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Abstract. Precipitation is a vital key element in various studies of hydrology, flood prediction, drought monitoring, and 

water resources management. The main challenge in conducting studies over remote regions with rugged topography is that 

weather stations are usually scarce and unevenly distributed. However, open-sourced satellite-based precipitation products 25 

(SPPs) with the suitable resolution provide alternative options in these data-scarce regions, typically associated with high 

uncertainty. To reduce the uncertainty of individual satellite products, we have proposed a D-vine Copula-based Quantile 

Regression (DVQR) model to merge multiple SPPs with rain gauges (RGs). DVQR model was employed during the 2001-

2017 summer monsoon seasons and compared with two other quantile regression methods based on the Multivariate Linear 

(MLQR) and the Bayesian Model Averaging (BMAQ), respectively, and two traditional merging methods: the simple 30 

modeling average (SMA) and the one-outlier-removed average (OORA) using the descriptive and categorical statistics. Four 

SPPs have considered in this study namely: Tropical Applications of Meteorology using SATellite (TAMSAT v3.1), the 

Climate Prediction Center MORPHing Product Climate Data Record (CMORPH-CDR), Global Precipitation Measurement 

(GPM) Integrated Multi-satellite Retrievals for GPM (IMERG v06) and Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Network (PERSIANN-CDR). The bilinear (BIL) interpolation technique was applied to 35 

downscale SPPs from coarse to fine spatial resolution (1 km). The rugged topography region of the Upper Tekeze-Atbara 
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Basin (UTAB) in Ethiopia was selected as the study region. The results indicated that the precipitation data estimates with 

DVQR, MLQR, and BMAQ models and traditional merging methods outperformed the downscaled SPPs. Monthly 

evaluations reveal that all products perform better in July and September than in June and August due to precipitation 

variability. DVQR, MLQR, and BMAQ models exhibit higher accuracy than the traditional merging methods over UTAB. 40 

The DVQR model substantially improved all the statistical metrics (CC = 0.80, NSE = 0.615, KGE = 0.785, MAE = 1.97 

mm/day, RMSE = 2.86 mm/day, and PBIAS = 0.96 %) considered over BMAQ and MLQR models. However, DVQR 

model does not outperform BMAQ and MLQR models in the probability of detection (POD) and false alarm ratio (FAR), 

although it has the best frequency bias index (FBI) and critical success index (CSI) among all the employed models. Overall, 

the newly proposed merging approach improves the quality of SPPs and demonstrates the value of the proposed DVQR 45 

model in merging multiple SPPs over rugged topography regions such as UTAB.  

1 Introduction 

Optimizing water resource management requires accurate and reliable meteorological information at fine spatial and 

temporal resolution. Precipitation is vital in various studies, such as weather forecasts, hydrology, agricultural practices,  

flood prediction, drought monitoring, and water resources management (Zhang et al., 2016; Kimani et al., 2017; Sun et al., 50 

2018; Amjad et al., 2020). However, due to the lack of rain gauges, the rugged topography, and the significant spatial 

variability in precipitation, accurate precipitation estimation in remote areas such as the Nile River Basin is extremely 

difficult (Kimani et al., 2017).  Accurate high spatiotemporal resolution precipitation data in regions with rugged topography 

are precious for hydrological simulation and extreme event investigations. However, precipitation data contain significant 

uncertainty due to the limitation in precipitation recording and estimation methods (Alfieri et al., 2014; Qi et al., 2019). 55 

The conventional precipitation data from the rain gauges lack sufficient spatial and temporal resolution, particularly in the 

rugged topography (Yong et al., 2010; Ma et al., 2015; Kidd et al., 2017). In tropical climates, at least one gauge in 600-900 

km2 of flat areas and 100-250 km2 of mountain regions is recommended for ground precipitation measuring networks (Wmo, 

1994), but this criterion was usually not met in practice (Worqlul et al., 2017). The UTAB is located in a tropical region, is 

one of the major tributaries of the transboundary Nile River (See Fig. 1). It has inadequacy in the rain gauge network, with 60 

only one gauge per 1400 km2 (Gebremicael et al., 2019). The main difficulty in capturing the spatial precipitation variability 

in this basin lies in the uneven distribution of meteorological stations (Belete et al., 2020). Alternate precipitation data from 

SPPs are highly desirable for extreme precipitation estimates (Barrett and Martin, 1981). Although the use of SPPs at 

regional and global scales has increased substantially over recent years (Belete et al., 2020; Reda et al., 2021), the quality of 

SPPs over a complex topography is still problematic since these SPP products are significantly influenced by climate 65 

conditions, seasonal variability, precipitation type, and complex topography (Kidd and Huffman, 2011; Hou et al., 2014). 

SPPs data were used as input to the hydrologic modeling for simulations of extreme flood events (Li et al., 2015; Fenta et al., 

2018; Muhammad et al., 2018). While these studies highlighted the capability of SPPs in flood modeling, they also reported 
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inherent uncertainties in SPPs (Zubieta et al., 2017), such as the under-/over-estimation of SPPs, which may lead to high 75 

uncertainties in streamflow simulation and drought monitoring (Reda et al., 2021; Gebremicael et al., 2022; Reda et al., 

2022). The quality of individual SPPs is improved at longer time\scales (monthly to daily); they still encounter several 

inevitable errors such as over/underestimations, indicating that there is still potential for further enhancement of their 

performance. 

Several efforts have been made to increase the accuracy of precipitation estimates with SPPs, including improvements in 80 

calibration methods, bias correction, and merging multiple SPPs (Sun et al., 2016; Chao et al., 2018; Muhammad et al., 

2018; Rahman et al., 2018; Kumar et al., 2019). The merging approach is a concept of blending multiple products into a 

single new product (Rahman et al., 2018). The merging techniques were employed recently throughout many statistic 

approaches, substantially increasing the accuracy of hydrological models (Raftery et al., 2005). The merging procedures of 

multiple SPPs produce a single source of precipitation data, characterized by the highest performance than all or a majority 85 

of individual SPPs and demonstrated their abilities in hydrological applications and extreme events (Rahman et al., 2020c; 

Rahman et al., 2021). The most commonly traditional merging methods are simple model averaging (SMA), one-outlier-

removed average (OORA), inverse error variance weighting (IEVW), and the optimized weight average (OWA). These 

methods indicate light improvement in accuracy compared to original SPPs (Shen et al., 2014; Yumnam et al., 2022). 

Therefore, a bias-correction of errors is needed to improve the quality and spatial distribution of precipitation data. 90 

Recently, merging multiple satellites, reanalysis, explanatory variables, and ground products has opened up new possibilities  

to improve the estimation of precipitation data across scarce regions at all temporal scales (Mastrantonas et al., 2019). 

However, the merging approaches to create a new product are still in their early stages. A few research explored different 

techniques for merging multiple SPPs from various sources, such as Geographically Weighted Regression (GWR) (Chao et 

al., 2018), Stepwise Regression (STER) (Xiao et al., 2020), Bayesian model averaging (BMA) (Ma et al., 2018), Wavelet 95 

Transform Analysis (Pradhan et al., 2015), and Kriging-based algorithms (Manz et al., 2016). The efficacy of these merging 

techniques in raising precipitation estimate quality has been demonstrated. However, most of them are based on strong (ad 

hoc) hypotheses that might not be accurate in practice (Wu et al., 2020). The dynamic and cluster BMA reflect the highest 

potential and capabilities to produce high-quality merged precipitation data and performed better than traditional merging 

methods (e.g., IEVW, OWA, and OORA) and row satellite data (e.g., Multi-Source Weighted-Ensemble Precipitation-100 

MSWEP) in the Tibetan Plateau-China (Ma et al., 2018), Pakistan (Rahman et al., 2020a; Rahman et al., 2020b), and 

Vamsadhara River basin-India (Yumnam et al., 2022). But the model produces a combined single-value prediction by 

averaging the deterministic model outputs linearly, which does not accurately reflect the contributions of each input variabl e 

(Jennifer et al., 1999). Several Machine Learning (ML) developed to merge multiple satellite products, such as Random 

Forest (Nguyen et al., 2021a), Multilayer Perceptron Neural Network (Kolluru et al., 2020), Support Vector Machine 105 

(Kumar et al., 2019), and Quantile Regression Forests (Bhuiyan et al., 2018; Bhuiyan et al., 2019); which reflect their ability 

to capture the nonlinear relationship between the variables. Therefore, whether these approaches affect the spatiotemporal 

scales of pattern distribution of precipitation data is unclear. 
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The copula approach has proven successful in hydrometeorological applications for modeling the multivariate nonlinear 

interdependence of input data using the joint, marginal distributions. Successful applications of the bivariate copulas in 110 

correcting the error of satellite precipitation products have been reported. For instance, (Sharifi et al., 2019) employed a t-

copula approach to adjust the additive errors to improve SPP quality. The multivariate Gaussian copula approach was 

utilized to reduce the uncertainty of precipitation data for the bias correction of two SPPs (Moazami et al., 2014). The D-vine 

Copula-based Quantile Regression (DVQR) algorithm was introduced by Kraus and Czado (2017) to predict quantile 

conditional with the highest flexibility. The DVQR algorithm demonstrated a high ability and potential to capture the 115 

nonlinear relationships between the variables in different hydrology applications such as reference evapotranspiration 

estimation (Abdallah et al., 2022), soil moisture modeling (Nguyen et al., 2021b), and drought prediction (Wu et al., 2022). 

The above studies reflect the advantage of DVQR model in term of capturing the complex nonlinear relationship among 

input variables. Therefore, using the DVQR model in term of merging multiple SPPs with RGs across the rugged topography 

which can provide a robustness model. 120 

Here in this study, we aim to merge daily precipitation data from multiple individual SPPs with RGs and meteorological and 

topographical variables over the upper Tekeze-Atbara basin (UTAB) to reduce the uncertainty of individual SPPs. Multiple 

SPPs have been employed in this study namely TAMSAT v3.1, CMORPH-CDR, IMERG v06, and PERSIANN-CDR. The 

explanatory variables of meteorological and topographical are wind speed (WS), elevation (DEM), slope (SLP), aspect 

(ASP), hill-shade (HSHD), and surface soil moisture (SSM). We suggest using the DVQR model for the first time to merge 125 

daily precipitation data during the summer monsoon (June, July, August, and September) from 2001 to 2017. We further 

compared the performance of the DVQR model with MLQR and BMAQ models and two traditional merging methods (SMA 

and OORA) using descriptive and categorical statistics.   

2 Study area 

The Tekeze Atbara Basin (TAB) is one of the main tributaries of the Nile River as shown in Fig1. The current study was 130 

conducted at the Upper Tekeze Atbara Basin (UTAB), which is located in the northwestern part of Ethiopia, between 

longitudes 37° 30ʹ 0" – 39° 48ʹ 0" E and latitudes 11° 30ʹ0" – 14° 18ʹ 0" N, with a contributing area of approximately 45,694 

km2, with more than 50% of the total area located at an elevation from 2000 to above 3000 m.a.s.l. The TAB contributes 

13% of the entire Nile Basin area and 14% of the annual flow at the High Aswan Dam in Egypt (Gebremicael et al., 2019). 

A complex topography of the basin characterizes by significant variation of elevation from 833 to 4530 m.a.s.l, based on 135 

topographic information of the Digital Elevation Model (DEM).  

The basin is characterized by a semi-arid climate in its northern and eastern parts and a semi-humid characteristic climate in 

the southern region. Precipitation over the basin occurs from June to September, accounting for more than 70% of annual 

precipitation, ranging from 400 mm/yr in the eastern part to 1200 mm/yr in the southwestern parts of the basin (Gebremicael 
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et al., 2019). The mean annual temperature over the basin ranges from 11oC to 31oC in the eastern mountain region to the 

western lowlands, and the highest mean monthly temperature accurses in May, and the lowest is in December. 

 165 

Figure 1. Map of the study area (Upper Tekeze Atbara Basin) and location of the rain gauge stations  

 

3 Methodology 

3.1 Data collection and processing 

RGs and SPPs data from CMORPH-CRD, IMERG v06, TAMSAT v3.1, and PERSIANN-CDR were gathered over 17 years, 170 

during summer monsoon (June, July, August, and September) from January 2001 to December 2017. 
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3.1.1 Rain gauge data 180 

The daily precipitation data from ten rain gauging stations from January 2001 to December 2019 was provided by the 

Ethiopian National Meteorological Agency (NMA). Most of the RGs are localized in complex topography in the 

northeastern part of TAB; however, they are very sparse in the western, as present in Fig.1. Moreover, Table 1 summarizes 

the geographical locations of rain gauge, elevation, and statistical data characteristics. There are more than 75 rain gauge 

observations across the upper TAB. However, most of these gauges have more than 50% missing records, and some of the 185 

gauging stations went out of service (Gebremicael et al., 2019). 

 

Table 1. Geographical locations of rain gauge observations, elevation, and statistical characteristics based on a daily scale, 

including min, max, mean, and standard deviation (SD) from January 2001 to December 2017 over the UTAB. 

