2003) in case of linear models, 

which is certainly not true for the simulation of streamflow and a bias might thus be expected. In the case of models 270 

with many grid cells and various storage compartments (10 in WaterGAP), the number of updated states strongly 

exceeds the number of observations.  

EnCDA has a high potential for improving parameter estimation as the stepwise updates of water storage in 

the diverse storage compartments can help to compensate for model structure and input uncertainties, e.g., for 
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underestimation of the precipitation input by adding mass/water to the system during the update. EnCDA was 275 

applied in some studies (e.g., DeChant and Moradkhani, 2012; Wanders et al., 2014), also for assimilating GRACE 

TWSA into WaterGAP (Eicker et al., 2014; Schumacher et al.,2016a,b, 2018) for the Mississippi River basin in 

the US and the Murray-Darling basin in Australia. However, EnCDA for GHMs using GRACE TWSA is still in 

an exploratory phase. Updating parameters in addition to updating water storages might increase the  chance of 

spurious Q simulation due to the highly non-linear relations between Q and storages as well as parameters (De 280 

Chant and Moradkhani, 2012; Xie and Zhang, 2013; Schumacher et al., 2018). To achieve plausible and stable 

EnCDA results regarding parameters and model output variables in complex distributed hydrological models in 

which the number of states exceeds by far the number of observations, the degrees of freedom may have to be 

reduced and rapid changes in parameters from one time step to the next need to be avoided (Xie and Zhang, 2013). 

Schumacher et al. (2018) found that EnCDA with only TWSA observations is limited in constraining individual 285 

model parameters even if the number of calibration parameters is very small as the calibration/data assimilation 

system is highly underdetermined. This is why adding Q observations is promising.  

The output of EnCDA regarding parameters can be viewed as a time series of recursive estimates for the 

parameter sets for each ensemble member, even if these parameters are modeled as stationary in time (as in this 

study). We here test the hypothesis that tThe parameter sets of each ensemble member at the end of the 290 

calibration/data assimilation (CDA) period, without a smoother step, can then be further used to generate ensemble 

predictions during the validation period (in which no further assimilation is done) that fit better to observations 

than predictions with parameters that are not affected the the data assimilation. The studies study of Wanders et 

al. (2014) and Eicker et al. (2014), in which did not utilize Q observationsonly TWSA was assimilated, showed 

that with this such an approach, the ensemble means of model output values during the validation period fit better 295 

to observations of Q and TWSA than uncalibrated model output.  

3 Methods and data 

3.1 The global water resources and use model WaterGAP 

In this study, we applied WaterGAP 2.2d, which is comprehensively described in Müller Schmied et al. (2021). 

With a spatial resolution of 0.5° latitude by 0.5° longitude (55 km by 55 km at the equator), WaterGAP computes 300 

both water resources, i.e., water flows and storages, and human water use on all land areas of the globe except 

Antarctica. Water withdrawals and consumptive water use in the sectors households, manufacturing, cooling of 

thermal power plants, livestock, and irrigation are computed by five water use models. From the output of the 

water use models, the linking model GWSWUSE computes potential net water abstractions from groundwater 

(NAg) and surface water (NAs) as the difference between all withdrawals from and all return flows to groundwater 305 

and surface water, respectively. Time series of monthly NAg and NAs are inputs of the WaterGAP Global 

Hydrology Model (WGHM), together with time series of daily climate variables (Müller Schmied et al ., 2021). 

WGHM computes various water flows (e.g., evapotranspiration, groundwater recharge and Q) as well as water 

storage variations in ten compartments: canopy, snow, soil, groundwater and the surface water bodies local and 

global wetlands, local and global lakes, global man-made reservoirs and rivers (boxes in Fig. 1). The term “local” 310 
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means that the surface water bodies are fed only by the runoff produced in the same 0.5° cell, while “global” 

wetlands, lakes and reservoirs are also fed by inflows from the upstream cells. The runoff generated in a cell from 

the “vertical” water balance (Fig. 1) is transported  through the groundwater and, if existing, through the various 

types of surface water bodies before reaching the river. Outflow from the river compartment is Q. Glaciers are not 

simulated in this WaterGAP version; while there are some glaciers in the most upstream parts of the Arkansas and 315 

Missouri river basins, these are not expected to strongly impact mean TWSA of the large CDA units or streamflow 

at the outlet of the CDA units (Fig. 2). To calculate TWSA time series, the sum of all ten compartmental water 

storages is computed and normalized by its mean value over a reference period. 

 

 320 

Figure 1. Schematic of WGHM in WaterGAP2.2d. For each 0.5° grid cell, daily water balances of a maximum of 

ten water storage compartments (boxes) are computed from their respective inflows and outflows (arrows)  (Fig. 2 

of Müller Schmied et al. (2021)). Green and red colors indicate processes that occur only in grid cells with humid 

and (semi)arid climate, respectively. Es: soil evapotranspiration, Ep: potential evapotranspiration, Rg: groundwater 

recharge from soil, Rs: fast surface runoff and subsurface runoff, RgL,Res,W: groundwater recharge from surface 325 

water bodies, Qg: groundwater discharge to surface water bodies and the river, Fswb: area fraction of surface water 

bodies. Net groundwater abstracts are taken from the groundwater storage compartment, while net su rface water 

abstractions are taken from global lakes or reservoirs in the cell (priority 1), the river (priority 2) or local lakes 

(priority 3).  

 330 

In the ordinary differential equations describing the dynamics of the individual water storage compartment, 

outflows are parameterized as a function of compartmental water storage (Müller Schmied et al., 2021). Other 
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important model parameters determine the maximum values of compartmental water storage, such as the 

maximum soil water storage in the effective rooting zone (soil compartment) or active lake depth, which defines 

the maximum height of the water table of local and global lakes above the outflow level. Parameters affecting 335 

potential evapotranspiration govern the simulated atmospheric demand for water. Temperature–related parameters 

are important for snow processes.  

As a standard, WGHM is calibrated against observed mean annual Q by adjusting one model parameter, the 

runoff coefficient, and if necessary, two correction factors (Müller Schmied et al., 2021). In the equation that 

describes the soil water dynamics, the runoff coefficient determines, together with soil water saturation, the amount 340 

of runoff from the land RL; it varies between 0.1 and 5. The larger the runoff coefficient, the smaller the runoff 

becomes. If the adjustment of the runoff coefficient is not sufficient for not exceeding a maximum discrepancy 

between simulated and observed mean annual Q of 10%, a multiplicative areal correction factor for runoff from 

land is introduced that also corrects evapotranspiration (range of 0.5 to 1.5). If this is still not sufficient to match 

observed Q within 10%, the Q in the grid cell where the gauging station is located is multiplied by a station 345 

correction factor. This violates the mass balance but is done to avoid error propagation to the downstream basins. 

In the standard WaterGAP, the calibration period was 1980-2009 if stream data are available for the station 

otherwise the most recent earlier period. The runoff coefficient in basins without Q observations is determined by 

a regression approach, where calibrated runoff coefficients are related to various characteristics of the drainage 

basins (Müller Schmied et al., 2021). With this calibration and regionalization approach, a median Nash-Sutcliffe 350 

efficiency of 0.52 and a median Kling-Gupta efficiency of 0.61 is achieved for the fit of the time series of monthly 

Q at the 1319 calibration stations. The median correlation coefficient of 0.79 indicates an often poor simulation of 

the timing of monthly Q both seasonally and inter-annually. WaterGAP 2.2d tends to underestimate the variability 

of monthly Q in northern snow-dominated river basins (Müller Schmied et al., 2021). It underestimates the mean 

annual TWSA amplitude in 66% of the 143 investigated river basins by more than 10%. TWSA trends, in particular 355 

positive trends, are often underestimated (Müller Schmied et al., 2021; Scanlon et al., 2018). 

3.2 Calibration setup for the Mississippi River basin 

3.2.1 Study period and CDA units  

Due to TWSA and climate input data availability, the study period was limited to January 2003 to December 2016. 

The study area excludes the most downstream part of the Mississippi River basin (MRB) due to a lack of Q 360 

observations. The Q gauging station at Vicksburg in the lower MRB is the most downstream station with a long-

term record (Fig. 2). Hereafter, we refer to the upstream area of Vicksburg as the whole MRB. We study two 

variants of the spatial configuration of CDA units, in which calibrated parameters were uniformly adjusted. Either 

the whole MRB is treated as one CDA unit, or the MRB is subdivided into five CDA units. In the latter variant, 

four of the five CDA units (Arkansas River basin, Missouri River basin, Upper MRB and Ohio River basin) are 365 

upstream river basins that are defined as the drainage basin of four gauging stations for which data for the study 

period 2003-2016 are available (Fig. 2). The fifth CDA unit is the Lower MRB, which receives inflow from the 

four upstream CDA units. We divided our study period into a calibration period for parameter estimation from 
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2003 to 2012 and a validation period, in which the model is run with the estimated parameters, from 2013 to 2016. 

Q is additionally validated at six gauging stations that were not used for calibration (Fig. 2).  370 

 

 

Figure 2. The Mississippi River basin as represented by the 0.5°x0.5° grid cells in WaterGAP, with delineation of 

the five CDA units. The CDA units were defined as the upstream cells of the five indicated calibration stations 

(streamflow gauging stations, shown in red). The stream network implemented in WaterGAP is shown, indicating 375 

the upstream areas of each grid cell by the line width. In addition, the locations of the six streamflow validation 

stations are plotted, shown in orange. 

3.2.2 Observational data 

Q data were obtained from the Global Runoff Data Centre (https://www.bafg.de/GRDC/) and the US Geological 

Survey (https://maps.waterdata.usgs.gov/mapper/). For monthly Q observations, a random error of 10% is 380 

assumed, based on the review of McMillan et al. (2012) and the study of Westerberg et al. (2016) for the UK, who 

determined a median error for the mean flow of 12%. Actual percent errors are extremely variable, depending on 

temporal aggregation, the Q value itself and various local conditions (Di Baldassarre and Montanari, 2009). In the 

EnCDA approach, an additional error of 10% of the temporal average of the Q observation time series was applied 

as this led to more stable EnCDA results. 385 

To obtain TWSA observations for this study, level-2 GRACE data (spherical harmonic coefficients, SHC) 

from TU Graz (ITSG Grace2018; Mayer-Gürr et al., 2018) were evaluated over the CDA units. These data 
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represent the Earth's time-variable gravity field as observed by the GRACE satellites via K-band ranging (KBR) 

and GNSS tracking. We derived TWSA from SHCs up to degree and order 96, applying the DDK3 filter (Kusche 

et al., 2009) and corrections for low-degree terms and effects such as glacial isostatic adjustment following 390 

Gerdener et al. (2020). As the temporal mean value of GRACE-derived terrestrial water storage is unknown, it is 

a widely followed approach to normalize the monthly TWSA values relative to a constant mean over a certain 

reference period, here taken from 2003 to 2012. Uncertainties (1-sigma errors) were propagated to TWSA maps 

based on the full variance-covariance matrix of the TU Graz data; this accounts for orbital effects and the generally 

meridional behavior of errors. To investigate the influence of different level-2 GRACE products, we compared the 395 

unit-averaged TWSA time series from ITSG-Grace2018 with TWSA derived from the Release-06 version of the 

Center for Space Research (CSR) and the Geoforschungszentrum (GFZ). For the whole  MRB, 42% of the CSR 

and 35% of the GFZ monthly values were found within 1 standard deviation, and 76% of the CSR and 61% of the 

GFZ monthly values were within 2 standard deviations of the TU Graz solution. Unexpectedly, the values are even 

higher for all sub-basin CDA units. Therefore, we decided to use ±2 standard deviations of the propagated GRACE 400 

uncertainties for quantifying the TWSA observation error in this study. Information on the uncertainty of GRACE 

TWSA data is provided in the supplementary text S1. 

3.2.3 Climate forcing 

Climate forcing required for both the irrigation water use model and WGHM encompasses time series of daily 

near-surface air temperature, total precipitation, downward shortwave radiation and downward longwave 405 

radiation. In this study, we applied the 0.5° GPCC-WFDEI data set where ERA-Interim reanalysis data of ECMWF 

have been bias-corrected by monthly precipitation time series of the Global Precipitation Climatology Centre and 

by other observations (Weedon et al., 2014). Monthly precipitation was corrected for wind-induced undercatch 

(Weedon et al., 2014).  

3.2.4 Calibration parameters 410 

Experience suggests that no more than 5-6 parameters can be estimated for each calibration objective (Efstratiadis 

and Koutsoyiannis, 2010). Many parameters in WaterGAP are spatially distributed, such as the parameter 

maximum soil water storage in the effective root zone Smax, which is computed as the product of soil water storage 

between field capacity and wilting point from a data set that provides a different value for each 0.5° cell and a 

rooting depth that is a fixed assigned value for each class of land cover, with one dominant land cover per cell. 415 

Other parameters are set globally to the same value, e.g., the groundwater discharge coefficient. To enable an 

adjustment of the cell-specific value of a distributed parameter like Smax, one may choose to either adjust the land 

cover-specific rooting depth in each CDA unit or to introduce a multiplier of cell-specific Smax as a calibration 

parameter. As the number of free (calibration) parameters should be limited given limited observations and 

equifinality, the second approach was chosen. For all spatially distributed parameters, multipliers were introduced 420 

that serve as calibration parameters, while globally uniform parameters are directly calibrated.  



 
 
 

14 
 
 

In Table 1, information about the 24 potential calibration parameters that were investigated in this study is 

provided, including their estimated a-priori uncertainty range. They are ordered mainly according to the water 

storage compartment (Fig. 1) that they immediately impact due to inclusion in the respective water balance 

equation. In addition, multipliers for precipitation and net radiation are included as calibration parameters, which 425 

were found to be the parameters that TWSA of the 33 largest river basins worldwide are most sensitive to 

(Schumacher et al., 2016b). The two multipliers for the net abstraction of groundwater and surface water are 

allowed to become negative as, e.g., an initially simulated positive net abstraction from groundwater (where water 

is removed from the ground due to pumping) may in reality be negative. The latter is the case if infiltration of 

irrigation water that was taken from surface water sources dominates groundwater abstractions in the grid cell. For 430 

some parameters, the selected range was influenced by previous analyses of the WaterGAP model performance. 

Uniform distributions were assumed for all parameters.  
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Table 1. WGHM parameters, the range of assumed uniform a-priori distribution used for sensitivity analysis and 

calibration as well as the CDA units in which parameter was adjusted in this study. The parameters are categorized 435 

according to the processes or water storage compartments that they directly affect. P: precipitation, EP: potential 

evapotranspiration, CA: canopy, SN: snow, SL: soil, GW: groundwater, SW: surface water, NA: net abstraction 

of water by humans. 

Compart-

ment 

Parameter 

[units if not unitless] 

Abbre- 

viation 

Standard 

WGHM 

value 

Range Selected for 

adjustment in 

CDA units 

P Precipitation multiplier P-PM 1 0.5-2 - 

EP Net radiation multiplier EP-NM 1 0.5-2 - 

EP PT coeff. humid1 EP-PTh 1.26 0.885-1.65 All 

EP PT coeff. (semi)arid2 EP-PTa 1.74 1.365-2.115 - 

CA MCWH3 [mm] CA-MC 0.3 0.1-1.4 - 

CA LAI multiplier CA-LAIM 1 0.2-2.5 - 

SN Snow freeze temp. [°C] SN-FT 0 -1-3 - 

SN Snow melt temp. [°C] SN-MT 0 -3.75-3.75 All 

SN Degree-day factor multiplier SN-DM 1 0.5-2 - 

SN Temp. gradient [°C/m] SN-TG 0.006 0.001-0.01 - 

SL Smax multiplier4 SL-MSM 1 0.5-3 All 

SL Runoff coefficient SL-RC Variable 0.3-3 All 

SL Maximum EP (mm/d) SL-MEP 15 6-22 I 

GW GW recharge factor mult.5 GW-RFM 1 0.3-3 V 

GW Max. GW recharge mult.5 GW-MM 1 0.3-3 I, III, IV 

GW Critical precip.6 [mm/d] GW-CP 12.5 2.5-20 - 

GW GW discharge coeff.[1/d] GW-DC 0.01 0.001-0.02 IV 

SW River roughness coeff. mult. SW-RRM 37 1-5 IV, V, MRB 

SW Active lake depth [m] SW-LD 5 1-20 All 

SW Active wetland depth [m] SW-WD 2 1-20 All 

SW SW discharge coeff. 8 [1/d] SW-DC 0.01 0.001-0.1 All 

SW Evapo. red. factor mult.9 SW-ERM 1 0.33-1.5 - 

NA NA from GW multiplier10 NA-GM 1 -2-2 I,II, V, MRB 

NA NA from SW multiplier11 NA-SM 1 -2-2 II 
1 Priestley-Taylor coefficient in humid grid cells 
2 Priestley-Taylor coefficient in (semi)arid grid cells 440 
3 Maximum water storage on canopy per Leaf Area Index (LAI) 
4 Multiplier for maximum soil water storage in the effective root zone 
5 Groundwater recharge is capped at 95% of total runoff from land R l 
6 In (semi)arid grid cells, there is only GW recharge if daily precipitation exceeds the value of the parameter critical 

precipitation. Otherwise, the potential GW recharge remains in the soil 445 
7 For most river basins, including MRB 
8 For lakes and wetlands 
9 To take into account the impact of temporally varying areas of lakes, reservoirs, and wetlands on evaporation  
10 Multiplier for net abstraction from groundwater 
11 Multiplier for net abstraction from surface water (reservoirs, lakes, and rivers) 450 

 

The Q of larger rivers in the MRB is strongly impacted by the management of the many man-made reservoirs. 

