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Abstract. As each catchment responds uniquely, even if they appear similar, formulating generalizable 15 

hypotheses and using routinely used signatures of catchment similarity to examine streamflow variability can be 16 

difficult. Flow Duration Curve (FDC), a concise portrayal of streamflow variability at a specific gauging station, 17 

can provide insights into hydroclimatic and landscape processes occurring at a wide range of space and time scales 18 

that govern flow regimes in a region. This study explores the suitability of partitioning of annual streamflow FDC 19 

into seasonal FDCs, and total streamflow FDC into fast and slow flow FDCs to unravel the process controls on 20 

FDCs at a regional scale, with application to low-gradient rivers flowing east from the Western Ghats of 21 

Peninsular India. The focus is on investigation of the controls of common regional landscape features (in space) 22 

and seasonal climatic (in time) variations on regional variations of the FDC. Findings of the study indicate that 23 

bimodal rainfall seasonality and higher fraction of moderate to good groundwater potential zones explains the 24 

higher contribution of slow flow to total flow across north-south gradient of the region. Shapes of fast and slow 25 

FDCs are controlled by recession parameters revealing the role of climate seasonality and geologic profiles, 26 

respectively. A systematic spatial variation across north-south gradient is observed– highlighting the importance 27 

of coherent functioning of landscape-hydroclimate settings in imparting distinct signature of streamflow 28 

variability. The framework is useful to discover the role of time and process controls on streamflow variability in 29 

a region with seasonal hydroclimatology and hydro-geologic gradients. 30 

1 Introduction 31 

The hydrologic functioning of catchment systems in any given region is coevolved with the long-term climatology 32 

and landscape features present in the region through mutual interactions operating across multiple spatial and 33 

temporal scales (Wagener et al., 2013). These interactions and long-term feedbacks impart variability to 34 

hydrologic processes that are characteristic of the region of interest, including runoff generation and riverine 35 

transport processes, thus influencing water availability and reliability to human populations that depend on the 36 

streamflow. Understanding streamflow variability in time and space across river basins in the region is therefore 37 
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very important for water resource management (Deshpande et al., 2016; Sinha et al., 2018) and the prediction and 38 

mitigation of floods (Kale et al., 1997). The frequency of high flows, low flows, or flows within specific ranges, 39 

is essential for risk assessment of water management projects involving control of streamflow variability. Correct 40 

portrayal of streamflow variability at the scale of catchments and river basins is therefore an indispensable 41 

component in many hydrologic applications.  42 

The focus of this paper is on the flow duration curve (FDC), which is a compact description of temporal 43 

streamflow variability at the catchment scale. The FDC represents (daily) streamflow values plotted against the 44 

proportion of time the given flow is exceeded or equalled (Smakhtin, 2001; Vogel & Fennessey, 1994). The 45 

graphical form of the FDC embeds within it the governing hydrologic processes and dominant flow characteristics 46 

throughout the range of recorded streamflows at the catchment scale (Botter et al., 2008). In this sense, the FDC 47 

is also an important signature of a catchment's rainfall to runoff transformation (Ghotbi et al., 2020a; Vogel & 48 

Fennessey, 1994). FDC thus typifies the old proverb, "one picture is worth a thousand words" with its potential 49 

to encapsulate much of the relevant information of streamflow variability in a single plot (Vogel & Fennessey, 50 

1995), and has been used in many hydrologic applications. Vogel and Fennessey (1994) provide a brief history of 51 

the application of flow duration curves in hydrology. Applications of FDC include waste load allocation (Searcy, 52 

1959), water quality management (Searcy, 1959; Rehana & Mujumdar, 2011, 2012), reservoir and sedimentation 53 

studies (Vogel & Fennessey, 1995), low-flow and flood analyses (Smakhtin, 2001), assessment of environmental 54 

flow requirements (Smakhtin and Anputhas, 2006), and water availability for hydropower (Basso & Botter, 2012).  55 

Streamflow observed in a river is the culmination of interacting hydrological processes of runoff generation, 56 

overland and subsurface flow and evaporation, operating at multiple time and space scales, in response to climatic 57 

inputs and their interactions with a range of landscape properties, all of which are highly heterogeneous. This 58 

makes it challenging to decipher the process controls on streamflow variability, and their manifestation in the 59 

shape of the FDC (Cheng et al., 2012; Ghotbi et al., 2020b; Yokoo & Sivapalan, 2011). Therefore, there is a need 60 

for appropriate conceptual frameworks that can bring out these process controls of FDCs and generate deep 61 

insights into the governing principles underpinning observed variability. Yokoo and Sivapalan (2011) presented 62 

a framework for deciphering the process controls of the FDC by considering the FDC of total streamflow (TFDC) 63 

as a statistical summation of a fast flow duration curve (FFDC) and a slow flow duration curve (SFDC). FFDC is 64 

a filtered version of precipitation variability, with rainfall intensity patterns and surface soil characteristics as 65 

controlling factors (Yokoo & Sivapalan, 2011). On the other hand, SFDC reflects a competition between 66 

subsurface drainage and evapotranspiration (Yokoo & Sivapalan, 2011), in which case seasonality and regional 67 

geology are stronger controlling factors. This contrast in the process controls governing quick (surface) runoff 68 

and slow (subsurface) flow, supports the notion of stratifying total streamflow into these two components 69 

operating at two different time scales. The distinction between the two (fast and slow) flow time scales enables 70 

the conceptualization of the process controls of fast flow (surface runoff) and slow flow (subsurface streamflow 71 

and groundwater flow) separately (Cheng et al., 2012; Yokoo & Sivapalan, 2011).  72 

Ghotbi et al (2020a, 2020b) used this framework to explore the climatic and landscape controls of FDCs using 73 

streamflow data for hundreds of catchments across the continental United States in a comparative manner.  In 74 

their work Ghotbi et al. (2020a) emphasized the need to consider the fast flow and slow flow time series 75 

independently as stochastic responses of catchments to sequences of storm events. Intensity and frequency of 76 
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rainfall events and the properties of soils and topography govern the variability of fast flows, whereas climate 77 

seasonality and regional geology of the aquifer system govern variability of slow flow components. More 78 

specifically, Ghotbi et al. (2020b) showed the dominant process controls of FDCs as aridity index, topographic 79 

slope, coefficient of variation of daily precipitation, timing of rainfall, time interval between storms, snow fraction, 80 

and recession slope.  81 

Due to significant differences between fast and slow process controls, each may be used to explain streamflow 82 

variability independently. While recognizing the necessity to represent the hydrological processes across two 83 

distinct time scales, this paper aims to develop a process-based understanding of how regional scale features 84 

impact streamflow variability across Peninsular India, using the flow duration curve (FDC) as a signature of this 85 

variability. For this purpose, an extension of this concept was made by including seasonal (timing) streamflow 86 

variability in a regional context. To isolate the effects of the drivers on the observed FDCs and to identify the 87 

controls of time and process scales on streamflow variability, a modeling framework is presented that comprises 88 

partitioning streamflow in multiple ways: seasons/months in the time domain, east-west/north-south directions in 89 

the space domain, fast/slow flows in the process domain. Streamflow data available from a large number of stream 90 

gauges within and between the major river basins across Peninsular India is employed for this purpose. The 91 

scientific novelty and methodological advancement of the paper lie in two interconnected aspects, which have not 92 

been adopted in the literature to date: (i) the timescale partitioning framework is used to study the relative 93 

contributions of different seasons to the FDC (repeated for fast and slow flow components), exploring how the 94 

relative contributions holistically vary across the whole region and using the framework to reconstruct the annual 95 

flow duration curve using seasonal flow duration curves, (ii) the Wegenerian approach in connecting the spatial 96 

variability of streamflow at a regional scale using flow duration curve. Thus, the main goal of this paper is to 97 

reconstruct the flow duration curves at different scales to unravel the regional scale streamflow variability by 98 

extending the process partitioning (Ghotbi et al., 2020a) with the time partitioning. Studies that use simultaneous 99 

partitioning of flow duration curves at seasonal and process scales to investigate regional streamflow variability 100 

in space and seasonal climatic in time fluctuations using the Wegenerian approach are limited. The remainder of 101 

the paper is structured as follows. Section 2 elaborates on the details of the study area and the daily streamflow 102 

dataset used. The description of the conceptual framework employed for the analysis is presented in Section 3. 103 

The results of the application of the framework to Peninsular India and the interpretation of the results are 104 

presented in Sections 4 and 5, respectively. Finally, the paper is concluded in Section 6 with key insights gained 105 

for the nature and controls of streamflow variability across Peninsular India.            106 

2 Study region 107 

Peninsular India is a cratonic region with an approximate shape of a vast inverted triangle with diverse topography 108 

and characteristic climatic patterns, bounded by the Arabian Sea in the west, the Bay of Bengal in the east, and 109 

the Vindhya and Satpura ranges in the north. The long escarpments of the Western Ghats and the Eastern Ghats, 110 

constituting the western and eastern continental fringes of India, and an asymmetric relief with eastward tilt 111 

towards the floodplains of several eastward draining rivers from the 1.5 km high Western Ghats, characterize the 112 

physiography of Peninsular India (Richards et al., 2016).  113 
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The rise of the Himalayan-Tibetan plateau has significantly contributed to the Neogene climate of Asia, favoured 114 

the birth of the modern monsoon (Fig. 1.a, b) (Chatterjee et al., 2013, 2017), and triggered glaciation in the 115 

Northern region. A wide variety of plateaux, open valleys, bedrock gorges, mountain ranges, inselbergs and 116 

residual hills constitute the geomorphology of Peninsular India (Kale & Vaidyanadhan, 2014). The Peninsular 117 

landscape is dominated by Deccan Traps (Deccan basalts) of Cretaceous-Eocene, igneous and metamorphic rocks 118 

