
We thank both reviewers and the editor very much for their helpful comments and 

constructive suggestions for improving the manuscript. Below, each editor’s and reviewer's 

comment is followed by our answer (indicated by “AC”). The new text in the revised 

manuscript is written in bold. 

Editor Ryan Teuling 

E: First of all, I would like to apologize for the time it has taken to receive sufficient 

reviewers for this submission, and to reach an initial decision. As you have seen, the two 

anonymous referees, whom I both consider experts in the field of regional-scale hydrological 

modeling and uncertainty analysis, both see your work as interesting and potentially suitable 

for HESS. However they also identified a considerable number of issues, several of which 

were shared between the reports. Given the nature of these issues, it seems that a considerable 

amount of rewriting, as well as some new analysis, might be needed, and this translates into 

major revisions. When preparing a revised version, you can generally follow the approaches 

outlined in your replies posted in the online discussion. I want to ask you to pay specific 

attention to the scientific contribution and wider relevance of your results. HESS generally 

does not publish case studies on a particular basin or using a particular model. Hence, your 

findings for the Mississippi using WaterGAP should be used to provide a more generic 

insight.  

AC: The intention of the study is not to provide new knowledge about the Mississippi River 

basin or the WaterGAP model but to test the three ensemble-based calibration and uncertainty 

approaches with the aim to find out how they can be applied globally, also by other global 

hydrological models, for utilizing observations of multiple model output variables to reduce 

and quantify the model output uncertainty. We agree that in the original manuscript we did 

not formulate clearly the relevance of our study results for global hydrological modeling in 

general group. We are thankful to you and the reviewers for making us aware of this. To 

better show the scientific contribution and the wider relevance of our results for other (global) 

hydrological modelers, we completely rewrote the abstract, Section 5.1 and the conclusions 

(also including a figure that summarizes our recommendations but also caveats, see our 

answer to you third comment below. We also revised the introduction thoroughly. For 

example, we reformulated the objective of the study as follows: 

The objective of this paper is to analyze how the uncertainty of the output of GHMs can 

be reduced and quantified by parameter estimation that utilizes observations of multiple 

output variables and their uncertainties. For the example of the Mississippi River basin 

(MRB), the paper shows how Q and TWSA observations can be utilized to obtain one 

optimal parameters set (the “compromise solution”) as well as ensembles of Pareto-

optimal and behavioral parameter sets for the GHM WaterGAP, by evaluating the 

applicability of the three multi-variable calibration approaches POC, GLUE and 

EnCDA. It presents a method for defining performance thresholds for behavioral 

parameter sets based on observations and their uncertainties as well as the initial GLUE 

ensemble. In each approach, model parameters of all grid cells within so-called 

calibration-data assimilation (CDA) units, either the whole MRB or five sub-basin 

CDAs, were uniformly adjusted. We derive conclusions for multi-variable parameter 

estimation and quantification of model output uncertainty in global-scale hydrological 

modeling, answering the following research questions: 

E: Also, I do not agree with your reply on the issue of using NSE vs KGE. These are not 

independent metrics, and the mathematics behind the dependency are discussed extensively in 



Gupta et al. (2009). Following your reasoning, I could see the value of optimizing against one 

of the components of KGE, and evaluating on the other(s), but given the nature of the 

components i do not expect expect them to contain much mutual information on hydrologic 

behavior.  

AC: We changed the reply on the issue NSE vs KGE, which now reads: 

“NSE is used for parameter estimation only in the case of POC and GLUE, but not in the case 

of EnCDA (where the objective function cannot be freely set, see Table A1, but is a weighted 

RMSE), and we evaluated the results using both NSE and the three components of KGE (not 

KGE itself).  We think it is particularly informative to evaluate the result of a parameter set 

optimization using a certain objective function/performance metric by another performance 

metric, in particular the three KGE components as these are well interpretable (correlation: 

temporal shifts; bias: difference in means; variability ratio: difference in temporal variability). 

In the revised version, we have added a sentence to section 4.1 to indicate how the 

improvement in the correlation coefficient by the calibration can be interpreted: Thus, 

calibration mainly leads to improved timing of monthly streamflow and TWSA.” 

E: In addition, I would like to ask you to consider optimizing the display items (figures and 

tables). There is a lot of information being presented, but key figures that condense some of 

the findings in clear concepts are missing. This makes the manuscript currently read perhaps 

more like a scientific report than a focused manuscript. I believe condensing some of the 

results, and using the space for 1-2 new figures summarizing the main results, could help in 

addressing several of the referees' comments.  