The water balance of large (i.e. “global”) reservoirs is simulated in WGHM with an algorithm that distinguishes 

reservoirs with the main purpose of irrigation from others; different equations are used for reservoirs with a large 

storage capacity to mean annual Q ratio and those with a small ratio. With any globally applied algorithm, human 455 

decisions on reservoir management are very difficult to simulate, and adaptation of some parameters is not likely 

to lead to better simulation results unless each reservoir would be dealt with individually. Therefore, no parameter 

of the reservoir algorithm was adjusted in this study. This limits the ability of the calibrated model to achieve a 
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good fit to observations in river basins with many reservoirs such as the Missouri river basin (Fig. B1a in the 

appendix). 460 

From the potential calibration parameters, a small number of calibration parameters were selected for each 

CDA unit by a sensitivity analysis, to limit equifinality. The sensitivities of four output variables (simulated Q, 

TWSA, snow storage and water storage in local lakes) to all 24 parameters were analyzed separately for each of 

the six CDA units, using the standard version of WGHM. For the sensitivity analysis, the Elementary Effect Test 

(EET) method of Morris (1991) was applied where the average of the elementary effects, i.e., the amount of change 465 

in the simulated variable due to a change in a parameter value, is used as the sensitivity measure or sensitivity 

index. The change in the variable is computed as the root mean square difference between a reference simulation 

and the simulation of the variable after deviating the parameter from its reference value. The EET method is 

computationally inexpensive and recommended for parameter ranking and screening (Pianosi et al., 2016).  1000 

random parameter sets were generated by Latin Hypercube Sampling and used as the reference parameter values. 470 

Then, each reference parameter set was perturbed one-at-a-time for each of the 24 parameters following a radial 

design proposed by Campolongo et al. (2011), which resulted in a total number of 25,000 (i.e., 1,000 x (1+24)) 

parameter sets. Parameters were ranked separately for each of the four output variables. 

The precipitation multiplier P-PM and the net radiation multiplier EP-NM can correct biases of the climate 

forcing. P-PM was excluded from calibration even though it ranked first in all six CDA units for almost all four 475 

test variables, for various two main reasons. First, the precipitation input is perturbed in EnCDA, and an additional 

multiplier would lead to a double-counting of precipitation uncertainty. Second, mean annual precipitation in the 

CDA units of WaterGAP climate forcing does not differ much from the values derived from the high-resolution 

(4 km) PRISM dataset for the USA (Table S1). Potential evapotranspiration is a function of both net radiation and 

the Priestley-Taylor coefficient. Even though EP-NM ranked somewhat higher in all CDA units than the Priestley-480 

Taylor coefficient for humid areas EP-PTh, we decided to adjust only EP-PTh (Table 1), as it is an actual model 

parameter and not a climate forcing correction factor (the MRB is mainly humid).  

Then, we selected, for each variable, those top-ranking parameters among the remaining 22 parameters that 

together contribute at least 50% of the combined total effect, i.e. the sum of elementary effect for all parameters. 

Application of this threshold ensures that only the most influential parameters of a given variable are selected and 485 

the total number of selected parameters remains rather small. We found that in each of the six CDA units, the snow 

melt temperature SN-MT accounts for more than half of the total effect for the variable snow storage and the 

variable local lake storage is most sensitive to the parameters active lake depth SW-LD and discharge coefficient 

for surface water bodies SW-DC (Table S2). SN-MT is also much more important than the other three snow 

parameters for Q and TWSA. TWSA and Q are strongly influenced by more parameters than snow and local lake 490 

storage; 3-5 parameters cover at least 50% of the total effect in the case of TWSA, and 4-5 in the case of Q. The 

three most influential parameters for both TWSA and Q are, in almost all CDA units, the runoff coefficient SL-

RC, the Smax multiplier SL-MSM and the PT coefficient for humid1. areas EP-PTh. Exceptions are the downstream 

Lower MRB (EP-PTh and SL-RC not influential for TWSA), where the inflow into the CDA unit, which is 

prescribed based on the POC compromise solution parameter sets, dominates streamflow, and the driest basin 495 

Arkansas (EP-PTh not influential for TWSA) (Table S2). For each CDA unit, 8-10 calibration parameters were 
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selected (Table 1). As a result, altogether 47 parameters were adjusted if the five sub-basin CDA units were used 

for model calibration. 

Seven parameters were selected as calibration parameters in all CDA units (Table 1). For each CDA unit, an 

additional one to three calibration parameters were selected as they had a particularly high sensitivity rank due to 500 

the specific characteristics of the CDA unit. For example, the multiplier for net abstractions from groundwater  

NA-GM, was selected in four CDA units where these abstractions are high (Fig. B1d) and lead to groundwater 

depletion, which strongly affects TWSA. The multiplier for net abstractions from surface water NA-SM was only 

selected for the Missouri River basin, with the highest net abstractions from surface water (Fig. B1e). The 

maximum groundwater recharge multiplier GW-MM, which affects the soil texture-specific maximum amount of 505 

daily groundwater recharge, was selected in three CDA units, while the multiplier for the fraction of groundwater 

recharge GW-RFM was selected for one other CDA unit. The calibration parameter maximum potential 

evapotranspiration SL-MEP, which limits actual evapotranspiration, was found to be influential in the driest CDA 

unit Arkansas River basin. Altogether, 14 out of the 24 parameters in Table 1 were selected as calibration 

parameters in the study on MRB.  510 

3.3 Performance and uncertainty metrics 

In this study, we only consider performance metrics for the simulated monthly time series of Q and TWSA as they 

form the basis for calculating hydrological signatures such as drought or flow indicators that are used in global -

scale water resources assessments. While the mean is an important characteristic in the case of Q, this is not true 

for TWSA, which is an anomaly with a zero temporal mean during the reference period. The Nash-Sutcliffe 515 

efficiency is a traditional performance metric in hydrological modeling. It provides an integrated measure of model 

performance concerning mean values and variability and is computed as 

𝑁𝑆𝐸 = 1 −  
∑ (𝑠𝑖𝑚(𝑡)−𝑜𝑏𝑠(𝑡))

2𝑛
1

∑ (𝑜𝑏𝑠(𝑡)−𝜇𝑜𝑏𝑠)
2𝑛

1
 (2) 

where µobs is the mean of observations; sim(t) and obs(t) refer to the simulated and observed values respectively at 

time-step t of a total number of time steps n. The Kling-Gupta efficiency together with its three components enables 520 

distinguishing model performance regarding correlation, bias and variability (Kling et al. 2012), with  

𝐾𝐺𝐸 = 1 − √(𝐶𝐶 − 1)2 + (𝑅𝐵𝑖𝑎𝑠 − 1)2 + (𝑅𝑉𝑎𝑟 − 1)2 (3) 

where CC is the correlation coefficient and  

𝑅𝐵𝑖𝑎𝑠 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
 (4) 

𝑅𝑉𝑎𝑟 =
𝜎𝑠𝑖𝑚 𝜇𝑠𝑖𝑚⁄

𝜎𝑜𝑏𝑠 𝜇𝑜𝑏𝑠⁄
 (5a) 525 

where σ is the standard deviation and µ is the mean; the subscript sim and obs refer to simulated variate and 

observations of that variate respectively. Expressing variability as the ratio of the coefficients of variation (Eq.5a) 

ensures that bias and variability are not cross-correlated (Kling et al. 2012). In the case of TWSA, the bias is set 

to 1 in the computation of KGE, and 

𝑅𝑉𝑎𝑟 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
. (5b) 530 

The optimal value of all the above performance metrics is one. 



 
 
 

18 
 
 

The uncertainty of model output as derived from the model output ensemble can be quantified by two 

uncertainty metrics. In the case of Q, the average uncertainty bandwidth (AUBW) is expressed as a fraction of the 

ensemble mean (modified from Jin et al. 2010), with 

𝐴𝑈𝐵𝑊𝑄 =
1

𝑛
∑

𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡)−𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡)

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑀𝑒𝑎𝑛(𝑡)
𝑛
1  (6) 535 

where t refers to the month and n is the total number of months. In the case of TWSA,  

𝐴𝑈𝐵𝑊𝑇𝑊𝑆𝐴 =
1

𝑛
∑ 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡) − 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡(𝑡)𝑛
1 . (7) 

AUBWQ can be expressed in %, while the unit of AUBWTWSA is mm. Here, the highest and lowest values among 

all ensemble members (32 in the case of EnCDA, 20,000values for POC and GLUE listed in Table 3) are used as 

upper and lower limits in each month and make up the uncertainty bounds of the simulation. The metric “coverage 540 

of observations by model output” (CO) is calculated as the percentage of monthly observations  including their 

uncertainty bounds (derived from observation errors described in Section 3.2.2) that are contained within the 

uncertainty bads of the model output. A large CO value and a small AUBW value indicate a low model output 

uncertainty.  

3.4 Implementation of calibration approaches in this study 545 

3.4.1 POC 

The state-of-the-art optimization algorithm Borg -MOEA (Borg Multiobjective Evolutionary Algorithm; Hadka 

and Reed, 2013) was applied to search the parameter space to find Pareto-optimal parameter sets. Borg MOEA 

not only amalgamates search operators (i.e., algorithms to generate a new generation of solutions from their 

parents) and strategies from benchmark optimization algorithms like NSGA-II, ε-NSGA-II, ε-MOEA and GDE3 550 

but also has the capability of exploiting these operators based on their performance of producing better off-springs 

for the optimization problem at hand. Apart from the auto-adaptive operator recombination strategy, Borg MOEA 

includes a restart mechanism upon the occurrence of a search stagnation and strategies like population resizing 

and adaptive archive sizing. The NSE of monthly time series of Q and TWSA in the calibration period, NSEQ and 

NSETWSA, were chosen as the two objective functions. For all CDA units, the initial population size was 400 and 555 

the improvement threshold ε (i.e., the side length of the ɛ-box) was set to 0.005 for all objectives. All other 

parameters of the algorithm were set to their recommended values (Hadka and Reed, 2013).  

All WHGM model runs for the six CDA units started in 1991. Calibration of the five sub-basin CDA units was 

done sequentially as follows. First, the four upstream CDA units (Fig. 2) were calibrated independently from each 

other. Q and TWSA in the downstream CDA unit V Lower MRB depends on inflow from the four upstream CDA 560 

units. For each upstream CDA unit, the parameter set resulting in the highest NSEQ at the respective calibration 

station was selected to transfer the best estimate of monthly Q to the downstream CDA unit. These parameter sets 

were then used in the calibration of the downstream CDA unit, which required running the model for the whole 

MRB. Due to the high computational demand of WHGM, we restricted each calibration to a maximum of 20,000 

model runs. The POC application was run in parallel using openmpi-4.0.1 on 401 nodes of a Linux cluster machine 565 

with a Scientific Linux 7 environment. The total runtime for the six CDA units was 72 hours. 
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3.4.2 GLUE 

For each of the six CDA units, a random ensemble of 20,000 parameter sets was generated by Latin Hypercube 

Sampling (Campolongo et al., 2011), only varying the 8-10 influential parameters indicated in Table 1. Then, 

individual WGHM model runs were performed for the MRB and the four upstream CDA units (Fig. 2). Similar to 570 

the POC approach, all ensemble runs for the downstream CDA unit V Lower MRB were performed  using, for 

each of the four upstream CDA units, the GLUE parameter sets that resulted in the highest NSEQ at the upstream 

calibration station. All GLUE runs started in 1991 and were done on the same Linux cluster machine as the POC 

runs. The total runtime for the six CDA units was 53 hours, 26% less than for POC with the same amount of model 

runs. 575 

Monthly time series of spatially averaged TWSA as well as Q at the calibration and validation stations during 

both the calibration and validation period were written as output, and the performance metrics (Section 3.3.) were 

computed. To identify behavioral and Pareto-optimal parameter sets as well as the compromise parameter sets (Eq. 

1), NSEQ and NSETWSA were used as likelihood measures. 

To assess the impact of observation errors of Q and TWSA on model performance, the monthly time series of 580 

observed Q and TWSA were perturbed based on the observation errors described in Section 3.2.2. A uniform 

distribution of errors with the ranges of ±10% was assumed for Q and ±2 standard deviations of the computed 

GRACE error distribution for TWSA (see Section 3.2.2). 1,000 realizations of observations of Q and TWSA were 

generated. Then, NSEQ and NSETWSA values for each of the 1,000 perturbed observation time series compared to 

each of the 20,000 WaterGAP time series were computed. Finally, the Pareto-optimal parameter sets for each of 585 

the 1000 realizations of observations were identified. This approach for taking into account observation uncertainty 

for selecting behavioral parameter sets is similar to the approach taken by Blazkova and Beven (2009).  

3.4.3 EnCDA 

EnCDA was performed by coupling the Parallel Data Assimilation Framework (PDAF; Nerger and Hiller, 2013), 

which implements an EnKF approach, to WGHM (Gerdener et al., 2023). Regarding the forcing data, an additive 590 

error of ±plus/minus 2°C for the temperature (with a triangular distribution around 0) and a multiplicative error of 

±plus/minus 10% regarding the precipitation perturbation (with a triangular distribution around 1) (Eicker et al., 

2014) was used. For each ensemble member, this error was set individual ly for each month and grid cell and 

applied to the daily forcing values. A spin-up phase run over 1991-2002 was performed to generate initial 

conditions for the calibration period. The EnKF is used to simultaneously update model parameters and storages 595 

during the calibration period 2003-2012 following Eicker et al. (2014),  and Schumacher et al. (2016a, b) and 

Gerdener et al. (2023), but considering Q observations in addition to GRACE TWSA. For this, the state vector is 

augmented by CDA unit-specific calibration parameters. To avoid the system being underdetermined, TWSA in 

4° grid cells instead of TWSA averages over the CDA units were assimilated. Calibration parameters and water 

storages were adjusted with monthly time steps.  600 

In the case of the CDA unit covering the whole MRB, the EnCDA was performed by the parameters indicated 

in Table 1 while assimilating GRACE TWSA 4° grid cells s over the whole basin as well as Q at the Vicksburg 
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gauge station. For the sub-basin calibration, the EnCDA was applied separately to the four upstream CDA units 

first. Then, the parameter sets of each ensemble member of the four upstream CDA units were set to the values 

obtained for December 2012. For calibrating the downstream CDA unit V by EnCDA, the 32 parameter sets in 605 

each of the four upstream CDA units were held constant, and states in these CDA units were not updated by DA. 

Parameters were perturbed independently per CDA unit without generating spatial correlations as different 

parameters are considered for the different CDA units (Table 1). An attempt to simultaneously calibrate all five 

CDA units was not successful. Different from POC and GLUE, the performance metric NSE was not used to 

generate the optimized parameter set ensemble but only to determine behavioral parameter sets and the 610 

compromise parameter sets as well as for model output validation.  

As it is common in EnKF data assimilation (Zaitchik et al., 2008, Eicker et al. 2014, Girotto et al., 2016, Kumar 

et al., 2016) Only 32 ensemble members were generated.Due due to the very high computational demand of 

EnCDA state estimation (as compared to POC and GLUE)., only 32 ensemble members werecould be generated 

It is prohibitive to generate ensemble sizes comparable to model calibration approaches (several 10,000s) as, unlike 615 

POC and GLUE, EnCDA estimates not only model parameters but also model states.  

Simulations for the validation period 2013-2016 were done by continuing the 32 model runs of the calibration 

period with the 32 parameter sets estimated for December 2012, without any data assimilation. The ensemble mean 

of the simulated output variables of the 32 ensemble runs during the validation period is assumed to be the best 

estimate of the time series of output variables. The EnCDA application was run in parallel using openmpi-3.1.4 620 

on a Linux cluster machine with a Linux CentOS 7.9 environment and 70 nodes. The total runtime for the six CDA 

units was 72 hours. 

4 Results 

4. 1 Model performance during the calibration period 2003-2012 

Multi-objective parameter estimation may be aimed at determining 1) an optimal model parameter set that is 625 

identified by weighting the multiple calibration objectives, e.g., the compromise solution (Eq. 1), 2) Pareto-optimal 

parameter sets or 3) an ensemble of behavioral parameter sets that lead to model output that fits reasonably well 

to observations given observation and other uncertainties. In any case, the calibrated parameter sets are specific to 

the applied model structure and input, including climate forcing, net abstractions of surface water and groundwater 

as well as physiographic characteristics such as the existence of surface water bodies or soil properties per grid 630 

cell.  

4.1.1 Optimal parameter sets  

Differences between calibration approaches. Table 2 and Fig. 3 show the performance of the (Pareto-)optimal 

parameter sets as measured by NSEQ and NSETWSA. As expected, the POC approach is superior to the GLUE 

approach in identifying Pareto-optimal parameter sets due to the applied search algorithm. In all six CDA units, 635 

the POC parameter sets lead to higher NSE values than the GLUE parameter sets, for the compromise parameter 
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set as well as for the parameter sets that lead to either the highest NSEQ or the highest NSETWSA. In the case of 

GLUE, the 20,000 ensemble members are randomly distributed in the parameter space, while the evolutionary 

Borg -MOEA optimization algorithm applied in POC creates many more parameter sets that are close to the Pareto 

front while also requiring 20,000 model runs (Fig. S1 in the supplement). For the example of the CDA unit 640 

Arkansas River basin, the POC compromise parameter set leads to NSE values of 0.74 and 0.85 for Q and TWSA, 

respectively, while the corresponding values in the case of GLUE are, with 0.69 and 0.83, slightly lower. In all six 

CDA units, the NSE values of the GLUE compromise parameter set are only slightly lower than those for the POC 

compromise set. Except in the Upper MRB, the performance of EnCDA-derived parameter sets is lower than that 

of those derived by POC and GLUE. EnCDA for the MRB as one CDA unit leads to very poor results in particular 645 

regarding TWSA in terms of NSE.  

 

Table 2. Performance of optimal parameter sets quantified by NSEQ and NSETWSA in the different CDA units. 

NSE of parameter sets achieving the highest NSEQ or the highest NSETWSA, and of the compromise solution are 

listed as well as the NSE values of the EnCDA ensemble mean, the standard WaterGAP 2.2d model and an 650 

uncalibrated version of the WaterGAP 2.2d model. Results are provided for the calibration period 2003-2012. The 

compromise solutions were identified from Eq. 1 using p = 2. The best-performing calibration approach per CDA 

unit, with the highest average NSE, is indicated in bold. The 77 CDA units of the standard calibration are shown 

in Figs. S2 and S3.  