(Granite-gneisses) of Archaean-Late Precambrian along with minor consolidated sediments (Sandstone, shale) of 119 

Precambrian-Jurassic (Fig. 1.c) (Kale, 2014).  120 

The region is strongly impacted by monsoons, major seasonal winds which are a manifestation of the seasonal 121 

movement of the Intertropical Convergence Zone (ICTZ in Fig. 1.a and Fig. 1.b), which contribute largely to the 122 

annual rainfall variability in much of the Indian subcontinent (Gadgil, 2003). The monsoons have two components 123 

– South-West monsoon and North-East monsoon, which arrive during June – September (JJAS) and October – 124 

December (OND), respectively. South-West monsoon season contributes more than 75% of annual rainfall over 125 

majority of the regions of the country (Saha et al., 1979). However, the Southern Peninsula receives a significant 126 

portion (30-60%) of its annual rainfall during the North-East monsoon, which contributes only 11% of the rainfall 127 

annually to India as a whole (Rajeevan et al., 2012). The maximum extent of rainfall over the Southern Peninsula 128 

during the North-East Monsoon is due to the reversal of lower-level winds over South Asia from the South-West 129 

to the North-East during the retreating phase of the South-West monsoon (Rajeevan et al., 2012). In Peninsular 130 

India, there is a spatial variability of the South-West monsoon in the south-north direction. For example, the 131 

Western Ghats, located at the western edges of Krishna and Cauvery basins, obstruct the incoming South-West 132 

monsoon winds causing heavy rainfall on the mountains. After crossing the Western Ghats, the monsoon winds 133 

have less moisture, causing a sharp decline in rainfall amounts towards the central and the north-eastern part of 134 

the Peninsula (Fig S2.a in Supplementary Material). The North-East monsoon occurs during winter, and mostly 135 

influence the rainfall in the Cauvery and some parts of the Krishna basins. Vegetation on the long escarpment of 136 

Western Ghats is primarily tropical evergreen forest, which plays an important role in intercepting the South-West 137 

monsoon winds (Ramachandra, 2018). Ramachandra (2018) portrayed the profile of vegetation across the west-138 

east gradient as it varies from tropical-evergreen to semi-evergreen and then moist to dry deciduous forests 139 

towards the rain-shadow region just east of the Western Ghats. The topography map for the Peninsular region and 140 

a selected point in the region is depicted in Fig. S1.a and Fig. S1.b in Supplementary Material, respectively. The 141 

western margin of Peninsular India experiences heavy rainfall due to the presence of Western Ghats, whereas the 142 

rain shadow region witnesses deficient rainfall (Fig. S2.c). It can thus be seen that the long geological, tectonic 143 

history and the onset of monsoon climate events have made an imprint in the shaping the present landform of the 144 

Indian Peninsula (Kale, 2014). 145 
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 147 

Figure 1. (a) The relation of uplift of Himalaya-Tibetan Plateau and monsoon initiation in India. Monsoon winds 148 
blow from the Indian Ocean towards land in the summer (b) during the winter, the Himalaya prevents cold air 149 
from passing into the subcontinent and causes the reversal of wind direction and monsoon blow from land toward 150 
sea [Reprinted from (Chatterjee et al., 2013)] (c) geology of Peninsular India [Reprinted from: Central Ground 151 
Water Board(https://www.aims-cgwb.org/general-background.php)]. 152 
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The region shown in Fig. 2 is selected as the study area in the Deccan Plateau of Peninsular India. The escarpment 153 

of Western Ghats forms the western margin of the Deccan Plateau which serves as the main water divide for the 154 

Peninsular River systems. The gentle slope from west to east causes Peninsular rivers such as the Mahanadi, 155 

Godavari, Krishna, and Cauvery (Fig. 2) to flow eastwards. Three of these rivers (Godavari, Krishna and Cauvery) 156 

originate from the Western Ghats, spread across the area from the Deccan Plateau, flow eastwards, and drain into 157 

the Bay of Bengal. The Mahanadi River rises in the mountains of Siwaha bounded by the Eastern Ghats in the 158 

south and east, and drain eastwards into the Bay of Bengal. The Mahanadi basin constitutes a total catchment area 159 

of about 141,600 km2 with an average annual rainfall of 1,360 mm and a mean annual river flow of 66,640 million 160 

m3 (Rao et al., 2017). With an annual average rainfall of 1096 mm, the Godavari, the largest of all Peninsular 161 

rivers, receives nearly 84 percent of its annual rainfall on average during the South-West monsoon (Koneti et al., 162 

2018). The Godavari basin's challenges include frequent flooding in its deltaic lower reaches, given the area's 163 

proximity to the coastal zone, which is prone to cyclones, and frequent drying up during the drier months (Koneti 164 

et al., 2018). Krishna is Peninsular India's second-largest river, with a total catchment area of 2,60,000 km2, and 165 

is susceptible to floods and droughts in some specific regions (Chanapathi & Thatikonda, 2020). The South-West 166 

monsoon is the most significant contributor to rainfall in the Krishna basin, accounting for about 90% of its total 167 

rainfall; the Krishna Basin, however, has a non-uniform rainfall distribution caused by climate variability, with 168 

an average annual rainfall bout of 770 mm (Chanapathi & Thatikonda, 2020). Annual rainfall in the Cauvery 169 

varies from 621 mm in the lower reaches to 4137 mm in the mountainous uplands, exhibiting considerable 170 

variation across the basin (Kumar Raju & Nandagiri, 2017). The river Krishna, with a mean annual runoff of less 171 

than 100 mm, is designated as an arid river (Milliman JD, 2011; Gupta et al., 2022), Cauvery as a semiarid river 172 

(100-250 mm), Mahanadi and Godavari as humid rivers (250–750 mm). The higher baseflow index occurs within 173 

0.5 and 0.7 in catchments in the Godavari and Mahanadi basins, whereas the lower baseflow index is noted from 174 

0.25 and 0.45 in the Cauvery and Krishna basins(Bhardwaj et al., 2020). For agricultural purposes, the semiarid 175 

regions of the Cauvery basin rely more on groundwater than surface water when compared to the other three 176 

basins (Sreelash et al., 2020). 177 

In this study, daily streamflow data between 1965 to 2012 for 62 stream gauges (Fig. 2) are selected from Water 178 

Resources Information System database (WRIS) and located across the four river basins. The daily gridded rainfall 179 

product at spatial resolution of 0.25° × 0.25° from India Meteorological Department (IMD) is also employed for 180 

the analysis (Pai et al., 2014).  181 
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 182 

Figure 2.  Location map of four Peninsular River Basins. Stream gauges considered in this study are marked with 183 

red circles. 184 

 185 

3 Conceptual framework for stratification of streamflow variability using time scale  186 

In this section, we check the suitability of a framework to stratify observed streamflow time series in the time 187 

domain into distinct time scales to better understand the physical controls of streamflow variability across the 188 

region. Partitioning of streamflow across seasonal and monthly time scales is able to bring out the role of climate 189 

seasonality on streamflow variability. Moreover, the progression of the seasons spatially imparts signatures on 190 

streamflow variability regionally as a whole. Time scale partitioning thus offers an opportunity to understand 191 

these climatic and landscape controls on streamflow variability through quantifying the relative contributions of 192 

seasonal streamflow on annual streamflow variability and how they vary regionally. 193 

The streamflow hydrograph is the response of a physical, deterministic system (catchment) to a sequence of 194 

rainfall events.  Given that the rainfall events are very much random in all their properties, equivalently, the 195 

streamflow hydrograph can also be seen as a stochastic time series, with streamflow considered a random variable. 196 

Therefore, it is amenable to a stochastic treatment in terms of distribution functions (e.g., cumulative distribution 197 

function, CDF). A major advantage of the CDF is that it enables us to make a concise statement of streamflow 198 

variability across a population of events. They have diagnostic value in that they can explain or interpret a 199 

catchment’s streamflow response and compare it across many catchments and they help to classify catchments 200 

based on the flow regimes. They also have practical value in engineering design and environmental monitoring 201 

https://doi.org/10.5194/hess-2023-178
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

that require a probabilistic treatment of streamflow. The cumulative distribution function of a random variable 202 

(the random variable of interest to us is daily streamflow; 𝑄) expresses the probability that a realization (i.e., 203 

observation) of 𝑄 does not exceed a specific value 𝑞: 204 

Cumulative Distribution Function (CDF):   205 

 F(q) =  P[Q ≤ q] (1) 

The flow duration curve is an alternative, but equivalent, measure of the streamflow variability that is widely used 206 

in hydrology. The flow duration curve is a plot that shows the fraction of time (D) that the streamflow is likely to 207 

equal or exceed some specified value of interest. Mathematically, D can be expressed as, 208 

 D(q) =  P[Q ≥ q]  = 1 − F(q) (2) 

Despite its probabilistic definition given above, in hydrological applications, the flow duration curve is plotted in 209 

terms of 𝑞(𝐷) i.e., 𝑞 (in the vertical axis) as a function of 𝐷 (in the horizontal axis).  210 

Time scale partitioning of streamflow variability 211 

The streamflow time series can be equivalently divided into temporal segments of distinct seasons as well as 212 

distinct months. In this case, by joining observed time series over multiple years, FDCs for each time segment can 213 

be reconstructed. Assuming independence (as an approximation), these can then be combined to generate annual 214 