AC: Table 1 was removed from the main text and the text in sections 1, 2, 4 and 5 was 

slightly condensed. We added a figure (Figure 7) to the new Section 6 Conclusions that 

summarizes the main results of the study. 

 

E: I am looking forward to receiving a revised version of your work. Given the nature of the 

comments, this new version will be returned to the referees for consultation 

Reviewer 1 

RC: The study by Doell et al. compares three different strategies to reduce parameter 

uncertainty for the global hydrological model WaterGap. The methods used are BORG, 

GLUE, and an ensemble Kalman filter, which the authors apply in a pilot study to the 

Mississippi basin. How we best estimate global water models is an interesting and relevant 

question to which the authors contribute. I do like the study and what the authors do and 

show, but I have some critical comments regarding how the work is currently presented and 

discussed. I outline my main comments below. 

AC: Thank you for the positive feedback. 

RC: [0] The authors' use of sensitivity analysis is very nice and interesting, but the results are 

hardly discussed. I would have liked to see more detail on these results. For example, the 

precipitation multiplier is not slected as important. Interesting, given that this parameter is 

often very relevant. Is rthis due to the monthly time step? The authors study a huge domain. 

How did sensitivity to the parameters vary across this domain? A lot of insights to be gained 

from this analysis, but they are not discussed. I think this would be worth including rather 

than some other parts as suggested below. 



AC: In the revised version, we added a paragraph to section 3.2.4 in which we discuss the 

new table below, which was added to the supplement as Table S2. In this and the following 

paragraph, we show in more detail which output variables are sensitive to which parameters 

and how this differs among the CDA units. 

Table S2. The most influential parameters for streamflow, TWSA, snow cover and local lake storage, 

covering together at least 50% of the total effect. 

CDA Unit Streamflow TWSA 

Snow 

cover 

Local lake 

storage 

I Arkansas 

SL-RC, SL-MSM, EP-

PTh, SL-MEP, GW-MM SL-RC, SL-MSM, NA-GM SN-MT SW-LD, SW-DC 

II Missouri 

SL-RC, SL-MSM, EP-

PTh, SN-MT, NA-SM 

SL-RC, SL-MSM, SW-

WD, EP-PTh, NA-GM SN-MT 

SW-LD, SW-DC, 

NA-SM 

III Upper MRB 

SL-RC, SL-MSM, EP-

PTh, SN-MT, GW-MM 

SL-RC, SL-MSM, SW-

WD, SW-DC, EP-PTh SN-MT SW-LD, SW-DC 

IV Ohio 

SL-RC, SL-MSM, SW-

RRM, EP-PTh, GW-MM 

SL-RC, SL-MSM, EP-

PTh, GW-DC SN-MT SW-LD, SW-DC 

V Lower MRB 

SL-RC, SL-MSM, SW-

RRM, EP-PTh, SN-MT 

SL-MSM, GW-RFM, NA-

GM SN-MT SW-LD, SW-DC 

MRB 

SL-RC, SL-MSM, SW-

RRM, EP-PTh 

SL-RC, SL-MSM, EP-

PTh, NA-GM SN-MT SW-LD, SW-DC 

Note that although SW-WD was not selected in unit I, IV, V, MRB, we decided to select the parameter for 

all units due to effect on groundwater recharge from surface water bodies 

Regarding the precipitation multiplier P-PM, we write in line 583 “P-PM was excluded from 

calibration even though it ranked 1st in the sensitivity analyses in all six basins for almost all 

four test variables because the precipitation input is perturbed in EnCDA, and an additional 

multiplier would lead to a double-counting of precipitation uncertainty.” So one reason for not 

including P-PM in POC and GLUE was that we wanted to compare all three calibration 

methods. The other reason was that different from other basins such as the Amazon or the 

Ganges-Brahmaputra basins, precipitation in the Mississippi River Basin is expected to be 

rather well represented by the climate data used as input to WaterGAP. The mean annual 

precipitation in the CDA units that was used to drive WaterGAP does not differ much from 

the values derived from the high-resolution (4 km) PRISM dataset for the USA. In the revised 

version, we extended the explanation for why we did not use P-PM as calibration parameters 

and referred to the new Table S1 below that was added to the supplement. The new text in 

section 3.2.4 reads: 

P-PM was excluded from calibration even though it ranked first in all six CDA units for 

almost all four test variables, for various reasons. First, the precipitation input is 

perturbed in EnCDA, and an additional multiplier would lead to a double-counting of 

precipitation uncertainty. Second, mean annual precipitation in the CDA units of 

WaterGAP climate forcing does not differ much from the values derived from the high-

resolution (4 km) PRISM dataset for the USA (Table S1). 