 NSEQ/NSETWSA 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower 

MRB 

MRB 

POC: highest NSEQ 0.74/0.85 0.83/0.50 0.82/0.27 0.89/0.82 0.90/0.69 0.90/0.51 

POC: highest NSETWSA 0.63/0.89 -0.82/0.81 0.14/0.65 0.73/0.90 0.85/0.93 0.28/0.84 

POC: compromise  0.74/0.85 0.73/0.71 0.67/0.48 0.87/0.86 0.87/0.91 0.83/0.73 

GLUE: highest NSEQ 0.70/0.79 0.77/0.21 0.78/0.18 0.88/0.81 0.87/0.26 0.88/0.19 

GLUE: highest NSETWSA 0.24/0.88 -0.68/ 0.76 0.01/0.61 0.68/0.90 0.80/0.90 0.33/0.81 

GLUE: compromise 0.69/0.83 0.65/0.71 0.61/0.46 0.86/0.84 0.84/0.89 0.85/0.65 

EnCDA: highest NSEQ 0.61/0.51 0.69/0.59 0.70/0.49 0.79/0.91 0.83/0.88 0.54/0.13 

EnCDA: highest 

NSETWSA 

0.59/0.84 0.40/0.66 0.07/0.67 0.63/0.94 0.74/0.91 0.44/0.23 

EnCDA: compromise  0.59/0.84 0.62/0.65 0.68/0.60 0.79/0.91 0.83/0.88 0.51/0.19 

EnCDA: ensemble mean 0.61/0.78 0.55/0.57 0.70/0.61 0.73/0.88 0.76/0.90 0.49/0.14 

Standard calibration1 0.59/0.55 0.53/0.38 0.54/0.18 0.86/0.77 0.79/ 

-0.04 

0.79/0.35 

Uncalibrated2 0.18/0.67 -1.02/0.38 0.56/0.17 0.85/0.72 0.71/0.06 0.71/0.38 
1 SL-RC and two correction factors are adjusted in 77 CDA units within the MRB, using observations of mean 655 
annual Q; calibration period 1980-2009 
2SL-RC = 2, correction factors equal to 1 
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Figure 3. Performance of 1) Pareto-optimal solutions derived by an evolutionary optimization algorithm (POC) 660 

(orange dots), 2) the GLUE ensemble (light grey pluses), and 3) the Pareto-optimal subset of the GLUE ensemble 

(black dots), in all cases neglecting observation error when computing NSE. In addition, the performance of 4) the 

Pareto-optimal GLUE parameter subset for 1,000 realizations of perturbed observations are shown (dark grey 

dots), which shows the impact of observation errors on NSE. Compromise solutions of both POC and GLUE 

approaches are shown, too, together with the model performance after standard calibration and without calibration, 665 

consistent with Table 2. The thresholds for behavioral parameter sets (Table 3) are indicated by the grey dashed 

lines. 

 

Differences between CDA units. Optimal performance strongly varies between the CDA units. The best 

performance with optimized parameter sets is achieved for the humid and hilly Ohio River basin and the 670 

downstream Lower MRB, with NSE values exceeding 0.85 for both Q and TWSA in the POC compromise solution 

(Table 2). Q in the Lower MRB is heavily determined by inflow from the four upstream CDA units. In the 

relatively dry Arkansas River basin, model performance regarding TWSA is similar to the two best-performing 

CDA units but, with 0.74, somewhat worse regarding Q. In the Missouri River basin and, in particular, in the 

Upper MRB, TSWA fit to GRACE observations is worse than in the other three sub-basins. Inadequate modeling 675 

of both man-made reservoirs and wetlands is suspected to cause the low performance regarding TWSA in both 

basins. The Missouri River basin is the basin that is most strongly impacted by man-made reservoirs (Fig. B1a) 

and the parameters of the reservoir algorithm were not calibrated (see Section 3.2.4). The northern parts of both 

basins (dark blue areas of Fig. B1c) are characterized by the existence of a high number of small wetlands whose 

location and extent are poorly quantified in WaterGAP. This stems from the classification of this whole area, in 680 

the Global Lakes and Wetland Database GLWD (Lehner and Döll, 2004), as a “wetland complex with a 25-50% 

coverage” with wetlands at maximum extent. This coarse information is included in WaterGAP by assigning a 
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maximum extent of local wetlands of 35% of the cell area (Döll et al., 2020). Thus, it is not only the WaterGAP 

algorithms for simulating the water balance of wetlands but very likely also the poor localization of wetlands that 

prevent parameter adjustment to result in good fits to observations. We speculate that for these conditions, 685 

modification of water storages in EnCDA leads to an improved simulation of TWSA, and, to a smaller degree, of 

Q (Table 2). In the case of CDA unit MRB, where all grid cells of the whole MRB are assigned the same value of 

the calibration parameters (Table 2), NSEQ is, with a value of 0.83 for POC and GLUE, very similar to the two 

best-performing sub-basins Ohio and Lower MRB. With a value of 0.73, NSETWSA is within the range of the 

respective values of all sub-basin CDA units. 690 

Benefits of multi-variable calibration. The performance of the compromise solutions is compared to the 

performance of the WaterGAP variant that is calibrated in the standard way (Section. 3.1) and of an uncalibrated 

WaterGAP variant. In the standard calibration, the runoff coefficient SL-RC and potentially two correction factors 

are adjusted individually for each of 77 sub-basins (CDA units) using only observations of mean annual Q at the 

sub-basin outlet (Figs. S2 and S3). In the uncalibrated variant, SL-RC is set to 2 and the correction factors to 1 695 

throughout the MRB. For all CDA units, POC and GLUE compromise parameter sets result in higher NSE values 

for both Q and TWSA as compared to both the uncalibrated and the standard model variant (Table 2 and Fig. 3). 

This is also true for EnCDA except for the CDA unit MRB, where both NSEQ and NSETWSA  are worse than in 

both the uncalibrated and standard WaterGAP variants, and the Ohio River basin, where NSETWSA is increased but 

NSEQ decreased by EnCDA. In the case of the Ohio River basin, neither the standard calibration nor the 700 

POC/GLUE compromise solutions achieve a significant improvement of the already high NSEQ of the uncalibrated 

model, and even the improvement of TWSA simulation is rather small. As can be expected, the fit to observed 

TWSA is improved more strongly in comparison to the standard calibration than the fit to observed Q, with the 

strongest improvement in the small downstream Lower MRB.  

Analysis of the KGE components CC, RBias and RVar (Eqs. 3-5) (Tables B1 and B2) shows that the improved 705 

NSEQ and NSETWSA of the compromise solutions of POC, GLUE and EnCDA as compared to the standard 

WaterGAP results are, in all CDA units, mainly due to an improvement of the correlation (CC) , the exception 

being NSEQ in case of EnCDA. Thus, calibration mainly leads to improved timing of monthly streamflow and 

TWSA. Standard calibration only improves the bias of Q compared to the uncalibrated variant, mostly leading to 

an RBias value close to 1 (Table C1). The multi-variable approaches decrease the overestimation of mean annual 710 

Q by the uncalibrated model except in the Upper MRB and the Ohio River basin, where the overestimation by the 

uncalibrated model is already very small. However, as compared to the standard and uncalibrated model variants, 

none of the three calibration approaches improves the strong underestimation of Q variability by WaterGAP. Q 

variability in the compromise solutions becomes even more strongly underestimated, in the Upper and Lower 

MRB and for the whole MRB. TWSA variability in the Arkansas and Missouri River basins and the Lower M RB 715 

is improved as compared to the standard and uncalibrated WaterGAP but worsened in the case of the wetland-rich 

Upper MRB (Table C2).  

Overestimation of observed seasonal low flows prevails in all CDA units, not only in the compromise solutions 

(Figs. 3 and S4) but also in the solutions showing the highest NSEQ, while simulation of high flows was improved 

by the multi-variable calibration. The improved correlation but stronger underestimation of Q variability as 720 

compared to the standard calibration can be seen in the hydrograph of observed and simulated Q for the CDA Unit 
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MRB, for POC and GLUE compromise solutions (Fig. 4a); the seasonal low flows are better captured with the 

standard calibration than with the compromise solutions. Correlation of simulated and observed TWSA is 

improved by achieving a small shift towards later in the year by POC/GLUE, but in some years (e.g., 2008 and 

2009), the TWSA rise still occurs too early (Fig. 4b). In addition, the relatively high water storage at the end of 725 

the years 2010 and 2011 cannot be captured by any simulation. These discrepancies in average TWSA over the 

MRB can be traced back to the Missouri and Upper MRB sub-basins where in many years, simulated TWSA 

increases too quickly and too much in the first half of the year (Figs. S4b, d).  
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730 

Figure 4. Monthly time series of simulated and observed Q (a, c, e) and TWSA (b, d, f) during calibration period 

2003-2012 and validation period 2013-2016 for MRB (a, b), Arkansas River basin (c, d) and Ohio River basin (e, 

f). Observations and their assumed errors are shown together with simulated GLUE, POC, and EnCDA 

compromise solutions, with the range of GLUE and POC behavioral solutions (maximum and minimum monthly 

values of the behavioral solutions, Table 36) and the range of all 32 EnCDA ensemble members, as well as with 735 

the WaterGAP variant with standard calibration. 

 

In the dry Arkansas River basin, all simulations overestimate summer low flows particularly strongly (Fig. 4 

c) while TWSA performance of the compromise solutions is much better than that of the standard WaterGAP (Fig. 

4d). The Ohio River basin is the CDA unit with the best model performance and little change due to any calibration, 740 

except a slight improvement of TWSA correlation (Fig. 4e, f). However, also here an overestimation of seasonal 

low flows in about half of the calibration years cannot be improved by parameter adjustment (Fig. 4e). Altogether, 

the visual inspection of the hydrographs of all six CDA units reveals that even if multi-variable calibration leads 

to improved performance metrics, fit to observations can only be slightly improved (mainly with respect to timing) 
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as compared to the standard calibration (Figs. 3 and S4), except for the much-improved fit to TWSA in the Lower 745 

MRB (Fig. S4f).  

Trade-offs between optimal fit to Q and TWSA. Trade-offs are large for all three calibration approaches, as 

quantified by the NSE values for the model runs achieving the highest NSEQ and NSETWSA, except in the two CDA 

units with an already satisfactory NSETWSA in the uncalibrated model variant (Arkansas and Ohio River basins). 

The optimal fit to observed TWSA then results in very poor fits to observed Q, in particular for the Missouri River 750 

basin and the Upper MRB (Table 2). Considering POC, optimal TWSA performance leads to a stronger 

overestimation of mean Q of 27-73% as compared to 1-18% in the case of optimal Q performance (excluding the 

downstream Lower MRB) (Table C1). While the ratio of simulated to observed variability of TWSA decreases 

and thus improves, the corresponding ratio for Q decreases, too, but thus becomes worse. RVarQ ranges from 0.80 

to 0.88 in the case of maximum NSEQ and decreases to the range of 0.53-0.84 in the case of maximum NSEQ 755 

(except for the Arkansas River basin). Considering POC in the Missouri River basin as an example, the parameter 

set with the best fit to observed TWSA results in NSETWSA of 0.81 but a negative NSEQ; the parameter set with 

the best fit to Q achieves an NSEQ of 0.83 but NSETWSA deteriorates to 0.50 (Table 2). The parameter set with 

optimal fit to TWSA leads to an even higher overestimation of mean Q (RBias = 1.73) and an even higher 

underestimation of Q variability (RVar = 0.61) as compared to the ensemble member with the best fit to observed 760 

Q (RBias = 1.08, RVar = 0.80), while correlation slightly decreases (Table C1). KGE components regarding 

TWSA for the same CDA unit reveal that the correlation of observed and simulated TWSA strongly decreases 

from 0.91 to 0.77 if optimization is done for Q instead of TWSA, while variability is overestimated somewhat 

more (RVar = 1.09 instead of 1.03) (Table C2). Similar patterns are observed for the CDA units MRB and Upper 

MRB. In the case of the Arkansas River basin and the Lower MRB, trade-offs between optimal fits to Q and 765 

TWSA observations identified by POC are lower than those identified by GLUE, which shows  the advantage of 

the search algorithm applied in POC. 

4.1.2 Behavioral parameter sets 

We identified behavioral parameter sets using thresholds for minimum acceptable performance in terms of NSE Q 

and NSETWSA, taking into account the observation uncertainties of Q and TWSA. To do this, we evaluated the 770 

performance of the 20,000 simulated GLUE ensemble members with respect to uncertainty-perturbed observations 

(Fig. 3 and S1), as described in Section. 3.4.2. For GLUE and EnCDA, all parameter sets within the thresholds 

were selected as behavioral, while for POC, the behavioral parameter sets are the subset of Pareto-optimal 

parameter sets above the thresholds. The Pareto-optimal GLUE model runs for 1,000 perturbed observation time 

series (dark grey dots in Fig. 3) served to assess the impact of observation uncertainty on performance. Not each 775 

dark grey dot represents a different parameter set because the NSE for the same parameter set varies with the 

perturbed observation time series.  The width of the band of the Pareto-optimal model runs in case of perturbed 

observations close to the compromise solution helped to identify the thresholds for NSEQ and NSETWSA. In the 

case of the poorly simulated Upper MRB, we decided to keep the thresholds above those indicated by the 

observation error analysis to avoid calling very poorly performing parameter ensembles behavioral  (Fig. 3). We 780 

chose the compromise solution as the point of departure as we wish to give equal weight to performance for Q and 
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TWSA. Thresholds for behavioral parameter sets vary between the CDA units due to the different optimal 

performances that can be achieved, in the different CDA units, by varying parameters, given a fixed model 

structure and the model input. The selected thresholds for behavioral solutions are indicated in Fig. 3 and Table 3, 

while Table 3 also provides the number of behavioral POC and GLUE parameter sets as well as of the behavioral 785 

EnCDA ensemble members. 

 

Table 3: Number of identified behavioral parameter sets (or ensemble members) for each CDA unit that lead to 

simulation results that exceed both the NSEQ and NSETWSA thresholds. Listed are the number of behavioral 

parameter sets in the GLUE approach (out of 20,000 per CDA unit), the number of behavior Pareto-optimal 790 

parameter sets in the POC approach (out of 20,000) and the number of behavioral EnCDA ensemble members (out 

of 32). 

 Thresholds for 

behavioral 

ensemble members 

NSE 

 [Q, TWSA] 

Number of 

behavioral GLUE 

parameter sets 

Number of 

behavioral Pareto-

optimal POC 

parameter sets  

Number of 

behavioral EnCDA 

ensemble members 

I Arkansas [0.60, 0.70] 668 8 5 

II Missouri [0.60, 0.55] 72 24 3 

III Upper MRB [0.60, 0.35] 156 30 19 

IV Ohio [0.80, 0.80] 196 11 0 

V Lower MRB [0.80, 0.80] 1517 7 6 

IV MRB [0.65, 0.65] 138 26 0 

 

In the case of POC and GLUE, an uncertainty band is delineated by the minima and maxima of monthly Q or 

TWSA values when considering all behavioral parameter sets (Figs. 3 and S4). For EnCDA, these figures show 795 

the range of all 32 ensemble members, also because there are no behavioral EnCDA members in the case of CDA 

units Ohio and MRB. AUBW and coverage of observations (including their uncertainty) by the uncertainty band 

of the model output can be expected to correlate (Section 3.3). Both AUBW and the coverage are smaller for POC 

and EnCDA than for GLUE (Table 4) due to their smaller number of behavioral ensemble members. When 

extending the considered EnCDA ensemble members to the whole ensemble of 32 members, the coverage 800 

increases slightly, but at the same time, the width of the uncertainty bands increases strongly (Table 4). Comparing 

the six CDA units, neither AUBW nor coverage correlates with the number of behavioral ensemble members.  

 

Table 4. Coverage of monthly observations by model output (CO), in % of monthly observations contained in 

uncertainty band of observations, and average uncertainty bandwidth AUBW during the calibration period 2003-805 

2012 for both Q and TWSA, considering only the behavioral parameter sets (Table 3). In the case of EnCDA, also 

the values for the whole ensemble of 32 members are shown in parentheses. AUBW for Q is listed in %, AUBW 

for TWSA in mm. 

 Q/TWSA 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower 

MRB 

MRB 

POC: Coverage  24/70 55/40 29/42 49/67 48/90 52/37 

GLUE: Coverage 46/94 72/57 45/61 72/87 58/95 58/59 
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EnCDA: Coverage 15/63 

(25/67) 

36/45 

(37/48) 

44/75 

(53/74) 

-/-1 

(55/91) 

57/67 

(60/65) 

-/-1 

(36/35) 

POC: AUBW  22/6 26/12 16/8 17/10 7/23 19/8 

GLUE: AUBW 60/49 41/28 35/29 43/43 21/82 32/26 

EnCDA: AUBW 20/19 

(63/49) 

17/10 

(60/38) 

51/50 

(78/56) 

-/-1 

(96/63) 

16/27 

(48/37) 

-/-1 

(24/18) 
1No behavioral parameter sets identified 

 810 

For POC and GLUE, the average width of the uncertainty bands for Q in the six CDA units is 7-26% and 21-

60% of the ensemble mean of monthly Q, respectively. For GLUE, the lowest AUBW occurs in the downstream 

Lower MRB, likely due to the dominance of inflow from upstream, and the highest in the Arkansas River basin 

(Table 4). However, even the wider GLUE bands do not cover most of the observed seasonal low flows (including 

the rather small observation error bands) in all CDA units, while high flow months are covered more often (Figs. 815 

3 and S4). Coverage in the GLUE approach ranges from 46% to 72% of the observed Q values among the six CDA 

units, with the lowest values for the two CDA units with the highest underestimation of Q variability, Arkans as 

and Upper MRB, even though the Arkansas River basin has the widest uncertainty band.  

Coverage of observations including their error range by the uncertainty band is, in the case of GLUE and POC, 

higher for TWSA than for Q except for Missouri and MRB (Table 4). In the case of GLUE, TWSA coverage 820 

ranges from 59% to 95%. The Arkansas River basin has a low Q coverage but a very high TWSA coverage, while 

the Missouri River basin has the highest Q coverage and the lowest TWSA coverage even though for the Missouri 

River basin, the Q performance of the compromise solution is relatively poor (Table 32). The TWSA time series 

for the Arkansas River basin differs from those of the other CDA units by its high ratio of interannual to seasonal 

variability (Fig. 4). 825 

4.2 Model performance during the validation period 2013-2016 

Model performance of both the POC and GLUE compromise solutions in the validation periods is similar to the 

calibration periods regarding Q but much worse regarding TWSA (compare Table 5 to Table 2 for NSE values). 

For most CDA units and calibration approaches, the performance loss regarding TWSA between the calibration 

and the validation period is similarly high for the ensemble members that were identified as having the best fit to 830 

TWSA. We suspect that the poor fit of simulated TWSA to observed TWSA in the last years of the GRACE 

mission, where there is also a large fraction of missing monthly GRACE data (Figs. 3 and S4), is related to 

increased observational errors (compare Section. 3.2.2). This suspicion is supported by the fact that NSETWSA of 

the uncalibrated model is lower for the validation period than for the calibration period, which is not the case for 

NSEQ in all CDA units except the Arkansas River basin.  835 

 

Table 5. Model performance during the validation period 2013-2016 indicated by NSEQ and NSETWSA, as achieved 

by the three calibration approaches POC, GLUE, and EnCDA as well as by the standard WaterGAP 2.2d and the 

uncalibrated WaterGAP 2.2d models. The best-performing calibration approach per CDA unit, with the highest 

average NSE, is indicated in bold. The indication “highest NSETWSA” refers to the parameter with the best 840 

performance during the calibration period. The values in parenthesis in the line “EnCDA compromise” are 
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NSETWSA values that are computed after normalizing TWSA during the validation period by the mean TWSA of 

the validation period. 