Station 

Name 
Latitude Longitude Elevation(m) Min(mm) Max (mm) Mean(mm) SD (mm) 

Adigrat 14.278 39.447 2509 0.0 86.0 2.8 6.9 

Adigudem 13.16 39.13 1703 0.0 52.6 3.3 7.0 

Adwa 14.181 38.878 1919 0.0 84.9 5.4 9.0 

Akxum 14.134 38.747 2171 0.0 76.7 4.9 9.5 

Gonder 12.521 37.432 1986 0.0 70.5 7.6 10.0 

Hselam 13.35 39.27 2241 0.0 78.0 4.3 7.8 

Lalibela 12.039 39.04 2419 0.0 74.0 5.3 8.3 

Maichew 12.784 39.534 2433 0.0 61.0 3.8 7.7 

Mekele 13.471 39.531 2249 0.0 60.2 3.7 7.3 

Shire 14.102 38.295 1902 0.0 101.8 7.2 10.7 

3.1.2 Remote sensing data 190 

CMORPH is another National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) 

product. In contrast to other items, the CMORPH product does not utilize an algorithm to combine passive microwave 

(PMW) and infrared (IR) estimates but instead utilizes IR information to predict the temporally and spatial evolution of 

clouds rather than rainfall estimations (Joyce et al., 2004). It employs precipitation developing a sense from low orbit PMW 

measurements and propagates these characteristics using both temporal and spatial pixel density IR data.  This method is 195 

highly adaptable because it allows adding any precipitation estimate using PM satellites. The CMORPH-CRD was used in 

this study. 

The GPM IMERG V06 produces precipitation with a fine spatial resolution (0.1o) and half-hourly temporal resolution 

between 60o S and 60o N. The Dual-frequency phased array Precipitation Radar (DPR). A multi-channel GPM Microwave 
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Imager (GMI) data are used to validate and integrate precipitation estimates from different PMW satellites to create 

precipitation using the IMERG algorithms. Furthermore, the PERSIANN-CCS algorithm and morphing technique were 205 

employed to compute the precipitation rate from microwave-calibrated infrared IR and global gridded precipitation 

(Huffman et al., 2015; Tan et al., 2019). In this study, the GPM IMERG Final Run V06 was used.  

The PERSIANN-CDR product estimates the precipitation by utilizing the Infrared Brightness temperature archive from 

GridSat-B1 (Hsu et al., 1997). The Global Precipitation Climatology Project (GPCP) version 2.2 product was integrated with 

estimated precipitation from the PERSIANN algorithm for bias correction at the spatial resolution of (2.5° × 2.5°) and spatial 210 

covers 60N – 60S from 1983 to the present for daily, monthly, and yearly. The present study utilized the PERSIANN-CDR 

product, which was downloaded free of charge from the Center for Hydrometeorology and Remote Sensing (CHRS).   

The University of Reading for Africa established the TAMSAT, based on Thermal Infrared Imagery from Meteosat satellite 

and observation gauges with fine spatial resolution 0.0375 approximately (4km) from 1983 to the present for daily, pentadal, 

decadal, and monthly (Maidment et al., 2014; Maidment et al., 2017). The TAMSAT product version 3.1 was utilized in the 215 

present study.  

3.1.3 Explanatory variables 

The Digital Elevation Model (DEM) data employed in this study was obtained from Shuttle Radar Topography Mission 

(SRTM) with a spatial resolution (90m) and rescaled to 1 km using BIL interpolation techniques. In contrast, the topographic 

variables were derived from DEM, including slope (SLP), aspect (ASP), and hill-shade (HSHD), as shown in Fig.2. The 220 

ASP characterized across the basin from -1o to 358.3o, whereas the SLP range from 0.0o to 45.7o, and HSHD from 8 to 254.  

Daily 10-meter wind speed (WS) at 0.25o spatial resolution was obtained from the ERA5, the fifth generation of the 

European Center for Medium-Range Weather Forecasts (ECMWF). In contrast, the daily surface soil moisture (SSM) was 

obtained from Global Land Evaporation Amsterdam Model (GLEAM 3.6a) with a spatial resolution of 0.25o during the 

summer monsoon (JJAS). Recently, some investigations indicated that using WS and SSM can improve the estimation of 225 

SPPs in various regions (Chao et al., 2018; Kumar et al., 2019).  Further, the BIL techniques were applied to downscale the 

WS and SSM from coarse resolution (0.25o) to the fine resolution of 0.01o. The average WS across the basin ranges from 6.4 

m/s to 9.4 m/s, while the SSM ranges from 0.24 m3/m3 to 0.39 m3/m3, as presented in Fig.2e and f. 
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Figure 2. Spatial pattern distribution of explanatory variables include (a) elevation, (b) slope, (c) aspect, (d) hill-shade, (e) 

average wind speed, and (f) average surface soil moisture during summer monsoon from 2001 to 2017, over the UTAB. 235 

3.2 Merging models 

Fig.3 presents the workflow of the merged SPPs approach developed in this study. First, the BIL technique is applied to 

downscale original SPPs from coarse to fine spatial resolution (0.01o) during the summer monsoon from 2001 to 2017. 

Second, three DVQR, MLQR, and QBMA models were employed to merge downscaled SPPs with RGs and coupled with 

explanatory variables over the UTAB. The following is a more detailed description. 240 
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 245 

Figure 3. The flowchart of merging multiple SPPs with RGs coupled with explanatory variables using quantile regression 

models and traditional merging methods during summer monsoon over the UTAB. 

3.2.1 D-vine copula-based quantile regression (DVQR) model 

Copulas are functions that integrate several univariate marginal distributions into single multivariate distribution, with all 

marginal distributions having the same uniform distribution on the [0,1] (Sklar, 1959; Nelsen, 2005). Copulas have 250 

previously been used to tackle complex issues in a variety of fields, including hydrology (Pham et al., 2016), engineering 

(Niemierko et al., 2019), and finance (Bouyé and Salmon, 2009). Most previous studies applied the copula approach in 

hydrology to model the dependence among two variables; however, only a few research studies have attempted to address 
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the issues associated with high dimensions. According to Aas et al. (2009), the vine copula, also known as Pair copula 

construction considered a versatile technique for constructing a higher dimensional. Regular vine copulas are divided into 

two types: canonical (C-vine) and drawable vine (D-vine) copulas (Kurowicka et al., 2005); thus, each model explains how 

to decompose the density uniquely. The hierarchy of a D-vine copula is made up of nesting trees.  Fig.4 represents a 260 

hierarchical tree D-vine structure with five variables.  

 

 

Figure 4. Five-dimensional D-vine copula structure based on five variables, four trees, and ten edges. 

           265 

To our knowledge, this study is the first to use D-vine copula-based quantile regression (DVQR) to merge multiple SPPs 

with RGs and coupled with explanatory variables across rugged topography like the UTAB. The DVQR model was first 

modeled using historical data and integrating numerous variables selected to estimate the conditional quantile. Compared to 

popular copula approaches such as elliptical copulas, parametric and Archimedean copulas, it offers dependency modeling of 

high-dimensional and may represent nonlinear interactions among variables (Niemierko et al., 2019).  270 

The ultimate focus of the DVQR model is to estimate the quantile of a randomly variable 𝑌~𝐹𝑌 Given the output 𝑥1, … 𝑥𝑛, 𝑛 

of specific predictors 𝑋1, … 𝑋𝑛  , 𝑛 > 1 (Kraus and Czado, 2017). As follows, D-vines are utilized to simulate the joint 

distribution of  𝑌, 𝑋1, … , 𝑋𝑛 and compute the conditional quantile function of 𝑌 given 𝑋1, … , 𝑋𝑛 for 𝛼 ∈  (0, 1) as the inverted 

of the conditional distribution function: 

𝑞𝛼(𝑥1, … , 𝑥𝑛) = 𝐹𝑌|𝑋1,…,𝑋𝑛

−1 (𝛼|𝑥1, … , 𝑥𝑛),         (1) 275 

where 𝑉 = 𝐹𝑌(𝑌) and 𝑈𝑗 = 𝐹𝑗(𝑋𝑗) are defined as independent variables with implementations 𝑢𝑗 = 𝐹𝑗(𝑥𝑗). The right-hand 

side of Eq. (1) can be stated as follows using Sklar's theorem (Sklar, 1959): 

𝐹𝑌|𝑋1,…,𝑋𝑛

−1 (𝛼|𝑥1, … , 𝑥1) = 𝐹𝑌
−1(𝐶𝑉|𝑈1,…,𝑈𝑛

−1 (𝛼|𝑢1, … , 𝑢𝑛)),       (2) 
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Lastly, Eq. (1) can be modified to include the calculated marginals 𝐹̂𝑌, 𝐹̂1, … 𝐹̂𝑛 and vine copula 𝐶̂𝑉|𝑈1,…,𝑈𝑛
, as follows:  

𝑞̂𝛼(𝑥1, … , 𝑥𝑛) = 𝐹̂𝑌
−1(𝐶̂𝑉|𝑈1,…,𝑈𝑛

−1 (𝛼|𝑢̂1, … , 𝑢̂𝑛)),        (3) 

where 𝑢̂𝑗 = 𝐹̂𝑗(𝑥𝑗)  represents the integral probability transformation computed using the continuous kernel smoother 

estimator (Parzen, 1962). The Onepar copula (ONC) family is selected for fitting copula selection because it is simple and 

flexible in terms of catching natural dependencies between hydrologic elements (Chen and Guo, 2019), which minimizes the 285 

computation costs when merging SPPs with fine spatial resolution. In the present study, simply five common ONCs are 

used: the Gaussian (GA), Clayton (C), Frank (F), Gumbel (GU), and Joe (J) copulas.  

To predict daily precipitation data, the DVQR model merges multiple SPPs using all data of the interdependence 

relationships among components. To reduce the high computational cost, we limited our testing to modeling at only five 

quantile levels (5th, 25th, 50th, 75th, and 90th). Using Eq. (3) and the parameters  𝛼 =  [0.05, 0.25, 0.50, 0.75, 0.90], 290 

conditional quantiles of the merged precipitation data were produced. Descriptive statistics, including CC, NSE, MAE, and 

RMSE, were selected as key criteria to measure the reliability and sensitivity of merged precipitation data at various quantile 

levels. 

3.2.2 Multivariate Linear-based Quantile Regression (MLQR) model  

The MLQR model was proposed by Koenker and Bassett (1978), detailed description of the concept can be found in 295 

Koenker and Ng (2005). The method employs procedures equivalent to linear regression to compute the quantile levels of a 

dependent variable based on predictor factors. The critical distinction between the MLQR model and linear regression is that 

minimizing is done based on conditional predicted quantile levels, while linear regression takes the conditional mean into 

consideration of the dependent variables. MLQR model is explained intuitively as fitting a linear model and bisecting the 

input so that 100 q% of the outputs are below the prediction values of the trained model. In practice, this is accomplished b y 300 

training a linear model to the information and reducing the average quantile score.  

3.2.3 Quantile Bayesian Model Averaging (QBMA) model 

BMA is a technique that combines estimated forecast density from various models to generate a new prediction Probability 

Density Function (PDF). The predicted distribution of a merged precipitation data 𝑥, provided the observed rain gauges 𝑋 

during the training phase and the independent estimates of 𝑘 models, can be stated using the theory of total probability as 305 

follows: 

𝑝(𝑥|𝑀1, 𝑀2, … , 𝑀𝐾=𝑘, 𝑋) =  ∑ 𝑝(𝑀𝑖|𝑋)𝑝(𝑥|𝑀𝑖 , 𝑋)𝑘
𝑖=1 ,       (4) 

where 𝑝(𝑥|𝑀𝑖 , 𝑋)  represents the posterior distribution of 𝑥  provided the predicted values 𝑀𝑖  and training dataset 𝑋 . 

Moreover,  𝑝(𝑀𝑖|𝑋) represents the likelihood of predicted data offered to the observed data 𝑋 during the training phase, 
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which further indicates the weight of every model 𝑀𝑖 . Hence the output of the BMA model is the mean weight of the 

predicted PDF produced from each model. Because the model predictions vary over time, Eq (4) can be phrased as: 

𝑝(𝑥𝑡|𝑀1
𝑡 , 𝑀2

𝑡 , … , 𝑀𝑘
𝑡 , 𝑋) =  ∑ 𝑤𝑖𝑝(𝑥𝑡|𝑀𝑖

𝑡 , 𝑋)𝑘
𝑖=1 ,                                                          (5) 

Note that w denotes the quality of the model throughout the training phase. To address this equation, it is generally 315 

acknowledged that such posterior distribution follows the Gaussian distribution with the average of observed data 𝑓𝑖
𝑡 while 

the variance 𝜎𝑖
2, related to SPPs, like that 𝑝(𝑥𝑡|𝑓𝑖

𝑡 , 𝑋)~ 𝑔(𝑥𝑡|𝑓𝑖
𝑡  , 𝜎𝑖

2). BMA probabilistic modeling improves reliability by 

including weights from higher efficient precipitation products. BMA probabilistic modeling improves reliability by having 

consequences from higher efficient precipitation products. It is essential to emphasize that for non-Gaussian forecasting 

variables (SPPs, RGs, and explanatory variables), a powerful transformation (e.g., Box-Cox) is employed to translate them 320 

both from their natural space toward a Gaussian space. The variability and weight of each prediction model can be 

determined using the log-likelihood formula. The Expectation-Maximization (EM) model was proposed by Raftery et al. 