  



Table S1. Comparison of mean annual precipitation in the CDA units for the calibration period 2003-2012 

between GPCC-WFDEI used to drive WaterGAP and the high-resolution (4 km) PRISM* dataset for the 

USA [mm/yr] 

CDA unit 

GPCC-

WFDEI PRISM 

Ratio 

PRISM/GPCC-

WFDEI 

(potential P-PM) 

I Arkansas 705 667 0.95 

II Missouri 595 622 1.04 

III Upper MRB 951 878 0.92 

IV Ohio 1313 1242 0.95 

V Lower MRB 1286 1254 0.97 

MRB 839 829 0.99 

*https://climatedataguide.ucar.edu/climate-data/prism-high-resolution-spatial-climate-data-united-states-

maxmin-temp-dewpoint  

  

RC: [1] This is a very long paper with a lot of details on the model and the data that, at least 

to me as a reader, seems excessive and not needed to understand the main story presented. It 

makes reading the paper a bit tedious because most readers will not run WaterGap and they 

might not even be interested in the extensive background information on the data (as part of 

the main story). 

For example, lines 500-508 discuss problems with the GRACE data and how others have 

gone about reducing them. Is this really something I need to know to follow the story? I think 

text like this can go into the supplemental material without reducing the strength of the story 

told. On the contrary, it would make it better because I do not have to read through this 

background information unless I want to. 

Lines 466-508 discuss details of the GRACE data and their uncertainties in (excessive) detail. 

At the same time, the authors spent one sentence on stating that two studies considered 

streamflow errors of about 10%, while the next sentence states that this is maybe a possible 

average but the variability is very large. The authors spend over 60 lines discussing GRACE 

and 6 (ok 7) lines to discuss the other variable they use. I do not understand why the authors 

do not present a more balanced discussion given that both variables suffer from significant 

and potentially complex uncertainties. 

AC: Regarding the description of the WaterGAP model in section 3.1, we constrained the 

information to the information that is necessary to understand 1) the meaning and importance 

of parameters that are to be estimated by the multi-variable calibration and 2) the differences 

between the multi-variable calibration presented in the manuscript and the (very simple) 

standard calibration of WaterGAP. Thus, we think that it is not beneficial to shorten the model 

description or move it to the supplement. 

Regarding the description of the GRACE TWSA data, we agree with the reviewer that there is 

excessive detail in the main text. We moved the text on leakage problems and other aspects 

related to the uncertainty of GRACE TWSA data (lines 483 to 508 in version 1 of the 

manuscript) to the supplement as Text S1. To increase the readability by decreasing the length 



of the main text, we also moved section 2.4 “Comparison of the three calibration approaches” 

(lines 276-377, including Table 1) to the Appendix. 

RC: [2] Starting from the back, i.e. the Outlook section, I wonder what transferrable 

knowledge the authors contribute that is unrelated to using WaterGap (and potentially the 

traditional approach to calibrating WaterGap)? 

My impression is that most of the conclusions are rather specific to the use of WaterGap. I do 

not think that this is a problem per se, but it would be good if the authors would be clearer 

about general outcomes and those specific to WaterGap. One problem in this context is that 

Discussion and Conclusions are jointly discussed and that this section is 7 pages long. I think 

these sections can be joined if this part of the paper is short, but here it is very long. A long 

discussion followed by a very short conclusions and outlook section would make it much 

easier for the reader. There the authors could also easily separate specific and general 

conclusions. 

AC: We have followed your suggestion to split the “Discussion and Conclusions” section and 

organize the last part of the manuscript as follows: 

5 Discussion (with sections 5.1 to 5.6) 

6 Conclusions (which includes, in revised form, what was 5.7 Outlook). 

We completely rewrote the conclusions (and partly the abstract), where we now focus on 

clearly saying what other (global) hydrological modelers can learn from our study, regarding 

the application of  the three alternaive calibration approaches and caveats, and added a figure 

to the conclusions that concisely represents the proposed approach (Figure 7: The proposed 

approach for reducing and quantifying model output uncertainty of GHM by multi-

variable parameter estimation and main recommendations and caveats for applying the 

approach in global hydrological modeling.) 