 NSEQ/NSETWSA 

 Arkansas 

 

Missouri Upper MRB Ohio Lower 

MRB 

MRB 

POC: 

compromise 

solution 

0.59/-0.04 0.72/-2.76 0.79/-0.05 0.85/0.75 0.87/0.80 0.85/0.31 

POC: ensemble 

mean1 

0.62/0.17 0.73/-3.18 0.81/-0.09 0.84/0.76 0.86/0.81 0.83/0.32 

GLUE: 

compromise 

solution 

0.61/0.66 0.68/-3.44 0.74/0.02 0.86/0.72 0.84/0.77 0.84/0.11 

GLUE: 

ensemble mean2 

0.49/0.36 0.65/-2.00 0.71/0.02 0.81/0.70 0.83/0.75 0.73/0.28 

EnCDA: 

compromise  

0.07/-3.99 

(0.11)  

0.02/-0.30  

(-0.30) 

0.68/-0.07  

(-0.07) 

0.74/-2.60 

(0.20) 

0.76/-0.66 

(0.43) 

0.61/-1.72 

(-1.00) 

EnCDA: 

ensemble mean3 

0.07/-2.90 -2.71/-0.94 0.62/-0.04 0.75/0.18 0.67/-0.44 0.61/-2.14 

POC: highest 

NSETWSA 

0.64/0.36 -0.45/-1.99 0.53/0.13 0.58/0.80 0.85/0.82 0.31/0.45 

GLUE: highest 

NSETWSA 

0.45/-0.02 -0.35/-0.77 0.46/0.15 0.50/0.80 0.81/0.82 0.38/0.36 

EnCDA: highest 

NSETWSA 

0.07/-3.99 -14.08/-10.60 0.63/0.20 0.75/-0.08 0.66/-1.08 0.56/-2.87 

Standard 

calibration 

0.44/-0.85 0.60/-3.70 0.47/-0.40 0.85/0.62 0.76/-6.24 0.76/-2.38 

Uncalibrated 0.56/0.22 -0.80/-2.2 0.59/-0.39 0.82/0.52 0.75/-5.60 0.75/-1.58 

1Computed by running WGHM with the ensemble of behavioral Pareto-optimal parameter sets identified using 

POC (Table 3) 845 
2Computed by running WGHM with the ensemble of behavioral parameter sets identified using GLUE (Table 3) 
3Computed by running WGHM with the ensemble of 32 parameter sets identified using EnCDA (Section 4.1.3) 

 

All compromise solutions perform somewhat better than the WaterGAP standard variant, except for EnCDA 

in the CDA units Missouri, Ohio and MRB (Table 5). Performances of the ensemble mean of the behavioral GLUE 850 

parameter sets, of the ensemble mean of the behavioral Pareto-optimal POC parameter sets and of the EnCDA 

ensemble mean are similar to their respective compromise solutions (Table 5). In all CDA units, POC and GLUE 

perform better than EnCDA regarding both Q and TWSA. POC results are slightly better than GLUE results, the 

exception being the Arkansas River basin where POC performance regarding TWSA degrades from its high leve l 

during the calibration period due to overestimating mean TWSA (Fig. 4). 855 

The temporal mean value of GRACE-derived TWSA is generally unknown. The standard approach taken in 

this study of normalizing TWSA values to a constant mean over the reference period, here 2003-2012, may be 

problematic as it assumes that the mean derived over longer periods than the reference period (here 11 years) 

remains at the reference period value, which need not be true. Therefore, we additionally calculated, for the 

example of the EnCDA compromise solution, the NSETWSA after reducing the TWSA time series by its temporal 860 

mean of the validation period instead of the mean of the calibration period. The resulting NSETWSA values are, for 

most CDA units, somewhat improved (Table 5).  
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4.3 Characterization of estimated parameter sets 

POC and GLUE identify parameter sets that are assumed to be temporally constant. Here, we compare these two 

ensembles of estimated parameter sets. Starting with the CDA unit MRB, we first characterize the parameter sets 865 

of the POC compromise solution and the parameter sets leading to the best fit to either Q or TWSA. We compare 

the parameter set of the GLUE compromise solution to the parameter set of the POC compromise solution. Then, 

we describe the POC behavioral Pareto-optimal parameter sets as well as the GLUE behavioral parameter sets, 

including parameter correlations. Finally, we highlight the most interesting results for the five sub-basin CDA 

units. The EnCDA parameter sets are not considered as the EnCDA approach leads to a lower model performance 870 

than POC and GLUE. 

4.3.1 CDA unit MRB 

Parameter set of the POC compromise solution. In the compromise solution, the runoff coefficient SL-RC is close 

to the maximum value of 3, minimizing runoff at a given soil water saturation (Fig. 5f). This SL-RC is in line with 

the values obtained by the standard calibration where calibrated SL-RC are also very high (Fig. S3b). While in the 875 

standard calibration, one or two correction factors are needed in most standard calibration CDA units to decrease 

mean annual runoff to the observed values, this is achieved in this study by a high value of SL-MSM, the multiplier 

for the standard maximum soil water storage, which is adjusted in the POC compromise solution to a high value 

of 2.5. A “deeper soil” with higher water storage capacity leads to decreased soil saturation and lower runoff, and 

at the same time to higher variability of soil water storage and thus TWSA. EP-PTh, affecting potential 880 

evapotranspiration, is reduced from its standard value of 1.26 to 1.02, which seems to contradict the adjustment of 

both SL-RC and SL-MSM as this should lead to a reduction of actual evapotranspiration and thus an increase in 

runoff, in particular at high soil saturation values (Eq. 17 in Müller Schmied et al., 2021).  

In addition to SL-MSM, three other parameters are adjusted by the calibration in a way that water retention is 

increased (improving correlation with both observed Q and TWSA), while at the same time a higher TWSA 885 

variability results (decreasing or at least not improving fit to observed Q and TWSA). Both maximum wetland 

(SW-WD) and lake depths (SW-LD) are increased by calibration, from 2 to 5.7 m in the case of wetlands and from 

5 m to 8 m in the case of lakes, and the lake and wetland discharge coefficient SW-DC is adjusted to its minimum 

value of 0.001/d. In contrast, the adjustment of the river roughness coefficient multiplier (SW-RRM) to 1.5, i.e., 

to half of the value in the uncalibrated model, leads to a doubling of flow velocity in the river as compared to the 890 

standard value and thus lower water retention (reducing correlation with observed Q and TWSA), a higher 

variability of Q (improving the fit to observations) and a higher variability of TWSA (worsening the fit to 

observations). In addition, the net abstraction from groundwater is decreased by 80% (NA-GM = 0.2). Snow melt 

temperature SN-MT is lowered from the standard value of 0 °C to -2.6 °C with POC. Overall, most parameters are 

adjusted to increase the correlation between observed and simulated TWSA (except SW-RRM) and reduce mean 895 

runoff (except EP-PTh). Unfortunately, the adjusted parameters increase TWSA variability (except SW-RRM), 

leading to an even stronger overestimation than the uncalibrated and standard calibrated variants (Table C2) and 

a worse underestimation of Q variability (Table C1). 
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Figure 5. Parameter sets determined by POC and GLUE calibration approaches as depicted by parallel coordinate 

plots for CDA units (a) Arkansas, (b) Missouri, (c) Upper MRB, (d) Ohio, (e) Lower MRB, and (f) MRB. The 

parameter abbreviations are given at the bottom of each plot, where the order was selected to show interesting 

relations between parameter values. The numbers at the top and bottom of the plots indicate the a-priori range of 

the calibration parameters listed in Table 1. The number of behavioral solutions is given in Table 3. GLUE 905 

behavioral solutions are shown in greys, GLUE compromise solution in black, POC Pareto behavioral solutions 

in oranges and POC compromise solution in red.  

 

Parameter sets with optimal fit to Q or TWSA for POC. Regarding trade-offs, the POC parameter set that leads 

to the best fit to observed Q is characterized by a higher SW-RRM (2.2 instead of 1.5 in the compromise parameter 910 

set), a two-third reduction of SW-LD, a higher SN-MT, and a value of NA-GM of approximately 1. The latter 

shows that the net groundwater abstractions estimated by the water use models of WaterGAP lead to a good fit for 

the monthly Q time series. In the POC parameter set leading to the best fit to observed TWSA, SL-MSM reaches 

3 (the maximum value), while SW-WD attains a value of more than 12 m. This parameter set includes an SW-

RRM value of only 1 (the lower bound, leading to a minimum flow velocity) and a slightly negative NA-GM. The 915 

latter parameter value means that the net water abstractions from groundwater, which are dominantly positive in 

the MRB (Fig. B1e), i.e. more water is withdrawn from the groundwater than recharged by return flows, are not 

only decreased but become mostly net groundwater recharge by the parameter adjustment. This could be caused, 

for example, by an original overestimation of the fraction of the total water abstraction that stems from 

groundwater and not surface water. Return flow from irrigation with surface water can lead to a net abstraction 920 

from groundwater that is negative, i.e., is an artificial groundwater recharge. However, it might also be caused by 
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an underestimation of groundwater recharge, such that groundwater storage loss and the decrease of groundwater 

outflow to rivers by net groundwater abstractions would be overestimated if NA-GM was not adjusted from its 

standard value of 1.  

Parameter set of the GLUE compromise solution. Six6 out of the 9 nine parameters in the GLUE compromise 925 

solution are very similar to those of the POC compromise solution (Fig. 5f). The GLUE compromise solution has 

a slightly higher NSEQ but a considerably lower NSETWSA (due to a lower correlation but a similar performance of 

variability) due to a lower soil moisture capacity and a very minimum lake water storage. In addition, the snow 

melt temperature is much higher. 

Behavioral Pareto-optimal POC parameter sets. The 26 behavioral Pareto-optimal parameter sets derived by 930 

POC coincide in the four parameters SL-RC, SL-MSM, SW-DC, and NA-GM (Figs. 5f and 6, and Excel file in 

the supplement). The parameter values of the other five parameters diverge somewhat, indicating conflicts between 

a good fit to observed Q and TWSA. The fit to Q decreases and the fit to TWSA increases with decreasing EP-

PTh, SN-MT, and SW-RRM and with increasing SW-WD. A negative correlation is visible between the values 

for SW-WD (wetland depth) and the values for SW-LD (lake depth) (see also Fig. S5f); this indicates that the 935 

same impact on Q and TWSA is achieved by either a large wetland depth or a large lake depth. The negative 

correlation between SW-WD and the three parameters EP-PTh, SW-RRM, and SN-MT is not easily interpretable 

(Fig. S5f).  

Behavioral GLUE parameter sets. Behavioral GLUE parameter sets are much more diverse than behavioral 

Pareto-optimal parameter sets (Figs. 5f and 6). The GLUE parameter sets take into account, in an approximate 940 

manner, the uncertainty of performance indicators that stems from observation errors (Sections 3.2.2 and 3.4.2), 

in addition to the conflicting goals of achieving a good fit to observed Q and observed TWSA that is also reflected 

by the Pareto-optimal parameter sets. The 138 behavioral GLUE parameter sets, which all result in NSE values > 

0.65, vary widely and for some parameters cover the whole parameter range (Figs. 5f and 6). In most behavioral 

sets, the SL-RC values are larger than 2, but there is even a set with a value below 1. SL-MSM ranges between 1 945 

and 2.7, while the parameter value of the POC compromise solution is at the upper end of this range. Different 

from the Pareto-optimal POC solutions, SW-RRM values do not encompass very small values close to 1 but tend 

to be higher, mostly between 2 and 3 (Fig. 6). SN-MT as well as the three parameters related to lakes and wetlands, 

SW-DC, SW-LD, and SW-WD, are not constrained at all by the calibration (Fig. 5f and Fig. 6). Parameter 

correlations are very low, except negative correlations of EP-PTh with SL-RC, NA-GM and SW-DC (Fig. S5f). 950 
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Figure 6. Histogram of parameter values in calibrated parameter sets according to POC and GLUE for the MRB 

(CDA unit VI). All behavioral parameter sets are considered for GLUE, while the smaller ensemble of behavioral 955 

Pareto-optimal parameter sets is shown for POC (Table 3). The y-axis shows the ratio of the number of parameter 

values in each class to the total number of behavioral parameter sets, while the x-axis shows the a-priori parameter 

range listed in Table 1. The green dashed line indicates the parameter values of the uncalibrated WaterGAP model. 

4.3.2 The five sub-basin CDA units 

For all five sub-basins except the downstream Lower MRB (with SL-RC = 0.33), calibrated SL-RC is close to the 960 

maximum value of 3 in the POC compromise solution (Fig. 5). SL-MSM is at its lower bound in the Lower MRB, 

but increases maximum soil water storage in all other CDA units; the multiplier is almost at its maximum value of 

3 for the Missouri River basin and the Upper MRB, about 2 for the Arkansas River basin and 1.3 for the Ohio 

River basin, which is the basin with the best performance of the uncalibrated model. In all CDA units but the 

Arkansas River basin, SW-LD reaches very high values between 10 and 20 m, and SW-WD is also higher than the 965 

uncalibrated values in all CDA units except Arkansas and Upper MRB. The SW-DC is at its minimum value in 

the Missouri River basin and the Upper MRB, close to its uncalibrated value in the Arkansas and Ohio River basins 

and in between in the Lower MRB. Calibrated SN-MT varies strongly among the CDA units. NA-GM is always 

below 1 to increase groundwater retention. The Lower MRB is the only CDA unit where optimal EP-PTh was 

high (1.65) while in all other CDA units, the calibrated value was close to 1.  970 

Overall, there is a particularly high equifinality of parameter sets in the Lower MRB, with strong negative 

correlations between parameters of the Pareto-optimal POC solutions (Fig. S5e). Among the POC solutions in the 

Arkansas River basin, the parameters wetland depth (SW-WD) and surface water discharge coefficient SW-DC 

(Fig. 5a, compare POC compromise solution with POC behavioral solutions, and Fig. S5a) are so negatively 

correlated that the parameters alternatively take values at the opposite limits of the parameter ranges. A high value 975 

of maximum storage in surface water bodies has a similar effect on Q and TWSA dynamics as a low surface water 

discharge coefficient that keeps water in storage. Parameters may also show very strong correlations within a very 

small parameter space as in the case of EP-PTh and SW-WD in Upper MRB (Figs. 5c and S5c). 

The GLUE behavioral parameter sets cover an even larger range in the Lower MRB and the Arkansas River 

basin as compared to the MRB (Figs. 5 and S7). Correlations between parameters are generally low (Fig. S6), 980 

except for high negative correlations between EP-PTh and SL-RC in the Missouri River basin and between EP-
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PTh and SL-MSM in the Ohio River basin. However, low correlations between the calibrated parameters do not 

indicate a low equifinality.  

4.4 Added value of spatially more resolved CDA units  

An important decision in model parameter estimation is the choice of CDA units, i.e. , the selection of the group 985 

of grid cells for which calibration parameters are assumed to be the same. A higher number of CDA units within 

the same geographic domain leads to the adjustment of more parameters, causes a higher computational effort and 

is expected to lead to an improved representation of reality. We performed two analyses to evaluate the added 

value of dividing the MRB into five sub-basin CDA units.  

In the first analysis, we used the compromise solutions obtained for the CDA unit VI (MRB), where the same 990 

calibration parameter values are assigned to all grid cells in the whole MRB, to compute Q and TWSA for each of 

the five sub-basin CDA units. Model performance of this calibration variant (“whole basin calibration”) is 

compared to the performance that is achieved in the sub-basins if each sub-basin is calibrated individually, i.e., if 

five CDA units are used to cover the whole MRB. Analysis for both the calibration period (Table 6) and the 

validation period (Table S3) clearly shows the added value of distinguishing five sub-basin CDA units (calibration 995 

variant “sub-basin calibration”) as overall model performance improves in each of the five sub-basins as compared 

to the calibration variant “whole basin calibration”. Due to the specific search algorithm, performance gains are 

more pronounced with POC than with GLUE. Performance gains are very high in the case of EnCDA due to the 

poor performance of the whole-basin calibration. Considering POC and regarding Q, the added value of more 

CDA units is highest for the Missouri River basin, followed by the Arkansas River basin and the Upper MRB. 1000 

However, for these three sub-basins, there is no added value regarding TWSA. In the always best performing Ohio 

River basin, there is a small added value for both Q and TWSA, while in the downstream Lower MRB, where Q 

is dominated by inflow from the four upstream sub-basins, Q performance remains essentially unchanged while 

TWSA performance improves with more CDA units.  

 1005 
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Table 6. Comparison of model performance in the five sub-basins of the MRB between the calibration of MRB 

as a whole (one CDA unit VI) and calibration of the individual sub-basins (five CDA units I–V). In addition, the 

performance of the model with standard calibration of 77 CDA units but adjusting only up to three parameters 

based on observed mean annual Q is shown. Model performance is indicated by NSEQ and NSETWSA during the 1010 

calibration period 2003-2012 as achieved by the compromise solutions of the three calibration approaches POC, 

GLUE, and EnCDA. The sub-basin calibration NSE values are identical to those in Table 2, except for MRB (see 

footnote 1). 

 NSEQ/NSETWSA  

 Arkansas 

 

Missouri Upper MRB Ohio Lower 

MRB 

MRB 

POC: whole basin 

calibration 

0.65/0.83 0.38/0.71 0.57/0.48 0.82/0.77 0.83/0.69 0.83/0.73 

POC: sub-basin calibration 0.74/0.85 0.73/0.71 0.67/0.48 0.87/0.86 0.81/0.90 0.81/0.791 

GLUE: whole basin 

calibration 

0.67/0.84 0.49/0.64 0.64/0.33 0.85/0.75 0.85/0.74 0.85/0.65 

GLUE: sub-basin 

calibration 

0.69/0.83 0.65/0.71 0.61/0.46 0.86/0.84 0.77/0.89 0.77/0.771 

EnCDA: whole basin 

calibration 

-0.41/0.60 -1.69/0.51 0.36/0.26 0.57/0.55 0.51/0.60 0.51/0.19 

EnCDA: sub-basin basin 

calibration 

0.59/0.84 0.62/0.65 0.68/0.60 0.79/0.91 0.83/0.88 0.83/-0.311 

1based on Q at Vicksburg and TSWA averaged over the whole MRB computed by a WaterGAP run, in which the 

calibration parameters in the five sub-basins (CDA units I-V) were set to their respective compromise solution 1015 
values. 