(2005) to optimize Eq. (6), which cannot be calculated analytically. 

𝑙(𝑤1, 𝑤2, … , 𝑤𝑘 , 𝜎2) = 𝑙𝑜𝑔(∑ 𝑤𝑖 . 𝑝(𝑥|𝑓𝑖, 𝑋)𝑘
𝑖=1 ),        (6) 

The EM algorithm execution instructions are laid out (Duan et al., 2007). The EM algorithm was employed to calculate 325 

unique weights (𝑤𝑘). With an accurate assessment of weights for each precipitation product, it is simple to construct merged 

precipitation data using Eq. (4). The quantile-based BMA (BMAQ) technique transfers data from predictors to estimate the 

target at various quantile levels. In the present study, we suggest employing the BMAQ model to produce merged 

precipitation data-based quantile levels and consider this for comparison with other models. 

3.2.4 Traditional merging methods  330 

This study adopted two commonly traditional merging methods of multiple SPPs, Simple Model Averaging (SMA) and one-

outlier-removed average (OORA), as given in Eqs. (7) and (8), respectively. 

𝑅𝑚𝑒𝑟𝑔 =  
1

𝑛
∑ 𝑆𝑎𝑡𝑖

𝑛
𝑖=1  ,           (7) 

𝑅𝑚𝑒𝑟𝑔 =  
1

𝑁−1
∑ 𝑆𝑎𝑡𝑖

𝑛−1
𝑖=1  ,           (8) 

where 𝑅𝑚𝑒𝑟𝑔  represent the merged precipitation data, 𝑛  is the number of satellite products, 𝑆𝑎𝑡𝑖 represent the SPPs.  335 

3.2.5 Merging criteria 

In this study, daily precipitation data from four SPPs were employed to merge with RGs and explanatory variables during the 

summer monsoon from 2001 to 2017 over the UTAB. We developed ten models to train the DVQR, MLQR, and BMAQ 
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models based on nine stations (90%) and predict merged precipitation data at the target station (10%), and switch the target 

station with one of the training stations (Mohammadi and Aghashariatmadari, 2020).  

The DVQR, MLQR, and QBMA models were optimized during the training phase to produce good modeling performance 

while avoiding overfitting. Hyperparameter optimization searches the optimal parameters of applied models that govern their 

performance (Abdalla et al., 2021). The best quantile level was selected to predict accurate and realistic merged precipitation 345 

data by testing five quantile levels (0.05, 0.25, 0.50, 0.75, 0.90) for DVQR and MLQR models, while the BMAQ model was 

tested using mean quantile, and (0.1, 0.5, 𝑎𝑛𝑑 0.9). 

3.3 Performance evaluation 

Several descriptive and categorical statistics were employed to assess the performance and robustness of the DVQR, MLQR, 

and BMAQ models in terms of merging multiple SPPs over the rugged topography (UTAB). The selected descriptive 350 

statistics include correlation coefficient (CC), Kling Gupta Efficiency (KGE), Nash-Sutcliffe efficiency (NSE), mean 

absolute error (MAE), and root mean square error (RMSE). CC and KEG to measure the agreement between SPPs and RGs 

data, the range of CC and KEG from 0 to 1, whereas 1 indicates perfect match and 0 indicates no agreement. The NSE is a 

technique for determining the relative magnitude of SPPs compared to RGs, and it is widely used to assess the accuracy of a 

hydrological simulation (Nash and Sutcliffe, 1970). However, NSE was recently used to evaluate the precipitation data (Lu 355 

et al., 2019); it ranges from −∞ to 1, whereas 1 indicates high credibility and good quality of SPPs, and a value less than 0 

indicates the SPPs not credible and has low quality. The MAE and RMSE measure the mean error of SPPs while the perfect 

values close to 0. 

𝐶𝐶 =  
∑ (𝑆𝑖−𝑆̅)(𝑂𝑖−𝑂̅)𝑛

𝑖=1

√∑ (𝑆𝑖−𝑆̅)2 ∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

𝑛
𝑖=1

 ,            (9) 

𝐾𝐺𝐸 = 1 − √(𝐶𝐶 − 1)2 + (
𝑐𝑑

𝑟𝑑
− 1)2 + (

𝑐𝑚

𝑟𝑚
− 1)2 ,                                                (10) 360 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

 ,           (11) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑆𝑖−𝑂𝑖)𝑛

𝑖=1

∑ (𝑂𝑖)𝑛
𝑖=1

 ,           (12) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑆𝑖 − 𝑂𝑖|𝑛

𝑖=1  ,           (13) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑆𝑖 − 𝑂𝑖)2𝑛

𝑖=1  ,          (14) 
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where 𝑆 is satellite estimates precipitation and 𝑂 represent the precipitation at RGs at day, station 𝑖; the 𝑆̅ and 𝑂̅ represent the 

average precipitation from SPPs and RGs, respectively; 𝑛 the whole day of the study period. The 𝑐𝑑 and 𝑟𝑑 represent the 

average precipitation data, while 𝑐𝑚 and 𝑟𝑚 are the standard deviation of SPPs and RGs, respectively. 

Additionally, we employed different categorical statistics to assess the capability of original and merged SPPs in capturing 

varied precipitation events, including the probability of detection (POD), false alarm ratio (FAR), frequency bias index 370 

(FBI), and critical success index (CSI). Successful detection of precipitation events ought to have POD, CSI, and FBI values 

of 1 and a FAR value of 0, which have the definitions found in Eqs. (15), (16), (17), and (18), respectively. 

𝑃𝑂𝐷 =
H

H + M
 ,            (15) 

𝐹𝐴𝑅 =
F

F + H
 ,            (16) 

𝐹𝐵𝐼 =
H + F

H + M
 ,            (17) 375 

𝐶𝑆𝐼 =
H

𝐻 + 𝑀 + 𝐹
 ,            (18) 

where 𝐻 represents the precipitation events captured by the RGs and the original and merged SPPs at the same time, 𝑀 

represents the precipitation events captured by the RGs but not by the original and merged SPPs, and 𝐹  means the 

precipitation events captured by the original and merged SPPs but not by the RGs. 

The categorical skill statistics were employed for five classes of precipitation intensity, including no precipitation ([0, 1) 380 

mm/day), light precipitation ([1, 5) mm/day), moderate precipitation ([5, 10] mm/day), heavy precipitation ([10, 25] 

mm/day), and extreme precipitation (25 mm/day) as shown in Table 2 (Amjad et al., 2020). 

 

Table 2. Classification of precipitation intensity 

Name Precipitation intensity (mm/day) 

No precipitation < 1 

Light precipitation 1 - 5 

Moderate precipitation 5 - 10 

Heavy precipitation 10 - 25 

Extreme precipitation > 25 
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4 Results  385 

4.1 Downscaling evaluation 

This study applied the Bilinear (BIL) interpolation technique to downscale SPPs and explanatory variables from coarse 

spatial resolution (0.1o and 0.25o) to fine resolution (0.01o) to reduce the unbalance scale between pixel and rain gauge point. 

We evaluated the performance of SPPs before and after the interpolation step against the RGs data to check if the 

interpolation techniques improved the quality of the original SPPs data. The results presented in Table 3 show that the CC 390 

and PBIAS of downscaled SPPs range from 0.36 to 0.44 and from -8.1 to 13.3, respectively.  In contrast, the CC and PBIAS 

value of original SPPs range from 0.34 to 0.43 and from -8.4 to 16.8, respectively. These results indicate that the BIL 

interpolation technique has little influence on improving the original SPPs data. The spatial pattern distribution of mean 

annual precipitation data of original and downscaled SPPs is shown in Fig. 5. Hence, the downscaling step offers a solid data 

foundation for training and testing for a later stage of the merging approach (Chen et al., 2018).  395 

 

Table 3. Mean values of CC, MAE, RMSE, and PBIAS for original (ORI) and downscaled (BIL) SPPs by BIL interpolation 

techniques at the daily scale during the summer monsoon from 2001 to 2017 over the UTAB. 

Products Method CC MAE RMSE PBIAS % 

IMERG 
ORI 0.43 5.0 9.4 -9.9 

BIL 0.44 4.9 9.0 -9.6 

CMORPH 
ORI 0.43 5.0 8.9 -8.3 

BIL 0.44 4.9 8.6 -7.9 

TAMSAT 
ORI 0.41 5.0 8.6 -8.4 

BIL 0.42 4.9 8.3 -8.1 

PERSIANN 
ORI 0.34 4.9 8.5 16.8 

BIL 0.36 4.8 8.4 13.3 
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 410 

Figure 5. Spatial pattern distribution of mean monsoon precipitation during 2001-2017 over the UTAB for (a-d) original 

SPPs with coarse spatial resolution and (e-h) downscaled SPPs by BIL interpolation technique for IMERG, CMORPH, 

TAMSAT, and PERSIANN, respectively. 

4.2 Spatial distribution of monsoon precipitation 

A critical factor in evaluating the abilities of satellite based-precipitation products (SPPs) is the characterization of spatial 415 

heterogeneity of precipitation data (Haile et al., 2009). The minimum monsoon precipitation is 256, 290, 300, and 324 mm, 

while the maximum monsoon precipitation data is 817, 1014, 1250, and 1384 mm for PERSIANN, TAMSAT, IMERG, and 

CMORPH, respectively, as shown in Fig. 5e-h. The mean monsoon precipitation in UTAB ranges from 337 to 928 mm from 

2001 to 2017, with a decreasing pattern distribution from southwest to northeast, depending on the 10 RGs used in this 

study. The spatial pattern distribution maps of mean monsoon precipitation of downscaled SPPs (Fig. 5e-h) indicate 420 

over/underestimation of precipitation data as compared to RGs in Fig. 6a. In particular, TAMSAT, IMERG, and CMORPH 

products are remarkable with overestimation precipitation data; while PERSIANN product characterized with 

underestimation of precipitation data during the summer monsoon. The spatial pattern distribution produced by SPPs varies 
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significantly from that of RGs. As a result, the SPPs are incapable of capturing the large spatial scale attributes of the 

seasonal mean precipitation pattern distribution.  

 435 

Figure 6. Spatial pattern distribution of mean monsoon precipitation (in mm) from 2001 to 2017, for (a) Rain Gauge, (b) 

DVQR, (c) BMAQ, (d) MLQR, (e) SMA, and (f) OORA over the UTAB. 

 

Additionally, we compared the spatial distribution produced by various merging approaches present in Fig . 6b-f. The 

minimum mean monsoon precipitation is 443, 479, 480, 250, and 243 (mm), while the maximum mean monsoon 440 

precipitation is 851, 804, 780, 953, and 1013 (mm) for DVQR, BMAQ, MLQR, SMA, and OORA models, respectively. We 

observed that both traditional merging methods (SMA and OORA) produced the amount of precipitation with 

underestimation and overestimation across the northeastern and southwestern parts of the region, respectively. Therefore, 

adopting another emerging approach is necessary because traditional methods failed to produce satisfactory precipitation 
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during summer monsoons over the UTAB. Compared to RGs, the results obtained by the DVQR model performed better 450 

than BMAQ and MLQR models at capturing monsoon precipitation's magnitude and spatial variability. Overall, the merged 

precipitation is uniform with RGs, acknowledging the efficiency and reliability of the applied merging approaches. 

 

 

Figure 7. Boxplot distribution of CC, MAE, RMSE, and PBIAS of individual downscaled SPPs and merged precipitation 455 

data based on traditional merging methods and quantile regression models during summer monsoon from 2001 to 2017 over 

the UTAB. 
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Figure 8. Comparison of average basin precipitation data of individual downscaled SPPs; (a) PERSIANN, (b) TAMSAT, (c) 460 

CMORPH, and (d) IMERG, traditional merged methods; (e) OORA and (f) SMA, and quantile regression models; (g) 

MLQR, (h) BMAQ, and (i) DVQR during summer monsoon from 2001 to 2017 over the UTAB. 
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4.3 Overall performance merged precipitation data 

The present study proposed to merge multiple SPPs with RGs and explanatory variables during the summer monsoon from 465 

2001 to 2017 over the UTAB, as described in the methods section. Fig. 7 shows the boxplot of descriptive statistics 

distributions of original SPPs and merged precipitation data with traditional merging methods and quantile regression 

models against the RGs. The main criteria of the boxplot divide the dataset into four items based on maximum, minimum, 

median, and two quartiles, whereas the median, which divides the statistical data into two equal portions, is indicated by th e 

middle horizontal line. The mean CC values of downscaled SPPs characterize by 0.44, 0.44, 0.43, and 0.36 for IMERG, 470 

CMORPH, TAMSAT, and PERSIANN, respectively. The results indicate that the daily precipitation data of downscaled 

SPPs have poor performance (CC < 0.5) against RGs. Moreover, the SMA and OORA methods performed better than 

downscaled SPPs, whereas the CC is 0.49 and 0.47, respectively. They stated that the SMA and OOR methods are more 

accurate than individual SPPs over the Tibetan Plateau. The CC of the three quantile regression models is 0.49, 0.50, and 

0.50 for DVQR, BMAQ, and MLQR models, respectively. Overall, quantile regression models' CC of merged precipitation 475 

data is higher than traditional merging methods (SMA and OOR) and individual downscaled SPPs.  