RC: [3] The final recommendation to include uncertainty in climate change impact 

projections related to freshwater is good, but this is already widely done (see below). Can the 

authors be more specific regarding their recommendation? They could for example discuss 

this issue much more in the context of global models and the specific implications this has. 

Just a few random examples from a quick online search: 

https://www.nature.com/articles/s41598-019-41334-7 

https://hess.copernicus.org/articles/21/4245/2017/ 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011WR010602 

  

AC: Thank you for making us rethink our recommendation on including parameter 

uncertainty in a multi-model ensemble of impact models to project climate change hazards. 

Focusing on global-scale climate change impact studies, we will replace the last paragraph of 

the main text 



“We recommend including, in future freshwater-related climate change impact studies, a 

behavioral ensemble of parameter sets as determined by the GLUE approach even though this 

will require a significant computational effort. This should reduce the underestimation of 

modeling uncertainty by traditional multi-model studies. As shown in the multi-model/multi-

parameter study for the Colorado River basin by Mendoza et al. (2016), parameter sets with a 

similar performance during the calibration period may provide very different projections of 

climate change hazards, and the impact of parameter uncertainty is similar to the impact of 

hydrological model selection. “ 

by the following: 

Climate change impact studies for individual river basins have shown that parameter 

sets with a similar performance during the calibration period may provide very 

different projections of climate change hazards, and that the impact of parameter 

uncertainty can be similar to the impact of the selected climate or hydrological model 

selection (Mendoza et al., 2016; Her et al., 2019). Therefore, consideration of parameter 

uncertainty by running the hydrological model with a number of behavioral parameter 

sets helps to reduce the underestimation of the uncertainty of potential climate change 

impact. However, producing a global-scale ensemble of potential future changes in 

hydrological variables by combining not only multiple greenhouse gas emissions 

scenarios, global climate models and global hydrological models (as is currently done in 

ISIMIP) but also model-specific behavioral parameter sets is currently infeasible. The 

main reason is that behavioral (or even optimal) parameter sets have not yet been 

determined for any global hydrological model in a spatially explicit manner at the global 

scale. In addition, the computational effort for such a multi-model/multi-parameter 

ensemble is likely prohibitive. 

RC: [4] The connection to existing literature is in places very extensive and in others very 

brief. All methods used here have been previously assessed widely. Maybe not exactly in this 

combination, but certainly individually or in combination with other methods. I would 

therefore have expected that the authors help the reader to start from a more informed level. 

For example, the (poor) ability of GLUE to identify the best parameter set has been explored 

in the past (see link below) and thus is what should be expected. The issue now is rather what 

relevance this has for the study at hand. 

https://backend.orbit.dtu.dk/ws/portalfiles/portal/9729153/MR2007_305.pdf 

AC: With the help of both reviews, we noticed that we have not clearly described the role of 

GLUE (with a random ensemble of parameter sets) as compared to the role of POC (in which 

a search algorithm derives an ensemble of Pareto-optimal parameter sets). In the revised 

version of the manuscript, we revised the introduction and developed the storyline of the 

paper differently. Before formulating the study objective, we now state (citing Blasone et al. 

2008) that optimal parameter sets are best identified using a search algorithm, as used in POC, 

while GLUE serves, in the face of equifinality, to identify behavioral parameter sets and thus 

to quantify the model output uncertainty. Connected to this, we changed the title of the 

manuscript from “Multi-variable parameter estimation for a global hydrological model: 

Comparison and evaluation of three ensemble-based calibration methods for the Mississippi 

River basin” to 



Leveraging multi-variable observations to reduce and quantify the output uncertainty of 

a global hydrological model: Evaluation of three ensemble-based approaches for the 

Mississippi River basin 

We also revised the conclusions accordingly. 

RC: [5] While I possibly sound rather critical, I think this is an interesting and relevant study. 

My comments are simply meant to help the authors communicate their work with the readers. 

Shortening the paper, being clearer about specific and general contributions, and a better 

connection with existing literature would make it much easier for readers to understand the 

study and its relevance 

AC: We will direct our revision in this way. 

 

Reviewer 2 

RC: Döll et al. exploit three different approaches to identify parameters in a WaterGAP 

model of the Mississippi River Basin. This should provide insights for the calibration of 

global hydrological models. Although as a reviewer I aim to be constructive and to provide 

concrete recommendations, I have to admit that I found this difficult for the presented study. I 

hope I can make my points clear and that this provides enough guidance for the authors to 

search for other directions. 