 

 

An evaluation of the performance regarding the mean of TWSA over the entire MRB using the individual 

parameter sets of the five sub-basin CDA units shows a small added value of using sub-basin CDA units in the 1020 

case of POC and GLUE while in the case of EnCDA the already poor fit to TWSA in the whole basin variant is 

further degraded (column MRB in Table 6). However, EnCDA estimation of Q at Vicksburg is much improved 

with five CDA units and reaches the high values of GLUE and POC, both of which show a slight degradation of 

the Q simulation at Vicksburg as compared to the whole-basin calibration.  

In the second analysis, we evaluated the ability of the different calibration variants to simulate Q at six Q 1025 

gauging stations that were not used for model calibration in this study; three are located in the Missouri River 

basin and three in the Ohio River basin (Fig. 2). Differences between the stations are larger than between the 

calibration approaches. Good NSEQ values are only achieved at two stations, Mt. Carmel and Louisville in the 

Ohio River basin. The best performance at Mt. Carmel is achieved with the whole-basin GLUE approach (NSE = 

0.77), while the POC sub-basin approach achieves the optimal performance at Louisville, with NSE = 0.91. (Table 1030 

7). Sub-basin calibration strongly improves NSE as compared to whole basin calibration in the case of the Platte 

River station at Louisville for both POC and GLUE, by reducing the bias (RBias) but decreasing correlation (CC) 

and the fit to observed Q variability (RVar) (Table 7) but not during the validation period (Table S4). There is 

some added value of sub-basin calibration regarding Q simulation at the Louisville station on the Ohio River for 

both the calibration and the validation period. For the other four stations, however, sub-basin calibration leads to 1035 

worse performance than whole-basin calibration during the calibration period. For the station on the Cumberland, 

which is not a calibration station in the standard calibration, the standard calibration even leads to a better 
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performance than all the ensemble-based calibrations for both the calibration and validation period. At the 

Bismarck station on the Missouri River, where model performance is similarly poor as on the Cumberland, even 

the uncalibrated WaterGAP variant performs better or similar to the calibrated variants due to the highest 1040 

correlation. During the validation period, the performance of all three calibration approaches becomes very low at 

the three stations in the Missouri River basin (Table S4), while it remains constant or even improves for the three 

stations in the Ohio River basin. No calibration approach performs consistently better than any other app roach; 

performance rather depends on the period and the station. Overall, calibration using Q observations on downstream 

stations only leads to apparently random changes in Q simulation at upstream stations that have not been used in 1045 

the calibration. 

 

Table 7. Comparison of model performance at the six Q validation stations in the Missouri and Ohio sub-basins 

of the MRB (Fig. 2) between the calibration of MRB as a whole (CDA unit VI) or calibration of the individual 

sub-basins (CDA units I–V). Model performance is indicated by NSEQ and the three KGE components during the 1050 

calibration period 2003-2012 as achieved by compromise solutions of the three calibration approaches POC, 

GLUE, and EnCDA. In the case of CDA, the performance metrics for the 2003-2012 CDA run are shown and not 

of a run with the parameter set of December 2012. The best-performing calibration variant for each station is 

shown in bold. In addition, performances of the standard and uncalibrated WaterGAP model variants are shown.  

 NSEQ/CC/RBias/RVar 

 Missouri 

near 

Landusky 

Missouri at 

Bismarck1 

Platte at 

Louisville1 

Wabash at 

Mt Carmel1 

Ohio at 

Louisville 

Cumberland 

at Nashville 

POC: whole 

basin 

calibration 

0.30/0.73/ 

0.67/1.10 

-0.04/0.38/ 

0.68/0.29 

-0.56/0.79/ 

1.61/0.95 

0.74/0.91/ 

1.24/0.74 

0.78/0.91/ 

1.11/0.68 

0.37/0.86/ 

1.59/0.46 

POC: sub-

basin 

calibration 

0.23/0.78/ 

0.58/1.45 

-0.38/0.41/ 

0.41/0.51 

0.54/0.83/ 

0.96/1.26 

0.65/0.87/ 

1.24/0.81 

0.91/0.96/ 

1.08/0.84 

0.32/0.84/ 

1.62/0.54 

GLUE: 

whole basin 

calibration 

0.50/0.80/ 

0.80/1.30 

-0.03/0.32/ 

0.69/0.40 

-0.55/0.76/ 

1.57/0.98 

0.77/0.91/ 

1.20/0.80 

0.83/0.92/ 

1.05/0.80 

0.42/0.85/ 

1.53/0.49 

GLUE: sub-

basin 

calibration 

0.41/0.77/ 

0.72/1.25 

-0.15/0.39/ 

0.56/0.41 

0.58/0.80/ 

1.00/1.05 

0.67/0.87/ 

1.25/0.76 

0.87/0.94/ 

1.07/0.81 

0.31/0.84/ 

1.62/0.48 

EnCDA: 

whole basin 

calibration  

0.20/0.56/ 

1.00/0.89 

-1.09/-0.32/ 

1.42/0.45 

-8.98/0.57/ 

3.15/0.60 

0.66/0.85/ 

1.09/0.58 

0.41/0.71/ 

0.86/0.55 

0.24/0.59/ 

1.30/0.36 

EnCDA: 

sub-basin 

calibration  

0.48/0.74/ 

1.12/0.83 

0.46/0.89/ 

1.47/0.53 

-1.8/0.42/ 

1.79/0.77 

0.59/0.89/ 

1.38/0.67 

0.65/0.82/ 

1.00/0.64 

0.13/0.69/ 

1.58/0.51 

Standard 

calibration 

0.37/0.81/ 

1.19/1.06 

0.36/0.64/ 

1.03/0.40 

0.04/0.71/ 

0.99/1.40 

0.70/0.87/ 

1.09/0.97 

0.78/0.89/ 

1.03/0.79 

0.52/0.84/ 

1.42/0.56 

Uncalibrated 0.40/0.77/ 

1.11/1.08 

0.47/0.82/ 

1.38/0.62 

-6.30/0.69/ 

2.26/1.21 

0.69/0.89/ 

1.20/0.88 

0.78/0.88/ 

0.98/0.86 

0.40/0.84/ 

1.54/0.48 
1Calibration station of standard calibration 1055 
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5 Discussion 

5.1 Advantages and disadvantages of the three ensemble-based multi-variable calibration approaches 

POC is most effective in reducing the uncertainty of GHM model output by identifying (Pareto-)optimal parameter 

set or one compromise parameter set that leads to the overall best fit to all observation variables. However, we 1060 

found in our study that GLUE is only slightly less effective in doing this; the differences between the time series 

of Q and TWSA computed by POC and GLUE are small compared to the discrepancies to the observations (Figs. 

3 and S4). The major advantage of GLUE is that without any additional model runs, the GLUE parameter ensemble 

can also be used to identify behavioral parameter sets and thus quantify the model output uncertainty given the 

uncertainty of the observations. In addition, GLUE has a smaller computational burden than POC if alternative 1065 

calibration objectives are to be tested as no new model runs are required in the case of GLUE. The computational 

burden of POC and GLUE, which is dominated by the number of parameter sets used to compute the alternative 

model output,  is rather similar (Sections 3.4.1 and 3.4.2). 

Theoretically, EnCDA is, similar to GLUE, capable of both decreasing and quantifying the uncertainty of GHM 

model output. However, unlike POC and GLUE, the “best estimate” of model output in ensemble Kalman filter 1070 

methods is not connected to one specific parameter set but is determined by the mean over the output s of all 

ensemble members, also given the forcing perturbations. Therefore, consistent simulationscomputations with an 

EnCDA calibrated model, e.g. for a period without observations, such as the validation period in our study, require 

that the model is not run only once but, with the parameter values obtained at the end of the calibration period,  as 

many times as the ensemble has members (32 times in our study, Section 3.4.3). These ensemble runs then enable 1075 

us to compute a best estimate as well as well as an uncertainty band that takes into account the uncertainty of the 

observations and the model as well as of some climate input. However, as EnCDA does not compute a single n 

optimal parameter set but rather a Bayesian mean, it seems to be less straightforward to be used cannot be 

efficiently used for many model applications. In the case of POC and GLUE, the model needs to be run only once, 

with the compromise parameter set, to obtain the best estimate of model output given the observations used for 1080 

model calibration.  

The fact that our simple poorer performance of EnCDA implementation could not compete with POC and 

GLUE i n simulating Q and TWSA during the calibration period as compared to POC and GLUE might be viewed 

asis surprising as in EnCDA not only parameters but also water storages are adapted each month. We believe the 

lowerThe low EnCDA performance ismay be due to the small ensemble size of only 32 (instead of 20,000 in the 1085 

case of POC and GLUE); it is common in EnKF data assimilation  to only generate very small ensembles (e.g., 

Zaitchik et al., 2008, Eicker et al. 2014, Girotto et al., 2016, Kumar et al., 2016), which is  caused by the high 

computational demand of the EnCDA approach., and tThis is the consequencedue to the fact that EnCDA estimates 

state parameters and can run in recursive way, i.e. providing state and parameter estimates at every time step, 

which POC and GLUE cannot. With gradually increasing ensemble sizes (e.g. n=64) one generally finds gradually 1090 

improved state and parameter estimates, but the EnCDA will never be able to be run with ensembles sizes common 

in model calibration. Put in other words, the EnCDA allows for much more degrees of freedom as compared to 

POC and GLUE since it does not assume the model simulation itself as correct and only ambiguous due to 
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unknown model parameters. We caution that EnCDA using only one CDA unit for the whole MRB even failed in 

the sense that it resulted in a worse performance in terms of NSE regarding both Q and TWSA than the uncalibrated 1095 

WaterGAP during the calibration period 2003-2012. Regarding the five sub-basin CDA units, performance for all 

but one CDA unit was worse than that of POC and GLUE even though not only parameters but also water storages 

are adjusted in EnCDA. Performance was, however, improved over the standard and uncalibrated model variants 

for 4 out of 6 CDA units, in particular regarding TWSA. Q simulation by EnCDA during the calibration period 

might be improved by using log Q instead of Q (Clark et al., 2008; Paiva et al., 2013), and in the case of dry world 1100 

regions, by censoring no flow observations (Wang et al., 2020). Note that we define performance generally in 

terms of NSE, while EnCDA unlike POC and GLUE does not optimize NSE but rather the RMSE of model-

observation differences. During the validation period 2013-2016, when EnCDA uses the 32 parameter sets 

obtained at the end of the calibration period (December 2012) to compute Q and TWSA without any update of 

water storages, TWSA and to a lesser extent Q “drifted off” from the observations, resulting in very poor fits. This 1105 

may be explained by the fact that the monthly parameter updates in EnCDA absorb model misrepresentations that 

generate seasonally varying errors such that the December 2012 parameter sets were not able to lead to a reasonable 

simulation during the whole four years of the validation period. On the other hand, fromFrom a data assimilation 

perspective where the aim is to only improve the knowledge about historical conditions, our validation experiment 

can be viewed as academic, since in any real situation there would be no reason at all to not recursively assimilate 1110 

more recent TWSA observations once an ensemble assimilation framework has been set up and tuned at the begin. 

5.2 Added value of multi-variable calibration as compared to the standard WaterGAP calibration for 

identifying one optimal parameter set 

The optimal or compromise parameter sets identified by multi-variable calibration with all three approaches result 

in better simulations of both Q and TWSA during the calibration period as compared to the standard WaterGAP 1115 

for all six CDA units, except for EnCDA in the case of the whole MRB (Table 2). However, the added value of 

any calibration is very low in the humid and hilly Ohio basin where the performance of the uncalibrated model is 

already good; in their study on calibrating the VIC model for the USA using observed Q only, Troy et al. (2008) 

also found that modeled streamflow that fit well to observation before calibration, as was the case for the Ohio 

River, continued to do so.  1120 

As can be expected, the improvement of TWSA simulations is more pronounced than the improvement of Q. 

Higher NSEQ values are mostly caused by improved correlation, while Q variability is still underestimated and 

low flow overestimated in all CDA units, and in three CDA units even more strongly than by the standard and 

uncalibrated WaterGAP variants. In two CDA units, the mean Q is overestimated by more than 10% (Table C1). 

The much higher NSETWSA values of the compromise solutions as compared to standard WaterGAP are also mainly 1125 

caused by much-improved correlations, with improved or worsened TWSA variabilities depending on the CDA 

unit (Table C2). The analysis of model performance at the same observation locations for the validation period 

2013-2016 confirms the added value of POC and GLUE.  

However, visual inspection of the hydrographs for both the calibration and validation periods reveals that the 

fit to observations can only be improved slightly by the multi-variable calibration. An exception is the simulation 1130 
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of TWSA in the Lower MRB, which is affected by intensive irrigation in the Mississippi Embayment. There, 

standard WaterGAP simulates a declining TWSA trend due to groundwater depletion, which does not occur 

anymore with the three multi-variable approaches that make use of observed TWSA (Fig. S4f). Thus, where GHMs 

incorrectly simulate TWSA trends (Scanlon et al., 2018), multi-variable model calibration is likely to lead to more 

realistic simulated trends. However, at least for our CDA units, variability and probably also seasonality of 1135 

simulated TWSA are not necessarily improved by such a calibration (Scanlon et al., 2019). 

The overunderestimation of summer low flows in all six CDA units remains after calibration, not only in the 

compromise solutions (Figs. 3 and S4) but also in the POC and GLUE runs with the highest NSEQ. Likely reasons 

for the overestimation of summer low flows are an inaccurate simulation of the release from man-made reservoirs 

or an actual loss of river water to the subsurface, which cannot be simulated be WaterGAP (and most hydrological 1140 

models). In the study of Troy et al. (2008), the overestimation of summer low flows in the Arkansas basin, the 

basin that is affected most by this behavior in our study (Fig. 4), is reduced but not removed by the calibration. 

An advantage of POC and GLUE over the standard WaterGAP calibration is that by adjusting 8-10 parameters 

per CDA unit, it is possible to achieve higher NSE values for Q without having to use any correction factors. In 

the standard calibration, both areal and station correction factors are necessary for many CDA units in the western 1145 

part of the MRB to reduce simulated mean annual Q to observed values (Calibration status CS3 and CS4 in Fig. 

S3a). It is particularly beneficial that station correction factors (Fig. S3d) are avoided by the new calibration 

approach as they lead to abrupt changes in Q and destroy mass conservation (Müller Schmied et al., 2021). Even 

by adjusting only 9 nine parameters homogeneously in the whole MRB using monthly time series of observed Q 

and TWSA, improved model performance is achieved, compared to adjusting more than 100 parameters in 77 1150 

CDA units in the standard WaterGAP calibration, except for the Ohio River basin and Q in the Missouri basin.  

This statement only relates to the Q observations considered in this study, not to the Q at all 77 standard calibration 

stations. 

There appears to be almost no added value of the multi-variable calibration approaches for the simulation of Q 

at upstream locations within the calibrated CDA unit where Q observations were not used for calibration (Table 1155 

7). This may be due to the very large and heterogeneous CDA units; the CDA unit MRB covers almost 3 million 

km2, while the largest sub-basin CDA, the Missouri River basin covers 1.35 million km2 and the smallest, the 

lower MRB, still 0.25 million km2. 

The added value of multi-variable Pareto-optimal calibration of WaterGAP for 28 very large globally 

distributed basins using monthly time series of Q and TWSA was investigated by Werth and Güntner (2010). They 1160 

found that improved simulations of TWSA and Q were achieved for most basins after calibration, but calibrated 

Q was still poor compared to the observed values in some basins; a better fit to GRACE TWSA did not necessarily 

lead to a better fit of simulated to observed Q. For the Mississippi basin, the relative RMSE was reduced by 

calibration by about 20% for both Q and TWSA. A multi-variable model calibration for the Lake Urumia basin 

(Iran) showed that satellite observations of time series of TWSA and irrigated area led to a good fit to observed 1165 

TWSA and a reduction in the Q bias, but additional in-situ observations of Q were necessary to estimate parameter 

sets that lead to a good fit (Hosseini-Moghari et al., 2020). Both studies underline that model parameter 

estimationcalibration should be based on both Q and TWSA observations. Then, we can expect to 

With multi-variable model calibration against 
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5.3 Estimation of WaterGAP output uncertainty 1170 

Both GLUE and EnCDA aim at estimating model output uncertainty, and compared to these approachesbut the 

small ensemble size of EnCDA seems to prevents a comparable meaningful estimation. The uncertainty bands 

estimated by GLUE underestimate the model uncertainty; only 46-72% of the monthly Q estimates of the GLUE 

behavioral model runs fall into the uncertainty band of observed Q, depending on the CDA unit (Table 4). With 

59-95%, TWSA coverage is higher, except in the Missouri River basin.  1175 

Low coverage values indicate that the model suffers from errors in either model input or model structure. An 

explanation for the overestimated low flows might be that WaterGAP, like most hydrological models, is not able 

to simulate water loss from the river into the groundwater, while a recent study has  found strong indications for 

extensive losing river conditions in the MRB (Jasechko et al., 2021). Further model uncertainties that appear 

particularly relevant for the limited performance of WaterGAP in the different CDA units are related to the 1180 

modeling of man-made reservoirs, which may be particularly relevant for the Missouri River basin, and the poor 

specification of location and extent of small wetlands (Prairie potholes) in the Missouri River basin and the Upper 

MRB. The Prairie Pothole Region contains between 5-60 wetlands per km2, and their hydrological modeling relies 

on accurately characterized depth-volume relationships derived from detailed topographic surveys (Minke et al., 

2010). 1185 

The relatively thin uncertainty bands indicate the equifinality of the very diverse behavioral parameter sets 

(Fig. 5) for the study period. The widths of the uncertainty bands of POC and GLUE do not change appreciably 

between the calibration and the validation period (Figs. 3 and S4), which indicates that calibrated parameter sets 

are transferable between the two periods. The exceptions are the TWSA uncertainty bands in the Arkansas  River 

basin (Fig. 4) and Lower MRB (Fig. S4) which, for unknown reasons, are wider in the validation period, indicating 1190 

that parameter sets that lead to similar model output in the calibration period might result in more discrepant model 

output. under changed climatic conditions. 