FDCs. The theory for the time scale partitioning is illustrated in Fig. 3. The year is divided into three distinct (non-215 

overlapping) seasons, viz. Non-monsoon, South-West, and North-East seasons (for Peninsular India) of relative 216 

durations τ1, τ2, and τ3 (with τ1 +  τ2 + τ3 = 1) respectively. These seasons can be assumed to have distinct 217 

characteristics in terms of rainfall variability and how they translate to streamflow variability. The daily 218 

streamflow time series is used to construct the seasonal as well as annual FDCs. For example, the FDC of Non-219 

monsoon season is constructed by using the daily streamflow during the period of January – May over the years. 220 

Similarly, FDCs for South-West and North-East monsoons are constructed using the daily streamflow during June 221 

– September and October – December months over the years respectively and the annual FDC is constructed using 222 

daily streamflow values for 365/366 days over the years. The FDCs at monthly time scales are obtained using the 223 

daily values of streamflow in a month over the years. The FDCs for the three distinct seasons, i.e., Non-monsoon, 224 

South-West monsoon, North-East monsoon, are denoted as DNM(q), DSW(q), and DNE(q) respectively. Initially, 225 

the FDCs for each season can be constructed separately (Fig. 3).226 
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 227 

Figure 3. Scale partitioning into seasonal and monthly time scales. The conceptual framework illustrates the time 228 
scale partitioning of streamflow time series into various seasonal components considering patterns of rainfall 229 
variability. The annual streamflow time series is decomposed into three components: (1) Non-monsoon flow, (2) 230 
South-West monsoon flow, and (3) North-East monsoon flow. 231 

 232 

The annual FDC with exceedance probability P [Q ≥ q] refers to the probability of flow in annual scale being 233 

greater than or equal to q, and is expressed as  234 

 D(q) = P [Q ≥ q] =  τ1P(NM)[Q ≥ q] + τ2P(SW)[Q ≥ q]  + τ3P(NE)[Q ≥ q] (3) 

or, D(q) = τ1DNM(q) + τ2DSW(q) +  τ3DNE(q) (4) 

where, P(NM)[Q ≥ q], P(SW)[Q ≥ q] and P(NE)[Q ≥ q] refer to, respectively, the probability of flow in Non-235 

monsoon, South-West monsoon and North-East monsoon being greater than q. As the seasons are non-236 

overlapping, the probability of flow being greater than q at annual scale (i.e., P [Q ≥ q]) can be expressed as the 237 

sum of the weighted probabilities of flow being greater than q in the three seasons. 238 

In general, the FDC at the annual scale can be constructed as follows: 239 

 D(q) = τ1D1(q) +  τ2D2(q) + ⋯ + τnDn(q) (5) 

where 𝑛 is the number of distinct seasons considered for the analysis and, τ1 +  τ2 + ⋯ + τ𝑛 = 1. The validity of 240 

the above depends on the assumption that there is no carryover of flows from one season to the next season (which 241 
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is an approximation). In this study, the assumption of independence between flows across three seasons is checked 242 

using multivariate Hoeffding’s test (see details in Text S1 of Supplementary Information).  243 

If 𝐹𝐴(. ), 𝐹𝑁𝑀(. ), 𝐹𝑆𝑊(. ) and 𝐹𝑁𝐸(. ) represent cumulative distribution function of daily flows during annual, Non-244 

monsoon, South-West monsoon and North-East monsoon, respectively, then using equation (2), equation (6) can 245 

be written as: 246 

 1 − 𝐹𝐴(𝑞) = 𝜏1[1 − 𝐹𝑁𝑀(𝑞)] + 𝜏2[1 − 𝐹𝑆𝑊(𝑞)] + 𝜏3[1 − 𝐹𝑁𝐸(𝑞)] (6) 

Differentiating the above equation with respect to 𝑞 , 247 

 𝑓𝐴(𝑞) = 𝜏1𝑓𝑁𝑀(𝑞) + 𝜏2𝑓𝑆𝑊(𝑞) + 𝜏3𝑓𝑁𝐸(𝑞) (7) 

where 𝑓𝐴(. ), 𝑓𝑁𝑀(. ), 𝑓𝑆𝑊(. ) and 𝑓𝑁𝐸(. ) represent probability density functions of annual, Non-monsoon, South-248 

West monsoon and North-East monsoon flows respectively. 249 

If 𝑄, 𝑄𝑁𝑀, 𝑄𝑆𝑊 and 𝑄𝑁𝐸  represent random variables comprising of daily streamflow at annual, Non-monsoon, 250 

South-West monsoon and North-East monsoon time scales respectively, the expectation 𝐸(𝑄) and variance 𝑉(𝑄) 251 

of annual flow in terms of seasonal flows can be expressed as 252 

 𝐸(𝑄) = 𝜏1𝐸(𝑄𝑁𝑀) + 𝜏2𝐸(𝑄𝑆𝑊) + 𝜏3𝐸(𝑄𝑁𝐸) (8) 

 𝑉(𝑄) = 𝜏1𝐸(𝑄𝑁𝑀
2 ) + 𝜏2𝐸(𝑄𝑆𝑊

2 ) + 𝜏3𝐸(𝑄𝑁𝐸
2 ) − (𝐸(𝑄))

2
 (9) 

The magnitudes of 𝜏1, 𝜏2 and 𝜏3 are 
5

12
,

4

12
 𝑎𝑛𝑑 

3

12
 based on the annual proportions of Non-monsoon, South-West 253 

monsoon and North-East monsoon respectively.  254 

The same concept can be continued by combining the flows in different months, in which case the way to combine 255 

monthly FDCs into an annual FDC is given by: 256 

 D(q) = 
1

12
∑ Dm(q)12

𝑚=1  (10) 

where 𝑚 =  1, … ,12. 257 

If 𝑄𝑚 represents the random variable daily streamflow over mth month, then the expectation 𝐸(𝑄) and variance 258 

𝑉(𝑄) of annual flow in terms of monthly flows can be expressed as 259 
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𝐸(𝑄) =
1

12
∑ 𝐸(𝑄𝑚)

12

𝑚=1

 

(11) 

 

𝑉(𝑄) =
1

12
∑ 𝐸(𝑄𝑚

2 )

12

𝑚=1

− (𝐸(𝑄𝐴))
2
 

(12) 

The relative contributions of Non-monsoon (𝐶𝑁𝑀→𝐴𝑁), South-West monsoon (𝐶𝑆𝑊→𝐴𝑁) and North-East monsoon 260 

(𝐶𝑁𝐸→𝐴𝑁) flows to annual flow can be approximated through following expressions: 261 

 𝐶𝑁𝑀→𝐴𝑁 =
𝜏1𝐸(𝑄𝑁𝑀)

𝜏1𝐸(𝑄𝑁𝑀)+𝜏2𝐸(𝑄𝑆𝑊)+𝜏3𝐸(𝑄𝑁𝐸)
  (13) 

 𝐶𝑆𝑊→𝐴𝑁 =
𝜏2𝐸(𝑄𝑆𝑊)

𝜏1𝐸(𝑄𝑁𝑀)+𝜏2𝐸(𝑄𝑆𝑊)+𝜏3𝐸(𝑄𝑁𝐸)
  (14) 

 𝐶𝑁𝐸→𝐴𝑁 =
𝜏3𝐸(𝑄𝑁𝐸)

𝜏1𝐸(𝑄𝑁𝑀)+𝜏2𝐸(𝑄𝑆𝑊)+𝜏3𝐸(𝑄𝑁𝐸)
  (15) 

Similarly, the relative contributions of monthly flows to annual flow can be expressed as: 262 

 
𝐶𝑚→𝐴𝑁 =

1

12
𝐸(𝑄𝑚)

1

12
∑ 𝐸(𝑄𝑚)12

𝑚=1

  
(16) 

where, 𝑚 = 1, 2, . . . , 12, represents the index for months. 263 

Note, as before, these relative contributions to total flow effectively also measure the relative contributions of the 264 

seasonal/monthly flows to the mean of the annual flow duration curve. 265 

The methodology for constructing annual FDC using seasonal FDC is as follows: 266 

1. The empirical PDFs –  𝑓𝑁𝑀(𝑞), 𝑓𝑆𝑊(𝑞) 𝑎𝑛𝑑 𝑓𝑁𝐸(𝑞) are derived for daily streamflow time series for Non-267 

monsoon, South-West monsoon and North-East monsoon seasons respectively. 268 

2. These PDFs are then multiplied by scaling factors, 𝜏1, 𝜏2 𝑎𝑛𝑑 𝜏3 in equation 9. The scaling factors represent 269 

relative durations of the three seasons considered. For example, 𝜏1 = 5/12, as the duration of duration of non-270 

monsoon season is 5 months. 271 

3. The PDF of annual flow is estimated as the weighted sum of three scaled density functions corresponding to 272 

three seasons (see Eq. 7). The annual flow consists of the daily streamflow for Non-monsoon, South-West 273 

monsoon and North-East monsoon seasons. 274 

The performance of the time scale partitioning framework is assessed using the metric, root mean square error 275 

(RMSE). The method of estimation of 𝑞sim is shown in Fig. S3. 276 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑞𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑞𝑠𝑖𝑚)2𝑛

𝑖=1          (17) 277 

4 Results  278 

4.1 Time scale partitioning  279 

We initially investigated the spatial variations in seasonal and annual flow duration curves across Peninsular India 280 

employing the partitioning framework. The annual flow duration curve and seasonal flow duration curves for 281 