AC: Thank you for your critical feedback that will help us to better communicate the 

objectives, results and conclusions of our study. 

RC: The long, quite unfocused, introduction seems to give the goal of this study (line 70), 

where the complex and long research question is already a preparation for the reader on what 

is coming. My summary of the goal of the study, if I understood correctly, would be to 

explore how global hydrological models can be calibrated in order to make better use of 

available observations. 

AC: The manuscript does aim at showing how to make (better) use of available observations 

in global hydrological modeling beyond streamflow but it is not only about calibration in the 

sense of finding optimal parameter sets but also about estimation of model output uncertainty. 

In the revised version, we will therefore change the title of the manuscript from “Multi-

variable parameter estimation for a global hydrological model: Comparison and evaluation of 

three ensemble-based calibration methods for the Mississippi River basin” to 

Leveraging multi-variable observations to reduce and quantify the output uncertainty of 

a global hydrological model: Evaluation of three ensemble-based approaches for the 

Mississippi River basin 

We have condensed and restructured the introduction to better fit to the revised paper title and 

to clarify early on that GLUE is not applied to see whether is as efficient or better than POC 

(with an optimization algorithm) but to be able to determine behavioral parameter sets given 

the uncertainty of the observations and thus quantify model output uncertainty. Most 

importantly, we have changed the formulation of the research objective. We have replaced 



“The objective of this paper is to assess the suitability of the three multi-variable calibration 

approaches POC, GLUE and EnCDA for identifying ensembles of optimal and behavioral 

parameter sets of the GHM WaterGAP by model calibration against observations of Q and 

TWSA, taking into account observation uncertainties. In addition, an approach for taking into 

account the observation errors for the definition of performance thresholds for behavioral 

parameter sets is presented. In each calibration approach, model parameters of all WaterGAP 

grid cells within so-called calibration-data assimilation (CDA) units were uniformly adjusted. 

Based on calibration exercises either for the whole Mississippi River basin (MRB) as one 

CDA unit or for its five sub-basins (four upstream basins and one downstream basin) as 

alternative CDA units, we will answer the following research questions:” 

by 

The objective of this paper is to analyze how the uncertainty of the output of GHMs can 

be reduced and quantified by parameter estimation that utilizes observations of multiple 

output variables and their uncertainties. For the example of the Mississippi River basin 

(MRB), the paper shows how Q and TWSA observations can be utilized to obtain one 

optimal parameters set (the “compromise solution”) as well as ensembles of Pareto-

optimal and behavioral parameter sets for the GHM WaterGAP, by evaluating the 

applicability of the three multi-variable calibration approaches POC, GLUE and 

EnCDA. It presents a method for defining performance thresholds for behavioral 

parameter sets based on observations and their uncertainties as well as the initial GLUE 

ensemble. In each approach, model parameters of all grid cells within so-called 

calibration-data assimilation (CDA) units, either the whole MRB or five sub-basin 

CDAs, were uniformly adjusted. We derive conclusions for multi-variable parameter 

estimation and quantification of model output uncertainty in global-scale hydrological 

modeling, answering the following research questions: 

RC: In my understanding and experience, one of the reasons why GHMs currently are not 

thoroughly or automatically calibrated is mainly because of computational demand, besides 

model complexity (leading to non-uniqueness). The argument of computational demand has, 

surprisingly, not been taken into account in any way in selecting calibration approaches for 

this study. Expensive algorithms and approaches, such as Borg-MOEA and EnKF are 

explored, already going towards computational limits for the basin explored here. How is this 

ever going to translate to a global application then? 

AC: We wanted to explore whether it is possible to benefit from the advantages of EnKF 

(EnCDA), which - different from typical calibration of hydrological models - simultaneously 

adjusts system states (water storages) and model parameters. We hypothesize that this 

property can be of advantage in situations where a model has structural deficiencies that 

cannot be “absorbed” via parameter calibration. The goal of the study was to explore whether 

EnKF can be used to assimilate not only observations of total water storage anomalies, as has 

already been shown to be feasible and successful at the global scale (e.g., Gerdener et al. 

2023) but also streamflow observations (which had not yet been demonstrated), while at the 

same time adjusting parameters (which also had not yet been demonstrated in this context). 

We hypothesized that taking into account, in EnKF, both the uncertainties of the climate input 

and 2) adapting storages, parameter estimates would stabilize towards the end of the 

calibration period; these parameters could then be used for periods without observation data. 