The merged precipitation data by quantile regression models recorded the lowest MAE and RMSE than downscaled SPPS, 

as shown in Fig. 7b and c. The DVQR model indicates lower MAE, whereas the BMAQ model indicates lower RMSE. In 

addition, based on the distribution of PBIAS in Fig. 7d, the PERSIANN is characterized by underestimation, while IMERG, 

CMORPH, and TAMSAT are characterized by overestimating precipitation data. Among the merging approach, the DVQR 480 

model shows the lowest PBIAS flowed by SMA, BMAQ, MLQR, and OORA models. The merged precipitation data by the 

DVQR model generally showed better performance than BMAQ and MLQR models.  

Fig. 8 shows the scatter plots of downscaled SPPs and merged precipitation data based on traditional merging methods and 

quantile regression models against the RGs at a daily temporal scale during the summer monsoon for the whole period.  The 

NSE value of downscaled SPPs is less than 0.3, which is regarded as unsatisfactory (Sen Gupta and Tarboton, 2016), 485 

whereas the KGE is less than 0.6 for all downscaled SPPs. The merged precipitation data in Fig. 8e-i is relatively close to the 

1:1 line, whereas the downscaled SPPs, as in Fig. 8a-d, exhibit the most scattered distribution of precipitation data, 

indicating that quality after merging is changed for the better. Furthermore, when it comes to merging approaches, the 

quantile regression models fit better than traditional merging methods and downscaled SPPs. On the other hand, the KGE 

values are 0.744, 0.749, 0.771, 0.657, and 0.785, while the NSE values are 0.501, 0.484, 0.543, 0.617, and 0.615 for the 490 

OORA, SMA, MLQR, BMAQ, and DVQR models, respectively. The NSE value greater than 0.5 is considered satisfactory 

(Sen Gupta and Tarboton, 2016); results suggest that the quantile regression models have significantly improved the 

accuracy of downscaled SPPs. Likewise, the merged precipitation data by the DVQR model was strongly correlated with the 

RGs over the UTAB, which was more abundantly clear than in MLQR and BMAQ models, as seen in Fig. 8i.  

Table 4 shows the overall performance of downscaled SPPs, traditional methods, and quantile regression models against 495 

RGs during the summer monsoon from 2001 to 2017 over the UTAB. The CC of downscaled SPPs is 0.66, 0.71, 0.72, and 
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0.75 for PERSIANN, TAMSAT, CMORPH, and IMERG, respectively, while for traditional merging methods are 0.76 and 

0.77 for OOAR and SMA methods, respectively. However, the quantile regression models outperformed traditional merging 

methods and downscaled SPPs, whereas CC values are 0.79, 0.79, and 0.80 for MLQR, BMAQ, and DVQR models, 

respectively. The results indicate that all merged precipitation data have remarkable linear correlations with the RGs than the 520 

downscaled SPPs. In addition, the quantile regression models notably with high accuracy than merged precipitation data by 

traditional methods and downscaled SPPs. The MAE and RMSE of original SPPs decrease by traditional merging methods 

(OOAR and SMA) and quantile regression models (MLQR, BMAQ, and DVQR), while the DVQR model observed with 

lower MAE and RMSE than other merging models. Overall, the PBIAS of downscaled SPPs indicates 15.81%, -4.74%, -

8.43%, and -6.61%; for PERSIANN, TAMSAT, CMORPH, and IMERG, respectively. The PBIAS of SMA and OORA 525 

methods, characterized by -0.99% and 9.24%, respectively, indicate that the SMA method improved the estimation of 

precipitation data. Generally, the SMA method showed the smallest PBIAS than the OORA method and downscaled SPPs. 

Regarding quantile regression models, the PBIAS of DVQR, MLQR, and BMAQ models are 0.96%, -2.94%, and -6.61%, 

respectively. The DVQR model generally reduces the large error of downscaled SPPs and notably performs better than 

MLAR and BMAQ models. 530 

 

Table 4. Descriptive statistics (CC, MAE, RMSE, and PBIAS) of original daily SPPs (PERSIANN, TAMSAT, CMOPRH, 

and IMERG) and merged precipitation data using traditional merging methods (OORA and SMA) and quantile regression 

models (MLQR, BMAQ, and DVQR) during summer monsoon from 2001 to 2017 over the UTAB. 

Datasets CC MAE (mm/day) RMSE (mm/day) PBIAS (%) 

PERSIANN 0.66 2.66 3.94 15.81 

TAMSAT 0.71 2.74 4.07 -4.74 

CMORPH 0.72 2.58 3.99 -8.43 

IMERG 0.75 2.46 3.89 -6.61 

OORA 0.76 2.19 3.26 9.24 

SMA 0.77 2.21 3.31 -0.99 

MLQR 0.79 2.14 3.12 -6.61 

BMAQ 0.79 2.10 2.85 -2.94 

DVQR 0.80 1.97 2.86 0.96 

 535 

Generally, the DVQR model shows better performance among the merging approaches with significant improvements in all 

metrics. The Taylor diagram was used to evaluate the performance of merging approaches to further debits of a 

comprehensive evaluation of accuracy. Based on the CC, centered RMSE, and standard deviation (SD) statistical metrics, the 

Taylor diagram quantified the degree of correspondence between RGs and estimated precipitation (Wang et al., 2021). The 
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closest points of estimated precipitation to the point of RGs represent the best accuracy. In addition, the Taylor diagram is  a 

highly useful tool for analyzing the meteorology dataset for comparing the performance between different datasets (Chao et 

al., 2021). Fig. 9 shows the Taylor diagram of various precipitation sources, including downscaled SPPs, traditional merging 

methods, and quantile regression models during the summer monsoon over the UTAB. The IMERG product exhibit the 

highest performance than other downscaled SPPs during summer monsoon over the UTAB. The merged precipitation data 550 

outperformed the downscaled SPPs over the UTAB. Moreover, the BMAQ and DVQR models show higher performance 

than others in terms of CC and RMSE; however, the BMAQ model indicates a lower SD than other models. The BMAQ and 

DVQR models outperformed all downscaled SPPs (IMERG, CMORPH, TAMSAT, and PERSIANN) according to CC, 

RMSE, and SD across the UTAB.  

 555 

 

Figure 9. Taylor diagram of downscaled SPPs including PERSIANN (red triangle), TAMSAT (blue triangle), CMORPH 

(green triangle), and IMERG (orange triangle), traditional methods including OORA (yellow dot) and SMA (dark blue dot), 

and quantile regression models including MLQR (deep pink dot), BMAQ (aqua dot), and DVQR (brown dot)); for the whole 

period of summer monsoon from 2001 to 2017. The radial black dash line indicates the CC, the red line arc is RMSE, and 560 

the radial blue dot arc is the standard deviation. 

 

Nevertheless, the nonlinear DVQR model shows high potential capability in merging SPPs than the linear quantile 

regression (MLQR model) over the UTAB. Nevertheless, it is inappropriate to figure out conditional quantiles scattered 

beyond the center range. However, the D-vine copula approaches provide a way to forecast highly nonlinear conditionally of 565 

the quantiles at the tails. 
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Figure 10. Taylor diagram of downscaled SPPs including PERSIANN (red triangle), TAMSAT (blue triangle), CMORPH 

(green triangle), and IMERG (orange triangle), traditional methods including OORA (yellow dot) and SMA (dark blue dot), 

and quantile regression models including MLQR (deep pink dot), BMAQ (aqua dot), and DVQR (brown dot); for the whole 

period of summer monsoon from 2001 to 2017; for (a) June, (b) July, (c) August, and (d) September. 585 

 

4.4 Monthly scale assessment 

To show how the DVQR model improves the quality of merged precipitation data, we also evaluate the degree-of-fit of the 

daily precipitation data for each month during the summer monsoon over the UTAB. Fig. 10 shows the group of Taylor 

diagram to compare the quality of different precipitation sources according to CC, RMSE, and SD during June, July, August, 590 
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and September.  Among the downscaled SPPs, the IMERG product showed the highest performance than other products 

during June, July, and August, while the CMORPH product outperformed during September. In general, the merged 

precipitation data by quantile regression models and traditional merging methods outperforms the downscaled SPPs across 

the UTAB. Interestingly, the merged precipitation data by traditional merging methods, including SMA and OORA, 595 

indicates better performance next to quantile regression models during all summer monsoon months, as seen in Fig . 10. 

In addition, the results in Fig. 10 confirmed that the quantile regression models have high potential and are more capable of 

merging precipitation data during each month of summer monsoon across rugged topography like the UTAB. Among the 

quantile regression models, the DVQR model outperforms the BMAQ and MLQR models based on the highest CC, lower 

RMSE, and close SD to RGs. In particular, as we showed in Fig. 10a-d, the CC of the DVQR model is the highest, 600 

characterized by 0.68, 0.74, 0.71, and 0.75, while the CC of the BMAQ model values is 0.67, 0.74, 0.71, and 0.74 during 

June, July, August, and September, respectively. Overall, The DVQR model showed an equivalent capability and 

effectiveness to the BMAQ model based on the Taylor diagram, but it was far more capable than the MLQR model and 

traditional merging methods. 

Fig. 11 shows the cross-validation of original SPPs and merged precipitation data against the RGs for each month during the 605 

summer monsoon from 2001 to 2017 over the UTAB. The DVQR model has the smallest PBIAS close to zero across July, 

August, and September than other merging models and downscaled SPPs products. The BMAQ model shows the smallest 

PBIAS during June; also, we can denote that it has the highest bias during September, increasing the overestimation of 

precipitation data. In other words, traditional merging methods and quantile regression models dramatically increase the 

monthly NSE of merged precipitation data compared to downscaled SPPs, as shown in Fig. 11b. The NSE value of 610 

downscaled SPPs range from -0.30 to 0.32 is regarded as unsatisfactory. In contrast, the traditional merging methods range 

from 0.27 to 0.39, which is less than 0.5 is also indicated as unsatisfactory (Sen Gupta and Tarboton, 2016). Moreover, in 

terms of quantile regression models, the NSE value of the MLQR model is 0.41, 0.34, 0.41, and 0.49, while for the BMAQ 

model is 0.43, 0.54, 0.50, and 0.38; and for the DVQR model is 0.42, 0.50, 0.49, and 0.53, for June, July, August, and 

September, respectively. The results indicate that the BMAQ and DVQR models improved precipitation data quality (NSE) 615 

during July, August, and September by higher than 0.50, which is considered satisfactory.  

Furthermore, the KGE for traditional merging methods and quantile regression models is improved to 0.64–0.72 and 0.68–

0.75, respectively, when compared with the downscaled SPPs (approximately 0.47–0.71) as shown in Fig. 11c. Suggesting 

that the two merging approaches bring the quality of downscaled SPPs to a great level. Among the quantile regression 

models, the DVQR model exhibits a higher KGE value than BMAQ and MLQR models during all summer monsoon 620 

months. Our results indicate that the DVQR model has higher accuracy than the BMAQ model during the summer monsoon. 

This reflects the capability and robustness of high-dimensional (10-D) vine copula to capture nonlinear relationships among 

the input variables. Overall, the performance of statistical metrics, including PBIAS, NSE, and KGE, during July and 

September was better than in June and August over the UTAB. 

 625 
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Figure 11. Cross-validation statistical metrics of (a) PBIAS, (b) NSE, and (c) KGE for downscaled daily SPPs (PERSIANN, 

TAMSAT, CMOPRH, and IMERG) and merged precipitation data using traditional merging methods (OORA and SMA) 640 

and quantile regression models (MLQR, BMAQ, and DVQR) during June (green column), July (light green column), August 

(dark orange column), and September (red column) from 2001 to 2017 over the UTAB. 