Non-monsoon, South-West monsoon, and North-East monsoon are shown in Fig. 4 for eight representative 282 

gauges, one at the upstream and one at the downstream of each of the four river basins. The estimated annual flow 283 

duration curve (red curve) using the equation 7 is also shown in Fig. 4. Daily streamflow time series is normalized 284 

by catchment area before plotting (on a semi-log paper) the flow duration curve for comparison across the gauging 285 

stations. In particular, the annual flow duration curve (black scatter) is reproduced well by the partitioning of both 286 

seasonal (red curve in Fig. 4) and monthly flows (red curve in Fig. S4). The mean and variance of annual flows 287 

are also reproduced well by the time scale partitioning framework (Fig. S5). This confirms the efficacy of the time 288 

scale partitioning approach of seasonal/monthly flows in approximating the annual flow duration curve (see also 289 

Fig. S4, Fig. S5.a and Fig. S5.d in Supplementary Material). 290 

Another feature that can be observed in Fig. 4 is that in gauging stations located in the northern part of the 291 

peninsular region, flow duration curves (FDCs) of South-West monsoon flows (orange curve) are relatively higher 292 

than other seasonal FDCs. Given the logarithmic scale used to plot of the flows, this dominance is significant. In 293 

sites located in the southern part of the region, the dominance of South-West monsoon is not as strong and North-294 

East monsoon flows (blue curve) are also significant.  295 

Motivated by these observations, we extracted seasonal and monthly streamflow time series from the entire dataset 296 

across all gauging stations to compute the relative contributions of seasonal and monthly flows to the annual flow 297 

duration curve. The results are presented in Fig. 5. At the monthly scale (top panel, Fig. 5), the contributions of 298 

flows during the months of June to September are much higher than in other months in northern Peninsular basins 299 

(Mahanadi and Godavari, Krishna to a less extent). This can be explained by the contribution of monthly rainfall 300 

to annual rainfall, which is higher during these months as shown in Fig. 6. On the other hand, in the southernmost 301 

Cauvery basin, the dominance of June to September months is relatively not as strong, and there is also a 302 

significant contribution during the months of October to December, higher than in northern basins (Fig. 5.d). This 303 

can be attributed to the slightly more equal dominance of both South-West (June - September) and North-East 304 

(October – December) monsoons over the Cauvery basin (Fig. 6.d) than in the northern basins. This pattern is also 305 

reflected at the seasonal scale (bottom panel, Fig. 5), with the contribution of South-West monsoon flow to annual 306 

flow being slightly higher than that during the other seasons, and much higher in northern basins. However, the 307 

contribution of South-West monsoon to annual flow decreases in southern basins, while the contribution of North-308 

East monsoon increases, as can be seen clearly in Fig. 5.h for the Cauvery basin. The contribution of Non-monsoon 309 

to annual flow is also higher in southern basins relative to northern basins. This can be attributed to carry over 310 

flows from winter rains during the North-East monsoon, which is more pronounced in the southern part of the 311 

region.    312 
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 313 

Figure 4. Spatial variations in seasonal and annual flow duration curves across Peninsular India. The time scale 314 

partitioning framework of seasonal flows in approximating annual flow duration curves works reasonably well. 315 

 316 

 317 

Figure 5. The relative contributions of monthly and seasonal flows to annual flow at basin scale. The contributions 318 

of South-West monsoon flow to annual flow increases in northern basins whereas it decreases in southern basins. 319 

However, the contributions of North-East monsoon flow to annual flow increases towards southern basins. 320 
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 321 

Figure 6. Long-term (1951-2010) fractional contribution of monthly rainfall to annual rainfall across Peninsular 322 

basins.323 
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We next carried out regional scale analysis by considering streamflow time series of all the gauging stations across 324 

all four river basins. Similar to basin scale analysis presented before, the relative contributions of seasonal and 325 

monthly flows to annual flow are now estimated at the regional scale (Fig. 7). The spatial patterns of South-West 326 

and North-East monsoon rainfall across the Peninsular region are plotted for comparison using IMD gridded 327 

rainfall product (Fig. 7.b and Fig. 7.e).  328 

The contribution of South-West monsoon flows to annual flow increases in the northerly direction (Fig. 7.a). The 329 

mountainous region of the southern Peninsula (western part of Krishna basin and north-western part of Cauvery 330 

basin) receives high rainfall during the South-West monsoon season (Fig. 7.b – extended till 17° N latitude). The 331 

streamflow produced in the headwater regions of southern basins in response to high rainfall, contributes at least 332 

70% of the annual flow (Fig. 7.a). Yet, the areal fraction of these high rainfall, headwater regions within the four 333 

river basins is quite small and their contributions to the average precipitation or flow at the basin scale is much 334 

smaller. There is also considerable variability in the contributions of South-West monsoon flows to annual flow 335 

in the sub-basins located at the eastern and south-eastern parts of Krishna and Cauvery basins (represented by the 336 

scatter below the regression line till 17° N latitude in Fig. 7.a) due to declining rainfall (Fig. 7c). This considerable 337 

variability, on average, reduces the overall contributions of South-West monsoon to annual flow in southern 338 

Peninsula with respect to the basins in the northern part. 339 

The northern part of the Peninsular region receives comparatively higher rainfall than the southern part without 340 

considering the Western Ghats. This increased rainfall is attributed to the movement of low-pressure systems that 341 

develop over the Bay of Bengal towards central India (Krishnamurthy & Ajayamohan, 2010; Prakash et al., 2015). 342 

The low-pressure systems are a regular feature of South-West monsoon, which brings significant amount of 343 

rainfall in the northern part of the Peninsular region (Krishnamurthy & Ajayamohan, 2010). The increased rainfall 344 

(Fig. 7.b – after 16° N latitude) is responsible for higher contribution of South-West monsoon flows to annual 345 

flow in the northern basins. As the spatial variability of this rainfall is comparatively less than in the southern 346 

Peninsular region, there is less variability in the contribution of South-West monsoon flows to annual flow. The 347 

spatial variability in South-West monsoon along the south-north direction across Peninsular region can explain 348 

the gradient in the contribution of South-West monsoon flows to annual flow in the same direction. 349 

On the other hand, the contribution of North-East monsoon flows to annual flow increases in the southerly 350 

direction (Fig. 7.d and Fig. 7.e). This can be explained by the fact that the southern part of the Peninsular region 351 

receives higher rainfall during North-East monsoon than the rest of the Peninsular region (Fig. 7.f).  352 
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 353 

Figure 7. Contribution of seasonal flows to annual flow at regional scale. The spatial variability of South-West 354 
and North-East monsoons can explain the variation in contributions of seasonal flows to annual flow across south-355 
north gradient. The green box in (b) indicates the northern part of peninsular region which receives higher rainfall 356 
than the southern part. The green box in (c) indicates the spatial extent of the rainfall grids which was considered 357 
in figure (b). The red line in figure (b) indicates the mean rainfall – obtained by averaging the rainfall values at a 358 
specific latitude (◦N). 359 
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The application of the analysis framework used here is based on the critical assumption of independence of flows 360 

between different seasons (months), which needs to be critically evaluated. Moisture carry-over across seasons is 361 

a confounding issue in the case of strongly seasonal catchments (i.e., exhibiting sharp transition from wet season 362 

to dry season in terms of rainfall climatology), specifically when the initial wetness condition at the onset of the 363 

dry season depends on the final wetness at the end of wet season and vice-versa. Although most of the rainfall 364 

(58-90%) is concentrated during South-West monsoon months (i.e., June – September, red bar in Fig. S6) in 365 

Peninsular basins, more than 10% of the annual rainfall is received during North-East monsoon months (i.e., 366 

October – December, yellow bar for Cauvery and Krishna in Fig. S6). In addition, more than 8% of annual rainfall 367 

occurs in non-monsoon season (i.e., January – May, blue bar in Fig. S6. This highlights that rainfall received 368 

during non-monsoon and North-East monsoon seasons are comparable, and thus it is difficult to distinguish the 369 

rainfall climatology across these seasons. Therefore, it is challenging to declare these are catchments with 370 

seasonally dry climates. In order to justify our assumption in the reconstruction of annual FDC from seasonal 371 

flows, we have now conducted a multivariate Hoeffding test (Gaißer et al., 2010) to check the independence 372 

between three random variables representing Non-monsoon, South-West Monsoon and North-East Monsoon 373 

flows respectively. A value of test statistic –  𝜑2 – close to zero indicates independence between three random 374 

variables. It is observed that except for two stations in Krishna basin, 60 out of 62 stations show independence 375 

between flows across the seasons (Fig. S7). This supports appropriateness of the assumption of no carry-over that 376 

had been used in this study to construct annual FDC based on seasonal FDCs. 377 

4.2 Combined influence of time scale and process scale partitioning  378 

In order to further explore the climatic and landscape controls of streamflow variability regionally, we next 379 

partition streamflow into fast and slow flow components, notionally representing surface runoff, and a 380 

combination of subsurface and groundwater flow respectively (Ghotbi et al., 2020a, b) (see details in Text S2 and 381 

Fig. S8 in Supplementary Material). Fast flow is controlled by event scale runoff generation processes and its 382 

variability is characterized by topography, land use, soil and rainfall characteristics. On the other hand, climate 383 

seasonality and geologic formations of the subsurface are primary controllers of slow flow variability (Ghotbi et 384 

al., 2020a, b). The slow flow component is extracted from observed streamflow by using a recursive digital filter 385 

(see details in Appendix A.1). The fast flow component is obtained by then subtracting the slow flow from 386 

observed streamflow. The relative contributions of fast flow and slow flow to total flow (and hence also mean 387 

annual flow) are estimated using equations S2 and S3 respectively, for all the gauging stations across all four 388 

basins. The relative contributions of fast and slow flows to total flow at the basin and regional scales (combining 389 

all the gauging stations) are shown in Fig. 8. In addition, the long-term mean annual rainfall across the Peninsular 390 

region is also presented for comparison and to possibly explain the contributions of fast flow (Fig. 8.h). 391 