Our study has shown that in the current setting of this study, the EnKF approach was less 

successful in these aspects compared to POC and GLUE, and was thus not found as 

applicable for reducing and quantifying the uncertainty of output of WaterGAP. We would 



like to point out that compared to an uncalibrated run, in the present setting, EnCDA does 

show improvements. Increasing the numerical efficiency of the framework even with very 

large state vectors, as it could be the case for a global EnCDA, is still under development. 

After submitting this paper, the run time of the assimilation setup was already strongly 

improved by avoiding reading in and writing to the hard disc, reducing the run time of a 

global GRACE assimilation by 75%. It is well-known that EnKF performance relies very 

much on the proper representation of model state and, in this case, parameter correlations, and 

this in turn depends on ensemble size. Our EnKF may improve in the given setting for larger 

ensembles, but this is indeed computationally very demanding at the global scale. This has 

been expressed in section 5.7 (now section 6 Conclusions), where we write “Likely because 

of the very small ensemble size that was feasible in EnCDA due to its severe computational 

burden, parameter sets and model output uncertainties could not be estimated by EnCDA in 

this study, neither for the calibration period nor for projections for periods without 

observation data.” 

We are convinced that both GLUE and Borg-MOEA (for POC) are not too expensive to be 

applied in global hydrological modeling. With 20,000 ensemble members, the run times for 

six CDA units in our study were 72 hours and 53 hours for POC and GLUE, respectively, 

and, for 32 ensemble members in the case of EnCDA, 72 hours, in the parallel computing 

environments described in the manuscript (section 3.4). We are currently setting up a global 

POC for 712 calibration units (drainage basins) covering and based on runs with a small 

number of calibration units we estimate the total runtime in case of 20,000 ensemble members 

to be 15-20 days. In times of high-performance computing, computational demand for global-

scale multi-variable parameter estimating is very high but not prohibitive. We have added the 

information about runtimes to the revised version of the manuscript, in sections 3.4.1, 3.4.2, 

and 3.4.3. 

RC: But besides, there were other reasons to be surprised by the selected methods and 

approaches. The three methods seem to be presented as calibration strategies, but I would 

argue they are not. GLUE is presented as an optimization technique, while it is merely a way 

of evaluating a sample. Therefore, it should not come as a surprise that Borg-MOEA 

outperforms GLUE; the authors already write themselves that the search algorithm searches in 

the region of interest, while GLUE is just a sample across the whole parameter space. This 

conclusion, therefore, could have been drawn without doing all the computations. The same 

holds true for the EnCDA. An implementation of EnKF is used as a way of calibrating, but 

EnKF has never been developed to serve as a calibration algorithm. It is useful for real-time 

applications, it is useful to identify model structural errors, but it never claims a convergence 

towards an optimal parameter set. Therefore, no surprise that results drifted off in the 

validation period! 

AC: We would argue that both Borg-MOEA and GLUE are calibration strategies; Borg-

MOEA is a technique for identifying (Pareto-) optimal parameter sets, while GLUE is a 

technique for identifying behavioral parameter sets but can be also used to determine (in a 

sub-optimal way compared to POC) optimal (i.e., best-behaving) parameters sets. In this way, 

both are calibration techniques. GLUE approaches were called calibration, for example, in 

Marmy et al. (2016) and Wu and Jansson (2013).  

With the help of both reviews, we noticed that we did not clearly formulate the role of GLUE 

(with a random ensemble of parameter sets) as compared to the role of POC (in which a 

search algorithm derives an ensemble of Pareto-optimal parameter sets). In the revised 

manuscript, we therefore modified the storyline and improved the insufficiently clear 



presentation of the roles of Borg-MOEA and GLUE. Before formulating the study objective, 

we now state (citing the additional reference Blasone et al. 2008) that optimal parameter sets 

are best identified using a search algorithm, as used in POC, while GLUE serves, in the face 

of equifinality, to identify behavioral parameter sets and thus to quantify the model output 

uncertainty. We also revised the conclusions accordingly. 