 

4.5 Precipitation detection assessment 

Fig. 12 shows the detection of precipitation amount based on the different intensities of downscaled SPPs, traditional 645 

merging methods, and quantile regression models during the summer monsoon over the UTAB. Fig. 12a shows the POD 

decrease by increasing the precipitation intensity for all the data.  The POD denotes binary response estimations rather than 
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continuous target estimations. The CMORPH product has the maximum POD among the original SPPs, whereas the 650 

PERSIANN product has the lowest across all precipitation intensities. In traditional merging methods, the SMA method 

showed higher POD than the OORA method and downscaled SPPs across all precipitation intensities. The BMAQ model 

indicates the highest POD during light precipitation, the DVQR model shows the highest POD during moderate 

precipitation, and the MLQR model outperforms during heavy and extreme precipitation. The quantile regression models 

exhibit higher POD than traditional methods and original SPPs. Which reported that the POD of traditional merging methods 655 

(SMA and OORA) and the BMA model were higher than single-downscaled SPPs 

Fig. 12b shows the CSI of all precipitation intensities for downscaled SPPs, traditional merging methods, and quantile 

regression. Similarly, the CSI is the same as POD, which decreases by increasing the precipitation intensity for all 

precipitation data across the UTAB. Among the downscaled SPPs, the CMORPH exhibits the highest CSI during light 

precipitation, while the IMERG product indicates the highest CSI during the other precipitation intensities. In other words, 660 

the SMA method shows higher CSI than the OORA method across all the precipitation intensities in traditional merging 

methods during the summer monsoon. Furthermore, among the quantile regression models, the DVQR model exhibits high 

CSI, while the MLQR model performed better for extreme precipitation greater than 25 mm. However, the BMAQ model 

has the lowest CSI across all precipitation intensities.  

Fig. 12c shows the FAR of all precipitation intensities for original SPPs, traditional merging methods, and quantile 665 

regression. The FAR increased by increasing the precipitation intensities. Among the downscaled SPPs, the IMERG product 

indicates the lowest FAR. At the same time, the CMORPH has the lowest expected precipitation of greater than 25 mm. In 

traditional merging methods, the OORA method outperforms the SMA method, which exhibits the lowest FAR across all the 

precipitation intensities. The DVQR model is characterized by the lowest FAR for light and moderate precipitation, while 

the BMAQ model shows the lowest CSI for heavy and extreme precipitation data.  670 

In terms of showing the underestimation and overestimation of detecting precipitation intensity, the FBI was used, as seen in 

Fig. 12d. The FBI changed from overestimation to underestimation by increasing the precipitation intensities. The IMERG 

product showed better FBI with very light overestimation to underestimation, followed by CMORPH and TAMSAT 

products among the downscaled SPPs. At the same time, PERSIANN exhibits high underestimation during heavy and 

extreme precipitation. The OORA method characterizes by the lowest overestimation of precipitation than the SMA method 675 

during light and moderate precipitation. In contrast, the SMA method indicates the lowest underestimation of precipitation 

than the OORA method during heavy and extreme precipitation. The DVQR model is more capable of detecting light 

precipitation than other quantile regression models, while the MLQR model showed the lowest FBI than other models during 

all precipitation intensities except during light precipitation. The downscaled SPPs, including IMERG and CMORPH 

products, outperformed the two traditional merging methods and quantile regression models across all precipitation 680 

intensities over the UTAB. Generally, the results of POD, CSI, FAR, and FBI across different precipitation intensities 

showed the benefits of merging the individual SPPs with RGs to reduce uncertainty and improve the detection of 

precipitation events.  
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 695 

 

Figure 12. Comparison of detection precipitation amount of downscaled SPPs including PERSIANN (deep pink line), 

TAMSAT (magenta line), CMORPH (dark blue line), and IMERG (light blue line), traditional methods including OORA 

(aquamarine line) and SMA (light green line), and quantile regression models including MLQR (yellow line), BMAQ 

(orange line), and DVQR (red line); for (a) POD, (b) CSI, (c) FAR, and (d) FBI during summer monsoon from 2001 to 2017 700 

over the UTAB 
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Figure 13. Sensitivity analysis of DVQR model throughout CC, NSE, MAE, and RMSE for merged precipitation data 

estimated at different quantile levels during summer monsoon over the UTAB. 705 

 

4.6 Sensitivity analysis of merged SPPs using the DVQR model 

The sensitivity analysis was carried out in this section to examine the accuracy of merged precipitation data using the DVQR 

model based on different quantile levels. Fig. 13 shows the radar plots of statistical metrics of mean merged precipitation 

data against the RGs during summer monsoon over the UTAB. The results reflected that the quality of merged precipitation 710 

data varies across the quantile levels. For example, the q0. 5, q0.75, and q0.9 notably have the highest CC while the q0.05 

has the lowest CC, as shown in Fig.13a. The median quantile level (q0.5) is remarkable with positive NSE regarded as a 

satisfactory and q0.75 characterize with zero. In contrast, other quantile levels are characterized by high negative NSE as 

seen in Fig. 13b; however, q0.05 and q0.90 are marked by the highest error. 
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          In comparison, the median quantile level (q0.5) indicates the lowest error in MAE and RMSE, as shown in Fig. 13c 

and d. Overall, the q0.5 level is remarkable, with the highest accuracy (CC and NSE) and lowest error (MAE and RMSE) 

than other arbitrary quantiles. The results of estimating merged daily precipitation data across different quantile levels 

reflected the sensitivity of the DVQR model. 

5 Discussion 720 

The scale imbalance between gauge observed precipitation and pixel satellite precipitation estimate is one of the most 

important reasons for the overestimation or underestimation of precipitation data provided by satellite products  

(Gebremedhin et al., 2021). SPPs are subject to mistakes, mostly due to the significant daily precipitation variation and the 

scale imbalance between the RGs (point) and the SPPs (pixel) in UTAB. The uncertainty of SPPs due to mismatching with 

RGs can appear in hydrological simulation, even under the scarce and uneven distribution of RGs across rugged topography 725 

(Rahman et al., 2020c; Gebremicael et al., 2022). The BIL interpolation techniques were used to reduce the scale imbalance, 

and the results reveal that the downscaled precipitation data (1 km) is somewhat better than the original precipitation data. 

This finding is consistent with some previous studies (Din et al., 2008; Ulloa et al., 2017; Gebremedhin et al., 2021) which 

demonstrated that the RGs better correlated with downscale SPPs data using the BIL interpolation techniques than original 

satellite products. 730 

The combination of natural constraints such as latitude, altitude, and slope, with the addition of an orographic effect, 

determines the geographical distribution of precipitation (Blocken et al., 2006). The UTAB is characterized by rugged 

topography and a wide range of elevations; more than 50% of the area is between 2000 and above 3000 meter above Sea 

level. The rugged topography of the UTAB controls the overall pattern of precipitation, suggesting that the distribution of 

atmospheric moisture may be significantly changed to produce different precipitation regimes in the area (Dinku et al., 2007; 735 

Viste and Sorteberg, 2013). Sudden rises or falls in elevation may reduce air mass flow, resulting in a specific microclimate 

near the foothills, or induce an updraft across the mountains, resulting in orographic rains (Dinku et al., 2007). In a 

mountainous area, the superior resolution information can more accurately depict the effects of the topography, the 

movement of moisture, and how precipitation occurs (Chen et al., 2021). The PERSIANN, TAMSAT, IMERG, and 

CMORPH are the most commonly evaluated satellite products across the Nile Basin. Dinku et al. (2008) assessed these 740 

above products over Zimbabwe and Ethiopia, two countries with highly different topographies. Their findings showed that 

SPPs performed poorly daily, especially across Ethiopia's rugged topography. In the case of Dinku et al. (2011), poor 

efficiency might be related to coarser spatial resolution, where pixels aggregated for dry and wet regions can be mistakenly 

recognized as not-rained pixels. The TAMSAT products provided much precipitation with great efficiency, lower random 

errors, and bias < 10%) at different temporal scales across the Lake Tana basin (Fenta et al., 2018). Some studies reported 745 

that the IMERG, CMORPH, PERSIANN, and TAMSAT products have significant errors over the Nile River Basin (Abebe 

et al., 2020; Belete et al., 2020). Our results indicate that the spatial pattern distribution of original and downscaled SPPs 
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indicates overestimation (TAMSAT, IMERG, and CMORPH) and underestimation (PERSIANN) of precipitation data 

compared with RGs across the UTAB. Some studies suggest that it is not possible for SPPs to effectively estimate 

precipitation in high-mountain regions due to the complicated link between cloud top temperature and precipitation in such 750 

areas (Dinku et al., 2008; Haile et al., 2013; Diem et al., 2014; Fenta et al., 2018). In contrast, the underestimation of 

precipitation amount by the thermal infrared (TIR) algorithm is probably caused by shallow circulation with warmer cloud-

top temperatures (Young et al., 2014). (Dinku et al., 2008) linked warm-rain phenomena over complicated topography to the 

underestimating of precipitation by the majority of TIR-based SPPs over significant portions of Ethiopia. The overestimation 

of inputs SPPs to hydrological models significantly overestimated streamflow simulation over the UTAB (Gebremicael et 755 

al., 2022). As a result, the SPPs are incapable of capturing the large spatial scale attributes of the seasonal mean precipitation 

pattern distribution. 

Several approaches were developed based on different statistical techniques to improve the capability of SPPs for capturing 

spatial and temporal precipitation with higher accuracy than original SPPs. For instance, merging precipitation data using 

traditional methods such as SMA and OORA performed better than original SPPs (TRMM, PERSIANN-CDR, CMORPH) 760 

throughout the Tibetan Plateau (Shen et al., 2014) and India's coastal Vamsadhara river basin (Yumnam et al., 2022). The 

SMA-based merging approach performs better than all satellite products regarding hydrological simulation and weather 

variables (Raftery et al., 2005; Duan and Phillips, 2010; Wu et al., 2012). The above studies are in line with our results, in 

which the SMA and OORA-based merging methods reflect the highest performance than downscaled SPPs during different 

temporal scales across the UTAB. Additionally, (Rahman et al., 2020b) constructed new precipitation data from multiple 765 

SPPs using the Dynamic BMA (DBMA) technique and analyzed through different climate regions and seasons across 

Pakistan. In an area with few RGs and substantial precipitation variability, merging RGs with the Weighted Average Least 

Square (WALS) algorithm is a valuable method for improving precipitation data quality in arid and hyper-arid regions 

(Rahman et al., 2020d). The merged precipitation data with the BMA model based on quantile, cluster, and dynamic 

techniques performed better than traditional merged methods (e.g., SMA, IEVW, OWA, and OORA) across the rugged 770 

topography and glacial, humid, arid, and hyper-arid regions in China (Ma et al., 2018), in Pakistan (Rahman et al., 2020a; 

Rahman et al., 2020b) and, in India (Yumnam et al., 2022). In our study, the DVQR-based-merging model produced the 

highest-quality merged precipitation data and outperformed the QBMA and MLQR models, traditional merging methods 

(SMA and OORA), and downscaled SPPs. The high accuracy of the DVQR model is related to the model's capability for 

capturing the non-linear relationship among the variables. In line with our study outcomes, the DVQR model is more capable 775 

of capturing complex relationships between meteorological variables to estimate daily ETo across hyper-arid regions than 

MLQR and QBMA models (Abdallah et al., 2022). Also, (Nguyen et al., 2021b) reported that the DVQR model 

outperformed the MLQR and QBMA models to improve the prediction of soil moisture anomaly using vegetation cover 

across CONUS. The results suggest that adding additional explanatory variables, such as wind speed and surface soil 

moisture, to quantile regression models can significantly reduce the uncertainty of downscaled SPPs (Chao et al., 2018; 780 

Kumar et al., 2019). 
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In conclusion, this study advances our awareness of merging multiple satellite-based precipitations using different 

approaches with RGs and explanatory variables over the rugged topography. However, the approach has several limitations. 

First, the quality and quantity of RGs are poor, with many data gaps. Second, the fixed values of DEM, ASP, SLP, and 

HSHD may affect the data-driven vine copula technique's predicting ability. Third, the D-vine copula structure and ONC 785 

family may not wholly replicate the complex dependencies between variables in the real world.  The suggested DVQR 

model of merging SPPs with RGs and explanatory variables could improve the accuracy and spatial pattern distribution and 

reduce the uncertainty of estimated daily precipitation over the UTAB. This research is essential for enhancing precipitation  

estimation from multiple SPPs, especially in basins with sparse and unevenly distributed RGs and rugged topography such as 

the UTAB. Further research is necessary to get beyond those limitations, expand to greater scales and longer timescales, 790 

other explanatory variables (vegetation cover), and use different copula families. Also, the DVQR model could compared to 

other precipitation merging approaches, such as machine learning techniques (Baez-Villanueva et al., 2020; Shi et al., 2023) 

based on different temporal scales and climate conditions. It can also evaluate the capability of merged precipitation data in 

hydrological simulations and extreme events analysis (Rahman et al., 2020c; Kumar et al., 2021).  

6 Conclusion 795 

SPPs are reasonable alternatives with massive advantages over RGs. However, their applications are restricted due to 

insufficient quality compared to RGs at local and regional scales. The purpose of the present study was to merge multiple 

SPPs with RGs and coupling with explanatory variables using three quantile regression (DVQR, MLQR, and BMAQ) 

models and two traditional merging methods (SMA and OORA). Furthermore, the study provided insight into the capability 

and effectiveness of the DVQR model in merging multiple SPPs over the rugged topography basin. Below are highlighted 800 

findings from the present study: 

(1) Downscaled SPPs cannot capture the large spatial scale attributes of the seasonal mean precipitation pattern 

distribution. While the merging techniques improved the quality of estimated precipitation data. 