The contributions of fast and slow flows to total flow in each of the four river basins is presented in Fig. 8.a to 392 

Fig. 8.d, indicating a strong dominance of fast flow in the northern basins (close to 80% in Mahanadi, Godavari 393 

and Krishna), and relatively less dominance (around 60%) in the southern Cauvery basin. This dominance of fast 394 

flow also shows up at the regional scale (Fig. 8.e). The regional variations of the relative contributions of slow 395 

and fast flows to total flow can also be seen in the results for individual gauges presented in Fig. 8.f and Fig. 8.g, 396 

respectively. On average, the contribution of slow flow decreases in the northerly direction, while the contribution 397 

of fast flow increases in a corresponding way.  398 
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The contribution of fast flow to total flow increases in the northern direction of the Peninsular region (Fig. 8.g). 399 

The fast flow component of streamflow is generally more responsive to the characteristics of rainfall intensity. 400 

The southern part of the region receives high rainfall over Western Ghats along the western edge of Krishna basin 401 

and Cauvery basin (Fig. 8.h). In Cauvery basin, the headwater catchments (namely, MH Halli, Muthankera and 402 

Thengumarahada in Fig. 6) contribute 57 – 65 % of fast flow to total flow locally. The subbasins located at the 403 

western edges of Krishna basin contribute 80% of the fast flow to total flow (between 13° N and 18°N latitudes 404 

in Fig. 8.g) locally. However, there is a wide range of variability in the contributions of fast flow to total flow for 405 

subbasins located in the eastern part of Krishna basin. The spatial mean rainfall increases and variability decreases 406 

after 16° N latitude (Fig. 8.h), which dictate the increased contribution fast flow to total flow. Therefore, the 407 

spatial characteristics (mean and variability) of annual rainfall control the south-north gradient in fast flow 408 

contributions to total flow. In order to explain the variability in slow flow fraction of total flow, a multivariate 409 

regression analysis is performed (details are provided in Appendix, A.5). It is observed that the location of the 410 

gauges is an important predictor of the slow flow fraction of total flow in Peninsular region, revealing the existence 411 

of regional groundwater gradient in the region (Table A.1). In addition to the location of the gauges, the recession 412 

parameter, β – that controls the aquifer geometry and water level elevation profile during early and late stages of 413 

recession – is found to be significant in explaining the slow flow fraction of total flow (Table A.1). 414 

The contributions of slow flow to total flow increases in the southerly direction over the Peninsular region (Fig. 415 

8.f). This can be explained by two major factors. Firstly, the Peninsular region is mostly dominated by hard rock 416 

geologic formations, where the subsurface flows are controlled by secondary porosities due to weathering and 417 

fracturing (Chandra, 2018; Das, 2019). The distribution of these formations is highly heterogenous (Fig. 1.c) and 418 

is responsible for baseflow (slow flow) contribution to total flow (Collins et al., 2020; Narasimhan, 2006). For 419 

example, 84% of the total area of Cauvery basin is classified as moderate and good groundwater potential zone 420 

(Arulbalaji et al., 2019). The influence of such potential regions of Cauvery basin is reflected on the presence of 421 

significant amount of slow flow even in the Non-monsoon season (Fig. 9.g and Fig. 9.h). Likewise, 63% of the 422 

total area of Krishna basin is classified under same category (Harini et al., 2018). However, the slow flow regime 423 

becomes much more seasonal (Fig. 9) in the northern part of the Peninsular region due to limited capability of 424 

geologic formations in transmitting slow flow (Patil et al., 2017) as well as strong seasonality in rainfall patterns 425 

(Fig. 9). Secondly, the southern part of the Peninsula receives rainfall almost equally during both South-West and 426 

North-East monsoons, which is reflected in the bimodal pattern of rainfall seasonality (Fig. 9.g and Fig. 9.h). The 427 

compounding effect of bimodal rainfall seasonality and higher fraction of moderate to good groundwater potential 428 

zones explains the higher contribution of slow flow to total flow in southern part of the Peninsular region.    429 
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 430 

Figure 8. Relative contributions of fast and slow flow to total flow. Consistent higher contribution of fast flow 431 
and lower contribution of slow flow to total flow are observed in Peninsular India (a – d) at basin scale. At regional 432 
scale, a systematic gradient in fast and slow flow contributions is observed (f and g). The spatial patterns of rainfall 433 
(h) can explain the gradient in fast flow contributions. The high scatter of rainfall in the low latitudes represents 434 
the heavy rainfall with high variability occurring in the Western Ghats.435 
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 436 

Figure 9. Spatial variation of long-term monthly fast and slow flow components of streamflow at selected gauges 437 
in Peninsular region. The blue bar plots represent the long-term monthly rainfall averaged over the sub-basins 438 
corresponding to the gauging stations. The seasonality in rainfall patterns changes (unimodal to bimodal) across 439 
north-south direction of the Peninsular region.440 
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Further, an investigation of the combined influence of climatic time scales and process time scales is therefore 441 

pertinent to fully understand the controls of streamflow variability in this region. To address this question, we 442 

extracted the fast and slow flow components for each of the Non-monsoon, South-West monsoon and North-East 443 

monsoon seasons. These components are then used to estimate their relative contributions to total flow for the 444 

three seasons across all the gauging stations.  445 

The relative contributions of fast and slow flow to total flow at basin scale are shown in Fig. 10. It is observed 446 

that during the Non-monsoon period, the median contributions of fast and slow flow for Mahanadi, Krishna and 447 

Cauvery basins are similar, although there exists considerable variability in their distribution. With the onset of 448 

the South-West monsoon, the contribution of fast flow to total flow increases markedly for all the basins, although 449 

relatively much less in the Cauvery basin. During the subsequent North-East monsoon season, the contribution of 450 

fast flow decreases whereas slow flow contribution increases. The fluctuations in the fast flow contributions can 451 

be explained by the onset and withdrawal of the monsoon seasons, which are major contributors to fast flow 452 

generation. The fluctuations in the fast flow contributions across seasons can be explained by the differences in 453 

the rainfall amount during South-West and North-East monsoons (Fig. 7.c and Fig. 7.f). Among all four basins, 454 

the difference in median contributions of fast and slow flow is minimum. These can be attributed to the presence 455 

of higher fraction of moderate and good groundwater potential zones (Arulbalaji et al., 2019) which promotes 456 

baseflow even in dry periods (Fig. 9.g and Fig. 9.h). The presence of bimodal pattern in rainfall seasonality due 457 

to both South-West and North-East monsoons minimizes the difference between the relative contributions of fast 458 

and slow flow to total flow.  459 
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 460 

Figure 10. Seasonal contributions of fast (FF) and slow flow (SF) to total flow at basin scale. 461 

 462 

5. Validation of stratification of streamflow variability  463 

5.1 Understanding physical controls and spatial variation of flow duration curve by fitting statistical 464 

distributions 465 

So far in this paper, in order to understand the physical controls on regional streamflow variability across 466 

Peninsular India we have partitioned observed streamflows in two ways: (i) seasonal/monthly flows, and (ii) slow 467 

and fast flows. We looked at the relative contributions of these components to mean annual streamflow, looked at 468 

how the relative contributions varied regionally, and attributed these to the relative strengths of the monsoons and 469 

spatial variations of geological formations. We now return to the FDCs of the flow components, especially the 470 

shapes of the FDCs (as reflected in the parameters of the fitted distribution) and look at how they themselves vary 471 

regionally. 472 

In our study the fast and slow flow time series are scaled by their respective long-term mean values to remove the 473 

influence of mean climate and geology, thus providing an opportunity to identify the secondary controls on the 474 

variation of shapes of FDCs. The scaled fast and slow flow time series are now used to fit the mixed gamma 475 

distribution (MGD, (see details in Appendix A4). The parameters of mixed gamma distribution control the shape 476 
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and orientation of the FDC. For example, the shape parameter 𝑘 controls the slope of the FDC whereas 𝛼 controls 477 

the zero-flow part of the FDC. However, the parameter 𝜃 affects the vertical shift of the FDC. In addition, these 478 

parameters are also linked with the mean and variance of the streamflow time series. For example, the scale 479 

parameter 𝜃 is directly proportional to the mean of the time series whereas, the shape parameter 𝑘 is inversely 480 

proportional to the variance of the time series. 481 

As the fast and slow flow time series are scaled with their respective long-term means, the scale parameter (𝜃) is 482 

approximately found to be inversely proportional to shape parameter (𝑘) through the relationship, 𝑘𝜃 =
1

1−𝛼
 483 

(Cheng et al., 2012). Therefore, the variations of only 𝑘 and 𝛼 – zero-flow probability, are presented in this section. 484 

The variation of 𝑘 can be related to the steepness of the FDC, i.e., smaller values of 𝑘 will have steeper slopes. 485 

The Nash-Sutcliffe efficiency (NS) and coefficient of determination (R2) goodness of fit of fast/slow flows to 486 

MGD is shown in Fig. S10 (in Supplementary Information). In addition, the observed and simulated fast and slow 487 

flow FDCs are compared in Fig. S8 (in Supplementary Information). It is observed that the slow flow component 488 

fits well to mixed gamma distribution than fast flow component, as slow flow is most stable component and MGD 489 

satisfactorily captured the shape of slow flow FDC. However, MGD adequately captures the shape of fast flow 490 