Regarding EnKF, it is true that EnKF has never been developed as a calibration algorithm, 

and our research investigated whether EnKF can serve to estimate parameters of a global 

hydrological model using observations of streamflow and TWSA. EnKF has been 

demonstrated in various studies to improve the realism of global hydrological model 

simulations when compared to various observations, and this includes our own EnKF 

implementation at global scale with WaterGAP, which however, only takes into account 

TWSA observations (Gerdener et al., 2023). It is one of the standard techniques when 

multiple data sets, at different spatial scales and with possibly differing temporal or spatial 

coverage are to be combined, such as in meteorological or hydrological reanalyses. Various 

papers (e.g., Wanders et al., 2014, cited in the manuscript) have shown, typically in regional 

or local settings, that the EnKF variants are capable of estimating model parameters along 

with model states. Therefore, we believe it is perfectly reasonable to ask whether EnKF is 

able, at the same time, to estimate model parameters albeit maybe not as efficient as a 

dedicated calibration approach. Some of the reasons why EnKF has the potential for improved 

parameter estimation are provided in section 2 of the manuscript and our response to the 

previous comment. 

We agree that from a parameter calibration perspective, deriving an optimal parameter set 

from EnKF seems complicated. POC and GLUE generate constant parameter sets. However, 

we hypothesize that the updates of the water storages could stabilize the parameters and 

compensate for model structure deficiencies and climate input uncertainties. EnKF generates 

a time series of estimates of parameter sets, which is often misunderstood as generating time-

variable parameters. This time series which in the ideal cases converges may include typical 

seasonal signals, and such signals point towards model errors and are difficult to interpret. In 

this study, we decided to apply the parameter estimates of the last month of the calibration 

phase during the validation phase, to be able to compare the different ensemble-based 

approaches for reducing and quantifying uncertainty — which is the aim of this study. Future 

studies will investigate how seasonal signals in the parameter estimates can be used to (1) 

trace back model errors and (2) develop empirical error models, which can include 

parameterizations depending on the season. 

RC: Besides these methodological issues, the study is hard to read and follow. Only at page 

20 (!) I felt that I got a more concrete picture of what was done. And even then, it read a lot 

like a diary. For instance, first I was very very surprised at line 520 that also a multiplication 

factor for precipitation and net radiation were included as calibration parameters. Then I was 

not so surprised to find out that the multiplication factor for precipitation came out as most 

sensitive (l. 582), to then I was surprised again to learn that it was still left out of the 

calibration (l. 585). I know that there is an argument for documenting failures etc., but I don’t 

think this is helpful at all at this level: just leave this kind of stuff out, don’t bother the reader 

with it. Furthermore, there is some kind of strange mixed use of NSE and KGE. The NSE is 

optimized, but the KGE components are evaluated. Why not directly optimizing the KGE 

then? That would lead to different results compared to the NSE. Figure 3 shows NSE’s if I 

read the axes, but the caption refers to some kind of KGE. 



AC: To increase the readability, we decreased the length of the main text. We have moved 

section 2.4 “Comparison of the three calibration approaches” (lines 276-377, including Table 

1) to the Appendix. Regarding the description of the GRACE TWSA data, we moved the text 

on leakage (lines 483 to 508) to the supplement. 

Regarding the reviewer’s comment on the method descriptions reading as a diary, our goal 

was to make transparent to the reader the many decisions that need to be taken in parameter 

estimation. Regarding the process of deciding on whether to include the precipitation 

multiplier P-PM as a calibration parameter, it has nothing to do with documenting a failure 

but with explicating why it was excluded even though model results are sensitive. While we 

could remove this from the manuscript, reviewer 1 wanted to get a deeper discussion on the 

selection of calibration parameters and is interested in a more detailed explanation for the 

exclusion (R1 comment 0). We therefore revised the part on the precipitation multiplier as 

follows (section 3.2.4): 

P-PM was excluded from calibration even though it ranked first in all six CDA units for 

almost all four test variables, for various reasons. First, the precipitation input is 

perturbed in EnCDA, and an additional multiplier would lead to a double-counting of 

precipitation uncertainty. Second, mean annual precipitation in the CDA units of 

WaterGAP climate forcing does not differ much from the values derived from the high-

resolution (4 km) PRISM dataset for the USA (Table S1). 