(2) The DVQR model show higher improvements than BMAQ and MLQR models in terms of capturing the magnitude 

and spatial variability of monsoon precipitation over the rugged topography (UTAB). The highest improvements are 805 

observed in CC, KGE, NSE, MAE, RMSE, and PBIAS with values of 0.80, 0.785, 0.615, 1.97 (mm/day), 2.68 

(mm/day), and 0.96 (%), respectively. 

(3) Cross-validation clearly shows that both the quantile regression models and traditional merging methods improved the 

estimation of daily precipitation data; however, all quantile regression models exhibit the highest accuracy than 

traditional merging methods.  810 

(4) Based on a monthly analysis, the DVQR model outperformed BMAQ, MLQR, SMA, and OOAR models during June, 

July, August, and September. According to descriptive statistics, the performance of merged precipitation data during 

July and September was better than in June and August over the UTAB. 
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(5) Regarding POD and FAR, the DVQR merging approach does not significantly outperform the BMAQ, and MLQR 820 

approaches, but it has the best CSI and FBI across all precipitation intensities. 

(6) The quantile level in the DVQR model is a sensitive parameter in predicting merged precipitation data, whereas the 

median quantile levels (q0.5) indicate lower uncertainty than other quantile levels. 

 

Data availability 825 

DEM was obtained from Shuttle Radar Topography Mission which can access from https://earthexplorer.usgs.gov/, wind 

speed (WS) was obtained from ERA5 (European Center for Medium-Range Weather Forecasts-ECMWF) can be 

downloaded from (https://cds.climate.copernicus.eu/cdsapp#!/home), while surface soil moisture (SSM) was obtained from 

Global Land Evaporation Amsterdam Model-GLEAM 3.6a is available in https://www.gleam.eu/. The data of CMORPH-

CRD was accessed from https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/, IMERG 830 

V06 was downloaded from https://disc.gsfc.nasa.gov/, PERSIANN-CDR is available in https://chrsdata.eng.uci.edu/, and 

TAMSAT v3.1 was downloaded from http://www.tamsat.org.uk/data. For the rain gauge data, it is not publicly available but 

can be obtained from the Ethiopian National Meteorological Agency website http://www.ethiomet.gov.et/. Three quantile 

regression models was conducted in R Programming Language using vinereg package (https://tnagler.github.io/vinereg/), 

quantreg package (https://cran.r-project.org/web/packages/quantreg/ ) and BMA package(https://cran.r-835 

project.org/web/packages/BMA).  

 

Author contribution 

MA: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Visualization, 

Writing – original draft. KZ: Conceptualization, Investigation, Methodology, Funding acquisition, Supervision, Writing – 840 

review & editing. LC: Validation, Writing – review & editing. AO: Validation, Writing – review & editing. KH: Validation, 

Writing – review & editing. KWR: Data curation, Validation. LL: Validation, Visualization. TLT: Validation, 

Visualization. OMN: Validation, Visualization. 

 

Competing interests 845 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared 

to influence the work reported in this paper. 

 

Acknowledgments 

This study was supported by the National Natural Science Foundation of China (51879067, 51909061), Fundamental 850 

Research Funds for the Central Universities of China (B200204038), National Key Research and Development Program of 

China (2018YFC1508101), Natural Science Foundation of Jiangsu Province (BK20180022), Hydraulic Science and 

Technology Plan Foundation of Shaanxi Province (2019slkj-B1), Hydraulic Science and Technology Plan Foundation of 

Deleted: In conclusion, this study advances our awareness of 

merging multiple satellite-based precipitations using different 855 
approaches with rain gauges and explanatory variables over the 

rugged topography. However, the approach has several limitations. 

First, the quality and quantity of rain gauges are poor, with many 
data gaps. Second, the fixed values of DEM, ASP, SLP, and HSHD 

may affect the data-driven vine copula technique's predicting ability. 860 
Third, the D-vine copula structure and ONC family may not wholly 
replicate the complex dependencies between variables in the real 

world. ¶

The suggested DVQR model of merging SPPs with RGs and 
explanatory variables could improve the accuracy and spatial pattern 865 
distribution and reduce the uncertainty of estimated daily 

precipitation over the UTAB. This research is essential for 
enhancing precipitation estimation from multiple SPPs, especially in 

basins with sparse and unevenly distributed RGs and rugged 

topography such as the UTAB. Further research can focus on 870 
comparing the DVQR model to other precipitation merging 

approaches, such as machine learning techniques based on different 

temporal scales and climate conditions. It can also measure their 
capabilities in hydrological simulations and extreme events analysis. ¶

https://earthexplorer.usgs.gov/
https://cds.climate.copernicus.eu/cdsapp#!/home
https://www.gleam.eu/
http://www.tamsat.org.uk/data
http://www.ethiomet.gov.et/
https://tnagler.github.io/vinereg/
https://cran.r-project.org/web/packages/quantreg/index.html
https://cran.r-project.org/web/packages/BMA/index.html
https://cran.r-project.org/web/packages/BMA/index.html


33 

 

Jiangsu Province (2018055), and Six Talent Peaks Project in Jiangsu Province (NY-004). We also thank the Ethiopian 875 

National Meteorological Agency (NMA) for providing the precipitation data. 

 

 

References 

Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence, Insurance: Mathematics 880 

and economics, 44, 182-198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. 

Abdalla, E. M. H., Pons, V., Stovin, V., De-Ville, S., Fassman-Beck, E., Alfredsen, K., and Muthanna, T. M.: Evaluating 

different machine learning methods to simulate runoff from extensive green roofs, Hydrol. Earth Syst. Sci., 25, 5917-5935, 

https://doi.org/10.5194/hess-25-5917-2021, 2021. 

Abdallah, M., Mohammadi, B., Zaroug, M. A. H., Omer, A., Cheraghalizadeh, M., Eldow, M. E. E., and Duan, Z.: 885 

Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison 

with empirical approaches and machine learning models, Journal of Hydrology: Regional Studies, 44, 101259, 

https://doi.org/10.1016/j.ejrh.2022.101259, 2022. 

Abebe, S. A., Qin, T. L., Yan, D. H., Gelaw, E. B., Workneh, H. T., Kun, W., Liu, S. S., and Dong, B. O.: Spatial and 

Temporal Evaluation of the Latest High-Resolution Precipitation Products over the Upper Blue Nile River Basin, Ethiopia, 890 

Water, 12, 20, https://doi.org/10.3390/w12113072, 2020. 

Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richardson, D., and Salamon, P.: Evaluation of ensemble 

streamflow predictions in Europe, J. Hydrol., 517, 913-922, https://doi.org/10.1016/j.jhydrol.2014.06.035, 2014. 

Amjad, M., Yilmaz, M. T., Yucel, I., and Yilmaz, K. K.: Performance evaluation of satellite- and model-based precipitation 

products over varying climate and complex topography, J. Hydrol., 584, 17, https://doi.org/10.1016/j.jhydrol.2020.124707, 895 

2020. 

Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Beck, H. E., McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., 

Giraldo-Osorio, J. D., and Thinh, N. X.: RF-MEP: A novel Random Forest method for merging gridded precipitation 

products and ground-based measurements, Remote Sens. Environ., 239, 111606, https://doi.org/10.1016/j.rse.2019.111606, 

2020. 900 

Barrett, E. C. and Martin, D. W.: Use of satellite data in rainfall monitoring, Academic press1981. 

Belete, M., Deng, J. S., Wang, K., Zhou, M. M., Zhu, E. Y., Shifaw, E., and Bayissa, Y.: Evaluation of satellite rainfall 

products for modeling water yield over the source region of Blue Nile Basin, Sci. Total Environ., 708, 12, 

https://doi.org/10.1016/j.scitotenv.2019.134834, 2020. 

Bhuiyan, M. A. E., Nikolopoulos, E. I., and Anagnostou, E. N.: Machine learning–based blending of satellite and reanalysis 905 

precipitation datasets: A multiregional tropical complex terrain evaluation, Journal of Hydrometeorology, 20, 2147-2161, 

https://doi.org/10.1175/JHM-D-19-0073.1, 2019. 

Field Code Changed

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.5194/hess-25-5917-2021
https://doi.org/10.1016/j.ejrh.2022.101259
https://doi.org/10.3390/w12113072
https://doi.org/10.1016/j.jhydrol.2014.06.035
https://doi.org/10.1016/j.jhydrol.2020.124707
https://doi.org/10.1016/j.rse.2019.111606
https://doi.org/10.1016/j.scitotenv.2019.134834
https://doi.org/10.1175/JHM-D-19-0073.1


34 

 

Bhuiyan, M. A. E., Nikolopoulos, E. I., Anagnostou, E. N., Quintana-Seguí, P., and Barella-Ortiz, A.: A nonparametric 

statistical technique for combining global precipitation datasets: Development and hydrological evaluation over the Iberian 

Peninsula, Hydrol. Earth Syst. Sci., 22, 1371-1389, https://doi.org/10.5194/hess-22-1371-2018, 2018. 910 

Blocken, B., Poesen, J., and Carmeliet, J.: Impact of wind on the spatial distribution of rain over micro‐scale topography: 

numerical modelling and experimental verification, Hydrological Processes: An International Journal, 20, 345-368, 

https://doi.org/10.1002/hyp.5865, 2006. 

Bouyé, E. and Salmon, M.: Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets, The 

European Journal of Finance, 15, 721-750, https://doi.org/10.1080/13518470902853491, 2009. 915 

Chao, L. J., Zhang, K., Wang, J. F., Feng, J., and Zhang, M. J.: A Comprehensive Evaluation of Five Evapotranspiration 

Datasets Based on Ground and GRACE Satellite Observations: Implications for Improvement of Evapotranspiration 

Retrieval Algorithm, Remote Sens., 13, 18, https://doi.org/10.3390/rs13122414, 2021. 

Chao, L. J., Zhang, K., Li, Z. J., Zhu, Y. L., Wang, J. F., and Yu, Z. B.: Geographically weighted regression based methods 

for merging satellite and gauge precipitation, J. Hydrol., 558, 275-289, https://doi.org/10.1016/j.jhydrol.2018.01.042, 2018. 920 

Chen, L. and Guo, S.: Copulas and its application in hydrology and water resources, Springer2019. 

Chen, Y., Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., and Khadka, N.: Spatial performance of multiple 

reanalysis precipitation datasets on the southern slope of central Himalaya, Atmos. Res., 250, 105365, 

https://doi.org/10.1016/j.atmosres.2020.105365, 2021. 

Chen, Y. Y., Huang, J. F., Sheng, S. X., Mansaray, L. R., Liu, Z. X., Wu, H. Y., and Wang, X. Z.: A new downscaling-925 

integration framework for high-resolution monthly precipitation estimates: Combining rain gauge observations, satellite-

derived precipitation data and geographical ancillary data, Remote Sens. Environ., 214, 154-172, 

https://doi.org/10.1016/j.rse.2018.05.021, 2018. 

Diem, J. E., Hartter, J., Ryan, S. J., and Palace, M. W.: Validation of satellite rainfall products for western Uganda, Journal 

of Hydrometeorology, 15, 2030-2038, https://doi.org/10.1175/JHM-D-13-0193.1, 2014. 930 

Din, S. U., Al-Dousari, A., Ramdan, A., and Al Ghadban, A.: Site-specific precipitation estimate from TRMM data using 

bilinear weighted interpolation technique: An example from Kuwait, J. Arid. Environ., 72, 1320-1328, 

https://doi.org/10.1016/j.jaridenv.2007.12.013, 2008. 

Dinku, T., Ceccato, P., and Connor, S. J.: Challenges of satellite rainfall estimation over mountainous and arid parts of east 

Africa, Int. J. Remote Sens., 32, 5965-5979, https://doi.org/10.1080/01431161.2010.499381, 2011. 935 

Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J., and Ropelewski, C. F.: Validation of high‐resolution satellite rainfal l 

products over complex terrain, Int. J. Remote Sens., 29, 4097-4110, https://doi.org/10.1080/01431160701772526, 2008. 