FDCs at upper tail (high flow segment), except for the lower tail (low flow segment). The fast flow processes are 491 

governed by more complex processes (for example, infiltration and saturation excess runoff generation, runoff 492 

routing, stochastic nature of storm events, properties of soil and topography etc.) than slow flow (for example, 493 

climate seasonality and underlying geology of aquifer system). 494 

The seasonal variation of parameters of the mixed gamma distribution at regional scale (comprising of all the 495 

gauging stations) is presented in Fig. 11. The mixed gamma distribution performed well in fitting the flow duration 496 

curves of two flow components across different seasons (Fig. S10). In Fig. 11.a, it is observed that the shape 497 

parameter of slow flow is consistently higher than that of fast flow. The shape parameter is inversely proportional 498 

to the variance of streamflow. The slow flow exhibits lower variance due to its longer time of residence in the 499 

subsurface formations. Moreover, the subsurface formations in Cauvery River basin are more favourable to slow 500 

flow in comparison to the other three basins (Fig. 9.g and Fig. 9.h). In addition, the bimodal seasonal pattern of 501 

rainfall is also responsible for occurrence of slow flow even in the Non-monsoon period for the southern basins 502 

(Fig. 9). 503 
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 504 

Figure 11. Regional and seasonal variation of k and 𝛼 parameter of mixed gamma distribution. 505 

The fast flow component exhibits higher variance than the slow flow component. The median shape parameter of 506 

fast flow is highest during South-West monsoon season and lowest during North-East monsoon (Fig. 11.a). This 507 

can be explained by the lower variance of fast flow during South-West monsoon as the rainfall amount is higher 508 

during the season compared to the North-East monsoon (Fig. 7.c and Fig. 7.f). The dominance of both South-509 

West and North-East monsoons in Cauvery basin results in lower variance of fast flow compared to the northern 510 

basins. The fast flow duration curves are steeper than the slow flow duration curves for all seasons, as the 511 

magnitudes of 𝑘 for fast flow are smaller than that of slow flow (Fig. 11.a).   512 

The parameter 𝛼 controls the zero-flow part of the flow duration curve. It is observed that the mean 𝛼 for slow 513 

flow is minimum during South-West monsoon and maximum for Non-monsoon season (Fig. 11.b) on a regional 514 

scale. This can be attributed to the combined influence of rainfall during South-West monsoon and the 515 

connectivity between underlying geologic formations in the Peninsular region. For the fast flow, the mean 𝛼 is 516 

minimum during the South-West monsoon and maximum during Non-monsoon as the South-West monsoon is 517 

the dominating rainfall season in Peninsular India. 518 

The shape parameters (k) of MGD for slow and fast flow components are linked with landscape properties through 519 

recession analysis, where the parameters 𝛾 & 𝛽 of power-law relationship are estimated using streamflow data 520 

(details in Appendix A.2). It is observed that shape parameter (inversely proportional to variability) of slow flow 521 

is positively correlated with 𝛽. The parameter 𝛽 is influenced by aquifer geometry and water table elevation 522 

profile defining early and late stages of recession (Tashie et al., 2020a; Tashie et al., 2020b). Higher values of 𝛽 523 

indicate slow late recessions which is characterized by low variability in slow flow (Fig. 12.a). 524 

The shape parameter of fast flow is negatively correlated with the parameter 𝛾 of the power-law relationship (Fig. 525 

12.b). The parameter 𝛾 strongly related with the seasonality of catchment wetness and evapotranspiration which 526 

are primary governing factors for runoff generation (Dralle et al., 2015; Gnann et al., 2021). In addition, the spatial 527 

variation of rainfall also influences the variability of 𝛾 (Biswal & Kumar, 2014) which reflects the variability of 528 

fast flow. 529 
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 530 

Figure 12. Relationship between flow variability (related inversely to shape parameter, k of mixed gamma 531 
distribution) and recession parameters. 532 

The variation of the parameters, 𝑘 and 𝛼 was also studied using spatial descriptors (latitude and longitude) as 533 

explanatory variables to understand the spatial variation of FDCs across south-north, west-east gradients. In 534 

addition, the behaviour of these parameters is also assessed using catchment area as another explanatory variable. 535 

The regional parameter sets comprising of 𝑘 and α are next constructed for slow and fast flow processes by 536 

including these parameters for all the time series across different gauging stations across the Peninsular region. 537 

The Spearman correlation coefficients between these parameters and explanatory variables (i.e., catchment area 538 

and spatial descriptors – latitude and longitude) for slow and fast flow processes at seasonal scales are computed. 539 

The schematic representation of significant directions (positive/negative correlations) in Spearman coefficient is 540 

shown in Fig. 13.    541 

 542 
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 543 

Figure 13. Schematic representation of spatial and temporal variation of parameters of mixed gamma distribution 544 
across Peninsular India. The direction of significant Spearman correlation coefficient between model parameters 545 
and descriptors (catchment area and spatial descriptors – latitude and longitude) for fast and slow flow across 546 
multiple time scale is presented.  547 

The shape parameter of fast flow is found to be positively correlated with catchment area (Fig. 13, top panel), 548 

implying lower variability of fast flow in large catchments. This can be attributed to increased smoothening effect 549 

of incoming rainfall in larger catchments through various storages, thus reducing the variability of fast flow. 550 

Moreover, the shape parameters for fast flow are negatively correlated with spatial descriptors, indicating 551 

increased variability of fast flow along south-north and west-east gradients. This can be partly explained by the 552 

bimodal seasonal pattern of rainfall due to dominance of South-West and North-East monsoons, thus reducing the 553 

variability of fast flow in the southern part of the region. The rainfall pattern becomes more seasonal (primarily 554 

due to South-West monsoon) in the northern part of region which can contribute to increased variability of fast 555 

flow. The presence of numerous water retention structures for supporting irrigation in these regions (54 – 75% of 556 

Peninsular basins are crop land) can modify the variability of the flow, although we have not analysed this 557 

separately in this study. 558 

The shape parameter of slow flow is found to be negatively correlated with latitude, implying that slow flow 559 

becomes highly variable in the northern part of the region. This can be explained by the nature of geologic 560 

formations in the Cauvery basin that promotes slow flow even during the Non-monsoon period. However, in the 561 

northern part of the region, the slow flow tends to become more seasonal and has very limited flow during non-562 

rainy seasons. In addition to the geology, the bimodal seasonal rainfall patterns due to monsoons can play an 563 

important role in the variability of slow flow. Apart from the spatial descriptors, the slow flow variability is 564 

inversely proportional to catchment area, implying larger catchments have lower slow flow variability than 565 

smaller catchments. This can be explained by the proportional increase in area of contribution to slow flow with 566 

increase in catchment size, thus reducing the variability in slow flow for larger catchments. 567 
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The parameter 𝛼 is found to be negatively correlated with catchment area (Fig. 13, bottom panel) for fast and slow 568 

processes, implying zero-flow probabilities are lower for larger catchments. The higher residence time of water 569 

in larger catchment due to various kinds of storages facilitates flow in river even in Non-monsoon season, thus 570 

reducing the zero-flow probabilities. In addition, the parameter 𝛼 of both slow and fast flow are negatively 571 

correlated with longitude, implying lower zero-flow probabilities along west-east direction. This can be attributed 572 

to natural declining elevation (Fig. S1.b) which promotes both fast and slow flow towards eastern direction. 573 

5.2 Understanding physical controls and spatial variation of seasonal flow duration curve using mid-section 574 

slope 575 

Apart from mean, variance and no-flow frequency, the midsection slope of the FDC – estimated using 576 

ln(𝑄33𝑝)−ln(𝑄66𝑝)

0.66−0.33
, where 𝑄33𝑝 and 𝑄66𝑝 represent the streamflow values at 33rd and 66th percentiles respectively – 577 

is connected to the average flow regime of the catchment, which is controlled by both surface and subsurface 578 

processes (Yokoo & Sivapalan, 2011; Chouaib et al., 2018). The association of the slope of FDC with the 579 

parameters pertaining to recession analysis is presented in Fig. 14. 580 

 581 

Figure 14. Association between streamflow variability and recession parameters.  582 

During Non-monsoon and North East monsoon seasons (Fig. 14a and Fig. 14c) – when rainfall is comparatively 583 

less than South West monsoon – a significant association between flow variability and 𝛽 highlights the importance 584 

of slow flow and recession characteristics controlled by aquifer geometry and water table elevation profile. In 585 

addition to significant association with 𝛽 during South West monsoon (Fig. 14b), the midsection slope of FDC is 586 

positively correlated with 𝛾 – the parameter which is strongly related with the seasonality of catchment wetness, 587 

evapotranspiration and spatial variation in rainfall – revealing the importance of land surface processes in 588 

variability of streamflow variability. 589 
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A coherent pattern in variability of streamflow (via. Midsection slope of FDC) is observed across South – North 590 

gradient of the Peninsular region (Fig. 14e). This systematic pattern in streamflow variability reflects the influence 591 

of combined functioning of subsurface and land surface processes on regional hydrologic signatures of Peninsular 592 

India.  593 

6. Conclusions 594 

Being a signature of a catchment's hydrological behavior and a concise graphical summary of streamflow 595 

variability at a specific gauging station, FDC relates the frequency and magnitude of observed streamflows and 596 

helps explain flooding mechanisms and low flow conditions at the referred location. Furthermore, at the catchment 597 

scale, FDCs incorporate the forcing mechanisms of the water cycle and the physical and morphological properties 598 

of the river basin that influence the water partition between surface runoff and baseflow and, thus, control flow 599 

regimes (Costa & Fernandes, 2021). Motivated by this fact, in this study we outlined a framework and its 600 

suitability for understanding process controls of FDCs, which involved separating annual streamflow into seasonal 601 

flow components and constructing annual FDC using seasonal FDCs. The goal of this study was to demonstrate 602 

the efficacy of the framework to explore the process controls on streamflow variability across Peninsular India. 603 