5.4 Trade-offs between optimal simulation of Q and TWSA 

Trade-offs between the optimal simulation of Q and TWSA are relevant in all CDA units. POC trade-offs are only 

slightly smaller than GLUE trade-offs (Table 2). There are particularly large trade-offs between a good fit to Q 1195 

and TWSA in two sub-basin CDA units with many surface water bodies, i.e., in the Missouri River basin 

(reservoirs, wetlands and lakes) and the Upper MRB (wetlands and lakes) (Fig. B1) and, accordingly, also in the 

CDA unit MRB. In the Missouri River basin, for example, the POC parameter set resulting in an optimal fit to 

observed Q has an NSEQ of 0.83 but an NSETWSA of only 0.5, while the POC parameter set resulting in an optimal 

fit to observed TWSA improves NSETWSA to 0.81 but degrades NSEQ to the very poor value of -0.82 (Table 2). 1200 

We suspect that the poor knowledge of the location and extent of small wetlands and the difficulty of simulating 

the operation of man-made reservoirs (without adjustment of parameters) are the main reasons for the strong trade-

offs. In most CDA units, an optimal TWSA fit leads to a strong overestimation of mean Q and an even stronger 

underestimation of Q variability (Table C1), while a good fit to Q leads to an overestimation of TWSA variability, 

in different degrees depending on the CDA unit (Table C2). We speculate that this trade-off cannot be explained 1205 

by potential errors of the GRACE TWSA time series that to leakage effects, the impacts of which are not included 
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in the values of GRACE TWSA used in this analysis (see Section 3.2.2). For the Lower MRB, the multiplicative 

leakage re-scaling factor of 1.41 (see Section 3.2.2) matches the overestimation of TWSA variability (RVar = 1.42 

for the POC parameter set with the best fit to Q, Table C2), but this may be by chance. Besides, the estimated re-

scaling factor may be biased by an overestimated negative TWSA trend in the standard WaterGAP run that was 1210 

used to compute it. 

Much smaller trade-offs between the optimal fits to observed Q and TWSA were found with another 

hydrological model in a calibration study for 83 European river basins, where both Q and TWSA observations 

were used for adjusting up to 53 parameters in a basin-specific manner (Rakovec et al., 2016).  When TWSA was 

considered in addition to Q in the calibration objective, the correlation of observed and simulated Q decreased 1215 

slightly while bias and variability remained almost unchanged. However, TWSA correlations that were achieved 

by calibration in that study were extremely low, with a median CC of 0.56 if only Q observations were used in the 

calibration, increasing to only 0.67 if in addition TWSA observations were included. In our study, TWSA 

correlations are much higher; for the calibration period, they vary between the six CDA units from 0.80 -0.95 in 

the case of the POC compromise solution. Even the uncalibrated WaterGAP variant leads to CC values in the 1220 

range of 0.76-0.93. 

Accessible Q observations data are rare in many parts of the globe, while GRACE TWSA observations cover 

the whole globe and are freely available and could be used to calibrate hydrological models in areas without 

available Q observations. However, given the tradeoffs between optimal model fits to observed Q and TWSA, one 

may suspect that calibration using TWSA only may improve the TWSA simulation but degrade the Q simulation. 1225 

Analyzing the performance metrics of the GLUE a-priori ensemble of 20,000 parameter sets, we find that in both 

the calibration and the validation period, Q simulation degrades in three of the six CDA units in the variants 

“highest NSETWSA” as compared to the uncalibrated WaterGAP. This is the case in the Upper MRB where 

WaterGAP struggles with uncertain information regarding the location and extent of small wetlands, in the Ohio 

River basin in which already the uncalibrated WaterGAP variant simulates Q well and in the MRB (Tables 2 and 1230 

5).. In the Murray-Darling basin, EnCDA using GRACE TWSA only resulted in Q overestimation (Schumacher 

et al., 2018). Thus, a calibration against GRACE TWSA only may degrade or not the Q simulation as compared 

to an uncalibrated model run, and it is difficult to estimate where such degradation could occur. Further studies 

are needed to understand under which circumstances we can estimate and remove such Q biases in order to 

facilitate calibration against GRACE TWSA without does not degradinge the simulation of Q. 1235 

5.5 Added value of sub-basin CDAs instead of one basin CDA 

Considering Q performance at the outlet of the five sub-basin CDA units and the aggregated TWSA, overall model 

performance is somewhat improved if calibration is done individually for the five CDA units instead of adjusting 

parameters homogeneously over the whole MRB, for both the calibration (Table 6) and the validation periods 

(Table S3). The added value is smaller for the validation period. However, in three CDA units, TWSA performance 1240 

during the calibration period is not affected by the higher number of CDA units, while Q at the calibration stations 

was improved if the station is used in the calibration. In addition, Q performance at gauging stations inside the two 

sub-basin CDA units is not improved by sub-basin calibration (Tables 7 and S4). Q performance at these gauging 
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stations appears to be unrelated to the type of calibration done (including no calibration) as the best-performing 

calibration approach varies randomly among CDA units and periods. Therefore, to increase the quality of Q 1245 

simulations with WaterGAP, we suggest using CDA units that are smaller than the Mississippi River sub-basins 

selected for this study, i.e., smaller than about 400,000 km2. This is also supported by the study of Mizukami et al. 

(2017) who selected 531 CDA units for the continental US. However, for simultaneous calibration against GRACE 

TWSA, CDA units should not be smaller than 100,000-200,000 km2 , depending on water variations in the unit 

(Vishwakarma et al., 2021; Longuevergne et al., 2010). Therefore, the joint calibration against multiple Q 1250 

observations within a CDA unit should be tested (Xie et al., 2012; Wanders et al., 2014).  

5.6 Characteristics of identified (Pareto-)optimal and behavioral parameter sets 

In (Pareto)-optimal parameter sets, the optimized runoff coefficient SL-RC obtains values very close to its upper 

bound in all CDA units except the downstream Lower MRB where Q is dominated not by runoff generation within 

the CDA unit but by inflows from upstream CDA units. High SL-RC values, which tend to decrease runoff, are 1255 

also obtained by the standard WaterGAP calibration (Fig. S3). Further reduction of runoff is achieved in this study, 

except for the downstream Lower MRB, by increasing maximum cell-specific soil water storage by multiplication 

with optimized SL-MSM values that are larger than 1, ranging between 1.3 for the best-simulated Ohio River basin 

to almost 3 for the Missouri River basin and the Upper MRB. A larger maximum soil water storage leads to 

decreased soil saturation and lower runoff, and at the same time to higher variability of soil water storage and thus 1260 

TWSA. In general, the fit to TWSA is improved if storage capacities are increased, not only in the soil but also in 

wetlands and lakes.  

It is surprising that EP-PTh, a factor in the equation of potential evapotranspiration, is reduced in all CDA units 

(except in the Lower MRB) from its standard value of 1.26 to values around 1, which leads to reduced actual 

evapotranspiration and thus increased runoff. The multipliers adjusting grid cell values of human net water 1265 

abstraction from groundwater (adjusted in four CDA units) tend to be less than zero, indicating an overestimation 

of net groundwater abstractions by the standard model variant. Water abstraction from surface water bodies 

(adjusted only in the Missouri River basin) might be underestimated. The optimal values of the other calibration 

parameters can differ strongly between POC and GLUE compromise solutions or between the Pareto-optimal POC 

solutions (Fig. 5). The correlations between calibration parameters can be high and differ strongly between the 1270 

CDA units; general patterns cannot be seen (Fig. S5). For example, SL-RC can correlate positively or negatively 

with SL-MSM and EP-PTh.  

The ranges of most parameters in the behavioral GLUE parameter sets, which take into account the impact of 

observation uncertainty on optimized parameter sets, are only slightly narrower than the a-priori parameter ranges 

(Figs. 5, 6 and S7). This is the case even though behavioral parameter sets are only a very small fraction of 0.04%-1275 

0.76% of the 20,000 a-priori parameter sets of GLUE. We found larger equifinality in TWSA simulation than in 

Q simulations except for the downstream Lower MRB where simulated Q is dominated by the inflow from 

upstream as quantified by the compromise parameters sets of the four upstream CDA units (Excel file in 

supplement). That TWSA observations constrain parameter sets less than Q observations was also discovered in 

the multi-variable calibration study for ten large basins in Sub-Sahara Africa by Xie et al. (2012). 1280 
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EP-PTh is the only parameter whose distribution shows a peak (except for the Lower MRB, Figs. 6 and S7). 

Small peaks are often seen for SL-MSM and the net abstraction multipliers. SL-RC mostly shows a low frequency 

of values below 1 and increasing frequencies towards the upper parameter bound. Parameter correlations among 

the behavioral parameter sets are mostly low, except for negative correlations that exist, depending on the CDA 

unit, between EP-PTh and parameters such as SL-RC, SL-MSM, and SN-MT (Fig. S6).  1285 

Multi-variable calibration did not lead to improved identifiability of parameters, i.e., the determination of a 

small range of suitable parameter values, except for the three parameters SL-RC, SL-MSM and EP-PTh. These 

three parameters control the partitioning of precipitation into runoff and actual evapotranspiration as well as the 

temporal dynamics of the soil water storage, which is often the most important storage. SL-RC and SL-MSM, 

which affect the release of water from the soil and determine the maximum amount of water that can be stored in 1290 

the soil, respectively, were found to be the most influential parameters for a number of Q metrics of the evaluated 

347 global river basins (, by Kupzig et al. (2023). 

The lack of identifiability This makes the application of the “optimal” compromise parameters set derived by 

POC problematic for estimating, e.g., groundwater recharge, groundwater abstractions and surface water 

abstractions. Examples are the multipliers for net groundwater and surface water abstractions in the Missouri basin , 1295 

where the POC compromise solution suggests that net groundwater abstractions are 25% lower and net surface 

water abstractions are 50% higher than estimated without parameter adjustment (Fig. 5b and Excel file in 

supplement). Even the behavioral Pareto-optimal parameter sets, which are obtained by optimizing the fit to 

observations that are assumed to be error-free, include severe decreases but also slight increases of net groundwater 

abstraction as compared to the standard value as well as strong increases of net surface water abstractions but also 1300 

a reversal from net abstractions to net additions of water to surface water bodies by large return flows from 

groundwater-sourced water to surface water bodies (Fig. 5b and Excel file in supplement). In the Arkansas basin, 

the POC compromise solution suggests a strong decrease of both groundwater recharge and net abstractions from 

groundwater, to 30% and 24% of the standard values, respectively, but very similar performances regarding the 

assumedly error-free observations can be obtained if both values are decreased much less or even if groundwater 1305 

recharge is increased (Fig. 5a and Excel file in supplement). The remaining equifinality of the parameter sets of 

our study even with using two different observation variables is in accordance with the results of a calibration 

study for flood design in Sweden (Harlin and Kung, 1992). In that study, a large number of sets of twelve 

parameters were identified by model calibration using a Monte-Carlo approach, and, like in our study, it was for 

most parameters not the value of the individual parameter that determined if the simulation of Q was behavioral 1310 

but the combination of the parameter values within each parameter set. A multi-variable parameter estimation of 

a hydrological model for the upper Columbia River basin in Canada, which used observations of Q and glacier 

volume change, identified 23 rather different behavioral parameter sets that all led to very high NSE values for 

daily streamflow of at least 0.92 (Jost et al., 2012).  

6 Conclusions 1315 

Our pilot study for the MRB has generated new methodological knowledge on how the uncertainty of GHM output 

can be reduced and quantified by benefiting, with the help of multi-variable parameter estimation, from the 
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information contained in observations of multiple model output variables. Our conclusion on the suitable methods 

for achieving this and some caveats are summarized in Fig. 7. Model output uncertainty can be reduced by 

determining, for specific spatial model units (CDA units), one optimal model parameter set. The uncertainty of 1320 

model output arising from the equifinality of model parameter sets given the observation uncertainties can be 

quantified by determining all behavioral parameter sets.  

 

 

Figure 7. The proposed approach for reducing and quantifying model output uncertainty of GHM by multi-variable 1325 

parameter estimation and main recommendations and caveats for applying the approach in global hydrological 

modeling. Green letters indicate for which purpose POC and GLUE are best suited, while blue letters indicate an 

acceptable capability. A CDA unit is composed of all GHM grid cells to which the same calibration parameter 

value is assigned. 

 1330 

We conclude that a multi-variable POC approach that utilizes observations of both Q and TWSA, combined 

with the described sensitivity analysis, is best suited for estimating CDA unit-specific Pareto-optimal parameter 

sets of GHMs (Fig. 7). The derived compromise parameter sets can then be used to simulate the best estimate of 

past and future water flows and storages, in particular, if various future scenarios, e.g., driven by the output of 

multiple climate models, or hydrological seasonal ensemble forecasts are computed by the GHMs. While the 1335 

computational burden for a global-scale model calibration of, for example, 1000 basins is high, the run times are 

not prohibitive. However, in our study, multi-variable model calibration against both Q and TWSA constrained 

only three model parameters while a large range of values of all other calibration parameters can lead to equally 
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good fits to the observations, even if the uncertainty of observations is neglected. Therefore, any identified POC 

compromise parameter set should be applied with caution when estimating water flows such as groundwater 1340 

recharge for which no observations were considered in the parameter estimation. We suggest that the parameter 

interdependence of Pareto-optimal parameter sets is analyzed.  

The study has shown that, currently, among the three approaches used, only GLUE can be applied to quantify 

model output uncertainty caused by the observation uncertainties (Fig. 7). All behavioral parameter sets can be 

identified by applying the method for defining performance thresholds for behavioral parameter sets that we  1345 

developed in this study, which uses both the GLUE ensemble and an ensemble of perturbed observations. As 

model performance with the optimal (compromise) parameter set as identified with GLUE is only slightly less 

than the performance with the optimal POC parameter set, GLUE can be used efficiently to compute both the best 

estimates and the uncertainty bounds of GHM model output. The computational efforts for calculating best 

estimates by POC and best estimates with uncertainty bounds by GLUE are similar. We found that the GLUE-1350 

derived model output uncertainty bands substantially underestimate the total model output uncertainty, as they do 

not include the effects of model input and structure uncertainties.  

We conclude thatCurrentlyPossibly due to the severe computational burden of the EnCDA approach that only 

allowed setting up a very small ensemble, the multi-variable EnCDA approach that we implemented followed in 

our pilot study is not yet competitive suitable for application for GHM parameter estimation using Q and TWSA, 1355 

as 1) its performance (in terms of NSE) is lower during the calibration period than that of POC and GLUE, or for 

the large CDA unit MRB even lower than that of the uncalibrated WaterGAP and 2) its application during the 

validation period (without observational data) led to spurious results (Figs. 3 4 and S4). The Potentia  reasons are 

the severe computational burden of the EnCDA approach that only allowed setting up a very small ensemble and 

the intrinsic nonlinearity in simulating Q makes a multi-variable EnCDA that includes Q observations more 1360 

difficult than an EnCDA that only includes TWSA or TWSA and other storage observations.. In addition, the fact 

that the EnKF has to estimate much more state variables than model parameters means that the ensemble size will 

be always much more limited, and this hampers parameter calibration.  We suggest that further research should 

investigate improved ensemble generation techniques for the case that the state vector is augmented by model 

parameters. Lastly, we caution again that performance in GHM studies like here is traditionally defined in trms 1365 

mainly of NSE, and for model calibration purposes one should investigate EnKF versions that optimize (weighted) 

MSE metrics in place of RMSE. 

As we found that Q can be simulated reasonably well only at locations where Q observations have been used 

in the calibration but not upstream, the selection of rather small CDA units is advised. However, the CDA unit 

size cannot be smaller than approx. 100,000-200,000 km2 due to the large footprint of GRACE TWSA and 1370 

observations from more than one streamflow gauging station within the CDA unit might be utilized in parameter 

set optimization (Fig. 7). Additional observation variables such as snow cover and water storage var iations in lakes 

and man-made reservoirs may be taken into account to further constrain parameter sets. Unfortunately, no 

information on groundwater levels is available at the global scale, which is likely required to constrain the 

parameters related to surface water and groundwater abstraction (Hosseini-Moghari et al., 2020). Figure 7 lists 1375 

further caveats for global-scale reduction and quantification of model output uncertainty by parameter estimation 

that were discussed in Section 5. 
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We recommend that in a first step, GHMs are calibrated against observations of multiple variables including 

Q and TWSA by determining optimal calibration parameter sets for major basins with available Q observations as 

this is expected to improve the realism of the GHM output. To achieve this, an optimization algorithm similar to 1380 

the one used for POC in this study should be applied. In a next step, a GLUE approach could be used to additionally 

estimate the model output uncertainty.  

Climate change impact studies for individual river basins have shown that parameter sets with a similar 

performance during the calibration period may provide very different projections of climate change hazards, and 

that the impact of parameter uncertainty can be similar to the impact of the selected climate or hydrological model 1385 

selection (Mendoza et al., 2016; Her et al., 2019). Therefore, consideration of parameter uncertainty by running 

the hydrological model with a number of behavioral parameter sets helps to reduce the underestimation of the 

uncertainty of potential climate change impact. However, producing a global-scale ensemble of potential future 

changes in hydrological variables by combining not only multiple greenhouse gas emissions scenarios, global 

climate models and global hydrological models (as is currently done in ISIMIP) but also model-specific behavioral 1390 

parameter sets is currently infeasible. The main reason is that behavioral (or even optimal) parameter sets have not 

yet been determined for any global hydrological model in a spatially explicit manner at the global scale. In addition, 

the computational effort for such a multi-model/multi-parameter ensemble is likely prohibitive. 