Dinku, T., Ceccato, P., Grover‐Kopec, E., Lemma, M., Connor, S. J., and Ropelewski, C. F.: Validation of satellite rainfall 

products over East Africa's complex topography, Int. J. Remote Sens., 28, 1503-1526, 

https://doi.org/10.1080/01431160600954688, 2007. 940 

Duan, Q. and Phillips, T. J.: Bayesian estimation of local signal and noise in multimodel simulations of climate change, 

Journal of Geophysical Research: Atmospheres, 115, https://doi.org/10.1029/2009JD013654, 2010. 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

https://doi.org/10.5194/hess-22-1371-2018
https://doi.org/10.1002/hyp.5865
https://doi.org/10.1080/13518470902853491
https://doi.org/10.3390/rs13122414
https://doi.org/10.1016/j.jhydrol.2018.01.042
https://doi.org/10.1016/j.atmosres.2020.105365
https://doi.org/10.1016/j.rse.2018.05.021
https://doi.org/10.1175/JHM-D-13-0193.1
https://doi.org/10.1016/j.jaridenv.2007.12.013
https://doi.org/10.1080/01431161.2010.499381
https://doi.org/10.1080/01431160701772526
https://doi.org/10.1080/01431160600954688
https://doi.org/10.1029/2009JD013654


35 

 

Duan, Q. Y., Ajami, N. K., Gao, X. G., and Sorooshian, S.: Multi-model ensemble hydrologic prediction using Bayesian 

model averaging, Adv. Water Resour., 30, 1371-1386, https://doi.org/10.1016/j.advwatres.2006.11.014, 2007. 

Fenta, A. A., Yasuda, H., Shimizu, K., Ibaraki, Y., Haregeweyn, N., Kawai, T., Belay, A. S., Sultan, D., and Ebabu, K.: 945 

Evaluation of satellite rainfall estimates over the Lake Tana basin at the source region of the Blue Nile River, Atmos. Res.,  

212, 43-53, https://doi.org/10.1016/j.atmosres.2018.05.009, 2018. 

Gebremedhin, M. A., Lubczynski, M. W., Maathuis, B. P., and Teka, D.: Novel approach to integrate daily satellite rainfall 

with in-situ rainfall, Upper Tekeze Basin, Ethiopia, Atmos. Res., 248, 15, https://doi.org/10.1016/j.atmosres.2020.105135, 

2021. 950 

Gebremicael, T. G., Deitch, M. J., Gancel, H. N., Croteau, A. C., Haile, G. G., Beyene, A. N., and Kumar, L.: Satellite-based 

rainfall estimates evaluation using a parsimonious hydrological model in the complex climate and topography of the Nile 

River Catchments, Atmos. Res., 266, 12, https://doi.org/10.1016/j.atmosres.2021.105939, 2022. 

Gebremicael, T. G., Mohamed, Y. A., van der Zaag, P., Gebremedhin, A., Gebremeskel, G., Yazew, E., and Kifle, M.: 

Evaluation of multiple satellite rainfall products over the rugged topography of the Tekeze-Atbara basin in Ethiopia, Int. J. 955 

Remote Sens., 40, 4326-4345, https://doi.org/10.1080/01431161.2018.1562585, 2019. 

Haile, A. T., Habib, E., and Rientjes, T.: Evaluation of the climate prediction center (CPC) morphing technique (CMORPH) 

rainfall product on hourly time scales over the source of the Blue Nile River, Hydrological Processes, 27, 1829-1839, 

https://doi.org/10.1002/hyp.9330, 2013. 

Haile, A. T., Rientjes, T., Gieske, A., and Gebremichael, M.: Rainfall Variability over Mountainous and Adjacent Lake 960 

Areas: The Case of Lake Tana Basin at the Source of the Blue Nile River, J. Appl. Meteorol. Climatol., 48, 1696-1717, 

https://doi.org/10.1175/2009jamc2092.1, 2009. 

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, 

T.: THE GLOBAL PRECIPITATION MEASUREMENT MISSION, Bull. Amer. Meteorol. Soc., 95, 701-+, 

https://doi.org/10.1175/bams-d-13-00164.1, 2014. 965 

Hsu, K. L., Gao, X. G., Sorooshian, S., and Gupta, H. V.: Precipitation estimation from remotely sensed information using 

artificial neural networks, J. Appl. Meteorol., 36, 1176-1190, https://doi.org/10.1175/1520-

0450(1997)036<1176:Pefrsi>2.0.Co;2, 1997. 

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., and Yoo, S.-H. J. A. T. B. D. V.: NASA global 

precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG), 4, 2015. 970 

Jennifer, A., David, M., Adrian, E. R., and Chris, V.: Bayesian model averaging: a tutorial, Statistical science, 14, 382-417, 

1999. 

Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. P.: CMORPH: A method that produces global precipitation estimates 

from passive microwave and infrared data at high spatial and temporal resolution, Journal of Hydrometeorology, 5, 487-503, 

https://doi.org/10.1175/1525-7541(2004)005<0487:Camtpg>2.0.Co;2, 2004. 975 

Kidd, C. and Huffman, G. J. M. A.: Global precipitation measurement, 18, 334-353, 2011. 

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., and Kirschbaum, D. B.: So, how much 

of the Earth’s surface is covered by rain gauges?, Bull. Amer. Meteorol. Soc., 98, 69-78, https://doi.org/10.1175/BAMS-D-

14-00283.1, 2017. 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

https://doi.org/10.1016/j.advwatres.2006.11.014
https://doi.org/10.1016/j.atmosres.2018.05.009
https://doi.org/10.1016/j.atmosres.2020.105135
https://doi.org/10.1016/j.atmosres.2021.105939
https://doi.org/10.1080/01431161.2018.1562585
https://doi.org/10.1002/hyp.9330
https://doi.org/10.1175/2009jamc2092.1
https://doi.org/10.1175/bams-d-13-00164.1
https://doi.org/10.1175/1520-0450(1997)036
https://doi.org/10.1175/1520-0450(1997)036
https://doi.org/10.1175/1525-7541(2004)005
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1175/BAMS-D-14-00283.1


36 

 

Kimani, M. W., Hoedjes, J. C. B., and Su, Z. B.: An Assessment of Satellite-Derived Rainfall Products Relative to Ground 980 

Observations over East Africa, Remote Sens., 9, 21, https://doi.org/10.3390/rs9050430, 2017. 

Koenker, R. and Bassett, G.: Regression Quantiles, Econometrica, 46, 33-50, https://doi.org/10.2307/1913643, 1978. 

Koenker, R. and Ng, P. J. S. T. I. J. o. S.: Inequality constrained quantile regression, 418-440, 2005. 

Kolluru, V., Kolluru, S., Wagle, N., and Acharya, T. D.: Secondary Precipitation Estimate Merging Using Machine 

Learning: Development and Evaluation over Krishna River Basin, India, Remote Sens., 12, 23, 985 

https://doi.org/10.3390/rs12183013, 2020. 

Kraus, D. and Czado, C.: D-vine copula based quantile regression, Comput. Stat. Data Anal., 110, 1-18, 

https://doi.org/10.1016/j.csda.2016.12.009, 2017. 

Kumar, A., Ramsankaran, R., Brocca, L., and Munoz-Arriola, F.: A Machine Learning Approach for Improving Near-Real-

Time Satellite-Based Rainfall Estimates by Integrating Soil Moisture, Remote Sens., 11, 20, 990 

https://doi.org/10.3390/rs11192221, 2019. 

Kumar, A., Ramsankaran, R., Brocca, L., and Muñoz-Arriola, F.: A simple machine learning approach to model real-time 

streamflow using satellite inputs: Demonstration in a data scarce catchment, J. Hydrol., 595, 126046, 

https://doi.org/10.1016/j.jhydrol.2021.126046, 2021. 

Kurowicka, D., Cooke, R. J. M. s., and reliability, m. m. i.: Distribution-free continuous Bayesian belief, 10, 309, 2005. 995 

Li, Z., Yang, D. W., Gao, B., Jiao, Y., Hong, Y., and Xu, T.: Multiscale Hydrologic Applications of the Latest Satellite 

Precipitation Products in the Yangtze River Basin using a Distributed Hydrologic Model, Journal of Hydrometeorology, 16, 

407-426, https://doi.org/10.1175/jhm-d-14-0105.1, 2015. 

Ma, Y. Z., Zhang, Y. S., Yang, D. Q., and Bin Farhan, S.: Precipitation bias variability versus various gauges under different 

climatic conditions over the Third Pole Environment (TPE) region, Int. J. Climatol., 35, 1201-1211, 1000 

https://doi.org/10.1002/joc.4045, 2015. 

Ma, Y. Z., Yang, Y., Han, Z. Y., Tang, G. Q., Maguire, L., Chu, Z. G., and Hong, Y.: Comprehensive evaluation of 

Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan 

plateau, J. Hydrol., 556, 634-644, https://doi.org/10.1016/j.jhydrol.2017.11.050, 2018. 

Maidment, R. I., Grimes, D., Allan, R. P., Tarnavsky, E., Stringer, M., Hewison, T., Roebeling, R., and Black, E.: The 30 1005 

year TAMSAT African Rainfall Climatology And Time series (TARCAT) data set, J. Geophys. Res.-Atmos., 119, 10619-

10644, https://doi.org/10.1002/2014jd021927, 2014. 

Maidment, R. I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex, H., Allan, R. P., Stein, T., Nkonde, E., 

Senkunda, S., and Alcantara, E. M. U.: Data Descriptor: A new, long-term daily satellite-based rainfall dataset for 

operational monitoring in Africa, Sci. Data, 4, 17, https://doi.org/10.1038/sdata.2017.63, 2017. 1010 

Manz, B., Buytaert, W., Zulkafli, Z., Lavado, W., Willems, B., Robles, L. A., and Rodríguez‐Sánchez, J. P.: High‐resolution 

satellite‐gauge merged precipitation climatologies of the Tropical Andes, Journal of Geophysical Research: Atmospheres, 

121, 1190-1207, https://doi.org/10.1002/2015JD023788, 2016. 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

https://doi.org/10.3390/rs9050430
https://doi.org/10.2307/1913643
https://doi.org/10.3390/rs12183013
https://doi.org/10.1016/j.csda.2016.12.009
https://doi.org/10.3390/rs11192221
https://doi.org/10.1016/j.jhydrol.2021.126046
https://doi.org/10.1175/jhm-d-14-0105.1
https://doi.org/10.1002/joc.4045
https://doi.org/10.1016/j.jhydrol.2017.11.050
https://doi.org/10.1002/2014jd021927
https://doi.org/10.1038/sdata.2017.63
https://doi.org/10.1002/2015JD023788


37 

 

Mastrantonas, N., Bhattacharya, B., Shibuo, Y., Rasmy, M., Espinoza-Davalos, G., and Solomatine, D.: Evaluating the 

Benefits of Merging Near-Real-Time Satellite Precipitation Products: A Case Study in the Kinu Basin Region, Japan, 1015 

Journal of Hydrometeorology, 20, 1213-1233, https://doi.org/10.1175/jhm-d-18-0190.1, 2019. 

Moazami, S., Golian, S., Kavianpour, M. R., and Hong, Y.: Uncertainty analysis of bias from satellite rainfall estimates 

using copula method, Atmos. Res., 137, 145-166, https://doi.org/10.1016/j.atmosres.2013.08.016, 2014. 

Mohammadi, B. and Aghashariatmadari, Z.: Estimation of solar radiation using neighboring stations through hybrid support 

vector regression boosted by Krill Herd algorithm, Arab. J. Geosci., 13, 16, https://doi.org/10.1007/s12517-020-05355-1, 1020 

2020. 

Muhammad, W., Yang, H. B., Lei, H. M., Muhammad, A., and Yang, D. W.: Improving the Regional Applicability of 

Satellite Precipitation Products by Ensemble Algorithm, Remote Sens., 10, 19, https://doi.org/10.3390/rs10040577, 2018. 

Nash, J. E. and Sutcliffe, J. V. J. J. o. h.: River flow forecasting through conceptual models part I—A discussion of 

principles, J. Hydrol., 10, 282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. 1025 

Nelsen, R. B.: An Introduction to Copulas-Springer Series in Statistics,  2005. 

Nguyen, G. V., Le, X. H., Van, L. N., Jung, S., Yeon, M., and Lee, G.: Application of Random Forest Algorithm for 

Merging Multiple Satellite Precipitation Products across South Korea, Remote Sens., 13, 17, 

https://doi.org/10.3390/rs13204033, 2021a. 

Nguyen, H. H., Cho, S., Jeong, J., and Choi, M.: A D-vine copula quantile regression approach for soil moisture retrieval 1030 

from dual polarimetric SAR Sentinel-1 over vegetated terrains, Remote Sens. Environ., 255, 112283, 

https://doi.org/10.1016/j.rse.2021.112283, 2021b. 

Niemierko, R., Toppel, J., and Trankler, T.: A D-vine copula quantile regression approach for the prediction of residential 

heating energy consumption based on historical data, Appl. Energy, 233, 691-708, 

https://doi.org/10.1016/j.apenergy.2018.10.025, 2019. 1035 

Parzen, E. J. T. a. o. m. s.: On estimation of a probability density function and mode, The annals of mathematical statistics , 

33, 1065-1076, https://www.jstor.org/stable/2237880 1962. 

Pham, M. T., Vernieuwe, H., Baets, B. D., Willems, P., and Verhoest, N. E. C.: Stochastic simulation of precipitation-

consistent daily reference evapotranspiration using vine copulas, Stochastic Environmental Research and Risk Assessment, 

30, 2197-2214, https://doi.org/10.1007/s00477-015-1181-7, 2016. 1040 

Pradhan, B., Jebur, M. N., Shafri, H. Z. M., and Tehrany, M. S.: Data fusion technique using wavelet transform and Taguchi 

methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery, IEEE Trans. 