The study followed a data-based approach using streamflow data taken from 62 stream gauges distributed within 604 

four major river basins in Peninsular India. The probability density functions are initially derived for daily 605 

streamflow time series for Non-monsoon, South-West monsoon, and North-East monsoon seasons. These PDFs 606 

are then multiplied by scaling factors that represent relative durations of the seasons considered. The probability 607 

density function of annual flow is then estimated as the weighted sum of three scaled density functions 608 

corresponding to three seasons. The performance of the time scale partitioning framework is then further assessed 609 

using the metric root mean square error. 610 

Analysis and interpretation of the results of the study revealed that the main drivers of regional variability of 611 

streamflow across Peninsular India include (1) major mountain ranges – the Western and Eastern Ghats – which 612 

govern regional atmospheric circulation and precipitation variability; (2) the South-West and North-East 613 

monsoons that occur in different times of the year and come from different directions; and (3) east-west and north-614 

south gradients of geology. The combined influence of seasonal rainfall patterns, catchment size and the ability 615 

of the subsurface formations to transmit slow flow controls the shape of flow duration curves of the flow 616 

components along south-north and west-east directions in Peninsular region.  617 

To summarize, the major findings of the study are outlined below:  618 

I. Spatial variations of seasonal and annual flow duration curves across Peninsular India are initially 619 

investigated by approximating the annual flow duration curve via partitioned seasonal and monthly flow 620 

duration curves. FDCs of South-West monsoon flows are relatively dominant to other seasonal FDCs at 621 

stations in the northern portion of the peninsula. From June to September, flow contributions in northern 622 

Peninsular basins are significantly higher than in other months (Mahanadi and Godavari, Krishna to a 623 

lesser extent). However, the contribution from June to September is not as substantial in the southernmost 624 

Cauvery basin; there is also a major contribution from October to December. This is attributable to the 625 

fact that the South-West and North-East monsoons both impact the Cauvery basin. It is further noticed 626 

that the contribution of the North-East monsoon to annual flow is larger in southern basins than in 627 
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northern basins. The contribution of the Non-monsoon to annual flow is also stronger in the southern 628 

basin and is attributed to winter rains from the North-East monsoon, which are more evident in the 629 

southern part of the peninsula, creating carryover flows. 630 

II. The streamflow produced in the headwater regions of southern basins, which extends until 17° N latitude 631 

and contributes at least 70% of the annual flow, is a result of high rainfall during the South-West monsoon 632 

season in the mountainous region of the southern Peninsula (western part of Krishna basin and north-633 

western part of Cauvery basin). The northern part of the Peninsular region experiences notably higher 634 

rainfall than the southern part, not considering the Western Ghats region. The low-pressure system, which 635 

is a regular feature of the South-West monsoon that brings significant rainfall in the northern part of the 636 

Peninsular region, attributes the increased rainfall (after 16° N latitude) and is responsible for the higher 637 

contribution of South-West monsoon flows to annual flow in the northern basins. The spatial variation in 638 

the contribution of South-West monsoon flows to annual flow in the south-north direction is thus 639 

explained by the spatial variability of the South-West monsoon in the same direction over the Peninsular 640 

region. The contribution of North-East monsoon flows to annual flow, on the other hand, increases in a 641 

southerly direction, which can be explained by the fact that the southern part of the Peninsular region 642 

receives more rainfall during the North-East monsoon than the rest of the Peninsular region. 643 

III. Spatial variations of fast/slow and total flow duration curves across Peninsular India are then explored 644 

by approximating the total flow duration curve by partitioned flow duration curves. Relative 645 

contributions of fast and slow flows to total flow in each of the four river basins show a significant 646 

dominance of fast flow in the northern basins, close to 80% in Mahanadi, Godavari, and Krishna river 647 

basins.  648 

IV. The Western Ghats, which run along the western boundary of the Krishna and Cauvery basins, bring a 649 

lot of rain to the southern part of the region. As a result, the western margins of the sub-basins along the 650 

Krishna basin contribute 80 percent of the fast flow to total flow (between 13° N and 18°N latitudes). 651 

However, the south-north gradient in fast flow contributions to total flow is governed by increasing 652 

spatial mean characteristics of annual rainfall after 16° N latitude, which dictates an increased 653 

contribution of fast flow to total flow. 654 

V. The greater contribution of slow flow to total flow in the southern Peninsular region, particularly Cauvery 655 

and Krishna, is characterized by bimodal rainfall seasonality and the presence of a higher fraction of 656 

moderate to good groundwater potential zones and is responsible for the spatial variation of 657 

increased relative contributions of slow flow to total flow in the southerly direction over the Peninsular 658 

region. 659 

VI. A coherent pattern in streamflow variability across the South-North gradient of the Peninsular region is 660 

observed via the midsection slope of FDC. These similar spatial variation in streamflow variability 661 

demonstrate the impact of combined subsurface and land surface processes on Peninsular India's regional 662 

hydrologic signatures. 663 

Previous data-based explorations of process controls on the FDC have typically followed a Darwinian (Harman 664 

and Troch, 2014) comparative hydrology approach. They have looked at between-catchment and regional 665 

variations of the FDC (or of parameters of statistical distributions fitted to empirical FDCs), their attribution to 666 

climatic and landscape properties, and their interpretation in terms of their underlying process controls (fast flow 667 
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and slow flow etc). In the Darwinian approach, each catchment is deemed a particular but statistically independent 668 

realization of the coevolution of climate and landscape properties, with the hydrologic response being both a cause 669 

and effect in this coevolution (Wagener et al., 2013). The novelty of the data-based exploration of process controls 670 

on the FDC adopted in this study is that here we have followed a Wegenerian (cf. Alfred Wegener, Sivapalan, 671 

2018) comparative hydrology approach, in which the focus was on exploration of the controls of common regional 672 

landscape features (in space) and seasonal climatic variations (in time) features on regional variations of the FDC. 673 

We interpret the imprints of the regional variations streamflow variability of the FDCs outlined as findings across 674 

Peninsular India as the consequence of several episodes of tectonic, geological, and volcanic activities in the 675 

Indian subcontinent ever since the breakup of Gondwana and its collision with Asia during the Jurassic age, 676 

resulting in the uplift of mountain ranges, including the Himalayas, and their role in the establishment of India’s 677 

monsoon climate.  678 

We acknowledge, however, that in recent times streamflow variability in Peninsular India has been significantly 679 

impacted by anthropogenic activities, including significant land use and land cover changes, and other human 680 

interferences such as the building of dams and the extraction of water from both rivers and from groundwater 681 

aquifers for human use. The present study has not explored the effects of human impacts: their impacts on both 682 

temporal (inter-decadal) and spatial (regional) variations of the FDCs is left for future work. Further work is also 683 

needed to understand in more detail the causes and the relative contributions of regional patterns precipitation and 684 

geological formations on streamflow partitioning.  685 

On the methodological front, there is opportunity to refine the analysis used here to incorporate the statistical 686 

cross-correlation between fast and slow flows in the reconstruction of the FDC for total streamflow, by adopting 687 

generalized approaches (e.g., copulas).  In the exploration of the relative contributions of the monsoons, there is 688 

scope to extend the analysis framework to partition the streamflow variability guided by the actual breakdown 689 

into the seasons each year in a more flexible way, as opposed to the static way. This is likely to make the results 690 

of the analysis more robust and less uncertain. Finally, in the process domain, the filter-based separation of total 691 

streamflow into fast and slow flow can be variably impacted by catchment size, introducing some uncertainty into 692 

the partitioning of the FDC of total streamflow into its fast flow and slow flow components. Future work in this 693 

area should explore ways to overcome these methodological shortcomings.   694 

 695 

Appendix 696 

A.1 Baseflow decomposition (Recursive Digital Filter) 697 

The partitioning of total flow (𝑄) into slow flow (𝑄𝑠) is performed using recursive digital filter technique as 698 

described in Arnold & Allen (1999) and Arnold et al. (1995). Based on the study by Nathan and McMahon (1990), 699 

they found that a coefficient range between 0.9 and 0.95 yielded most acceptable baseflow separation. Therefore, 700 

we have taken the value 0.95 as a coefficient value for this analysis (more discussion is provided at the end of 701 

A.1). This filter is applied to daily streamflow timeseries data for all the gauging stations across the Peninsular 702 

region. 703 

The equation of the filter is 704 
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𝑞𝑡 = ε𝑞𝑡−1 +
(1+ε)

2
(𝑄𝑡 − 𝑄𝑡−1)                  (A.1) 705 

where 𝑞𝑡 is the filtered surface runoff (quick response) at the t time step, 𝑄 is the original streamflow (total flow), 706 

and ε is the filter parameter (which is assumed to be 0.95). Slow flow, 𝑄𝑠, is calculated with the equation: 707 

𝑄𝑠 = 𝑄 − 𝑞𝑡                    (A.2) 708 

After obtaining the slow flow component, the fast flow (𝑄𝑓) is obtained by subtracting 𝑄𝑠 from 𝑄.  709 

𝑄𝑓 = 𝑄 − 𝑄𝑠                     (A.3) 710 

In order to demystify the role of different values of the filter parameter in the digital recursive filter, the model 711 

was run for three different seasons for all the catchments in Peninsular region. The results are presented in Figure 712 

A1. 713 

 714 

Figure A1. Contribution of slow flow to total flow for different seasons. The box plots in each season represent 715 
the partitioning of total flow into slow flow for different filter parameters, viz. [0.92,0.93,0.94,0.95,0.96,0.97 716 
,0.98]. 717 
 718 