Appendix A: Comparison of the three ensemble-based approaches 

POC, GLUE and EnCDA approaches share some characteristics and differ in others (Table A1). All three start 1395 

with a large (large in case of POC and GLUE, small for EnCDA) number of parameter sets that are derived from 

a-priori assumptions on the probability distribution of calibration parameters and generate an ensemble of 

optimized parameter sets. EnCDA differs from POC and GLUE by simultaneously modifying model parameters 

and model states. EnCDA and GLUE are regarded as Bayesian approaches as they aim at deriving probability 

distributions of parameter sets and thus model output. In POC, the ensemble of Pareto-optimal parameter sets 1400 

represents the uncertainty that is caused by the fact that due to model structure and input uncertainty, different 

parameter sets lead to optimal performance for different calibration objectives. Information from observations is 

used in all three approaches to update an a-priori belief about the probability distribution of parameters. However, 

parameter set selection is done in very different ways and based on different assumptions. Both POC and GLUE 

compare the model output over the complete calibration period with all observations to determine performance 1405 

metrics. While the evolutionary search algorithm of POC starts with a small number of parameter sets, runs the 

model, and then generates new parameter sets with ever-improved performance metrics, in GLUE the large initial 

ensemble generated from a-priori parameter distributions is evaluated regarding performance metrics and the 

behavioral members among the initial ensemble are identified. In POC and GLUE, parameters are temporally 

constant. In EnCDA, an ensemble of model runs is performed in a stepwise fashion from the time of one 1410 

observation to the time of the next. EnCDA updates the parameters sequentially (in our study each month) such 

that time series of recursive parameter estimates are computed. It is assumed that updates are informed by an ever-

increasing amount of information from observations so that the parameter sets after the last update, i.e. , at the end 

of the calibration period, are the best estimate. However, this can be disputed. A study on EnCDA using GRACE 
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TSWA for the Australian Murray-Darling basin showed that parameter values vary in time with changes in climatic 1415 

conditions within the river basin, probably due to an inappropriate model structure that does not allow the correct 

translation of precipitation variability into model output variability (Schumacher et al., 2018). The capability to 

reveal such dynamics may be advantageous for improving our understanding of model deficiencies. It needs to be 

investigated whether and how EnCDA can be used to determine optimal parameter sets that are suitable for model 

runs without adjustment of states.  1420 

In EnCDA, quantified errors of both the model and the observations are required to update water storages and 

parameters in each of the ensemble members (Table A1). The ensemble serves to estimate the model error, which 

includes parameter and climate forcing uncertainty and is calculated as the variance of the differences between 

each ensemble member and the ensemble mean. The EnKF applied in EnCDA represents an optimal and unbiased 

estimator only under the assumption that errors are Gaussian, unbiased and well -known, neither of which is the 1425 

case (Wang et al., 2020; Moradkhani et al., 2005; Beven and Binley, 1992). In GLUE, the model error due to 

parameter uncertainty (but not due to climate forcing uncertainty) is indirectly taken into account as the a -priori 

ensemble depends on assumptions of parameter distribution, similar to POC. Observation errors may be considered 

quantitatively but in most applications, they are not (Beven and Binley, 2014). In Section 3.4.2, we describe a way 

to take into account the observation uncertainties in GLUE. Werth and Güntner (2010) suggested a way to include 1430 

observation errors in POC. First, they determined an error ellipse around the compromise solution (defined in Eq. 

1) by first generating an ensemble of observations from perturbing the observation time series with the observation 

errors and then determining the range of performance values of the compromise solution for this ensemble of 

perturbed observations. By considering all the non-dominated and dominated parameter sets inside the error 

ellipse, they identified an ensemble of likely parameter sets that was informed by both observations and 1435 

observation uncertainty. In this case, POC can, like EnCDA and GLUE, be used to estimate uncertainties of 

parameter sets and model outputs. Nevertheless, it should be noted that this approach does not incorporate 

observational uncertainty directly into multi-objective parameter calibration in a rigorous way. Therefore, we did 

not take this approach in our study. 

  1440 
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Table A1. Comparison of the main characteristics of POC, GLUE and EnCDA as applied in this study.  

 POC 

Pareto-optimal 

calibration 

GLUE 

Generalized 

likelihood uncertainty 

estimation 

EnCDA 

Ensemble Kalman 

filter calibration and 

data assimilation 

Use of a-priori parameter ensembles Yes Yes Yes 

Direct modification of water storages No No Yes 

Bayesian approach No Yes Yes 

Estimation of model output uncertainty Uncertainty only due 

to multiple objectives 

Yes Yes 

Selection of parameter sets Once, based on all 

observations 

Once, based on all 

observations at once 

Recursive, parameter 

sets updated at each 

observation time step 

Quantitative information on parameter 

uncertainties considered 

Indirectly via an a-

priori range of 

parameter values 

Indirectly via an a-

priori ensemble of 

parameter sets 

Directly as a factor of 

model uncertainty 

Quantitative information on climate 

forcing uncertainties considered  

No No Yes,  as a factor of 

model uncertainty 

Quantitative information on observation 

uncertainties considered 

Possible in post-

processing, by 

limiting Pareto-

optimal parameter sets 

to thresholds selected 

using GLUE 

ensemble 

Possible,  

by selecting 

thresholds for 

behavioral solutions 

according to 

observation 

uncertainties 

Yes 

Rigorous consideration of uncertainty No  No Partly 

Various objective functions including 

signatures can be selected 

Yes Yes No 

Weighting between different objective 

functions 

Subjective weighting 

to identify a parameter 

set that is optimal in a 

specific context 

Subjective weighting 

to identify parameter 

set(s) that is (are) 

optimal in a specific 

context 

Implicit weighting 

based on model and 

observation 

uncertainties 

Determination of Pareto-optimal 

parameter sets under the assumption that 

there is only parameter uncertainty 

Yes, determined by 

search algorithm 

Yes, selected from a-

priori ensemble  

No (due to the small 

ensemble size) 

Complexity  Medium Low-medium  High 

Computational effort for a specific 

objective function 

Medium Medium Very high 

Computational effort for analyzing 

alternative objective functions 

High Medium Not applicable 

Risk of spurious model behavior Low Low High due to 

modifying water 

volume in multiple 

storage compartments 

 

Different from EnCDA with its rigorous handling of uncertainties, GLUE is an informal Bayesian approach 

that is much simpler than EnCDA (Table A1). Likelihood is here understood in a very general sense, as a fuzzy 

measure of belief of how well the model conforms to the observed behavior of the system, and not in the sense of 1445 

maximum likelihood theory which is the basis of EnCDA (Beven and Binley, 1992). In EnCDA, the likelihood of 

a parameter set is a product of model errors, observation errors and the differences between observed and simulated 

variables (and other factors) (Section 3.2 in Schumacher, 2016). The informal and subjective treatment of 

uncertainty in the GLUE approach has caused controversy because the different error sources are not distinguished 
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(Vrugt et al., 2008). This can mean that non-maximum likelihood solutions might be accepted as parameter 1450 

estimates. However, the GLUE approach can be defended against formal Bayesian methods as these require a-

priori knowledge about errors that is lacking in most hydrological modeling applications (Beven and Binley, 2014). 

In addition, formal Bayesian methods (e.g., DREAM) are difficult to implement and much less computationally 

efficient but may lead to similar outcomes (Vrugt et al., 2008). In GLUE, the likelihood measure can be freely 

chosen by the modeler. She could choose a formal likelihood measure like the one applied for EnCDA, a measure 1455 

that relates the deviation of model output from observations to the observation error or just any model perform ance 

metric for comparing observations to simulations (Beven and Binley, 2014, their Table 3). Given the large 

epistemic uncertainty about hydrological systems, GLUE relies on the subjective expertise of the modeler to define 

a suitable likelihood measure given her often only qualitative knowledge about uncertainties of model structure, 

model input, model parameters and observations. There is a multitude of likelihood measures that can be used to 1460 

identify parameter sets that fit better to observations than the a-priori ensemble (or the standard deterministic 

parameter set) and are therefore more likely than others. A likelihood of zero is assigned to all parameter sets that 

are not “behavioral”, i.e., if the likelihood measure is below a threshold that is set subjectively by the modeler. For 

the example of the popular likelihood measure Nash-Sutcliffe efficiency (NSE), behavioral parameter sets may be 

defined as those that result in an NSE larger than 0.7 if the behavior of the hydrological system can be easi ly 1465 

simulated; if not, the threshold will have to be lowered to get any behavioral parameter sets. To obtain the a -

posteriori probability distribution of parameter sets, only the behavioral parameter sets are considered and their 

probability is derived from the NSE obtained with them. 

Objective functions (= likelihood measures = performance metrics) can be freely chosen in the case of POC 

and GLUE. This allows the selection of diverse hydrological signatures of the observables, e.g., those that focus 1470 

on high or low flows in the case of streamflow. EnCDA minimizes the root mean squared error, and it is very 

difficult to apply another objective function (Table A1). In addition, the likelihood function in EnCDA considers 

only the deviations between the model output and observations at one point in time as the ensemble Kalman filter 

and not the ensemble Kalman smoother was applied in this study. In contrast, performance measures used in POC 

and GLUE evaluate model performance (and calibrate model parameters) over the whole calibration period. 1475 

EnCDA differs from POC and GLUE in that weighting between the performance metrics for the multiple 

objectives/variables is implicitly done given the model and observation errors (Table A1). In POC and GLUE, 

subjective weighting needs to be done for selecting one “optimal” parameter set. POC and GLUE also have in 

common that they can serve to identify Pareto-optimal parameter sets or one compromise parameter set that can 

then be used to quantify in a computationally efficient way in, e.g., climate change studies or seasonal forecasting, 1480 

where hydrological models are driven by an ensemble of climate data sets.  

The complexity of the three calibration approaches differs (Table A1). The computational burden is much 

higher for EnCDA than for POC and GLUE. Therefore, only a very small number of ensemble members can be 

used in the analysis; ensemble sizes typically are between 30 and 100. These low-rank ensembles may fail to 

correctly convey the covariance information between model states and parameters or between different parameters. 1485 

Localization techniques can be applied to mitigate this effect but with the trade-off that long-distance covariance 

information is neglected or down-weighted. For the same number of evaluated parameter sets, the computational 

effort of POC and GLUE is approximately the same, for evaluating a specific objective function. However, as the 
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parameter ensemble generated by the search algorithm in POC depends on the objective function (unlike in the 

case of GLUE), the computational burden of POC becomes, for example, twice as high as that of GLUE if one 1490 

alternative objective function is taken into account. Finally, EnCDA is prone to spurious results as the modification 

of water storages to improve the fit to TWSA observations might lead to little-constrained changes in individual 

storages, with impacts on simulated water flows. In the EnCDA study of Schumacher et al. (2018), river storage 

was adjusted in WaterGAP based on TWSA observations, leading to spurious increases in Q not seen in WaterGAP 

runs without water storage updates or in the observations.  1495 

Appendix B: Surface water bodies and human water abstractions in the CDA units of the Mississippi River 

basin 

To understand the sensitivity of model output to parameters, the spatial distribution of storages and flows that they 

affect is required. Water balances of reservoirs (Fig. B1a) are not directly impacted by the calibration parameters 

in Table 1, while lake dynamics (Fig. B1b) are directly impacted by active lake depth (SW-LD) and wetlands (Fig. 1500 

B1c, d) by active wetland depth (SW-WD). Please note that knowledge about the wetlands in the northern parts of 

the CDA units Missouri River basin and the Upper MRB as well as in the southern part of the Lower MRB is 

restricted to the information in these areas that generally 25-50% of the land area are covered by wetlands in the 

wet season. In WaterGAP, this information was translated into a maximum extent of local wetlands of 35%. The 

surface water discharge coefficient (SW-DC) affects both lakes and wetlands. Potential net abstractions from 1505 

groundwater (Fig. B1e) and surface water (Fig. B1f) are simulated with a monthly time step for each grid cell, and 

multipliers for each of them (NA-GM and NA-SM) affect model output differently in the various CDA units due 

to different net abstraction patterns. 
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 1510 

Figure B1. Man-made reservoirs (a), lakes (b), local wetlands (c), global wetlands (d) as well as potential net 

abstractions from groundwater (e) and from surface water (f) in the CDA units of MRB, as taken into account in 

WaterGAP. Maximum areal extents of the surface bodies in percent of the 0.5° cell area are shown, while potential 

net abstractions in mm/yr are provided for the period 2003-2012.  

  1515 
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Appendix C Performance of different calibration methods during the calibration period 2003-2012: 

Components of the KGE performance metric for both Q and TWSA 

Table C1. KGE components of model runs of Table 2 regarding Q for the calibration period 2003-2012. 

 CC/RBias/RVar 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower 

MRB 

MRB 

POC: highest 

NSEQ 

0.90/1.18/0

.59 

0.92/1.08/0

.80 

0.91/1.03/0

.82 

0.95/1.07/0.

89 

0.95/1.04/0

.88 

0.95/1.01/0.

88 

POC: highest 

NSETWSA 

0.91/1.42/0

.52 

0.87/1.73/0

.61 

0.84/1.47/0

.53 

0.95/1.27/0.

71 

0.94/1.07/0

.84 

0.92/1.34/0.

62 

POC: 

compromise  

0.90/1.18/0

.59 

0.86/1.06/0

.80 

0.89/1.20/0

.66 

0.95/1.11/0.

83 

0.95/1.06/0

.82 

0.94/1.09/0.

78 

GLUE: highest 

NSEQ 

0.90/1.21/0

.52 

0.91/1.14/0

.71 

0.89/1.01/0

.82 

0.94/1.07/0.

88 

0.93/1.02/0

.86 

0.94/1.02/0.

82 

GLUE: highest 

NSETWSA 

0.91/1.74/0

.38 

0.88/1.70/0

.60 

0.84/1.51/0

.43 

0.95/1.30/0.

63 

0.94/1.12/0

.75 

0.94/1.33/0.

64 

GLUE: 

compromise 

0.90/1.31/0

.55 

0.86/1.18/0

.68 

0.88/1.23/0

.57 

0.94/1.11/0.

79 

0.93/1.07/0

.79 

0.93/1.05/0.

84 

EnCDA: highest 

NSEQ 

0.81/1.18/0

.76 

0.86/1.14/0

.76 

0.86/1.11/0

.77 

0.92/1.13/0.

69 

0.92/1.04/0

.78 

0.75/1.06/0.

60 

EnCDA: highest 

NSETWSA 

0.77/1.04/0

.66 

0.82/1.29/0

.77 

0.73/1.34/0

.86 

0.89/1.23/0.

55 

0.92/1.13/0

.66 

0.71/1.10/0.

58 

EnCDA: 

compromise  

0.77/1.04/0

.66 

0.84/1.15/0

.65 

0.83/1.07/0

.76 

0.92/1.13/0.

69 

0.92/1.04/0

.78 

0.73/1.05/0.

60 

EnCDA: 

ensemble mean 

0.79/0.97/0

.67 

0.82/1.21/0

.68/ 

0.86/1.12/0

.76 

0.91/1.17/0.

61 

0.94/1.13/0

.68 

0.75/1.11/0.

58 

Standard 

calibration 

0.83/0.98/0

.53 

0.74/1.05/0

.73 

0.73/0.64/0

.76 

0.93/1.05/0.

82 

0.89/0.97/0

.95 

0.89/0.97/0.

95 

Uncalibrated 0.87/1.76/0

.55 

0.84/1.72/0

.77 

0.76/1.07/0

.73 

0.93/1.07/0.

87 

0.91/1.15/0

.92 

0.91/1.15/0.

92 

 

Table C2. KGE components of model runs of Table 2 regarding TWSA for the calibration period 2003-2012. 1520 

 CC/RVar 

 Arkansas 

 

Missouri Upper 

MRB 

Ohio Lower MRB MRB 

POC: highest 

NSEQ 

0.93/1.06 0.77/1.09 0.80/1.42 0.95/1.22 0.95/1.42 0.85/1.30 

POC: highest 

NSETWSA 

0.95/1.04 0.91/1.03 0.84/1.07 0.95/1.05 0.97/1.05 0.93/1.10 

POC: 

compromise  

0.93/1.06 0.87/1.10 0.82/1.26 0.94/1.14 0.96/1.01 0.91/1.22 

GLUE: highest 

NSEQ 

0.89/1.01 0.57/0.91 0.80/1.47 0.92/1.14 0.92/1.67 0.75/1.37 

GLUE: highest 

NSETWSA 

0.94/0.97 0.89/1.05 0.82/1.05 0.96/1.08 0.95/1.07 0.91/1.07 

GLUE: 

compromise 

0.94/1.16 0.87/1.07 0.81/1.26 0.94/1.13 0.94/0.93 0.87/1.20 

EnCDA: highest 

NSEQ 

0.83/1.27 0.78/0.65 0.77/1.11 0.95/0.98 0.94/1.04 0.44/0.71 

EnCDA: highest 

NSETWSA 

0.94/1.14 0.83/0.65 0.83/0.98 0.97/0.90 0.96/1.00 0.52/0.72 

EnCDA: 

compromise  

0.94/1.14 0.82/0.67 0.80/1.03 0.95/0.98 0.94/1.04 0.49/0.72 

EnCDA: 

ensemble mean 

0.92/1.16 0.76/0.62 0.80/1.00 0.94/1.02 0.95/0.98 0.45/0.69 
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Standard 

calibration 

0.83/1.19 0.63/0.76 0.63/1.09 0.91/1.13 0.80/1.63 0.71/1.11 

Uncalibrated 0.85/1.09 0.63/0.76 0.62/1.10 0.90/1.21 0.82/1.60 0.73/1.11 

 

 

Code availability: The WaterGAP 2.2d code is accessible at https://doi.org/10.5281/zenodo.6902110. 

 

Data availability. All optimal and behavioral parameter sets obtained by the three calibration approaches for the 1525 

six CDA units together with the resulting performance metrics are listed in an Excel file that is part of the 

supplement. 

 

Supplement. The supplement related to this article including the Excel file is available online at URL??? 

 1530 

Author contributions. PD designed the study, with contributions from HMMH, KS, SMHM, SS, AG and JK. 

HMMH, KS and HG performed calibration and data analyses. HMMH and SMHM produced the figures. SA and 

HMS improved the WaterGAP code. LB and HG processed and analyzed GRACE TWSA data. PD wrote the 

original draft of the manuscript. All authors contributed to the final draft.  

 1535 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgments. This study was enabled by the financial support of the German Research Foundation for the 

research unit “Understanding the global freshwater system by combining geodetic and remote sensing information 

with modelling using a calibration/data assimilation approach (GlobalCDA)”. The authors thank Olga Sydak (née 1540 

Engels) for first analyses and discussions, Christoph Niemann for contributing to the generation of figures and two 

three reviewers and the editor for valuable comments and suggestions that helped to improve the manuscript.  

 

Review statement. This paper was edited by Ryan Teuling and reviewed by threewo anonymous referees. 

 1545 

References 

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of 

the WaterGAP 2 global model of water use and availability, Hydrol. Sci. J., 48(3), 317-338, 

https://doi.org/10.1623/hysj.48.3.317.45290, 2003. 

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modeling, Adv. Water Resour., 16 (1), 1550 

41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993. 

Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic response 

modelling system, Hydrol. Process., 16 (2), 189–206, https://doi.org/10.1002/hyp.343, 2002. 

Beven, K., and Binley, A.: GLUE. 20 years on. Hydrol. Process., 28 (24), 5897–5918, 

https://doi.org/10.1002/hyp.10082, 2014. 1555 

Beven, K., and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. 