Table S1. Comparison of mean annual precipitation in the CDA units for the calibration period 2003-2012 

between GPCC-WFDEI used to drive WaterGAP and the high-resolution (4 km) PRISM* dataset for the 

USA [mm/yr] 

CDA unit 

GPCC-

WFDEI PRISM 

Ratio 

PRISM/GPCC-

WFDEI 

(potential P-PM) 

I Arkansas 705 667 0.95 

II Missouri 595 622 1.04 

III Upper MRB 951 878 0.92 

IV Ohio 1313 1242 0.95 

V Lower MRB 1286 1254 0.97 

MRB 839 829 0.99 

*https://climatedataguide.ucar.edu/climate-data/prism-high-resolution-spatial-climate-data-united-states-

maxmin-temp-dewpoint  

Regarding the mixed use of NSE and KGE: NSE is used for parameter estimation only in the 

case of POC and GLUE, but not in the case of EnCDA (where the objective function cannot 

be freely set, see Table A1, but is a weighted RMSE), and we evaluated the results using both 

NSE and the three components of KGE (not KGE itself).  We think it is particularly 

informative to evaluate the result of a parameter set optimization using a certain objective 

function/performance metric by another performance metric, in particular the three KGE 

components as these are well interpretable (correlation: temporal shifts; bias: difference in 

means; variability ratio: difference in temporal variability). In the revised version, we have 

added a sentence to section 4.1 to indicate how the improvement in the correlation coefficient 

by the calibration can be interpreted: Thus, calibration mainly leads to improved timing of 

monthly streamflow and TWSA. 



We have corrected the typo (KGE) in the caption of Figure 3, it should read NSE. 

RC: Finally, there is no conclusion-section, just a very extensive “Discussion and 

conclusion”, which is already indicative that there are too many separate aspects that are 

aimed to be tackled in this study. This study aimed to serve the GHM community, but the 

kind of strategies and questions explored here have already been extensively addressed and 

investigated by regional scale models – with the same conclusions as this study. Now the 

challenge remains how to translate this to models applied to larger areal extends, and this 

study does not seem to contribute to that.   

 

AC: We will follow your suggestion (and that of the other reviewer) to split the “Discussion 

and Conclusions” section and organize the last part of the manuscript as follows: 

5 Discussion (with sections 5.1 to 5.6) 

6 Conclusions (which includes, in revised form, what is now 5.7 Outlook). 

To better show the scientific contribution and the wider relevance of our results for other 

(global) hydrological modelers, we have completely rewritten the conclusions, focusing on 

what was learned regarding methods for global-scale reduction and quantification of the 

output uncertainty of global hydrological models by the three approaches for multi-variable 

parameter estimation POC, GLUE and EnCDA. We also concluded that based on the 

experiences in our study, run times for a global-scale application for, e.g., 1000 basins are not 

prohibitive.  

However, due to the high computational demand, those many behavioral parameter sets could 

not be used in climate change impact studies, neither if just WaterGAP were applied and 

certainly not in a multi-model ensemble with various global hydrological models. Regarding 

the consideration of parameter ensembles in global-scale climate change impact studies, we 

have therefore changed our conclusion and replaced the last paragraph of the main text 

“We recommend including, in future freshwater-related climate change impact studies, a 

behavioral ensemble of parameter sets as determined by the GLUE approach even though this 

will require a significant computational effort. This should reduce the underestimation of 

modeling uncertainty by traditional multi-model studies. As shown in the multi-model/multi-

parameter study for the Colorado River basin by Mendoza et al. (2016), parameter sets with a 

similar performance during the calibration period may provide very different projections of 

climate change hazards, and the impact of parameter uncertainty is similar to the impact of 

hydrological model selection. “ 

by the following: 

Climate change impact studies for individual river basins have shown that parameter 

sets with a similar performance during the calibration period may provide very 

different projections of climate change hazards, and that the impact of parameter 

uncertainty can be similar to the impact of the selected climate or hydrological model 

selection (Mendoza et al., 2016; Her et al., 2019). Therefore, consideration of parameter 

uncertainty by running the hydrological model with a number of behavioral parameter 

sets helps to reduce the underestimation of the uncertainty of potential climate change 

impact. However, producing a global-scale ensemble of potential future changes in 



hydrological variables by combining not only multiple greenhouse gas emissions 

scenarios, global climate models and global hydrological models (as is currently done in 

ISIMIP) but also model-specific behavioral parameter sets is currently infeasible. The 

main reason is that behavioral (or even optimal) parameter sets have not yet been 

determined for any global hydrological model in a spatially explicit manner at the global 

scale. In addition, the computational effort for such a multi-model/multi-parameter 

ensemble is likely prohibitive. 

RC: Overall, the methods seem to be not in line with the goals that this study aims to achieve, 

and the written presentation requires substantial improvement.    

AC: As described above, in the revised version we have changed the title and framed the three 

methods and study goals more clearly. And we have improved the presentation, mainly by 

reformulating, restructuring and shortening; we have fully rewritten the conclusions and 

strongly revised the abstract, the introduction, section 5.1 and the conclusions. 
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