Geosci. Remote Sensing, 54, 1610-1622, https://doi.org/10.1109/TGRS.2015.2484325, 2015. 

Qi, W., Zhang, C., Fu, G. T., Sweetapple, C., and Liu, Y. L.: Impact of robustness of hydrological model parameters on 

flood prediction uncertainty, J. Flood Risk Manag., 12, 14, https://doi.org/10.1111/jfr3.12488, 2019. 1045 

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using Bayesian model averaging to calibrate forecast 

ensembles, Mon. Weather Rev., 133, 1155-1174, https://doi.org/10.1175/mwr2906.1, 2005. 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

https://doi.org/10.1175/jhm-d-18-0190.1
https://doi.org/10.1016/j.atmosres.2013.08.016
https://doi.org/10.1007/s12517-020-05355-1
https://doi.org/10.3390/rs10040577
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.3390/rs13204033
https://doi.org/10.1016/j.rse.2021.112283
https://doi.org/10.1016/j.apenergy.2018.10.025
https://www.jstor.org/stable/2237880
https://doi.org/10.1007/s00477-015-1181-7
https://doi.org/10.1109/TGRS.2015.2484325
https://doi.org/10.1111/jfr3.12488
https://doi.org/10.1175/mwr2906.1


38 

 

Rahman, H. L. R., Shang, S. H., Shahid, M., Wen, Y. Q., and Khan, Z.: Application of a Dynamic Clustered Bayesian Model 

Averaging (DCBA) Algorithm for Merging Multisatellite Precipitation Products over Pakistan, Journal of 

Hydrometeorology, 21, 17-37, https://doi.org/10.1175/jhm-d-19-0087.1, 2020a. 1050 

Rahman, K. U., Shang, S. H., and Zohaib, M.: Assessment of Merged Satellite Precipitation Datasets in Monitoring 

Meteorological Drought over Pakistan, Remote Sens., 13, 37, https://doi.org/10.3390/rs13091662, 2021. 

Rahman, K. U., Shang, S. H., Shahid, M., and Li, J.: Developing an Ensemble Precipitation Algorithm from Satellite 

Products and Its Topographical and Seasonal Evaluations Over Pakistan, Remote Sens., 10, 23, 

https://doi.org/10.3390/rs10111835, 2018. 1055 

Rahman, K. U., Shang, S. H., Shahid, M., and Wen, Y. Q.: An Appraisal of Dynamic Bayesian Model Averaging-based 

Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan, Remote 

Sens., 12, 30, https://doi.org/10.3390/rs12010010, 2020b. 

Rahman, K. U., Shang, S. H., Shahid, M., and Wen, Y. Q.: Hydrological evaluation of merged satellite precipitation datasets 

for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan, J. Hydrol., 587, 16, 1060 

https://doi.org/10.1016/j.jhydrol.2020.125040, 2020c. 

Rahman, K. U., Shang, S. H., Shahid, M., Wen, Y. Q., and Khan, A. J.: Development of a novel Weighted Average Least 

Squares-based ensemble multi-satellite precipitation dataset and its comprehensive evaluation over Pakistan, Atmos. Res., 

246, 18, https://doi.org/10.1016/j.atmosres.2020.105133, 2020d. 

Reda, K. W., Liu, X. C., Tang, Q. H., and Gebremicael, T. G.: Evaluation of Global Gridded Precipitation and Temperature 1065 

Datasets against Gauged Observations over the Upper Tekeze River Basin, Ethiopia, J. Meteorol. Res., 35, 673-689, 

https://doi.org/10.1007/s13351-021-0199-7, 2021. 

Reda, K. W., Liu, X. C., Haile, G. G., Sun, S. A., and Tang, Q. H.: Hydrological evaluation of satellite and reanalysis-based 

rainfall estimates over the Upper Tekeze Basin, Ethiopia, Hydrol. Res., 53, 584-604, https://doi.org/10.2166/nh.2022.131, 

2022. 1070 

Sen Gupta, A. and Tarboton, D. G.: A tool for downscaling weather data from large-grid reanalysis products to finer spatial 

scales for distributed hydrological applications, Environ. Modell. Softw., 84, 50-69, 

https://doi.org/10.1016/j.envsoft.2016.06.014, 2016. 

Sharifi, E., Saghafian, B., and Steinacker, R.: Copula-based stochastic uncertainty analysis of satellite precipitation products, 

J. Hydrol., 570, 739-754, https://doi.org/10.1016/j.jhydrol.2019.01.035, 2019. 1075 

Shen, Y., Xiong, A. Y., Hong, Y., Yu, J. J., Pan, Y., Chen, Z. Q., and Saharia, M.: Uncertainty analysis of five satellite-

based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau, 

Int. J. Remote Sens., 35, 6843-6858, https://doi.org/10.1080/01431161.2014.960612, 2014. 

Shi, Y., Chen, C., Chen, J., Mohammadi, B., Cheraghalizadeh, M., Abdallah, M., Mert Katipoğlu, O., Li, H., and Duan, Z.: 

Evaluation of the RF-MEP Method for Merging Multiple Gridded Precipitation Products in the Chongqing City, China, 1080 

Remote Sens., 15, 4230, https://doi.org/10.3390/rs15174230, 2023. 

Sklar, M. J. P. i. s. u. P.: Fonctions de repartition an dimensions et leurs marges, Canadian journal of statistics, 8, 229-231, 

https://doi.org/10.2307/3314660, 1959. 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

https://doi.org/10.1175/jhm-d-19-0087.1
https://doi.org/10.3390/rs13091662
https://doi.org/10.3390/rs10111835
https://doi.org/10.3390/rs12010010
https://doi.org/10.1016/j.jhydrol.2020.125040
https://doi.org/10.1016/j.atmosres.2020.105133
https://doi.org/10.1007/s13351-021-0199-7
https://doi.org/10.2166/nh.2022.131
https://doi.org/10.1016/j.envsoft.2016.06.014
https://doi.org/10.1016/j.jhydrol.2019.01.035
https://doi.org/10.1080/01431161.2014.960612
https://doi.org/10.3390/rs15174230
https://doi.org/10.2307/3314660


39 

 

Sun, R. C., Yuan, H. L., and Yang, Y. Z.: Using multiple satellite-gauge merged precipitation products ensemble for 

hydrologic uncertainty analysis over the Huaihe River basin, J. Hydrol., 566, 406-420, 1085 

https://doi.org/10.1016/j.jhydrol.2018.09.024, 2018. 

Sun, R. C., Yuan, H. L., Liu, X. L., and Jiang, X. M.: Evaluation of the latest satellite-gauge precipitation products and their 

hydrologic applications over the Huaihe River basin, J. Hydrol., 536, 302-319, https://doi.org/10.1016/j.jhydrol.2016.02.054, 

2016. 

Tan, J., Huffman, G. J., Bolvin, D. T., and Nelkin, E. J.: IMERG V06: Changes to the Morphing Algorithm, J. Atmos. 1090 

Ocean. Technol., 36, 2471-2482, https://doi.org/10.1175/jtech-d-19-0114.1, 2019. 

Ulloa, J., Ballari, D., Campozano, L., and Samaniego, E.: Two-Step Downscaling of Trmm 3b43 V7 Precipitation in 

Contrasting Climatic Regions With Sparse Monitoring: The Case of Ecuador in Tropical South America, Remote Sens., 9, 

23, https://doi.org/10.3390/rs9070758, 2017. 

Viste, E. and Sorteberg, A.: Moisture transport into the Ethiopian highlands, Int. J. Climatol., 33, 249-263, 1095 

https://doi.org/10.1002/joc.3409, 2013. 

Wang, S., Zhang, K., Chao, L. J., Li, D. H., Tian, X., Bao, H. J., Chen, G. D., and Xia, Y.: Exploring the utility of radar and 

satellite-sensed precipitation and their dynamic bias correction for integrated prediction of flood and landslide hazards, J. 

Hydrol., 603, 15, https://doi.org/10.1016/j.jhydrol.2021.126964, 2021. 

WMO, G.: Guide to hydrological practices: data aquisition and processing, analysis, forecasting and other applications, 1100 

1994. 

Worqlul, A. W., Yen, H., Collick, A. S., Tilahun, S. A., Langan, S., and Steenhuis, T. S.: Evaluation of CFSR, TMPA 3B42 

and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia, 

Catena, 152, 242-251, https://doi.org/10.1016/j.catena.2017.01.019, 2017. 

Wu, H., Yang, Q., Liu, J., and Wang, G.: A spatiotemporal deep fusion model for merging satellite and gauge precipitation 1105 

in China, J. Hydrol., 584, 124664, https://doi.org/10.1016/j.jhydrol.2020.124664, 2020. 

Wu, H., Zhang, X., Liang, S., Yang, H., and Zhou, G.: Estimation of clear‐sky land surface longwave radiation from MODIS 

data products by merging multiple models, Journal of Geophysical Research: Atmospheres, 117, 

https://doi.org/10.1029/2012JD017567, 2012. 

Wu, T., Bai, J., and Han, H.: Short-Term Agricultural Drought Prediction based on D-vine copula quantile regression in 1110 

snow-free unfrozen surface area, China, Geocarto International, 1-19, 

https://doi.org/doi.org/10.1080/10106049.2021.2017015, 2022. 

Xiao, S., Xia, J., and Zou, L.: Evaluation of multi-satellite precipitation products and their ability in capturing the 

characteristics of extreme climate events over the Yangtze River Basin, China, Water, 12, 1179, 

https://doi.org/10.3390/w12041179, 2020. 1115 

Yong, B., Ren, L. L., Hong, Y., Wang, J. H., Gourley, J. J., Jiang, S. H., Chen, X., and Wang, W.: Hydrologic evaluation of 

Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case stu dy 

in Laohahe basin, China, Water Resour. Res., 46, 20, https://doi.org/10.1029/2009wr008965, 2010. 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

https://doi.org/10.1016/j.jhydrol.2018.09.024
https://doi.org/10.1016/j.jhydrol.2016.02.054
https://doi.org/10.1175/jtech-d-19-0114.1
https://doi.org/10.3390/rs9070758
https://doi.org/10.1002/joc.3409
https://doi.org/10.1016/j.jhydrol.2021.126964
https://doi.org/10.1016/j.catena.2017.01.019
https://doi.org/10.1016/j.jhydrol.2020.124664
https://doi.org/10.1029/2012JD017567
https://doi.org/doi.org/10.1080/10106049.2021.2017015
https://doi.org/10.3390/w12041179
https://doi.org/10.1029/2009wr008965


40 

 

Young, M. P., Williams, C. J. R., Chiu, J. C., Maidment, R. I., and Chen, S.-H.: Investigation of discrepancies in satellite 

rainfall estimates over Ethiopia, Journal of Hydrometeorology, 15, 2347-2369, https://doi.org/10.1175/JHM-D-13-0111.1, 1120 

2014. 

Yumnam, K., Guntu, R. K., Rathinasamy, M., and Agarwal, A.: Quantile-based Bayesian Model Averaging approach 

towards merging of precipitation products, J. Hydrol., 604, 14, https://doi.org/10.1016/j.jhydrol.2021.127206, 2022. 

Zhang, K., Xue, X. W., Hong, Y., Gourley, J. J., Lu, N., Wan, Z. M., Hong, Z., and Wooten, R.: iCRESTRIGRS: a coupled 

modeling system for cascading flood-landslide disaster forecasting, Hydrol. Earth Syst. Sci., 20, 5035-5048, 1125 

https://doi.org/10.5194/hess-20-5035-2016, 2016. 

Zubieta, R., Getirana, A., Espinoza, J. C., Lavado-Casimiro, W., and Aragon, L.: Hydrological modeling of the Peruvian-

Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset, Hydrol. Earth Syst. Sci., 21, 13, 

https://doi.org/10.5194/hess-21-3543-2017, 2017. 
 1130 

 

 

 

 

 1135 

 

 

 

 

 1140 

 

 

 

 

 1145 

 

 

 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Auto

Deleted: ¶ ...

Deleted: Table 1. Geographical locations of rain gauge 

observations, elevation, and statistical characteristics based on a 1225 ...

Deleted: Station Name ...

Deleted: ¶
¶ ...

Deleted: ¶1220 
¶ ...

Deleted: Table 2. Classification of precipitation intensity

Deleted: Name ...

Deleted: ¶
¶ ...

Deleted: Table 3. Mean values of CC, MAE, RMSE, and PBIAS 

for original (ORI) and downscaled (BIL) SPPs by BIL interpolation ...

Deleted: Products ...

Deleted: Datasets1215 ...

https://doi.org/10.1175/JHM-D-13-0111.1
https://doi.org/10.1016/j.jhydrol.2021.127206
https://doi.org/10.5194/hess-20-5035-2016
https://doi.org/10.5194/hess-21-3543-2017