Process, 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992. 

https://doi.org/10.1623/hysj.48.3.317.45290


 
 
 

55 
 
 

Beven, K., and Smith, P.: Concepts of information content and likelihood in parameter calibration for hydrological 

simulation models, J. Hydrol. Eng., 20 (1), A4014010, https://doi.org/10.1061/(ASCE)HE.1943-

5584.0000991, 2015. 1560 

Bierkens, M. F. P.: Global hydrology 2015. State, trends, and directions, Water Resour. Res., 51 (7), 4923–4947, 

https://doi.org/10.1002/2015WR017173, 2015. 

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and Zyvoloski, G. A. Generalized 

likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Advances 

in Water Resources, 31(4), 630-648, https://doi.org/10.1016/j.advwatres.2007.12.003, 2008 1565 

Blazkova, S., and Beven, K.: A limits of acceptability approach to model evaluation and uncertainty estimation in 

flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic, Water Resour. 

Res., 45, W00B16, https://doi.org/10.1029/2007WR006726, 2009. 

Campolongo, F., Saltelli, A., and Cariboni, J.: From screening to quantitative sensitivity analysis. A unified 

approach, Comput. Phys. Commun., 182 (4), 978–988, https://doi.org/10.1016/j.cpc.2010.12.039, 2011. 1570 

Clark, M., Rupp, D., Woods, R., Zheng, X., Ibbitt, R., and Slater, A.: Hydrological data assimilation with the 

ensemble Kalman filter. Use of streamflow observations to update states in a distributed hydrological 

model, Adv. Water Resour., 31 (10), 1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008. 

DeChant, C., and Moradkhani, H.: Examining the effectiveness and robustness of sequential data assimilation 

methods for quantification of uncertainty in hydrologic forecasting, Water Resour. Res., 48 (4), 11, 1575 

https://doi.org/10.1029/2011WR011011, 2012. 

Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G., and Schaefli, B.: Improving the predictive skill 

of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets, Water 

Resour. Res., 56, e2019WR026085, https://doi.org/10.1029/2019WR026085, 2020. 

Di Baldassarre, G., and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. 1580 

Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009. 

Döll, P., Trautmann, T., Göllner, M., and Müller Schmied, H.: A global-scale analysis of water storage dynamics 

of inland wetlands: Quantifying the impacts of human water use and man-made reservoirs as well as the 

unavoidable and avoidable impacts of climate change, Ecohydrology, 13, e2175. 

https://doi.org/10.1002/eco.2175, 2020. 1585 

Döll, P., Douville, H., Güntner, A., Müller Schmied, H., Wada, Y.: Modelling freshwater resources at the global 

scale: Challenges and prospects, Surveys in Geophysics, 37(2), 195-221, https://doi.org/10.1007/s10712-

015-9343-1, 2016. 

Döll, P., Fritsche, M., Eicker, A., and Müller Schmied, H.: Seasonal Water Storage Variations as Impacted by 

Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS 1590 

Observations, Surv. Geophys., 35 (6), 1311–1331, https://doi.org/10.1007/s10712-014-9282-2, 2014. 

Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model 

tuning and validation, J. Hydrol., 270 (1-2), 105-134.  https://doi.org/10.1016/S0022-1694(02)00283-4, 

2003. 

https://doi.org/10.1016/j.advwatres.2007.12.003
https://doi.org/
https://doi.org/


 
 
 

56 
 
 

Efstratiadis, A., and Koutsoyiannis, D.: One decade of multi-objective calibration approaches in hydrological 1595 

modelling: a review, Hydrological Sciences Journal, 55, 58-78, 

https://doi.org/10.1080/02626660903526292, 2010. 

Eicker, A., Schumacher, M., Kusche, J., Döll, P., and Müller Schmied, H.: Calibration/Data Assimilation 

Approach for Integrating GRACE Data into the WaterGAP Global Hydrology Model (WGHM) Using an 

Ensemble Kalman Filter: First Results, Surv. Geophys. 35 (6), 1285–1309. https://doi.org/10.1007/s10712-1600 

014-9309-8, 2014. 

Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynam., 

53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003. 

Evensen, G.: Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods 

to forecast error statistics, J. Geophys. Res.: Oceans, 99(C5), 10143-10162, 1994.  1605 

Gerdener, H., Engels, O., and Kusche, J.: A framework for deriving drought indicators from the Gravity Recovery 

and Climate Experiment (GRACE), Hydrol. Earth Syst. Sci., 24, 227–248, https://doi.org/10.5194/hess-24-

227-2020, 2020.  

Gerdener, H., Kusche, J., Schulze, K., Döll, P., and Klos, A. (2023): The global land water storage data set release 

2 (GLWS2.0) derived via assimilating GRACE and GRACE-FO data into a global hydrological model, 1610 

Journal of Geodesy, 97(73), https://doi.org/10.1007/s00190-023-01763-9, 2023. 

Girotto, M., de Lannoy, G.J.M., Reichle, R.H., and Rodell, M. Assimilation of gridded terrestrial water storage 

observations from GRACE into a land surface model. Water Resources Research, 52(5), 4164-4183, 

https://doi.org/10.1002/2015WR018417, 2016. 

Gupta, H. V., Sorooshian, S., and Ogou Yapo, P.: Toward improved calibration of hydrologic models: Multiple 1615 

and noncommensurable measures of information, Water Resour. Res., 34 (4), 751-763, 

https://doi.org/10.1029/97WR03495, 1998. 

Hadka, D. and Reed, P.: Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework, Evol. 

Comp., 21, 231-259, https://doi.org/10.1162/EVCO_a_00075, 2013. 

Harlin, J. and Kung, C.-S.: Parameter uncertainty and simulation of design floods in Sweden, J. Hydrol., 137, 209-1620 

230, https://doi.org/10.1016/0022-1694(92)90057-3, 1992. 

Hosseini-Moghari, S.-M., Araghinejad, S., Tourian, M. J., Ebrahimi, K., and Döll, P.: Quantifying the impacts of 

human water use and climate variations on recent drying of Lake Urmia basin: the value of different  sets 

of spaceborne and in situ data for calibrating a global hydrological model, Hydrol. Earth Syst. Sci., 24 (4), 

1939–1956, https://doi.org/10.5194/hess-24-1939-2020, 2020. 1625 

Hunger, M., and Döll, P.: Value of river discharge data for global-scale hydrological modeling, Hydrol. Earth Syst. 

Sci., 12 (3), 841–861, https://doi.org/10.5194/hess-12-841-2008, 2008. 

Jasechko, S., Seybold, H., Perrone, D., Fan, Y., and Kirchner, J.W.: Widespread potential loss of streamflow into 

underlying aquifers across the USA, https://doi.org/10.1038/s41586-021-03311-x, Nature, 591, 391-

397, 2021. 1630 

Jin, X., Xu, C.-Y., Zhang, Q., and Singh, V. P.: Parameter and modeling uncertainty simulated by GLUE and a 

formal Bayesian method for a conceptual hydrological model, J. Hydrol., 383 (3-4), 147–155, 

https://doi.org/10.1016/j.jhydrol.2009.12.028, 2010. 

Formatiert: Schriftart: (Standard) Times New Roman,

Englisch (Großbritannien)

Formatiert: Schriftart: (Standard) Times New Roman,

Englisch (Großbritannien)

Formatiert: Schriftart: (Standard) Times New Roman,

10 Pt., Englisch (Großbritannien)

Formatiert: Schriftart: (Standard) Times New Roman,

10 Pt., Englisch (Großbritannien)

https://doi.org/
https://doi.org/
https://doi.org/10.1007/s00190-023-01763-9
https://doi.org/10.1002/2015WR018417
https://doi.org/10.1038/s41586-021-03311-x


 
 
 

57 
 
 

Khu, S. T., and Madsen, H.: Multiobjective calibration with Pareto preference ordering: An application to rainfall-

runoff model calibration, Water Resour. Res., 41 (3), W03004, https://doi.org/10.1029/2004WR003041, 1635 

2005. 

Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate 

change scenarios, J. Hydrol., 424-425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. 

Klinger, B., and Mayer-Gürr, T.: The role of accelerometer data calibration within GRACE gravity field recovery: 

Results from ITSG-Grace2016,  Advances in Space Research, 58, 1597-1609, 1640 

https://doi.org/10.1016/j.asr.2016.08.007, 2016 

Klinger, B., Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., and Zehentner, N.: The new ITSG-Grace2016 

release. Presented at: EGU General Assembly 2016, Vienna, Austria, Geophysical Research Abstracts, vol. 

18. EGU2016-11547. http://dx.doi.org/10.13140/RG.2.1.1856.7280, 2016. 

Kumar, S. V., et al.. Assimilation of gridded GRACE terrestrial water storage estimates in the North American 1645 

Land Data Assimilation System. Journal of Hydrometeorology, 17(7), 1951-1972, 

https://doi.org/10.1175/JHM-D-15-0157.1, 2016. 

Kupzig, J., Reinecke, R., Pianosi, F., Flörke, M., and Wagener, T.: Towards parameter estimation in global 

hydrological models. Env. Res. Lett., 18, 074023, https://doi.org/10.1088/1748-9326/acdae8, 2023. 

Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorrelated GRACE time-variable gravity solutions by 1650 

GFZ, and their validation using a hydrological model, J. Geod., 83(10), 903–913, 

https://doi.org/10.1007/s00190-009-0308-3, 2009. 

Landerer, F.W., and Swenson, S.C.: Accuracy of scales GRACE terrestrial water storage estimates, Water Res. 

Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012. 

Lehner, B., and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. 1655 

Hydrol., 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004. 

Longuevergne, L., Scanlon, B. R., and Wilson, C. R.: GRACE hydrological estimates for small basins: Evaluating 

processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 46, W11517, https://doi.org/: 

10.1029/2009wr008564, 2010. 

Mayer-Gürr, T., Zehentner, N., Strasser, S., Behzadpour, S., Kvas, A., Klinger, B., and Ellmer, M.: ITSG -1660 

Grace2018: The new GRACE Time Series from TU Graz, 2018. 

McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational uncertainties for hydrology. Rainfall, river 

discharge and water quality, Hydrol. Process., 26 (26), 4078–4111, https://doi.org/10.1002/hyp.9384, 2012. 

Mendoza, P.A., Clark, M.P, Mizukami, N., Gutmann, E.D., Arnold, J.R., Brekke, L.D., and Rajagopalan, B.:  How 

do hydrologic modeling decisions affect the portrayal of climate change impacts? Hydrol. Process., 30, 1665 

1071-1095, https://doi.org/10.1002/hyp.10684, 2016. 

Minke, A.G., Westbrook, C.J., and van der Kamp, G.: Simplified volume-area-depth method for estimating water 

storage of Prairie potholes, Wetlands, 30, 541-551, http;//doi.org/ 10.1007/s13157-010-0044-8, 2010. 

Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W., Gutmann, E. D., and Nijssen, B.: Towards seamless 

large-domain parameter estimation for hydrologic models, Water Resour. Res., 53 (9), 8020–8040, 1670 

https://doi.org/10.1002/2017WR020401, 2017. 

Formatiert: Englisch (USA)

Feldfunktion geändert

Formatiert: Englisch (USA)

Formatiert: Englisch (USA)

Formatiert: Absatz-Standardschriftart, Schriftart:

(Standard) Times New Roman, 10 Pt., Englisch

(Großbritannien)

Formatiert: Deutsch (Deutschland)

Formatiert: Englisch (USA)

http://dx.doi.org/10.13140/RG.2.1.1856.7280
https://doi.org/10.1175/JHM-D-15-0157.1
https://doi.org/10.1088/1748-9326/acdae8


 
 
 

58 
 
 

Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states 

and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41 (5), W05012, 

https://doi.org/10.1029/2004WR003604, 2005. 

Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161–174, 1675 

https://doi.org/10.1080/00401706.1991.10484804, 1991.  

Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., 

Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: 

The global water resources and use model WaterGAP v2.2d: Model description and evaluation, Geosci. 

Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.  1680 

Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity 

of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human 

water use and calibration, Hydrol. Earth Syst. Sci., 18 (9), 3511–3538, https://doi.org/10.5194/hess-18-

3511-2014, 2014. 

Nerger, L., and Hiller, W.: Software for ensemble-based data assimilation systems—Implementation strategies 1685 

and scalability, Comput. and Geosci., 55, 110-118, https://doi.org/10.1016/j.cageo.2012.03.026, 2013. 

Paiva, R. C. D., Collischonn, W., Bonnet, M.-P, Gonçalves, L. G. G., Calmant, S., Getirana, A., and Santos da 

Silva, J.: Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model 

for streamflow forecast in the Amazon, Hydrol. Earth Syst. Sci., 17 (7), 2929–2946, 

https://doi.org/10.5194/hess-17-2929-2013, 2013. 1690 

Pianosi, F. Beven, K., Freer, J., Hall, J.W., Rougier, J. Stephenson, D.B., and Wagener, T.: Sensitivity analysis of 

environmental models: A systematic review with practical workflow, Environ. Modell. Softw., 79, 214-

232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016. 

Rakovec, O., Kumar, R., Attinger, S., Samaniego, L.: Improving the realism of hydrologic model functioning 

through multivariate parameter estimation, Water Resour. Res., 52 (10), 7779–7792, 1695 

https://doi.org/10.1002/2016WR019430, 2016. 

Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., and van Beek, L. P. H.: Global models 

underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, 

Proc. Natl. Acad. Sci. U.S.A., 115 (6), E1080-E1089, https://doi.org/10.1073/pnas.1704665115, 2018. 

Scanlon, B. R., Zhang, Z., Rateb, A., Sun, A., Wiese, D., and Save, H.: Tracking Seasonal Fluctuations in Land 1700 

Water Storage Using Global Models and GRACE Satellites, Geophys. Res. Lett., 6 (1), 3, 

https://doi.org/10.1029/2018GL081836, 2019. 

Schumacher, M.: Methods for Assimilating Remotely-Sensed Water Storage Changes into Hydrological Models. 

Ph. D. thesis, University of Bonn, Bonn, 2016. 

Schumacher, M., Forootan, E., van Dijk, A.I.J.M., Müller Schmied, H., Crosbie, R. S., Kusche, J., and Döll, P.: 1705 

Improving drought simulations within the Murray-Darling basin by combined calibration/assimilation of 

GRACE data into the WaterGAP Global Hydrology Model, Remote Sens. Environ., 204, 212–228, 

https://doi.org/10.1016/j.rse.2017.10.029, 2018. 



 
 
 

59 
 
 

Schumacher, M., Kusche, J., and Döll, P.: A systematic impact assessment of GRACE error correlation on data 

assimilation in hydrological models, J. Geod., 90 (6), 537–559, https://doi.org/10.1007/s00190-016-0892-1710 

y, 2016a.  

Schumacher, M., Eicker, A., Kusche, J., Müller Schmied, H., and Döll, P.: Covariance Analysis and Sensitivity 

Studies for GRACE Assimilation into WGHM. In Chris Rizos, Pascal Willis (Eds.): IAG 150 Years. 

Proceedings of the IAG Scientific Assembly in Postdam, Germany, 2013, vol. 143. 1st ed. 2016. Cham, 

s.l.: Springer International Publishing (International Association of Geodesy Symposia, 143), 241–247, 1715 

2016b.  

Stisen, S., Koch, J., Sonnenborg, T. O., Refsgaard, J. C., Bircher, S., Ringgaard, R., and Jensen, K. H.: Moving 

beyond run-off calibration - Multivariable optimization of a surface-subsurface-atmosphere model, Hydrol. 

Process., 32 (17), 2654–2668, https://doi.org/10.1002/hyp.13177, 2018. 

Troy, T.J., Wood, E.F., and Sheffield, J.: An efficient calibration method for continental-scale land surface 1720 

modeling, Water Resour. Res., 44, W09411, doi:10.1029/2007WR006513, 2008. 

Vishwakarma, B. D., Zhang, J., and Sneeuw, N.: Downscaling GRACE total water storage change using partial 

least squares regression. Scientific Data, 8(1), Article 1, https://doi.org/10.1038/s41597-021-00862-6, 

2021. 

Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.: Equifinality of formal (DREAM) and informal 1725 

(GLUE) Bayesian approaches in hydrologic modeling?, Stoch Environ Res. Risk Assess, 23 (7), 1011 –

1026, https://doi.org/10.1007/s00477-008-0274-y, 2009.  

Wanders, N., Bierkens, M. F. P., de Jong, S. M., Roo, A., and Karssenberg, D.: The benefits of using remotely 

sensed soil moisture in parameter identification of large-scale hydrological models, Water Resour. Res., 50 

(8), 6874–6891, https://doi.org/10.1002/2013WR014639, 2014. 1730 

Wang, Q. J., Bennett, J. C., Robertson, D. E., and Li, M.: A data censoring approach for predictive error modelling 

of flow in ephemeral rivers. Water Resources Research, 56, e2019WR026128. 

https://doi.org/10.1029/2019WR026128, 2020.  

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological 

forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water 1735 

Resour. Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014. 

Werth, S., and Güntner, A.: Calibration analysis for water storage variability of the global hydrological model 

WGHM, Hydrol. Earth Syst. Sci., 14 (1), 59–78, https://doi.org/10.5194/hess-14-59-2010, 2010. 

Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A., Montanari, A., and Freer, J.: 

Uncertainty in hydrological signatures for gauged and ungauged catchments, Water Resour. Res., 52 (3), 1740 

1847–1865, https://doi.org/10.1002/2015WR017635, 2016. 

Xie, H., Longuevergne, L, Ringler, C., and Scanlon, B.R.: Calibration and evaluation of a semi-distributed 

watershed model of Sub-Saharan Africa using GRACE data, Hydrol. Earth Syst. Sci., 16, 3083–3099, 

https://doi.org/10.5194/hess-16-3083-2012, 2012. 

Xie, X., and Zhang, D.: A partitioned update scheme for state-parameter estimation of distributed hydrologic 1745 

models based on the ensemble Kalman filter, Water Resour. Res., 49, 7350–7365, 

https://doi.org/10.1002/2012WR012853, 2013. 

https://doi.org/10.1038/s41597-021-00862-6


 
 
 

60 
 
 

Yassin, F., Rzavi, S., Wheater, H., Sapriza-Azuri, G., Davison, B., and Pietroniro, A.: Enhanced identification of 

a hydrologic model using streamflow and satellite water storage data: A multicriteria sensitivity analysis 

and optimization approach, Hydrol. Process., 31 (19), 3320–3333, https://doi.org/10.1002/hyp.11267, 1750 

2017. 

Yu, P.L.: A class of solutions for group decision problems, Manage. Sci., 19 (8), 936-946, 

https://doi.org/10.1287/mnsc.19.8.936, 1973. 