It is observed that the median variations in the slow flow fraction during non-monsoon period (0.5-0.7), south 719 

west monsoon period (0.18-0.45) and north east monsoon period (0.44-0.7) which lies within 30% variation. 720 

However, even with these variations, the overall pattern, i.e., high slow flow contribution during non-monsoon 721 

and north east monsoon seasons and low slow flow contribution during south west monsoon remains intact, 722 

revealing seasonal changes in the dynamics of slow flow contribution to total flow. In this paper, we assumed the 723 

parameter 0.95 reflecting the average variability in slow flow contributions to total flow. 724 

A.2 Recession Analysis 725 

 In recession analysis, it is often assumed that rate of change of streamflow 
𝑑𝑄

𝑑𝑡
 and streamflow (𝑄) follows a 726 

power law in the form: 727 

−
𝑑𝑄

𝑑𝑡
= 𝛾𝑄𝛽           (A.4) 728 

The parameter 𝛾 is function of static watershed properties (i.e., hydrological conductivity, drainable porosity, 729 

aquifer depth, aquifer breadth, impermeable layer slope and length of stream) (Tashie et al., 2020a). The parameter 730 

β represents the geometry of the contributing aquifer and water table elevation profile that defines the early and 731 

late periods of recession (Tashie et al., 2020b). 
𝑑𝑄

𝑑𝑡
 is estimated using exponential time stepping scheme (Roques 732 

et al., 2017). Strictly decreasing recession segments (
𝑑𝑄

𝑑𝑡
< 0) with recession segments more than 5 days are 733 

considered for the estimation of the parameters (𝛾 𝑎𝑛𝑑 β) (Jachens et al., 2020). A weighted least square 734 

regression is used to fit a line in log-log space to recession segments (Roques et al., 2017). The median of the 735 

parameters is used to describe catchment-average recession behaviour (Gnann et al., 2021). 736 
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A.3 Absolute contributions of fast and slow flow to total flow 737 

The absolute contributions of fast and slow flow to total flow are determined using the coefficient of determination 738 

(R2) of simple linear regression models, that measures the reduction in variability of total flow due to fast and 739 

slow flow components. The details are given below: 740 

Model 1: 𝑄 = 𝜑1 ∙ 𝑄𝑓 + 𝜖1         (A.5) 741 

Model 2: 𝑄 = 𝜑2 ∙ 𝑄𝑠 + 𝜖2         (A.6) 742 

The coefficient of determination measures the effect of slow(fast) flow in reducing the variation in total flow 743 

based on Model1(Model2). Higher the value of this coefficient, higher the contribution of slow/fast flow in 744 

reducing the variation in total flow. 745 

The coefficient of determinations for two models can be estimated as: 746 

𝑅(1)
2 =

𝑆𝑆𝑅(1)

𝑆𝑆𝑇𝑂
          (A.7) 747 

𝑅(2)
2 =

𝑆𝑆𝑅(2)

𝑆𝑆𝑇𝑂
          (A.8) 748 

where, 𝑆𝑆𝑅(1) and 𝑆𝑆𝑅(2) represent the regression sum of squares for Model 1 and Model 2 respectively, and 749 

SSTO represents the total sum of squared deviations from mean, i.e., 𝑆𝑆𝑇𝑂 = ∑(𝑄𝑖 − 𝑄̅)2. The sum of squares 750 

due to the models are expressed as: 751 

𝑆𝑆𝑅(1) = ∑(𝑄(1)
̂ − 𝑄̅)

2
and 𝑆𝑆𝑅(2) = ∑(𝑄(2)

̂ − 𝑄̅)
2
 where 𝑄(1)

̂  𝑎𝑛𝑑 𝑄(2)
̂  are the fitted values of total flow using 752 

Model 1 and Model 2 respectively.  753 

The values of coefficient of determination (R2) for three seasons are shown in Fig. A2. 754 

 755 

Figure A2. Coefficient of determination representing the absolute contribution of fast/slow flow in reducing the 756 
variation in total flow across seasons. 757 
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 758 

Figure A3. Relative contributions of fast (FF) and slow flow (SF) to total flow at regional and seasonal scales 759 
(NM – Non-monsoon, SW – South-West monsoon and NE – North-East monsoon). 760 

It can be shown that the pattern of absolute contribution remains similar (in terms of phase relationship between 761 

slow and fast flow contributions to total flow) with that of relative contribution as reported in Fig A3. However, 762 

there are differences in the magnitudes of the absolute contributions and relative contributions of the flow 763 

components to total flow. The major difference between relative and absolute contribution analyses is that the 764 

contribution of the fast flow is significantly higher than the slow flow for non-monsoon season, which can be 765 

attributed to rainfall during the non-monsoon period (Fig 6).  766 

A.4 Fitting statistical distributions 767 

A simple statistical distribution, the mixed gamma distribution, is employed here to characterize the FDC in 768 

Peninsular River system. The choice of the mixed gamma distribution is made to take care of the flow regimes of 769 

the selected basins (i.e., to accommodate the presence of zero flow values) (Cheng et al., 2012). The classic gamma 770 

distribution is a two-parameter, continuous distribution with a shape parameter, k, and a scale parameter, θ.  In 771 

addition, the probability of zero flows, α, is defined as the ratio of the number of zero flow days to the total number 772 

of days within the data record. The mixed gamma distribution (Cheng et al., 2012) employed to model FDC is as 773 

follows: 774 

 𝑓 (𝑞, 𝑘, 𝜃, 𝛼) =  { 
𝛼,

(1 − 𝛼). 𝑔(𝑞, 𝑘, 𝜃),
         

𝑞 = 0

𝑞 > 0
         (A.9) 

where 𝑔(𝑞, 𝑘, 𝜃) is the probability density function of the gamma distribution. The probability density function of 775 

the gamma distribution is assumed to take the form of (Cheng et al., 2012): 776 

 𝑔 (𝑞, 𝑘, 𝜃) =  
1

|𝜃| Γ (𝑘)
 (

𝑞

𝜃
)

𝑘−1

exp (−
𝑞

𝜃
)  (A.10) 
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where 𝑘 and 𝜃 are the shape and scale parameters, respectively.  The parameters 𝑘 and 𝜃 can be estimated by the 777 

method of moments. The mean, µ, and variance, ν, of the gamma distribution are evaluated from the 𝑞 > 0 time 778 

series. The parameters are related to µ and 𝜈 as follows: 779 

 µ =  𝑘 . 𝜃  (A.11) 

 𝜈 = 𝑘 . 𝜃2  (A.12) 

The following formulation is used to obtain the flow given a probability of exceedance, 𝑝 (Cheng et al., 2012): 780 

 𝑞 (𝑝, 𝑘, 𝜃, 𝛼) =  {
𝐺−1 (1 −  

𝑝

1 − 𝛼
, 𝑘, 𝜃) , 0 ≤ 𝑝 ≤ 1 − 𝛼

0                                        , 1 − 𝛼 < 𝑝 ≤ 1
  (A.13) 

where 𝐺−1 is the inverse of the CDF of the mixed gamma distribution. 781 

In this case, given that we have already looked at the climatic and landscape controls on the mean annual flows, 782 

we instead work with the normalized daily streamflow time series (i.e., daily streamflow divided by long-term 783 

mean daily streamflow), which is then used to estimate the parameters of the mixed gamma distribution. The 784 

parameters estimated from the normalized streamflow series can thus be used to infer secondary controls on the 785 

shape of flow duration curves. 786 

 787 

A.5 Investigating the slow flow fraction of total flow in Peninsular India 788 

The variability in slow flow fraction (SFF) is investigated using multiple linear regression by considering the 789 

recession parameters, β and γ in the equation −
𝑑𝑄

𝑑𝑡
= 𝛾𝑄𝛽 and the location of the gauge (δ, latitude). The results 790 

are provided below: 791 

Regression Model: 792 

 𝑆𝐹𝐹 = 𝛼0 + 𝛼1𝛾 + 𝛼2𝛽 + 𝛼3𝛿  
 (A.14) 

 793 

Table A.1 – Statistical Assessment of regression coefficients 794 

 795 

The above regression model was able to explain to about 52% of the variability in slow flow fraction of total flow 796 

(p-value = 1.98 × 10−9), and in general, the model is found to be useful to explain SFF in terms of recession 797 

parameter and latitude. A fraction of the unexplainable part in SFF can be attributed to the heterogeneity in 798 

subsurface geologic formations and dam induced variations in the catchment storages. However, at a regional 799 

scale, the south-north gradient (represented by the parameter 𝛿) can explain the variability in slow flow fraction 800 

to total flow. This regional setting is an important outcome to understand the streamflow variability in Peninsular 801 

region of India. 802 

 803 

Coefficients Estimate SE tStat pValue

α0, (Intercept) 0.35361 0.055275 6.3973 2.99E-08

α1 -0.024117 0.021119 -1.142 0.25816

α2 0.12791 0.025704 4.9764 6.12E-06

α3 -0.015556 0.0023978 -6.4875 2.12E-08
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Data availability. The streamflow datasets used for the analysis are accessible from 804 

https://indiawris.gov.in/wris/#/. The daily India Meteorological Department (IMD) gridded rainfall product at 805 

spatial resolution of 0.25° × 0.25° 806 

(https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html) from Pai et al., (2014) is 807 

used. The function baseflow, used for partitioning total flow to slow flow is downloaded from 808 

https://in.mathworks.com/matlabcentral/fileexchange/58525-baseflow-filter-using-the-recursive-digital-filter-809 

technique.  810 
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